
Multi-view refactoring of class and activity diagrams
using a multi-objective evolutionary algorithm

Usman Mansoor1 • Marouane Kessentini1 • Manuel Wimmer2 •

Kalyanmoy Deb3

Published online: 5 August 2015
� Springer Science+Business Media New York 2015

Abstract To improve the quality of software systems, one of the widely used techniques

is refactoring defined as the process of improving the design of an existing system by

changing its internal structure without altering the external behavior. The majority of

existing refactoring work focuses mainly on the source code level. The suggestion of

refactorings at the model level is more challenging due to the difficulty to evaluate: (a) the

impact of the suggested refactorings applied to a diagram on other related diagrams to

improve the overall system quality, (b) their feasibility, and (c) interdiagram consistency.

We propose, in this paper, a novel framework that enables software designers to apply

refactoring at the model level. To this end, we used a multi-objective evolutionary algo-

rithm to find a trade-off between improving the quality of class and activity diagrams. The

proposed multi-objective approach provides a multi-view for software designers to eval-

uate the impact of suggested refactorings applied to class diagrams on related activity

diagrams in order to evaluate the overall quality, and check their feasibility and behavior

preservation. The statistical evaluation performed on models extracted from four open-

source systems confirms the efficiency of our approach.

Keywords Search-based software engineering � Software maintenance � Multi-objective

optimization

& Marouane Kessentini
marouane@umich.edu

Usman Mansoor
umansoor@umich.edu

Manuel Wimmer
wimmer@big.tuwien.ac.at

Kalyanmoy Deb
kdeb@egr.msu.edu

1 University of Michigan, Dearborn, MI, USA

2 Vienna University of Technology, Vienna, Austria

3 Michigan State University, East Lansing, MI, USA

123

Software Qual J (2017) 25:473–501
DOI 10.1007/s11219-015-9284-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9284-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9284-4&domain=pdf

1 Introduction

Model-driven engineering (MDE) considers models as first-class artifacts during the

software lifecycle (Porres 20052005). The available techniques, approaches, and tools for

MDE are growing, and they support a huge variety of activities, such as model creation,

model transformation, and code generation. In the context of code generation, the quality

of the generated source code from models depends on the quality of the source models. In

addition, the maintainability and quality assurance goals are defined, in general, by soft-

ware managers and team leads, and they prefer to evaluate the quality of the software

systems at the model level because it represents a better representation than the source

code to identify, suggest, and evaluate different strategies to reach some maintainability

objectives.

A widely used technique to improve the overall quality of systems is refactoring which

improves design structure, while preserving the overall functionalities and behavior

(Fowler et al. 1999). A variety of refactoring work has been proposed in the literature

(Fowler et al. 1999; Mens and Tourwé 2004), and the majority of them focus only on the

source code level. Despite its importance, model refactoring is still in its teenage years

(Mens 2006; Mens et al. 2007b; Arcelli et al. 2012). In fact, model refactoring is more

difficult and challenging than code refactoring for several reasons. First, the evaluation of

the impact of refactorings in the model level is difficult to estimate. In the source code

level, traditional code quality metrics are used to evaluate the quality of a system after

applying a sequence of refactorings. However, applying refactoring on a specific model

such as class diagrams has an impact on related other diagrams such as activity diagrams

and sequence diagrams. Sometimes, an improvement of class diagram quality metrics may

decrease the quality of an activity diagram. Thus, it is important to evaluate the impact of

suggested refactorings not only on one diagram, but also other related diagrams to estimate

the overall quality. Second, some refactorings suggested at the model level cannot be

applied to the source code level. Third, it is difficult to check whether a refactoring applied

to a class diagram preserves the behavior or not without the use of some related behavioral

diagrams such as an activity diagram.

To address these issues, we propose in this paper a model refactoring approach based on

a multi-objective evolutionary algorithm, namely NSGA-II proposed by Deb et al. (2002).

Our multi-objective approach aims to find the best sequence of refactorings that provide a

good trade-off between maximizing the quality of class diagrams and activity diagrams

while preserving behavioral constraints defined on activity diagrams. Our NSGA-II

algorithm starts by generating a sequence of refactorings applied to a class diagram, then

we automatically generate the equivalent activity diagram using some co-evolution rules.

