
Timing consistency checking for UML/MARTE
behavioral models

Jinho Choi1 • Eunkyoung Jee2 • Doo-Hwan Bae2

Published online: 10 September 2015
� Springer Science+Business Media New York 2015

Abstract UML/MARTE model-driven development approaches are gaining attention in

developing real-time embedded software (RTES). UML behavioral models with MARTE

annotations are used to describe timing behaviors and timing characteristics of RTES.

Particularly, state machine, sequence, and timing diagrams with MARTE annotations are

appropriate to understand and analyze timing behaviors of RTES. However, to guarantee

software correctness and safety, timing inconsistencies in UML/MARTE should be iden-

tified in the design phase of RTES. UML/MARTE timing inconsistencies are related to

modeling errors and can be hazards throughout the lifecycle of RTES. We propose a

systematic approach to check timing consistency of state machine, sequence, and timing

diagrams with MARTE annotations for RTES. First, we present how state machine,

sequence, and timing diagrams with MARTE annotations specify the behaviors of RTES.

To overcome informal semantics of UML/MARTE models, we provide formal definitions

of state machine, sequence, and timing diagrams with MARTE annotations. Second, we

present the timing consistency checking approach that consists of a rule-based and a model

checking-based timing consistency checking. In the rule-based timing consistency

checking, we validate well formedness of UML/MARTE behavioral models in timing

aspects. In the model checking-based timing consistency checking, we verify whether

timing behaviors of sequence and timing diagrams with MARTE annotations are consistent

with the timing behaviors of state machine diagrams with MARTE annotations. We

& Jinho Choi
jhchoi93@gmail.com

Eunkyoung Jee
ekjee@se.kaist.ac.kr

Doo-Hwan Bae
bae@se.kaist.ac.kr

1 The 1st R&D Institute, Agency for Defense Development (ADD),
Yuseong P.O. Box 35, Daejeon 34188, Republic of Korea

2 School of Computing, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

123

Software Qual J (2016) 24:835–876
DOI 10.1007/s11219-015-9290-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9290-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9290-6&domain=pdf

support an automated timing consistency checking tool UML/MARTE timing Consistency

Analyzer for a seamless approach. We demonstrate the effectiveness and the practicality of

the proposed approach by two case studies using cruise control system software and

guidance and control unit software.

Keywords UML � State machine diagram � Sequence diagram � Timing diagram �
MARTE � Timing consistency checking

1 Introduction

Real-time embedded software (RTES) for safety-critical systems (e.g., avionics, military,

automobile, and medical equipment, etc.) are becoming larger and more complex (Millett

et al. 2007; Leveson 2011). Timing is still a major concern in the development of RTES

(Peraldi-Frati et al. 2012; Leveson 2011; Lavagno et al. 2003; Gomes et al. 2010). Thus,

timing behavioral modeling for RTES is indispensable to manage software complexity and

safety. Timing behavioral modeling has advantages as follows: First, through timing

behavioral modeling, RTES designers can clearly capture required functionalities and

timing constraints of RTES (Lavagno et al. 2003; Gomes et al. 2010; Sgroi et al. 2000).

Second, timing behavioral modeling provides a common understanding on software

behaviors to diverse stakeholders.

The Unified Modeling Language (UML), as a de facto modeling language in practice,

provides a set of graphical notations to create the visual models of software structures and

behaviors (OMG 2011b). Since UML provides models with multiple viewpoints, UML

facilitates communication among stakeholders. Among UML behavioral models, state

machine, sequence, and timing diagrams are appropriate to understand and analyze RTES

behaviors. A state machine diagram describes the overall behaviors of a single object. A

sequence diagram shows the flow of logic by exchanging messages among lifelines (i.e.,

objects). A timing diagram represents state behaviors of objects focusing on timing con-

straints. In UML modeling, state machine diagrams and sequence diagrams have been used

usually to specify the behaviors of software. Timing diagrams are very useful for effective

communication among different stakeholders in the development of RTES because timing

diagrams provide intuitive specifications for timing constraints and have been used widely

in electronic domain (Fowler 2004; Choi et al. 2012b). However, UML 1.x or 2.0 notations

are hard to fully describe properties of RTES such as timing and resource usage. To

overcome such limitation of UML, the Object Modeling Group (OMG) has adopted the

profile for Modeling and Analysis of real-time embedded systems, in short MARTE (OMG

2011a). With stereotypes and tagged values predefined for specification and design, the

MARTE profile provides licit interpretation for UML models to stakeholders. Therefore,

SMDs/MARTE (i.e., state machine diagrams with MARTE annotations), SDs/MARTE

(i.e., sequence diagrams with MARTE annotations), and TDs/MARTE (i.e., timing dia-

grams with MARTE annotations) can be used to describe the behaviors and timing

characteristics of RTES.

Due to different UML behavioral models with MARTE annotations, timing inconsis-

tencies can exist naturally in a UML model with MARTE annotations and between dif-

ferent types of UML/MARTE models. Timing inconsistency problems in SMDs/MARTE,

SDs/MARTE, and TDs/MARTE are as follows: First, timing inconsistencies are related to

836 Software Qual J (2016) 24:835–876

123

modeling errors and can be propagated to the code implementation. If timing inconsis-

tencies are not detected in testing, then it can lead to catastrophic system failures. Suppose

that the same timing behavior is specified in an SD/MARTE and a TD/MARTE model, but

these two models are not consistent due to human errors in modeling. Without timing

consistency checking, if functions of RTES are implemented from a timing scenario in the

SD/MARTE model and a timing scenario in the TD/MARTE model is used in testing, then

the inconsistencies can be detected in testing. As a result, the timing inconsistencies will

lead to a development cost increase because late checking is required to identify the

inconsistency points between the SD/MARTE and the TD/MARTE. Second, it is hard to

detect timing inconsistencies by human review. In particular, it is hard to check whether

the timing scenarios of SDs/MARTE and TDs/MARTE are consistent with the timing

behaviors of SMDs/MARTE through human review. Thus, an automated tool is needed to

effectively detect timing inconsistency points in UML/MARTE models. Last, most UML

tools only provide a standard representation of UML models. To specify UML/MARTE

models in the RTES development, a systematic timing consistency checking approach

should be provided to RTES designers.

Our research questions regarding the specification of SMDs/MARTE, SDs/MARTE,

and TDs/MARTE models for RTES are as follows:

• What types of inconsistencies are in SMDs/MARTE, SDs/MARTE, and TDs/MARTE

models for RTES?

• How can we detect timing inconsistencies in SMDs/MARTE, SDs/MARTE, and TDs/

MARTE models for RTES?

• Is our approach useful and practical in the RTES domain?

To tackle the research questions, we propose a systematic approach to check timing con-

sistency of SMDs/MARTE, SDs/MARTE, and TDs/MARTEmodels for RTES. The proposed

approach consists of a rule-based timing consistency checking and a model checking-based

timing consistency checking. The rule-based timing consistency checking checks intra-model

and inter-model consistency of UML/MARTE models. The model checking-based timing

consistency checking checks whether timing scenarios of SDs/MARTE and TDs/MARTE are

consistent with the behaviors of SMDs/MARTE. To this end, timed automata models are

transformed from SMDs/MARTE and timing properties to be verified are extracted from SDs/

MARTE and TDs/MARTE. We present how UML/MARTE models specify the behaviors of

RTES and provide formal definitions for SMDs/MARTE, SDs/MARTE, and TDs/MARTE

models. We categorize UML/MARTE consistency types into timing and non-timing consis-

tency, and intra-model and inter-model consistency. We support an automated tool, UMCA

(UML/MARTE timing Consistency Analyzer), for a seamless timing consistency checking

approach (Choi 2015).Using theUMCA,wedemonstrate the proposed approachwith two case

studies, cruise control system (CCS) software in automotive systems and guidance and control

unit (GCU) software in avionics systems.

The contributions of the proposed approach are as follows:

• We establish a basis for timing consistency checking for UML/MARTE models by

categorizing consistency types to be checked.

• We detect timing inconsistencies in SMDs/MARTE, SDs/MARTE, and TDs/MARTE

with the automated tool.

The remainder of this paper is organized as follows: Sect. 2 explains background

knowledge about UML, MARTE, timed automata, and model checking. Section 3 dis-

cusses the related works. Section 4 presents how SMDs/MARTE, SDs/MARTE, and

Software Qual J (2016) 24:835–876 837

123

TDs/MARTE specify the behaviors of RTES. Section 5 describes the proposed approach to

check timing consistency for SMDs/MARTE, SDs/MARTE, and TDs/MARTE models.

Section 6 presents the design and implementation of an automated timing consistency

checking tool, and describes the correctness validation of rules and model transformation

using the tool. Section 7 describes the results of a CCS software case study. Section 8

describes the results of a GCU software case study. Section 9 discusses the proposed

approach. Finally, Section 10 provides the conclusion and future work.

2 Background

2.1 UML

UML is an open standard which is controlled by OMG. UML is a general-purpose mod-

eling language for the visualization and understanding of software structures and behav-

iors. Moreover, UML helps communicate among stakeholders and supports many

structural and behavioral diagrams with diverse viewpoints. At present, UML 2.4.1 is

released formally. It consists of two parts: superstructure and infrastructure. The super-

structure defines the notation and semantics for UML diagrams and their model elements,

while the infrastructure defines the core metamodel used by the superstructure. Figure 1

shows the taxonomy of UML structure and behavior diagrams (OMG 2011b). Fourteen

UML diagrams are defined in UML 2.4.1. They are classified into structure diagrams,

behavior diagrams, and interaction diagrams as shown in Fig. 1. Structure diagrams rep-

resent the static structures of objects. Behavior diagrams show the dynamic behaviors of

objects. Interaction diagrams represent the flow of control and data among objects. In this

paper, we use state machine diagrams, sequence diagrams, and timing diagrams to specify

the behaviors of RTES. State machine diagrams are behavior diagrams. Sequence diagrams

and timing diagrams are interaction diagrams.

2.2 MARTE

MARTE is a profile for strengthening the expressive power of UML. It supports modeling

and analysis in real-time embedded systems. At present, MARTE 1.1 is released formally.

MARTE provides predefined stereotypes and tagged values to specify non-functional

Fig. 1 The taxonomy of UML structure and behavior diagrams (OMG 2011b)

838 Software Qual J (2016) 24:835–876

123

properties, timing, general resources, and allocation. MARTE is organized into four main

packages: MARTE foundations, MARTE design model, MARTE analysis model, and

MARTE annexes. MARTE foundations define concepts for real-time and embedded sys-

tems. MARTE design model provides concepts required from specification to detailed

design of real-time embedded systems. MARTE analysis model offers analysis modeling

concepts such as schedulability and performance analysis. MARTE annexes provide a

predefined MARTE model library and value specification languages such as the Value

Specification Language (VSL), the Clocked Valued Specification Language (CVSL), and

the Clock Constraint Specification Language (CCSL). Table 1 shows an example of

stereotypes and tagged values defined in the MARTE profile. In this paper, we follow the

MARTE profile to specify UML/MARTE models. To specify timing constraints infor-

mation such as a deadline and an execution time, \\SaStep[[stereotype is used in

MARTE annotation.

2.3 Timed automata

Timed automata were proposed by Alur and Dill (1994). Timed automata are used to specify

and analyze timeliness properties of real-time systems. It is specified with two fundamental

elements, a finite automaton and clocks (Bérard et al. 2010). A finite automaton describes

locations (i.e., states or nodes) and transitions between locations. Clocks are used tomodel the

quantitative timing constraints. Figure 2 shows an example of a timed automata model. As

shown in Fig. 2, a transition is composed of guard, synchronization, and assignment. Clock

values or flag values are used in guards. Receiving and sending messages are specified in

synchronization. A message with ? represents a receiving message and a message with !

represents a sending message. Assignment is used to set clock values or flag values. An

invariant represents the amount of time that may be spent in a location. In Fig. 2, a, current

location is StateA as long as clock x is less than or equal to 5. If clock x is greater than or equal

to 5, then the current location is changed to StateB by sending eventmessage and setting clock

to 0. A location transition is occurred when clock x is equal to 5. If the invariant of StateA

specifies that clock x is less than 5, there is no location transition when clock is equal to 5.

Fersman et al. (2002) proposed timed automata with tasks. A task is an executable program

triggered by events and is specified in a location of timed automata. It has two parameters such

as a worst-case execution time and a deadline. Timed automata with tasks can be used to

check schedulability in the design phase of RTES (Choi et al. 2011a, b).

2.4 Model checking

Model checking verifies automatically whether the specified models satisfy desired proper-

ties (Clarke et al. 1999; Bérard et al. 2010). Figure 3 shows a model checking process.

Table 1 Example of stereotypes
and tagged values in the MARTE
profile

Characteristics Stereotypes Tagged values

Task/thread \\swScheduableResource[[isPreemptable

deadlineElements

Timing analysis \\SaStep[[Deadline

execTime

Hardware \\InterruptResource[[durationElements

vectorElements

Software Qual J (2016) 24:835–876 839

123

Software behaviors are represented as semantic models using a formal language like timed

automata. On the other hand, software requirements are specified as properties that are

composed of temporal logic formula. Models and properties are used as inputs to a model

checker (e.g., UPPAAL or TIMES). A model checker enumerates and explores all reachable

states of the given model to check whether all reachable states in the models satisfy the given

property. When the specified models satisfy the property, the model checker announces the

result asYES.Otherwise, themodel checker reports the result asNO. Itmeans that themodels

violate the property. In addition, a counterexample is provided to show the reasons and

locations. A counterexample shows the trace from the initial state to the violating state. In this

paper, model checking is used to check whether timing behaviors of SDs/MARTE and TDs/

MARTE are consistent with timing behaviors of SMDs/MARTE.

3 Related work

Many studies have been proposed to tackle UML inconsistency problems. Lucas et al.

(2009) and Usman et al. (2008) analyzed existing studies on UML consistency. From their

works, we found that most UML consistency studies focused on state machine diagrams

and sequence diagrams. To the best of our knowledge, the proposed approach is the first

study to identify inconsistencies in timing diagrams. We have classified the existing works

into three categories: UML consistency concepts, UML consistency checking using a rule-

based method, and UML consistency checking using a model checking technique.

3.1 UML consistency concepts

Küster et al. (2001) provided consistency concepts such as syntactical, semantic, and

temporal consistency in UML-RT sequence diagrams and state machine diagrams for real-

x >= 5

event!

x := 0

Location

Transition

Clock: x

Synchronization (!/?)

StateA
x <= 5

StateB

Assignment

Guard
Invariant

Fig. 2 Example of timed
automata

Fig. 3 Model checking process

840 Software Qual J (2016) 24:835–876

123

time embedded systems. UML-RT (Selic 1998) is an extension of UML to use the notion

of capsules that describe concurrent and active objects. Capsules have each their own

thread of execution and communicate with other capsules via interfaces called ports. In

their approach, consistency concepts are defined as follows: A sequence diagram and a

state machine diagram are syntactically consistent if messages of the sequence diagram are

a subset of messages in the state machine diagram. A sequence diagram and state machine

diagrams are semantically consistent if a sending message corresponds to a sending action

in a state machine diagram and a receiving message corresponds to an event in the state

machine diagram. A sequence diagram and a state machine diagrams are temporally

consistent if tasks can be allocated and scheduled. They also proposed a method for

checking temporal consistency that consists of the following steps: task graph building,

tasks allocation, a scheduling analysis, and the sequence diagrams rescaling. However,

their work for checking temporal consistency has two limitations. First, additional time

information [i.e., worst-case execution times and communication costs) is needed to

generate task graphs because sufficient information for temporal consistency checking are

not specified in sequence and state machine diagrams. Second, their approach cannot detect

wrong temporal scenarios of sequence diagrams because only sequence diagrams have

timing information. Thus, wrong task graphs can be generated from incorrect sequence

diagrams.Gherbi and Khendek (2007)] focused on consistencies in UML state machine

diagrams and sequence diagrams that are extended with SPT (schedulability, performance,

and time specification) profile. SPT (OMG 2005) is an OMG standard UML profile for the

modeling and analysis of real-time systems. It is superseded by MARTE profile. In their

approach, consistencies are classified into syntactic, behavioral, concurrency-related, and

time consistency. Syntactic consistency checks the well formedness of each diagram.

Behavioral, concurrency-related, and time consistency are semantic consistency. Behav-

ioral consistency defines that behaviors of sequence diagrams should be consistent with

behaviors of state machine diagrams. Concurrency-related consistency defines that con-

currency in UML/SPT models should be satisfied. Time concurrency defines that state

machine diagrams should be consistent with a set of sequence diagrams in scheduling

aspects. They provided a method to check time consistency using a task model. However,

making a task model is not easy, since the task model is transformed from a UML/SPT-

based schedulability model. The UML/SPT-based schedulability model should be gener-

ated from sequence diagrams and state machine diagrams.

3.2 UML consistency checking using a rule-based method

Egyed (2006, 2007, 2011) proposed an approach to detect and track inconsistencies

quickly. Class, state machine, and sequence diagrams were considered to check consis-

tency. In this study, the previous evaluation information was used to avoid the unnecessary

reevaluations when UML models change. UML/Analyzer tool was developed to support

the proposed approach. Nentwich et al. (2002) proposed xlinkit framework to check the

consistency of distributed Web content. Also, the rule language was presented to express

consistency constraints between documents. Xlinkit can check UML models because

xlinkit evaluates XML-based documents. In addition, xlinkit can check consistency of

changed documents like Egyed’s work. Gogolla et al. (2007) proposed USE (UML-based

Specification Environment) tool. USE tool validates consistency for class diagrams using

Object Constraint Language (OCL) (OMG 2006). OCL specifies invariants, preconditions,

and postconditions for attributes and operations of class diagrams. USE checks whether

attributes and operations of class diagrams conform to object diagrams and sequence

Software Qual J (2016) 24:835–876 841

123

diagrams. Chiorean et al. (2004) suggested OCLE (Object Constraint Language Envi-

ronment) tool. The OCLE is similar to the USE tool in that they also use OCL to check

UML consistency. However, OCL cannot express some rules due to insufficient semantics

of OCL (Sourrouille and Caplat 2002). Above four studies can check syntactic well

formedness of UML models effectively, but their approaches cannot detect timing

inconsistencies in UML models.

3.3 UML consistency checking using a model checking technique

Zhao et al. (2006) proposed an approach to check consistency between UML state machine

diagrams and sequence diagrams. For this purpose, they used a SPIN model checker

(Holzmann 2003). To verify whether a sequence diagram is consistent with state machine

diagrams, Promela models are transformed from state machine diagrams and a sequence

diagram. Promela is a formal language for modeling finite-state concurrent processes and is

an input language of SPIN (Holzmann 2003). Since their work focuses that the invocation

between lifelines in a sequence diagram should conform to the transitions of the corre-

sponding state machine diagrams, only event sequences of sequence diagrams can be

checked in this approach. Thus, their approach cannot check consistency for timing

behaviors of RTES. Engels et al. (2001) presented a general methodology to check con-

sistency for UML-RT state machine diagrams. UML-RT state machine diagrams were

translated into CSP models. They focused on semantic consistency for the protocol

between state machine diagrams. However, they did not provide guidelines for the

transformation of state machine diagrams into CSP models. Thus, inconsistencies between

state machine diagrams and CSP models can exist. Laleau et. al. (2008) provided an

approach for checking consistency of class diagrams, collaboration diagrams, and state

machine diagrams for information systems. They defined formal UML models at the

metamodel level. Using the formalization of UML metamodels, they checked the syntax of

intra- and inter-models. For semantic consistency checking, UML models are translated

into B model. However, they did not demonstrate the proposed approach with a case study

to show the effectiveness of the approach.

4 UML/MARTE behavioral modeling for real-time embedded software

We present how an SMD/MARTE, an SD/MARTE, and a TD/MARTE specify the

behaviors of RTES. Due to the informal semantics of UML/MARTE models, we provide

the formal definition of an SMD/MARTE, an SD/MARTE, and a TD/MARTE. Objectives

of formalizing UML/MARTE models are as follows:

• To make more precise both the syntax and semantics of UML/MARTE behavioral

models.

• To identify timing consistency checking points among SMDs/MARTE, SDs/MARTE,

and TDs/MARTE in the rule-based timing consistency checking.

• To transform systematically from SMDs/MARTE into timed automata models in the

model checking-based timing consistency checking.

In addition, the UML/MARTE modeling guidelines were established by the needs of

ADD (Agency Defense Development) in the Republic of Korea. The guidelines are based

on literature (OMG 2011a, b; Gomaa 2001; Rumbaugh et al. 2004; Pont 2001) and domain

842 Software Qual J (2016) 24:835–876

123

experience (Choi et al. 2005, 2011a, b, 2012b). The guidelines have the following

assumption.

Assumption (Timing behaviors are performed under synchrony hypothesis.) Message

exchange time is not specified in UML/MARTE behavioral models. If a message exchange

time needs to be considered, then the message exchange time can be added to an execution

time of an object.

4.1 An illustrative example

Insulin Pump Control Software (IPCS) is selected to show how UML/MARTE behavioral

models are specified and to illustrate how the proposed approach works. IPCS is safety-

critical real-time embedded software that is operated on an automated insulin pump device.