The evaluation of the proposed refactorings is based on three objectives: (a) maximizing a

set of class diagram quality metrics; (b) maximizing a set of activity diagram metrics and

(c) minimizing the number of violated behavioral preservation constraints. The paper

reports on the results of an empirical study of our multi-objective proposal as applied to a

set of models extracted from four open-source systems. We compared our approach to a

mono-objective genetic algorithm (Goldberg 1989) and an existing technique, DesignImpl,

not based on heuristic search (Moghadam and Cinneide 2012).

The remainder of this paper is structured as follows. Section 2 provides the background

of model refactoring, and demonstrates the challenges addressed in this paper based on a

motivating example. In Sect. 3, we give an overview of our proposal and explain how we

adapted the NSGA-II algorithm to find the optimal model refactoring sequences. Section 4

474 Software Qual J (2017) 25:473–501

123

discusses the design and results of the empirical evaluation of our approach. After sur-

veying related work in Sect. 5, we conclude with some pointers to future work in Sect. 6.

2 Model refactoring challenges

Finding an optimal sequence of refactorings on class diagrams and the corresponding co-

refactorings on activity diagrams in order to accomplish a high quality of both views on a

software system is a challenging task, because the effects of refactorings may improve the

quality of one view, while they decrease the quality of the other. In this section, we

introduce some well-known quality metrics that we use to evaluate the overall quality of

the design and discuss the refactorings of class diagrams and the corresponding co-

refactorings of activity diagrams that can be applied to improve the quality of both views.

Based on these quality metrics and refactorings, we showcase the challenge of finding an

optimal sequence based on a small example. However, at the same time we like to stress

that our approach is not limited to these specific multi-view refactoring problem, but

maybe it can be used as a general approach to tackle also another multi-view refactoring

scenarios.

2.1 Quality metrics

Several metrics have been proposed to evaluate the structural quality of software artifacts

(e.g., Fenton and Pfleeger 1997). Many of those metrics have also been successfully

adapted for evaluating the structural design quality of UML (meta-) models, e.g., by Ma

et al. (2004). Based on those works, we selected several metrics for class diagrams and

activity diagrams [for activity diagrams, we mostly based our metrics on existing work in

the field of business processes, e.g., (Cardoso 2006)] covering their design size and

complexity (e.g., number of attributes and methods per class, number of parameters of

methods, etc.), their coupling and encapsulation (e.g., number of associations, number data

accesses over associations), as well as their abstraction (e.g., inheritance depth, number of

polymorphic methods). A complete list of the used metrics and their definition is explained

in Sect. 3.

Circle

+ x :int
+ y :int
+ radius :int

+ distance(int, int) :int
+ distance(int, int, int, int) :int

distance(int, int)

y :Integer

x :Integer return :Integer

this
ReadSelf distance()

(Circle::distance)

x2

y 1

x1

y 2

x
ReadStructuralFeature

y
ReadStructuralFeature

Activity
edges = 9
nodes = 5
actions = 4
CFC = 3
LOC = 1

Classes
classes = 1
PPC = 3
OPC = 2

Legend
PPC … # properties per class
OPC … # operations per class,
CFC … control-flow complexity = #forks + # decisions
LOC … locality = # reads in referenced class / all reads

Fig. 1 Motivating example—initial version

Software Qual J (2017) 25:473–501 475

123

Table 1 The list of refactorings and corresponding co-refactorings

Name of
refactoring

Description Co-evolution process

Rename class Changes the name of a class with a new
name, and updates its references

No co-refactoring needed, because in the
abstract syntax the element references do not
break with renames

Replace
inheritance
with
delegation

Replaces a direct inheritance
relationship with a delegation
relationship

We assume that a delegation relationship is a
1..1 association

For each operation of the original super class,
introduce a new operation in the original
subclass and activities that navigate through
the delegation association
(ReadStructuralFeatureValueAction) and call
the respective operation
(CallOperationAction) (Bock 2003)

Existing CallOperationActions calling the
original superclass’s operation have to be
changed in order to call the new introduced
operation in original subclass instead

ReadIsClassifiedObjectActions (instance of)
have to be adapted, because the original
subclass is not a subclass of the original
superclass anymore