The objective of IPCS is to check a diabetic’s blood sugar level and to deliver insulin at

regular times. A software failure in an insulin pump device can do serious harm to a

diabetic’s health. An example of software requirements for IPCS (Sommerville 2011) is

shown in Table 2. The first requirement R1 describes that IPCS should determine an insulin

injection every 10 min. The second requirement R2 represents that current states of a

diabetic and a device should be displayed every 5 s. The last requirement R3 describes that

the insulin injection function has higher priority than the displaying function. Figure 4

shows a class diagram of IPCS. IPCS consists of four classes: Clock, ClockManager,

Controller, and Display. Clock calls ClockManager every 100 ms (milliseconds).

ClockManager calls Controller or Display according to current timing information. Con-

troller determines an insulin injection and Display shows current states of a diabetic and a

device.

4.2 A state machine diagram with MARTE annotations

An SMD/MARTE specifies the overall behaviors of an object. SMDs/MARTE specify the

overall behaviors of RTES. The definition of an SMD/MARTE is as follows:

Definition 1 (SMD/MARTE) A state machine diagram with MARTE annotations is a

structure ðNsmd; Ssmd;Esmd;Gsmd;Asmd;MAsmd;TRsmd) where:

Table 2 Example of software requirements for IPCS

Requirements number Contents

R1 Every 10 min, an insulin injection is determined

R2 Every 5 s, states of a diabetic and an insulin pump device are displayed

R3 An insulin injection is more important than displaying

Fig. 4 Class diagram of IPCS

Software Qual J (2016) 24:835–876 843

123

• Nsmd is a name of a state machine diagram.

• Ssmd is a set of states.

• Esmd is a set of events. An event is a receiving message.

• Gsmd is a set of guards. A guard is composed of a set of time conditions and a set of flag

conditions.

• Asmd is a set of actions. An action consists of a sending message, a set of time resets,

and a set of flag resets.

• MAsmd is a set of MARTE annotations. A MARTE annotation is composed of a set of

stereotypes, a set of tagged values, and an owner name. An owner name is Nsmd or is

included in Ssmd .

• TRsmd : Ssmd � Esmd � Gsmd � Asmd ! Ssmd is a transition relationship.

4.2.1 Modeling guideline

A state shows a running or blocked state of an object. A transition represents a movement

between states and is composed of three optional parts: an event, a guard, and an action. An

event is a receiving message to trigger a movement between states. A guard has a Boolean

condition that should be satisfied for the transition. An action is executed during the

transition. A sending message, time resets, and flag resets are specified in an action.

MARTE annotations are composed of predefined stereotypes and tagged values. MARTE

annotations linked to states specify the duration (i.e., worst-case execution times or

blocking times) of each state. The MARTE annotation of SMD/MARTE represents timing

constraints information (e.g., a deadline and a worst-case execution time) of the object.

Figure 5 shows an SMD/MARTE of ClockManager class that consists of five states and

eight transitions. Three time variables (i.e., t1, milliseconds_x100, seconds) are used
to check time conditions. t1 represents the clock of ClockManager and is used to check

time conditions for all state transitions of ClockManager. Waiting state receives ClockMsg

every 100 ms from Clock class. Also, milliseconds_x100 is incremented every 100

ms by Clock class. TimeChecking state checks whether the sum of millisec-
onds_x100 is 1 s or not. If the sum is one second then the JobSelecting state is activated.

JobSelecting state moves to the Displaying state per 5 s or moves to the InsulinChecking

Fig. 5 SMD/MARTE for ClockManager

844 Software Qual J (2016) 24:835–876

123

state per 600 s. The MARTE annotation linked to Displaying state shows that the Dis-

playing state is executed during 10 ms in worst-case execution time. The MARTE

annotation of ClockManager represents timing constraints information of ClockManager.

4.3 A sequence diagram with MARTE annotations

An SD/MARTE describes a partial behavior and interaction among objects. An SD/

MARTE is defined as follows:

Definition 2 (SD/MARTE) A sequence diagram with MARTE annotations is a structure

(Nsd;Lsd;Osd;Esd;Msd;Tsd;MAsd;\sd;LOCsd) where:

• Nsd is a name of a sequence diagram.

• Lsd is a set of lifelines.

• Osd is a set of occurrence specifications. An occurrence specification represents a

syntactic point at the starts or ends of messages or at the beginning or end of an

execution specification (OMG 2011b).

• Esd is a set of execution specifications. An execution specification consists of a start

occurrence specification and a finish occurrence specification.

• Msd is a set of messages. A message is composed of a sending occurrence specification,

a receiving occurrence specification, a message name, and a message type.

• Tsd is a set of time observations. A time observation is composed of a time value and an

occurrence specification.

• MAsd is a set of MARTE annotations. A MARTE annotation consists of a set of

stereotypes, a set of tagged values, and an owner name. An owner name is included in

Lsd or Esd .

• \sd � Osd � Osd is a set of total ordering functions. The orders describe an order

relationship between two adjacent occurrence specifications.

• LOCsd : Osd ! Lsd is a function by which the location of an occurrence specification is

defined.

4.3.1 Modeling guideline

MARTE annotations, execution specifications, and time observations are used to

express timing constraints of RTES. MARTE annotation linked to a lifeline shows the

timing constraints of the lifeline (i.e., object) such as deadline, worst-case execution

time, and priority. MARTE annotations linked to execution specifications specify

execution times of lifelines. Execution specification represents the execution of an

object within the lifeline. Time observation is a reference to a time instant during an

execution (OMG 2011b).

Figure 6 shows an example of an SD/MARTE which represents a scenario for dis-

playing. White vertical rectangles in Fig. 6 represent execution specifications. Clock sends

ClockMsg to ClockManager at 590,000 ms. ClockManager sends DoDisplay message to

Displayer at 590,030 ms. Displayer works for 30 ms. @t = 590,000 is a time observation.

The MARTE annotation linked to ClockManager shows the timing constraints of

ClockManager. The MARTE annotation linked to the execution specification of

ClockManager specifies that ClockManager executes during 30 ms in worst-case execution

time.

Software Qual J (2016) 24:835–876 845

123

4.4 A timing diagram with MARTE annotations

A TD/MARTE specifies a partial behavior of RTES and shows state changes of objects

over time. The definition of a TD/MARTE is as follows:

Definition 3 (TD/MARTE) A timing diagram with MARTE annotations is a structure

(Ntd, Ltd , Std , Ttd, Otd , Mtd , MAtd, \td , LOCtd) where:

• Ntd is a name of a timing diagram.

• Ltd is a set of lifelines.

• Std is a set of states. A state consists of a lifeline and a set of durations. Durations are

time range of states.

• Ttd is timing ruler.

• Otd is a set of occurrence specifications.

• Mtd is a set of messages. A message is composed of a sending occurrence specification,

a receiving occurrence specification, a message name, and a message type.

• MAtd is a set of MARTE annotations. MARTE annotation consists of a set of

stereotypes, a set of tagged values, and an owner name. An owner name is included in

Ltd.

• \td � Otd � Otd is a set of total ordering functions. The orders describe an order

relationship between two adjacent occurrence specifications.

• LOCtd : Otd ! Std is a function by which the location of an occurrence specification is

defined.

4.4.1 Modeling guideline

Lifelines, states, messages, durations, timing ruler, and MARTE annotations are used to

specify a TD/MARTE. Duration shows an execution time or a blocking time of a state.

Timing ruler displays passage of time from left to right on a TD/MARTE. The use of

MARTE annotations is the same as the MARTE annotations in an SD/MARTE. MARTE

annotations linked to lifelines represent timing constraints information of each lifeline.

Fig. 6 SD/MARTE of IPCS

846 Software Qual J (2016) 24:835–876

123

Figure 7 shows an example of a TD/MARTE which represents a timing scenario

between Clock and ClockManager. Clock sends ClockMsg to ClockManager at 5000 ms

(i.e., 5 s) and then ClockManager is executed with states such as TimeChecking, JobS-

electing, and Displaying during 30 ms.

5 Timing consistency checking for UML/MARTE behavioral models

Wepropose a timingconsistencycheckingapproach tovalidate andverify timing specifications

between a UML diagram and MARTE annotations, and among UML/MARTE models.

5.1 Classification of UML/MARTE consistency types

We first categorize UML/MARTE consistency types used in our approach. Basically, there

exist timing consistency and non-timing consistency as follows:

• Timing consistency: Timing specifications should be consistent among UML/MARTE

models. For example, an execution time of a state in a timing diagram should be equal

to an execution time of the same state in a state machine diagram.

• Non-timing consistency: Identifiers of UML/MARTE models should be consistently

defined among UML/MARTE models. For example, messages used in an SD/MARTE

should be defined in SMDs/MARTE.

In addition, we define intra-model consistency and inter-model consistency as follows:

• Intra-model consistency: A UML model should be consistent with its MARTE

annotations. For example, an execution time of a state in an SMD/MARTE should be

less than or equal to the deadline of the SMD/MARTE.

• Inter-model consistency: Different types of UML models with MARTE annotations

should be consistent with each other. For example, timing specifications of an SD/

MARTE should be consistent with timing specifications of SMDs/MARTE.

5.2 Timing consistency checking process

Figure 8 shows the overall timing consistency checking process for UML/MARTE

behavioral models. The specifications of SMDs/MARTE, SDs/MARTE, and TDs/MARTE

Fig. 7 TD/MARTE of IPCS

Software Qual J (2016) 24:835–876 847

123

should conform to the guidelines for UML/MARTE behavioral modeling. We use two

UML modeling tools to describe UML/MARTE models because one tool alone cannot

support our modeling guidelines. The Visual Paradigm for UML community edition

(Paradigm 2012) is used to specify SMDs/MARTE and TDs/MARTE. The Papyrus tool

(Papyrus 2012) is used to specify SDs/MARTE. The specified UML/MARTE behavioral

models are used as inputs to the timing consistency checking process. The timing con-

sistency checking process has two steps: a rule-based and a model checking-based timing

consistency checking. In the rule-based timing consistency checking, we detect timing

inconsistencies of two types: intra-models (i.e., a UML model and MARTE annotations)

and inter-models (i.e., SMDs/MARTE, SDs/MARTE, and TDs/MARTE). The inconsis-

tency points are reported to a RTES designer as output of the rule-based timing consistency

checking. Using the results, we can fix the UML/MARTE behavioral models. In the model

checking-based timing consistency checking, we check whether the timing behaviors of

SDs/MARTE and TDs/MARTE are feasible against the timing behaviors of SMDs/

MARTE. To this end, timed automata models are transformed from SMDs/MARTE, and

timing properties are extracted from SDs/MARTE and TDs/MARTE for consistency

checking. The transformed timed automata models and the generated timing properties are

used as inputs to a model checker. If the timing property is not satisfied by the timing

behaviors of timed automata models, then the model checker reports that the property is

not satisfied. It means that the timing behaviors of an SD/MARTE or a TD/MARTE are not

consistent with the timing behaviors of SMDs/MARTE. Otherwise, the model checker

announces that the timing property satisfies the timing behaviors of timed automata

models. We developed the UMCA (UML/MARTE timing Consistency Analyzer) tool to

support the proposed approach. The UMCA provides the automatic capabilities of the rule-

based timing consistency checking, model transformation, and timing property extraction.

Model checking tools, UPPAAL (2012) and TIMES (2007), are used for the model

checking-based timing consistency checking.

5.3 Rule-based timing consistency checking

We elicited elements related to intra-model and inter-model consistencies to make rules for

consistency checking. Table 3 shows UML/MARTE elements related to intra-model

consistency. To specify timing in UML/MARTE, we use the elements such as execution

SMDs/MARTE

SDs/MARTE

TDs/MARTE

Timed
Automata

Timing
Properties

Fixed
SMDs/MARTE

Fixed
SDs/MARTE

Fixed
TDs/MARTE

Deadlock
freeness
Property

Inconsistency
points

Transform

Fig. 8 Overall timing consistency checking process

848 Software Qual J (2016) 24:835–876

123

specification, time observation, duration, and timing ruler. These elements should be

checked against timing constraints information of MARTE annotations.

Table 4 shows UML/MARTE elements related to inter-model consistency. A lifeline in

an SD/MARTE and a TD/MARTE should have a corresponding SMD/MARTE. A

receiving message and a sending message of lifelines in an SD/MARTE and a TD/MARTE

should be defined in events and actions in an SMD/MARTE of the lifeline. States of a

lifeline in a TD/MARTE should be defined in an SMD/MARTE of the lifeline. We should

check the consistency among an execution time of an execution specification in an SD/

MARTE, a duration (i.e., an execution time) of a state of a lifeline in a TD/MARTE, and an

execution time of a state in an SMD/MARTE of the lifeline. MARTE annotation of a

lifeline in an SD/MARTE and a TD/MARTE should be same as MARTE annotation of

SMD of the lifeline.

Based on this analysis, we established consistency checking rules as shown in Tables 5

and 6. In Table 5, intra-model consistency checking rules focus on checking timing con-

sistency between a UML model and MARTE annotations. In Table 6, inter-model con-

sistency checking rules check not only timing consistency but also non-timing consistency

among UML/MARTE models. The detailed information about each rule is described in

‘‘Appendix 1’’.

5.4 Model checking-based timing consistency checking

In a model checking-based timing consistency checking, we check timing behaviors of

UML/MARTE models that passed a rule-based timing consistency checking. As inputs of a

model checker, timed automata models are transformed from SMDs/MARTE and timing

properties to be verified are extracted from SDs/MARTE and TDs/MARTE.

5.4.1 Model transformation

A timed automata model is composed of states and transitions between states (Alur and

Dill 1994; Bérard et al. 2010). Also, it has a similar structure of an SMD (Knapp et al.

2002). The definition of a timed automata model is as follows:

Definition 4 (Timed Automata) A timed automata is a structure (Nta, Lta, Gta, Sta, Ata,

TRta) where:

• Nta is a name of a timed automata.

Table 3 UML/MARTE ele-
ments related to intra-model
consistency

Intra-model Elements

SMD/MARTE MARTE annotation of SMD

MARTE annotation of state

SD/MARTE MARTE annotation of lifeline

MARTE annotation of execution specification

Time observation

TD/MARTE MARTE annotation of lifeline

Duration

Timing ruler

Software Qual J (2016) 24:835–876 849

123

• Lta is a set of locations. A location has an invariant that represents a clock’s duration at

the location.

• Gta is a set of guards. A guard is composed of a set of clock conditions and a set of flag

conditions.

• Sta is a set of synchronizations. A synchronization consists of a receiving message and

a sending message.

• Ata is a set of assignments. An assignment consists of a set of clock resets and a set of

flag resets.

• TRta : Lta x Gta x Sta x Ata ! Lta is a transition relationship.

All elements of a timed automata model are mapped into ones of an SMD/MARTE.

Table 7 shows the corresponding elements of an SMD/MARTE and a timed automata

Table 4 UML/MARTE elements related to inter-model consistency

SMD/MARTE SD/MARTE TD/MARTE

SMD name Lifeline Lifeline

Event, Action Message Message

State – State

MARTE annotation of state MARTE annotation of execution
specification

Duration

MARTE annotation of SMD MARTE annotation of lifeline MARTE annotation of
lifeline

Table 5 Intra-model consistency
checking rules

Intra-model consistency Timing consistency

SMD/MARTE SMD-MARTE ExecTime rule

SMD-MARTE Deadline rule

SD/MARTE SD-MARTE ExecTime rule

SD-MARTE Deadline rule

SD-MARTE TimeObservation rule

TD/MARTE TD-MARTE ExecTime rule

TD-MARTE Deadline rule

TD-MARTE TimingRuler rule

Table 6 Inter-model consistency checking rules

Inter-model consistency Non-timing consistency Timing consistency

SD/MARTE-SMD/MARTE SD-SMD Lifeline rule SD-SMD MARTE rule

SD-SMD Message rule SD-SMD ExecTime rule

TD/MARTE-SMD/MARTE TD-SMD Lifeline rule TD-SMD MARTE rule

TD-SMD Message rule TD-SMD ExecTime rule

TD-SMD State rule

SD/MARTE-TD/MARTE SD-TD Lifeline rule SD-TD MARTE rule

SD-TD ExecTime rule

850 Software Qual J (2016) 24:835–876

123

model in model transformation. Elements of an SMD/MARTE are translated into elements

of a timed automata model in a straightforward manner. States, transitions, and guards in

an SMD/MARTE are transformed into locations, transitions, and guards in a timed auto-

mata model, respectively. Receiving messages in event and sending messages in action of

an SMD/MARTE are used in transforming synchronization of timed automata. An exe-

cution time or a blocking time of a state, which is described in MARTE annotation, is

translated into an invariant of a location (i.e., a state). Also, a monitoring variable run is

added to assignments in the transformed timed automata model. If a state has an execution

time in MARTE annotation, then run is set to 1 in an assignment of an incoming transition

of the location. Otherwise, run is set to 0. A monitoring variable run is used to extract

timing properties from SDs/MARTE.

Figure 9 shows a timed automata model with a monitoring variable run that is translated

from the SMD/MARTE of Fig. 5. Transformation of SMDs/MARTE into timed automata

models is done automatically by the UMCA tool.

Table 7 Mapping between the elements of SMD/MARTE and timed automata

SMD/MARTE (Nsmd) Timed automata (Nta)

State (Ssmd) Location (Lta)

Transition (TRsmd) Transition (TRta)

Receiving message in event (Esmd) Message with ? in synchronization (Sta)

Guard (Gsmd) Guard (Gta)

Sending message in action (Asmd) Message with ! in synchronization (Sta)

Action except sending messages (Asmd) Assignment (Ata)

An execution time in MARTE Invariant of a location (Lta)

linked to a state (MAsmd)

Fig. 9 Transformed timed automata model

Software Qual J (2016) 24:835–876 851

123

5.4.2 Timing property extraction

Prior to timing property extraction, deadlock-freeness is checked against the transformed

timed automata models to verify whether the models are executable. The deadlock freeness

property is ‘‘A[] (not deadlock)’’. It means that there is no deadlock in any execution

sequences. If a deadlock occurs in the timed automata models, we should modify SMDs/

MARTE and conduct the rule-based timing consistency checking again.If there is no error

in deadlock-freeness checking, timing properties are extracted from SDs/MARTE and

TDs/MARTE. In our approach, a timing property has a form like ‘‘E\[property’’. It

means that there exists at least one state satisfying the property. In our approach, an SD/

MARTE and a TD/MARTE have the design patterns as shown in Figs. 10 and 11,

respectively. Therefore, timing properties can be consistently extracted from an SD/

MARTE and a TD/MARTE.

Figure 10 shows timing properties that are extracted from an SD/MARTE. Timing

properties of an SD/MARTE check whether objects execute during the specified time

ranges. Object names, time observation values, MARTE annotations (i.e., execution times)

linked to execution specifications, and run variable are used to specify timing properties

from an SD/MARTE. run variable checks whether an object is executing or not. A time

range is composed of a time observation value and an execution time of an execution

specification as shown in Fig. 10. A starting time is a time observation value. An ending

time is the sum of a time observation value and an execution time of an execution

specification. From an SD/MARTE in Fig. 10, we extract two timing properties. For

example, ‘‘E\[(t[T1 and t\T1 ? TA) and A.run == 1’’ means that there exist at least

one state satisfying the property that object A is running during a time range (i.e., t [T1

and t \ T1 ? TA).

•

•

Fig. 10 Timing properties extracted from an SD/MARTE

Fig. 11 Timing properties extracted from a TD/MARTE

852 Software Qual J (2016) 24:835–876

123

Figure 11 shows timing properties that are extracted from a TD/MARTE. Object names,

states, durations, and timing ruler values are used to generate timing properties as shown in

Fig. 11.

Timing properties in a TD/MARTE check whether objects stay at the corresponding

states during the specified time ranges. A time range is generated from a duration and

timing ruler. A starting time is the beginning time of the duration in the timing ruler. An

ending time is the termination time of the duration in the timing ruler. Five timing

properties are extracted from a TD/MARTE in Fig. 11. For example, ‘‘E\[(t [T3

and t\ T4) and A.AState1’’ means that object A stays in AState1 state during a time range

(i.e., t [T3 and t \ T4).

6 Tool implementation

We describe the design and implementation of our timing consistency checking tool,

UMCA (UML/MARTE timing Consistency Analyzer) (Choi 2015). The tool supports the

rule-based timing consistency checking, model transformation, and timing property

extraction. Also, UMCA is used to validate correctness of rules and model transformation.

UMCA is built based on the Eclipse framework.

6.1 UMCA architecture

Figure 12 shows the overall architecture of the UMCA tool. Rules for the rule-based

consistency checking, blocking states information, and UML/MARTE models are inputs to

UMCA. Blocking states information is used to prevent wrong inconsistency detection by

TD-MARTE ExecTime rule because UMCA cannot recognize whether the duration of a

state in a TD/MARTE is an execution time or a blocking time. As shown in Fig. 12,

UMCA consists of XML parser, rule repository, rule checker, model converter, property

extractor, and model reconverter.

SMDs/
MARTE

SDs/
MARTE

TDs/
MARTE

Violated Rules,
Inconsistency Points

Timed Automata Models

Timing Properties

New or Updated Rules

Blocking States Information

SMDs/MARTETimed Automata Models

Fig. 12 UMCA architecture

Software Qual J (2016) 24:835–876 853

123

6.2 XML parser

XML parser extracts and displays the elements of each UML/MARTE model from XML

files of UML/MARTE models. Figure 13 shows the navigator and model elements viewer

of UMCA. If an XML file is selected in the UMCA navigator, then the model elements

information is shown in the UMCA model elements viewer. When an element is selected

in the UMCA model elements viewer, the XML file is opened automatically and the

element position is highlighted as shown in Fig. 13.