Replace
delegation
with
inheritance

Replaces a delegation relationship with
a direct inheritance relationship

Delete operations and activities from new
subclass

Existing CallOperationActions must be
changed to call the operation of the new
superclass instead

Extract
subclass

Adds a new subclass to class C and
moves the relevant features to it

The CreateObjectAction that created the object
of class C must be changed to the create an
object of the new subclass instead, if features
that are pushed down in this refactoring are
used on the created object

Types of operation parameters have to be
changed to the new subclass if the respective
operation accesses features which are now
only available in the subclass

For methods being pushed down to the new
subclass, see push down method/field

Extract
superclass

Adds a new super class to class C and
moves the relevant features to it

For the features being pulled up to the new
superclass, see pull up method/field

Co-evolution would be beneficial for code
quality; the superclass should be used instead
of the subclass wherever it is possible; that is,
where no features are used that remain in the
respective subclass

Collapse
hierarchy

Removes a class from an inheritance
hierarchy

Adaptation necessary; see extract superclass
and extract subclass

Inline class Moves all features of a class into
another class and deletes it

We assume that a 1..1 association to the
deleted class exists

Access to attributes and call of operations have
to be adapted (no navigation through
association using a
ReadStructuralFeatureValueAction is needed
anymore)

Adapt all references to deleted class and use
class containing all its features instead in
CreateObjectAction,
ReadIsClassifiedObjectAction, parameter
types, etc.

476 Software Qual J (2017) 25:473–501

123

Table 1 continued

Name of
refactoring

Description Co-evolution process

Extract class Creates a new class and moves the
relevant features from the old class
into the new one

We assume that a 1..1 association to the new
class is introduced

Delegating operations have to be added for
operations moved to extracted class

Read/Add/ClearStructuralFeatureValueActions
and CallOperationValueActions have to be
adapted. Before these can be executed, the
object of the extracted class has to be
obtained first through a
ReadStructuralFeatureValueAction on the
association pointing to the extracted class

Usages of non-encapsulated and non-private
attributes outside of the class from which the
features were extracted having to be adapted
(navigation to extract object has to be added)

CreateObjectAction and respective linking for
the extracted class has to be added wherever
the existing class was instantiated (also
DestroyObjectAction for new class has to be
added)

Push down
method

Moves a method from a class to those
subclasses that require it

If the pushed-down operations were pushed
down into multiple subclasses, these
operations are moved only from to one
subclass and copied from the other
subclasses; thus, for the references to those
operations must be adapted in all
CallOperationActions depending on the type
of the object on which the operation is called

It must be ensured that the moved operations
still have access to the used features (i.e.,
private attributes and operations in the
superclass C must not be used in Read/Add/
ClearStructuralFeatureValueActions,
CallOperationAction, etc. in the moved
operations)

Pushed-down operations must be non-private,
if they are calling somewhere in the
superclass or on the level of the superclass
type, because otherwise the pushed-down
operations would not be accessible anymore

If clients of the superclass call the operation,
they must use the/a subclass instead (thus
CreateObjectActions or parameter types
must be adopted)

Pull up method Moves a method of some class (es) to
the immediate superclass

If the pulled-up operations were pulled up from
multiple subclasses, these operations are
moved only from one class and removed
from the other subclasses; thus, for all
CallOperationActions that point to the
removed operation, the corresponding moved
operation in the new superclass has to be
used instead of the deleted ones

Pulled-up operations must be non-private, if
they are used somewhere in the subclass,
because otherwise they would not be
accessible anymore from the subclasses

Rename
method

Changes the name of a method to a new
one, and updates its references

No co-refactoring needed

Software Qual J (2017) 25:473–501 477

123

Figure 1 illustrates some quality metrics related to an activity diagram. We have one

class Circle containing three properties and two operations. In Fig. 1, we also depict the

activity diagram representing the behavior of the first operation distance (int, int). Besides,

we show the measures of some of the quality metrics for this example, such as the number

of properties per class (PPC), the number of edges and nodes in the activity, as well as its

control-flow complexity (CFC), and its locality (LOC)—see legend of Fig. 1 for their

formulas.