6.3 Rule repository and rule checker

The rule repository manages rules for the rule-based timing consistency checking. At

present, the rule repository has 20 rules described in Sect. 5. A rule is implemented with

Java code and is composed of two parts: rule identifier and rule condition. The rule

identifier is implemented with Java annotation to define basic information of a rule. Rule

condition checks inconsistency points and saves the inconsistency information.

For example, Fig. 14 shows TD-MARTE deadline rule. TD-MARTE deadline rule

defines that deadline should be greater than or equal to an execution time of a TD/MARTE.

Rule identifier is defined at line 11. Rule condition is defined from line 17 to line 28.

Elements (i.e., a deadline and an execution time) to be checked are extracted from line 21

and line 22. At line 23, a checking is done about whether a TD/MARTE conforms to the

rule with the elements. If an execution time is greater than a deadline, the specification of

TD/MARTE violates the rule. Then, the inconsistency point (i.e., a MARTE annotation) is

saved to display in the checking result viewer of UMCA at line 24.

The rule checker detects inconsistency points using the consistency checking rules in

the rule repository. The detected inconsistencies are displayed in the UMCA consistency

checking results viewer as shown in Fig. 15. If the detected inconsistency is selected in the

consistency checking results viewer, the corresponding element position is highlighted in

the XML file. The element is also highlighted in the UMCA model elements viewer.

Fig. 13 UMCA navigator and model elements viewer

854 Software Qual J (2016) 24:835–876

123

6.4 Model converter and model reconverter

The model converter translates SMDs/MARTE into timed automata models for the model

checking-based timing consistency checking. The corresponding elements of an SMD/

MARTE and a timed automata model are shown in Table 7 of the Sect. 5. In addition, a

monitoring variable run is added to assignments in a timed automata model to check

running status of an object. Conversely, the model reconverter generates SMDs/MARTE

from the timed automata models.

6.5 Property extractor

Property extractor generates timing properties from timing behaviors of SDs/MARTE and

TDs/MARTE. Timing properties are used as inputs to the model checking-based timing

consistency checking. Basically, the timing properties are saved as query file format for the

UPPAAL model checker. Timing properties of SDs/MARTE are used to check whether

objects execute during the specified time ranges. Timing properties of TDs/MARTE are used

to check whether objects stay at the corresponding states during the specified time ranges.

6.6 Correctness test of rules and model transformation

UMCA tool is used to test the correctness of rules. To this end, an inconsistency related to

each rule was injected in UML/MARTE models. Then, we checked whether the

Fig. 14 Example of rule

Software Qual J (2016) 24:835–876 855

123

inconsistency can be detected by the rule that is implemented in UMCA. Through this

process, we tested the correctness of rules for intra-model and inter-model consistency. To

test correctness of timed automata transformation, we retranslated the SMDs/MARTE

from the transformed timed automata models. Then, we compared the retranslated SMDs/

MARTE with the original SMDs/MARTE. Figure 16 shows an example of model trans-

formation by UMCA. As shown in Fig. 16, except for the MARTE annotation of an SMD/

MARTE, all elements are retranslated correctly from the timed automata model. MARTE

annotation of an SMD/MARTE cannot be generated from the timed automata model

because a timed automata model does not have timing constraints information such as

priority, deadline, and execution time.

7 A case study for cruise control system software

CCS software is safety-critical real-time embedded software used in automotive systems. It

is used to manage the speed of a vehicle via an automated control. If the speed is not

controlled correctly, it can lead to catastrophic system failures. The goal of this case study

is to validate whether the proposed timing consistency checking approach can effectively

detect inconsistencies in UML/MARTE models.

Fig. 15 UMCA consistency checking results viewer

856 Software Qual J (2016) 24:835–876

123

7.1 Experimental setting

Based on literature (Wieringa 2003), we elicited six classes as shown in Fig. 17. Set-

tingController sends an input signal (i.e., turn on, turn off, speed up, or speed down) to

CruiseController. CruiseController receives the inputs and checks the current vehicle speed

from SpeedCounter. CruiseController can also receive an input (i.e., braking or acceler-

ating) directly from a user. SpeedCounter calculates the current speed of a vehicle. If the

vehicle speed should be controlled, CruiseController sends a command to SpeedController.

SpeedController increases or decreases the current vehicle speed according to the com-

mand of CruiseController. Display shows the current speed of a vehicle. User is used to

generate input signals for timing scenarios that are specified by SDs/MARTE and TDs/

MARTE. In this case study, User generates turn on, turn off, turn on, speed up, speed

down, and turn off events every 10 s.

Two graduate students at computer science department in KAIST participated in UML/

MARTE behavioral modeling of this case study. We provided them with CCS software

requirements and UML/MARTE modeling guidelines. And then, they specified UML/

MARTE behavioral models for CCS software. With the specified UML/MARTE models,

we conducted the timing consistency checking process. Six SMDs/MARTE, six SDs/

Fig. 16 Correctness test of model transformation using UMCA

Software Qual J (2016) 24:835–876 857

123

MARTE, and six TDs/MARTE models were specified in the CCS software case study. The

final SMDs/MARTE that passed the checking process are shown in Appendix 2.

7.2 Timing consistency checking results and analysis

Table 8 shows the timing consistency checking results for the case study of CCS software.

An iteration consists of UML/MARTE behavioral modeling and timing consistency

checking. As mentioned earlier, two graduate students specified SMDs/MARTE, SDs/

MARTE, and TDs/MARTE. We checked timing consistencies of the specified UML/

MARTE models using the UMCA tool. At next iteration, they fixed the inconsistency

points of UML/MARTE models with the consistency checking results. We count one for

each pair of related inconsistency points (e.g., two mismatched timing information between

an SMD/MARTE and an SD/MARTE) detected by the UMCA.

Fig. 17 Class diagram of CCS
software

Table 8 Results of the timing
consistency checking

Iteration 1st 2nd 3rd 4th 5th
Experimental time (days) 16 1 1 1 1

Rule-based timing consistency checking

SMD-MARTE ExecTime 3 0 1 0 0

SD-MARTE ExecTime 2 0 0 0 0

SD-SMD MARTE 20 0 0 0 0

SD-SMD Lifeline 8 0 0 0 0

SD-SMD Message 8 0 0 0 0

TD-SMD MARTE 14 0 1 0 0

TD-SMD Lifeline 1 0 0 0 0

TD-SMD ExecTime 4 0 4 0 0

TD-SMD Message 8 0 0 0 0

TD-SMD State 2 0 0 0 0

SD-TD MARTE 59 0 4 0 0

SD-TD Lifeline 2 0 0 0 0

Model checking-based timing consistency checking

Deadlock-freeness – deadlock – Pass Pass

SD-SMD Timing – – – 6 0

TD-SMD Timing – – – 21 0

Total number of inconsistencies 131 0 10 27 0

858 Software Qual J (2016) 24:835–876

123

As shown in Table 8, we spent 20 days for the five iterations to make consistent UML/

MARTE behavioral models. Even though an iteration is finished in less than one day, we

adopted a policy of using at least one day for an iteration to prevent unexpected modeling

errors and to communicate effectively. At the first iteration, the students spent much time

to describe UML/MARTE models because they were not accustomed to the modeling tools

(i.e., Papyrus and Visual Paradigm) and did not understand fully the CCS software

requirements. One hundred and thiry-one inconsistencies were detected at the first itera-

tion. Most inconsistencies were due to mismatched timing information. At the second

iteration, inconsistencies were not detected in the rule-based timing consistency checking.

However, a deadlock was detected in the model checking-based timing consistency

checking. At third iteration, SMDs/MARTE were modified to solve the deadlock but 10

inconsistencies were identified because the timing constraints information in TDs/MARTE

were not updated. The rule-based timing consistency checking and deadlock-freeness

checking passed at the fourth iteration. However, in the model checking-based timing

consistency checking, 27 timing inconsistencies were detected due to incorrect timing

specifications of SDs/MARTE and TDs/MARTE. At the fifth iteration, six SMDs/MARTE,

six SDs/MARTE, and six TDs/MARTE were specified consistently.

7.2.1 Analysis 1: Inconsistencies in the rule-based timing consistency checking

We detected MARTE, Message, ExecTime, Lifeline, and State inconsistencies in this case

study. Six inconsistencies were detected in checking intra-model rules, while 135 incon-

sistencies were identified in checking inter-model rules. The detected inconsistencies were

classified into 112 timing inconsistencies and 29 non-timing inconsistencies.

Figure 18 shows an example of an SMD/MARTE with an intra-model inconsistency

that was detected in the rule-based timing consistency checking. Three SMD-MARTE

Fig. 18 CruiseController SMD/MARTE at the first iteration

Software Qual J (2016) 24:835–876 859

123

ExecTime inconsistencies were detected in the CruiseController SMD/MARTE of Fig. 18.

An execution time of CruiseController is 10 ms in Fig. 18. However, execution times (i.e.,

30 ms) of three execution paths are greater than the execution time of CruiseController.

The first execution path is composed of Requesting_Current_Speed, Stopping_retriev-

ing_the_speed_value, and Requesting_Current_Speed_By_Button states. The second path

consists of Comparing_Speed_with_Speed_Counter, Stopping_retrieving_the_speed_-

value, and Requesting_Current_Speed_By_Button states. The last execution path is

composed of Completing_Controlling_speed, Stopping_retrieving_the_speed_value, and

Requesting_Current_Speed_By_Button states.

7.2.2 Analysis 2: Inconsistencies in the model checking-based timing consistency
checking

Table 9 shows the total number of timing properties that were extracted from SDs/MARTE

and TDs/MARTE. At the fourth iteration, 34 timing properties were extracted from SDs/

MARTE and six timing properties were not satisfied by the behaviors of SMDs/MARTE.

In the case of TDs/MARTE, 99 timing properties were generated and 21 timing properties

were not satisfied by the behaviors of SMDs/MARTE. At the fifth iteration, all timing

properties were satisfied.