2.2 Refactorings

The refactoring of object-oriented programs is a well-researched domain (Fowler et al.

1999), and many of the identified refactorings for object-oriented programs have been

adopted for the refactoring of design models (Sunye et al. 2001). In this paper, we consider

those refactorings that are applicable on class diagrams and identified the necessary co-

refactorings for activity diagrams. The co-refactoring of activities is necessary after

Table 1 continued

Name of
refactoring

Description Co-evolution process

Push down field Moves a field from a class to those
subclasses that require it

If the pushed-down fields were pushed down to
multiple subclasses, these fields are moved
only from to one subclass and copied from
the other subclasses; thus, for the references
to those fields must be adapted in all
StructuralFeatureValueActions depending on
the type of the object on which the field is
accessed

Pushed-down fields must be non-private, if
they are accessed somewhere in the
superclass or on the level of the superclass
type, because otherwise the pushed-down
fields would not be accessible anymore

If clients of the superclass access the pushed-
down fields, they must use the subclass
instead (thus CreateObjectActions or
parameter types must be adopted)

Pull up field Moves a field from some class(es) to
the immediate superclass

If the pulled-up fields were pulled up from
multiple subclasses, these features are moved
only from one class and removed from the
other subclasses; thus, for all actions that
access those removed features, the respective
corresponding moved field in the new
superclass has to be used instead of the
deleted ones in
StructuralFeatureValueActions

Pulled-up fields must be non-private, if they
are used somewhere in the subclass, because
otherwise they would not be accessible
anymore from the subclasses

Rename field Changes the name of a field to a new
name, and updates its references

No co-refactoring needed

encapsulate
field

Creates getter and setter methods for
the field and uses only those to access
the field

Getter and setter activity have to be created
(Readself & read/
AddStructuralFeatureValueAction)

Replace StructuralFeatureValueActions to that
field with CallOperationActions to the getter
and setter, respectively

478 Software Qual J (2017) 25:473–501

123

applying a refactoring to the class diagram in order to maintain the validity of consistency

rules among classes and activities. Table 1 describes a complete list of the considered class

diagram refactorings and the corresponding co-refactorings of activities:

2.2.1 Consistency rules

To avoid ambiguities regarding the semantics of classes, activities, and actions, we adopt

the semantics of the Foundational Subset For Executable UML (fUML) (http://www.omg.

org/spec/FUML/1.1/; Crane and Dingel 2008) to define consistency rules and to derive

necessary co-refactorings. As an example for such consistency rules, we may consider a

ReadStructuralFeatureValueAction in an activity, which obtains the value of a specific

feature from an object. The consistency rule of this action with respect to the class diagram

is that the feature to be read must be a direct or inherited feature of the object’s class.

Moreover, the feature must be visible in the current context.

2.2.2 Refactorings and co-refactorings

We consider 15 well-known refactorings of class diagrams (Sunye et al. 2001; Boger et al.

2002) ranging from moving features, such as properties and operations, through extracting

classes or superclasses from other classes, as well as pushing down and pulling up features

along inheritance relationships, through to replacing inheritance with delegation and vice

versa. For each of those refactorings of class diagrams, we identified the necessary co-

refactorings for activity diagrams to maintain the validity of consistency rules between

classes and activities. For instance, if a new class is extracted from one class and, thereby, a

new association is added from the original class to the extracted class and one or more

features (properties and operations) of the original class are moved to the new extracted

class, all StructuralFeatureValueActions that access the moved features have to be pre-

pended with a ReadStructuralFeatureValueAction that first reads the introduced associa-

tion to navigate from the original class to the extracted class; otherwise, moved features

Activity
edges = 11
nodes = 7
actions = 4
CFC = 4
LOC = 0,4

Classes
classes = 2
PPC = 1,5
OPC = 1

Legend
PPC … # properties per class
OPC … # operations per class,
CFC … control-flow complexity = #forks + # decisions
LOC … locality = # reads in referenced class / all reads