Figure 19 shows an example of a TD/MARTE with timing inconsistency at the fourth

iteration. This TD/MARTE has a scenario of disengaging a CCS from 0 ms to 140 ms. Ten

timing properties were extracted from the TD/MARTE. However, some timing properties

were not satisfied by the behaviors of SMDs/MARTE as shown in Fig. 20. For example,

the Disconnecting_vehicle_engine state cannot be reached from 10 ms to 20 ms. It means

Table 9 Total number of extracted timing properties

Iteration 4th 5th

Total number of timing properties extracted from SDs/MARTE 34 34

Total number of timing properties extracted from TDs/MARTE 99 101

Fig. 19 TD/MARTE for disengaging a CCS at the fourth iteration

860 Software Qual J (2016) 24:835–876

123

that the scenario of the TD/MARTE was not feasible against the behaviors of SMDs/

MARTE for CCS software. Because CruiseController does not send the StopCCS message

to SpeedController in the time range of the TD/MARTE. In this time range, a turn on event

is generated as described in Sect. 7.1. Thus, the time range of Fig. 19 should be modified to

reach the Disconnecting_vehicle_engine state.

8 A case study for guidance and control unit software

A GCU is a safety-critical real-time embedded system used in avionics systems. Figure 21

shows the control structure of GCU in an avionics system. GCU software controls GCU

hardware resources and communicates with other subsystems (i.e., sensors and actuators).

Also, it executes flight-related algorithms and functions. Diverse experts in the fields of

aerospace, electronics, mechanics, and computer science participate in a project to develop

a GCU. Thus, a common understanding among stakeholders is very important. The goal of

a case study for GCU software is to validate the practicality of the proposed approach.

8.1 Experimental setting

Objectives of UML/MARTE behavioral modeling in the GCU software development are to

understand and analyze timing constraints of GCU software among stakeholders. Figure 22

shows object (i.e., task in implementation phase) execution structure in flight mode of

Fig. 20 Extracted timing properties and checking results

Software Qual J (2016) 24:835–876 861

123

GCU software. The objects are executed at regular tick interval as shown in Fig. 22. Ticks

are generated every 20 tu starting from 0 tu. We use tu to describe time unit of GCU

software. In flight mode, GCU software consists of five objects (i.e., SM, SC, CM, A, and

B) as shown in Fig. 22. SM (System Manager) executes high priority jobs per 20 tu.

System Controller (SC) handles analog-to-digital conversion (ADC) and digital-to-analog

conversion (DAC) to control GCU hardware. Communication manager (CM) manages

MIL-STD-1553B communication. A and B execute flight-related functions. In addition,

interrupt service routine (ISR) and communication controller (CC) are specified to rep-

resent tick generations and communications as shown in Fig. 22, respectively. Table 10

shows timing constraints information of SM, SC, CM, A, B, and CC in GCU software. For

example, the worst-case execution time (WCET) of SM is 3 tu and the deadline of SM is

5 tu. The WCET of ISR is not described because ISR is executed instantaneously.

With the above GCU software requirements and help of domain experts at ADD in the

Republic of Korea, we specified seven SMDs/MARTE, five SDs/MARTE, and 10 TDs/

MARTE models.

8.2 Timing consistency checking results and analysis

Table 11 shows the results of the timing consistency checking for UML/MARTE behav-

ioral models of GCU software. We spent 14 days and conducted five iterations to specify

consistent UML/MARTE behavioral models in this case study. Also, we spent at least one

day for an iteration like with the CCS software case study. Even though we understood

Avionics
system

GCU

Sensors Actuators

OutputInput

Disturbance

System InputSystem Output

Measured
variables

Controlled
variables

Fig. 21 Control structure of
GCU

SM SM SM SM SM SM SM SM SM

SC

CM

SM

Tick 9

SC SC SC SC SC

CM CM CM CM CM

B A B

object

Tick 0 Tick 2 Tick 4 Tick 6 Tick 8Tick 1 Tick 3 Tick 5 Tick 7

Fig. 22 Object execution structure in flight mode of GCU software

862 Software Qual J (2016) 24:835–876

123

GCU software behavior through previous studies (Choi et al. 2011a, b, 2012a, b), the

UMCA tool detected 115 inconsistencies in the specified UML/MARTE models at the first

iteration. In particular, 30 State inconsistencies were detected between SDs/MARTE and

TDs/MARTE because of a case-sensitivity problem. At the second iteration, three

inconsistencies were detected. The inconsistencies existed in an SD/MARTE and a TD/

MARTE used at the first iteration. However, they were not detected at the first iteration

because of lifeline inconsistencies. Moreover, TimeObservation inconsistency was detec-

ted in the updated SD/MARTE. From the third iteration, UML/MARTE models passed the

rule-based timing consistency checking. The transformed timed automata models also

passed deadlock freeness checking. Twenty-three timing inconsistencies were detected in

the model checking-based timing consistency checking at the third iteration. At the fourth

Table 10 Timing constraints
information

Object WCET Deadline Priority

SM 3 5 High

SC 4 5 Middle

CM 8 10 Middle

B 10 20 Low

A 15 20 Low

CC 30 – –

Table 11 Results of the timing
consistency checking

Iteration 1st 2nd 3rd 4th 5th
Experimental time (days) 10 1 1 1 1

Rule-based timing consistency checking

SMD-MARTE ExecTime 4 0 0 0 0

SD-MARTE Deadline 1 0 0 0 0

SD-MARTE TimeObservation 1 1 0 0 0

TD-MARTE ExecTime 4 0 0 0 0

SD-SMD MARTE 7 0 0 0 0

SD-SMD Lifeline 4 0 0 0 0

SD-SMD Message 1 0 0 0 0

SD-SMD ExecTime 3 1 0 0 0

TD-SMD MARTE 16 0 0 0 0

TD-SMD Lifeline 2 0 0 0 0

TD-SMD Message 12 0 0 0 0

TD-SMD ExecTime 6 0 0 0 0

TD-SMD State 30 0 0 0 0

SD-TD MARTE 11 0 0 0 0

SD-TD Lifeline 11 0 0 0 0

SD-TD ExecTime 2 1 0 0 0

Model checking-based timing consistency checking

Deadlock-freeness – – Pass Pass Pass

SD-SMD Timing – – 3 0 0

TD-SMD Timing – – 20 7 0

Total number of inconsistencies 115 3 23 7 0

Software Qual J (2016) 24:835–876 863

123

iteration, seven Timing inconsistencies were detected in TDs/MARTE because of wrong

modification for TDs/MARTE. All UML/MARTE models were specified consistently at

the fifth iteration.

8.2.1 Analysis 1: Inconsistencies in the rule-based timing consistency checking

The most frequent inconsistencies were detected by TD-SMD State rule because we did not

consider case-sensitiveness in specifying state names of TDs/MARTE. We found 11

inconsistencies in checking intra-model consistency rules, while we detected 107 inconsis-

tencies in checking inter-model consistency rules. The inconsistencies were also classified

into 53 timing inconsistencies and 62 non-timing inconsistencies. Figures 23 and 24 show an

example of inter-model inconsistency that was detected by the SD-SMD ExecTime rule. In

Fig. 23, an execution time of an execution specification of ComManager in the SD/MARTE

is 8 tu. In the ComManager SMD/MARTE of Fig. 24, the corresponding execution path is

found by using DoComStart message and ComRequest message. There exists an execution

path that is composed of TxRxStarting state. However, an execution time of the path is 5 tu. It

is not equal to the execution time of ComManager in the SD/MARTE.

Thus, SD-SMD ExecTime inconsistency exists between the SD/MARTE and the SMD/

MARTE in Figs. 23 and 24.

8.2.2 Analysis 2: Inconsistencies in the model checking-based timing consistency
checking

The model checking-based timing consistency checking was conducted at the third, fourth,

and fifth iterations. Table 12 shows the total number of timing properties generated from

SDs/MARTE and TDs/MARTE.

Fig. 23 SD/MARTE at the second iteration

864 Software Qual J (2016) 24:835–876

123

At the third iteration, 14 timing properties were generated from SDs/MARTE and three

properties did not satisfy the behaviors of SMDs/MARTE. One hundred and five timing

properties were generated from TDs/MARTE, and 20 timing properties were not satisfied

by the behaviors of SMDs/MARTE. At the fourth iteration, all timing properties of SDs/

MARTE satisfy the behaviors of SMDs/MARTE. However, seven timing properties of

TDs/MARTE failed to pass the model checking-based timing consistency checking

because of wrong modifications of TDs/MARTE. At the fifth iteration, all timing properties

of SDs/MARTE and TDs/MARTE were satisfied by the behaviors of SMDs/MARTE.

Figures 25, 26, and 27 show a TD/MARTE for tick 1 interval at the third, fourth, and

fifth iteration, respectively. In Figure 25, ‘‘E\[(t [10 and t \ 13) and SM.Tick1_-

Working’’ property detected a timing inconsistency of the TD/MARTE because the time

range (i.e., from 10 to 13) of Fig. 25 is not included in the time range of tick 1. We fixed

the range of the timing ruler and checked the TD/MARTE of Fig. 26 at the fourth iteration.

However, an inconsistency was also detected by the timing property ‘‘E\[(t [23 and

t \ 29) and SM.Tick1_Ready’’ because the next state of Tick1_Working is not Tick1_-

Ready but Tick2_Ready. Figure 27 shows the TD/MARTE that is fixed at the fifth

iteration.

Figure 28 shows an SD/MARTE that was used at the first iteration. Two timing

properties are extracted from the SD/MARTE as shown in Fig. 29. The second property

Fig. 24 ComManager SMD/MARTE at the second iteration

Table 12 Total number of extracted timing properties

Iteration 3rd 4th 5th

Total number of timing properties extracted from SDs/MARTE 14 14 14

Total number of timing properties extracted from TDs/MARTE 105 105 101

Software Qual J (2016) 24:835–876 865

123

was not satisfying the timing behaviors of SMDs/MARTE for GCU software because the

timing behaviors of A violated the object execution structure in Fig. 22. To specify the

timing scenario of the SD/MARTE consistently, the time observation values of SM and A

should be changed to 320 tu and 323 tu, respectively.

Fig. 25 TD/MARTE for Tick1 interval at the third iteration

Fig. 26 TD/MARTE for Tick1 interval at the fourth iteration

Fig. 27 TD/MARTE for Tick1 interval at the fifth iteration

866 Software Qual J (2016) 24:835–876

123

9 Discussion

We demonstrated the advantages of the timing consistency checking approach with two

case studies. We observed that many inconsistencies exist in UML/MARTE models at the

first iteration. However, all participants of the case studies gained a full understanding for

the timing behaviors of RTES through the timing consistency checking.

In our approach, TDs/MARTE models are input to timing consistency checking, even

though SDs/MARTE models describe timing scenarios of RTES. From our experimental

observation, we confirm that TDs/MARTE provide more intuitive insights to stakeholders

in timing aspects. However, it is a burden to software designers to specify TDs/MARTE. In

another study, we studied about automatic construction of TDs/MARTE from SMDs/

MARTE and SDs/MARTE to provide different viewpoints of SDs/MARTE models and

save time to specify TDs/MARTE (Choi and Bae 2012; Choi et al. 2012b; Nguyen et al.

2014).

We implemented the automated timing consistency checking tool, UMCA, to validate

the proposed approach. With the UMCA tool, we showed that our approach can be used in

UML/MARTE model-driven development approach.

We consulted with the domain experts at ADD in the Republic of Korea about the

results of the two case studies. They agreed that our approach is useful for an effective

understanding and communication in the development of RTES.

Usually defense software has diverse temporal events during a long execution time and

non-complicated structure to assure reliability and safety. By specifying SDs/MARTE or

TDs/MARTE with diverse timing scenarios, our approach can effectively check timing

behaviors of defense software in the design phase.

Fig. 28 SD/MARTE used at the first iteration

Software Qual J (2016) 24:835–876 867

123

In addition, we can specify executable SMDs/MARTE through the timing consistency

checking. It means that our approach can be extended to generate code from the consistent

SMDs/MARTE by utilizing TIMES tool (Amnell et al. 2002; Amnell et al. 2004; Choi

et al. 2013).

In our approach, timing information is important to specify UML/MARTE models for

RTES. In the development of defense software, many experiments regarding timing are

done with an evaluation board or a prototype platform in the exploratory development

process. Also, if RTES is for an evolutionary product, we can refer the timing information

of RTES in the previous project. Thus, timing information can be made in RTES

requirements analysis of a system development process.

Although the two case studies showed the effectiveness and practicality of our

approach, we have several limitations. The proposed checking rules focus mainly on

detecting timing inconsistencies such as mismatched timing information and incorrect

timing behaviors among UML/MARTE behavioral models. Thus, some inconsistencies

cannot be detected by the rules. The validations of the rules and model transformation are

not proved in a formal way. Instead, we showed the correctness of rules through an

inconsistency injection test. We tested the correctness of model transformation with model

retransformation using UMCA. At present, we need two UML/MARTE modeling tools to

follow the proposed approach. We believe that the Papyrus tool will support our approach

in the near future. Then, UMCA will be modified to support it.

10 Conclusion

This paper describes an approach to check timing consistency among SMDs/MARTE,

SDs/MARTE, and TDs/MARTE for RTES. We first showed how UML/MARTE models

specify the behaviors of RTES formally to provide a common understanding among

stakeholders. In addition, we classified UML/MARTE consistency types into intra-model

and inter-model consistency, and timing and non-timing consistency. The specified UML/

Fig. 29 Extracted timing properties and checking results

868 Software Qual J (2016) 24:835–876

123

MARTE models are validated through a rule-based and a model checking-based consis-

tency checking process. In the rule-based consistency checking, we check intra-model and

inter-model consistency for UML/MARTE models. To this end, we provided eight intra-

model and 12 inter-model consistency checking rules. Intra-model consistency checking

rules check timing consistency in a UML/MARTE model, while inter-model consistency

checking rules check non-timing consistency as well as timing consistency among different

types of UML/MARTE models. In the model checking-based consistency checking, we

check whether the timing scenarios of SDs/MARTE and TDs/MARTE are consistent with

the behaviors of SMDs/MARTE. For this purpose, SMDs/MARTE are translated into

timed automata models. Timing properties are extracted from SDs/MARTE and TDs/

MARTE. The translated timed automata models and timing properties are used as inputs to

a model checker. We developed an automatic timing consistency checking tool UMCA for

a seamless approach. UMCA supports a rule-based timing consistency checking, model

transformation, and timing property extraction. To show the effectiveness and practicality

of the timing consistency checking approach, we demonstrated the proposed approach with

two case studies; CCS software in automotive systems and GCU software in avionics

systems. We showed that the proposed approach helps software designers specify con-

sistent UML/MARTE models. Software designers can understand timing behaviors of

RTES fully through the UML/MARTE behavioral modeling and the timing consistency

checking. Moreover, the proposed approach can detect infeasible timing scenarios in the

design phase of RTES.

There are several works tomature the proposed approach. First, wewill conduct additional

studies to solve the limitations. Rule completeness should be proved formally. UMCA also

will be updated to support user-friendly checking. Finally, wewill study how to detect timing

inconsistencies in UML/MARTE models for multiprocessor system software.

Appendix 1: Rules for rule-based timing consistency checking

Intra-model consistency checking rules

SMD-MARTE ExecTime
SMD-MARTE ExecTime rule defines that an execution time of an SMD/MARTE

should be greater than or equal to an execution time of the following two conditions:

1. An execution time of each state.

2. Execution times of execution paths from a state with a receiving message in a

incoming transition to a state with a sending message in a outgoing transition only if

all states in execution paths have an execution time. ;

Rule. SD-MARTE ExecTime
SD-MARTE ExecTime rule defines that an execution time of a lifeline in an SD/

MARTE should be greater than or equal to an execution time of each execution specifi-

cation in the lifeline. ;

Rule. TD-MARTE ExecTime
TD-MARTE ExecTime rule defines that if duration of a state represents an execution

time, an execution time of a lifeline in a TD/MARTE is greater than or equal to the

following two conditions:

1. An execution time of each state.

Software Qual J (2016) 24:835–876 869

123

2. Execution times of execution paths from a state with a receiving message to a state

with a sending message. ;

Rule. SMD-MARTE Deadline
Rule. SD-MARTE Deadline
Rule. TD-MARTE Deadline

SMD-MARTE Deadline, SD-MARTE Deadline, and TD-MARTE Deadline rules define

that deadline should be greater than or equal to an execution time of a UML/MARTE

model. ;

Rule. SD-MARTE TimeObservation
SD-MARTE TimeObservation rule defines that a time observation value in an SD/

MARTE is the sum of a time observation value and an execution time of the previous

execution specification in the SD/MARTE. ;

Rule. TD-MARTE TimingRuler
TD-MARTE TimingRuler rule defines that the timing ruler values in a TD/MARTE

should be increased at regular intervals. ;

Inter-model consistency checking rules

Rule. SD-SMD MARTE
SD-SMD MARTE rule defines that MARTE annotation linked to a lifeline in an SD/

MARTE should be the same as a MARTE annotation linked to an SMD/MARTE of the

lifeline. ;

Rule. SD-SMD Lifeline
SD-SMD Lifeline rule defines that a lifeline in an SD/MARTE should have a corre-

sponding SMD/MARTE. ;

Rule. SD-SMD Message
SD-SMD Message rule defines that a receiving message and a sending message of

lifelines in an SD/MARTE should be defined in events and actions in an SMD/MARTE of

the lifeline, respectively. ;

Rule. SD-SMD ExecTime
SD-SMD ExecTime rule defines that an execution time of an execution specification in

an SD/MARTE is greater than or equal to an execution time of a state in an SMD/MARTE

for the following three conditions:

1. An execution time of an execution specification with only a receiving message in an

SD/MARTE should be greater than or equal to an execution time of a state with the

same receiving message in an SMD/MARTE of the lifeline.

2. An execution time of an execution specification with only a sending message in an SD/

MARTE should be greater than or equal to an execution time of a state with the same

sending message in an SMD/MARTE of the lifeline.

3. An execution time of an execution specification with a receiving message and a

sending message in an SD/MARTE should be equal to an execution time of a path

from a state with the same receiving message to a state with the same sending message

in an SMD/MARTE of the lifeline. ;

Rule. TD-SMD MARTE
TD-SMD MARTE rule defines that a MARTE annotation linked to a lifeline in a TD/

MARTE should be equal to a MARTE annotation linked to an SMD/MARTE of the

lifeline. ;

870 Software Qual J (2016) 24:835–876

123

Rule. TD-SMD Lifeline
TD-SMD Lifeline rule defines that a lifeline in a TD/MARTE should have a corre-

sponding SMD/MARTE. ;

Rule. TD-SMD Message
TD-SMD Message rule defines that a receiving message and a sending message of

lifelines in a TD/MARTE should be defined in events or actions of an SMD/MARTE of the

lifeline, respectively. ;

Rule. TD-SMD State
TD-SMD State rule defines that states of a lifeline in a TD/MARTE should be defined in

an SMD/MARTE of the lifeline. ;

Rule. TD-SMD ExecTime
TD-SMD ExecTime rule defines that an execution time of a state of a lifeline in a TD/

MARTE is the same as an execution time of a state in an SMD/MARTE of the lifeline. ;

Rule. SD-TD MARTE
SD-TD MARTE rule defines that MARTE annotation of a lifeline in an SD/MARTE

should be the same as a MARTE annotation of the lifeline in a TD/MARTE. ;

Rule. SD-TD Lifeline
SD-TD Lifeline rule defines that a lifeline of an SD/MARTE and a lifeline of TD/

MARTE should be the same only if MARTE annotations of an SD/MARTE and a TD/

MARTE are same and a message of the lifeline in an SD/MARTE is included in messages

of the lifeline in a TD/MARTE. ;

Rule. SD-TD ExecTime
SD-TD ExecTime rule defines that an execution time of an execution specification of a

lifeline in an SD/MARTE is the same as an execution time of a state in a TD/MARTE only

if the execution specification of a lifeline has a receiving and sending message, and the

lifeline in a TD/MARTE also have the same receiving and sending message. ;

Appendix 2: SMDs/MARTE for CCS software

See Figs. 30, 31, 32, 33, 34 and 35.

Fig. 30 SMD/MARTE for SettingController

Software Qual J (2016) 24:835–876 871

123

Fig. 31 SMD/MARTE for CruiseController

Fig. 32 SMD/MARTE for display

872 Software Qual J (2016) 24:835–876

123

Fig. 33 SMD/MARTE for SpeedCounter

Fig. 34 SMD/MARTE for SpeedController

Fig. 35 SMD/MARTE for user

Software Qual J (2016) 24:835–876 873

123

References

Alur, R., & Dill, D. L. (1994). A theory of timed automata. Theoretical Computer Science, 126(2), 183–235.
Amnell, T., Fersman, E., Pettersson, P., Sun, H., & Yi, W. (2002). Code synthesis for timed automata.

Nordic Journal of Computing, 9(4), 269–300.
Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., & Yi, W. (2004). TIMES: A tool for schedulability

analysis and code generation of real-time systems. In Formal modeling and analysis of timed systems
(pp. 60–72). Berlin: Springer.

Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., et al. (2010). Systems and software
verification: Model-checking techniques and tools. Berlin: Springer.

Chiorean, D., Paşca, M., Cârcu, A., Botiza, C., & Moldovan, S. (2004). Ensuring UML models consistency
using the OCL environment. Electronic Notes in Theoretical Computer Science, 102, 99–110.

Choi, J. (2015). UMCA (UML/MARTE timing Consistency Analyzer) tool. http://sites.google.com/site/
jhchoi93/.

Choi, J., & Bae, D. H. (2012). An approach to constructing timing diagrams from UML/MARTE behavioral
models for guidance and control unit software. In Computer applications for database, education, and
ubiquitous computing (pp. 107–110). Berlin: Springer.

Choi, J., Shim, J., & Yim, S. (2005). The implementation and performance analysis of soft timer interrupt
UML-RT model on a windows platform with real-time extension. In Proceedings of the korea
information science society fall conference (Vol. 32, pp. 841–843)

Choi, J., Jee, E., Kim, H. J., & Bae, D. H. (2011a). A case study on timing constraints verification for a
safety-critical, real-time system. In Proceedings of the Korea computer congress (KCC) (Vol. 38,
pp. 166–169).

Choi, J., Jee, E., Kim, H. J., & Bae, D. H. (2011b). A case study on timing constraints verification for a
safety-critical, time-triggered embedded software. Journal of KIISE: Software and Applications,
38(12), 647–656.

Choi, J., Jee, E., & Bae, D. H. (2012a). Systematic vxworks-based code generation from timed automata
model. In Proceedings of the Korea computer congress (KCC) (Vol. 39, pp. 138–140).

Choi, J., Jee, E., & Bae, D. H. (2012b) Toward systematic construction of timing diagrams from UML/
MARTE behavioral models for time-triggered embedded software. In 2012 IEEE sixth international
conference on Software Security and Reliability (SERE) (pp. 118–127).

Choi, J., Jee, E., & Bae, D. H. (2013). Systematic generation of VxWorks-based code from timed automata
models. Journal of KIISE: Computing Practices and Letters, 19(2), 90–94.

Clarke, E. M., Grumberg, O., & Peled, D. (1999). Model checking. Cambridge: MIT Press.
Egyed, A. (2006). Instant consistency checking for the UML. In Proceedings of the 28th international

conference on Software Engineering (pp. 381–390). ACM
Egyed, A. (2007). UML/Analyzer: A tool for the instant consistency checking of UML models. In 29th

International Conference on Software Engineering, 2007. ICSE 2007 (pp. 793–796).
Egyed, A. (2011). Automatically detecting and tracking inconsistencies in software design models. IEEE

Transactions on Software Engineering, 37(2), 188–204.
Engels, G., Küster, J. M., Heckel, R., & Groenewegen, L. (2001). A methodology for specifying and

analyzing consistency of object-oriented behavioral models. In ACM SIGSOFT Software Engineering
Notes (Vol. 26, pp. 186–195)

Fersman, E., Pettersson, P., Yi, W. (2002). Timed automata with asynchronous processes: Schedulability
and decidability. In Tools and Algorithms for the Construction and Analysis of Systems (pp. 67–82).
Berlin: Springer

Fowler, M. (2004). UML distilled: A brief guide to the standard object modeling language. Boston:
Addison-Wesley Professional.

Gherbi, A., & Khendek, F. (2007) Consistency of UML/SPT models. In SDL 2007: Design for dependable
systems (pp. 203–224). Berlin: Springer.

Gogolla, M., Büttner, F., & Richters, M. (2007). Use: A UML-based specification environment for vali-
dating UML and OCL. Science of Computer Programming, 69(1), 27–34.

Gomaa, H. (2001). Designing concurrent, distributed, and real-time applications with UML. In Proceedings
of the 23rd international conference on software engineering, (pp. 737–738). IEEE Computer Society.

Gomes, L., Fernandes, J. M., & Global, I. (2010). Behavioral modeling for embedded systems and tech-
nologies: Applications for design and implementation. InInformation Science Reference

Holzmann, G. J. (2003). The SPIN model checker: Primer and reference manual. Boston: Addison-Wesley
Professional.

Knapp, A., Merz, S., & Rauh, C. (2002). Model checking timed UML state machines and collaborations. In
Formal techniques in real-time and fault-tolerant systems, (pp. 395–414). Berlin: Springer

874 Software Qual J (2016) 24:835–876

123

http://sites.google.com/site/jhchoi93/
http://sites.google.com/site/jhchoi93/

Kuster, J., & Stroop J (2001) Consistent design of embedded real-time systems with UML-RT. In Pro-
ceedings. Fourth IEEE international symposium on object-oriented real-time distributed computing,
2001. ISORC-2001, (pp. 31–40).

Laleau, R., & Polack, F. (2008). Using formal metamodels to check consistency of functional views in
information systems specification. Information and Software Technology, 50(7), 797–814.

Lavagno, L., Martin, G., & Selic, B. V. (2003). UML for real: Design of embedded real-time systems.
Berlin: Springer.

Leveson, N. (2011). Engineering a safer world: Systems thinking applied to safety. Cambridge: Mit Press.
Lucas, F. J., Molina, F., & Toval, A. (2009). A systematic review of UML model consistency management.

Information and Software Technology, 51(12), 1631–1645.
Millett, L. I., Thomas, M., Jackson, D., et al. (2007). Software for dependable systems: Sufficient evidence?.

Washington: National Academies Press.
Nentwich, C., Capra, L., Emmerich, W., & Finkelsteiin, A. (2002). xlinkit: A consistency checking and

smart link generation service. ACM Transactions on Internet Technology (TOIT), 2(2), 151–185.
Nguyen, M. C., Jee, E., Choi, J., & Bae, D. H. (2014). Automatic construction of timing diagrams from

UML/MARTE models for real-time embedded software. In Proceedings of the 29th annual ACM
symposium on applied computing, (pp. 1140–1145).

OMG. (2005). UML profile for schedulability, performance, and time specification, version 1.1 (formal/
2005-01-02) Edition. http://www.omg.org.

OMG. (2006). Object Constraint Language. version 2.0 (formal/06-05-01) Edition. http://www.omg.org.
OMG. (2011a). UML profile for MARTE: Modeling and analysis of real-time embedded systems. version

1.1 (formal/2011-06-02) Edition. http://www.omg.org
OMG. (2011b). Unified Modeling Language: Superstructure. version 2.4.1 (formal/2011-08-06) Edition.

http://www.omg.org.
Papyrus . (2012). Papyrus. http://www.eclipse.org/modeling/mdt/papyrus/
Paradigm, V. (2012). Visual Paradigm for UML Communication Edition. http://www.visual-paradigm.com.
Peraldi-Frati, M. A., Blom, H., Karlsson, D., & Kuntz, S. (2012). Timing modeling with autosar-current

state and future directions. In Design, automation and test in Europe conference and exhibition
(DATE), IEEE (pp. 805–809).

Pont, M. J. (2001). Patterns for time-triggered embedded systems. New York: Person Edueation.
Rumbaugh, J., Jacobson, I., & Booch, G. (2004). The unified modeling language reference manual. Boston:

Addison-Wesley Professional.
Selic, B. (1998). Using UML for modeling complex real-time systems. In Languages, compilers, and tools

for embedded systems (pp. 250–260), Berlin: Springer.
Sgroi, M., Lavagno, L., & Sangiovanni-Vincentelli, A. (2000). Formal models for embedded system design.

IEEE Design & Test of Computers, 17(2), 14–27.
Sommerville, I. (2011). Software engineering (9th ed.). Boston: Addison Wesley.
Sourrouille, J. L., & Caplat, G. (2002). Checking UML model consistency. In Workshop on consistency

problems in UML-based software development, Blekinge Institute of Technology (pp. 1–15).
TIMES. (2007). Uppsala university design and analysis of real-time systems team. TIMES-a tool for

modeling and implementation of embedded systems. http://www.timestool.com.
UPPAAL. (2012). Uppsala University and Aalborg University. UPPAAL-a tool for verification of real-time

systems. http://www.uppaal.org.
Usman, M., Nadeem, A., Kim, T. H., & Cho, E. S. (2008). A survey of consistency checking techniques for

UML models. In Advanced software engineering and its applications, 2008, ASEA 2008 IEEE, (pp.
57–62).

Wieringa, R. J. (2003). Design methods for reactive systems: Yourdon, statemate, and the UML. Amster-
dam: Elsevier.

Zhao, X., Long, Q., & Qiu, Z. (2006). Model checking dynamic UML consistency. In Formal methods and
software engineering, Berlin: Springer (pp. 440–459).

Software Qual J (2016) 24:835–876 875

123

http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.visual-paradigm.com
http://www.timestool.com
http://www.uppaal.org

Jinho Choi is a Senior Researcher in the 1st R&D Institute at Agency
for Defense Development (ADD) in Republic of Korea. He received
his Ph.D. degree at the Department of Computer Science in Korea
Advanced Institute of Science and Technology (KAIST). His research
interests include software quality, model-based embedded software
design, real-time embedded system, software safety, and formal
method.

Eunkyoung Jee is a Research Assistant Professor in School of
Computing at KAIST in Republic of Korea. She was a Postdoctoral
Researcher in the Computer and Information Science Department at
the University of Pennsylvania. She received her B.S., M.S., and Ph.D.
degrees in Computer Science from KAIST. Her research interest
includes safety-critical software, software testing, formal method, and
safety analysis.

Doo-Hwan Bae is a Professor in School of Computing at Korea
Advanced Institute of Science and Technology (KAIST). He received
his Ph.D. at the Department of Computer Science in the University of
Florida. He currently leads many projects funded by Korean govern-
ment and industry. His research interests include software safety,
software testing, quality-driven software development, embedded
software design, and mining software repositories.

876 Software Qual J (2016) 24:835–876

123

	Timing consistency checking for UML/MARTE behavioral models
	Abstract
	Introduction
	Background
	UML
	MARTE
	Timed automata
	Model checking

	Related work
	UML consistency concepts
	UML consistency checking using a rule-based method
	UML consistency checking using a model checking technique

	UML/MARTE behavioral modeling for real-time embedded software
	An illustrative example
	A state machine diagram with MARTE annotations
	Modeling guideline

	A sequence diagram with MARTE annotations
	Modeling guideline

	A timing diagram with MARTE annotations
	Modeling guideline

	Timing consistency checking for UML/MARTE behavioral models
	Classification of UML/MARTE consistency types
	Timing consistency checking process
	Rule-based timing consistency checking
	Model checking-based timing consistency checking
	Model transformation
	Timing property extraction

	Tool implementation
	UMCA architecture
	XML parser
	Rule repository and rule checker
	Model converter and model reconverter
	Property extractor
	Correctness test of rules and model transformation

	A case study for cruise control system software
	Experimental setting
	Timing consistency checking results and analysis
	Analysis 1: Inconsistencies in the rule-based timing consistency checking
	Analysis 2: Inconsistencies in the model checking-based timing consistency checking

	A case study for guidance and control unit software
	Experimental setting
	Timing consistency checking results and analysis
	Analysis 1: Inconsistencies in the rule-based timing consistency checking
	Analysis 2: Inconsistencies in the model checking-based timing consistency checking

	Discussion
	Conclusion
	Appendix 1: Rules for rule-based timing consistency checking
	Intra-model consistency checking rules
	Inter-model consistency checking rules

	Appendix 2: SMDs/MARTE for CCS software
	References