Circle

+ radius :int

+ distance(int, int) :int
+ distance(int, int, int, int) :int

Point

+ x :int
+ y :int

+point

1

distance(int, int)

y :Integer

x :Integer

return :Integer

this
ReadSelf

distance()
(Circle::distance)

x2

y1

x1

y2

target

x
ReadStructuralFeature

y
ReadStructuralFeaturepoint

ReadStructuralFeature

Fig. 2 Motivating example—after extract class point

Software Qual J (2017) 25:473–501 479

123

http://www.omg.org/spec/FUML/1.1/
http://www.omg.org/spec/FUML/1.1/

would not be accessible in the object that is of the type of the original class. Note that in

certain scenarios, it might not be possible to re-establish the validity of all conformance

relationships with a co-refactoring of activities. For instance, when a private property of a

class is pulled up to its superclass and there are activities in the subclass reading this

private property, we would have to pull up this activity and the corresponding operation

too. However, if this activity also reads other private properties that were not pulled up into

the superclass, we cannot pull up the activity and the operation; thus, it is not possible to

establish valid conformance rules.

2.3 Multi-view refactoring challenges and motivating example

To showcase the challenges of finding an optimal sequence of refactorings to improve the

quality of the class diagram and at the same time the quality of the activity diagram,

consider the example illustrated in Fig. 1.

As in our example, the class Circle contains two properties x and y, which specify the

coordinates of its center point, and we may apply the refactoring ‘‘Extract Class’’ to

encapsulate these two parameters. Of course, we also have to co-refactor the activity

diagram accordingly. The class and activity diagram after the refactoring and the co-

refactoring are depicted in Fig. 2. Thus, a new class Point has been introduced, which now

contains the two properties x and y. Besides, a new association is created to link the point

from the class Circle. Alongside the class diagram, we had to apply co-refactorings in the

operation distance(int, int). In particular, a new ReadStructuralFeatureValueAction

(‘‘point’’) has been added to obtain the values x and y. We may observe that, although the

quality of the class diagram might have been improved (e.g., there is a better distribution of

properties per class), the length, the number of edges, the control-flow complexity (CFC),

as well as the locality (LOC) indicate a worse design with respect to the activity diagram.

Activity
edges = 9
nodes = 5
actions = 4
CFC = 3
LOC = 1

Classes
classes = 2
PPC = 1,5
OPC = 1

Legend
PPC … # properties per class
OPC … # operations per class,
CFC … control-flow complexity = #forks + # decisions
LOC … locality = # reads in referenced class / all reads

Circle

+ radius :int

Point

+ x :int
+ y :int

+ distance(int, int) :int
+ distance(int, int, int, int) :int

+point

1

distance(int, int)

y :Integer

x :Integer return :Integer

this
ReadSelf

distance()
(Point::distance)

x2

y1

x1

y2

target

x
ReadStructuralFeature

y
ReadStructuralFeature

Fig. 3 Motivating example—after move methods distance

480 Software Qual J (2017) 25:473–501

123

The reason for this is that the activity specifying the behavior of the operation distance(int,

int) contains an additional read-action to obtain values from a referenced object.

To improve this situation, we have to apply another refactoring, namely ‘‘Move

Operation,’’ in order to move the operation distance(int, int) into the newly created class

Point. Then, however, we break the conformance rules of class diagram and the activity

diagram, because in distance(int, int), the operation distance(int, int, int, int) is called,

which is not possible in the scope of Point, since Point has no access to the instance of

Circle. Nevertheless, when we accept the temporary inconsistency and also move the

operation distance(int, int, int, int) into the class Point, we obtain a new result, depicted in

Fig. 3, which not only validates all conformance rules, but also improves the metrics of the

activity diagram significantly; the number of edges has been reduced and the control-flow

complexity, as well as the locality, has been improved.

In conclusion, applying refactorings on the class diagram may have a strong impact on

the quality of the activity diagrams that specify the behavior of the classes’ operations.

Even worse, in several scenarios, the class refactorings will break their consistency.

Finding a good sequence of refactorings to obtain a consistent and improved class and

activity diagram is a major challenge. First, we have to deal with a multi-dimensional

optimization problem, and second, we may have to accept temporarily inconsistencies to

ultimately reach even better solutions.

3 Multi-view model refactoring

We describe, in this section, our multi-view approach for model refactoring. We start by

giving an overview of our proposal and subsequently provide a more detailed description

on how we adapted and used the NSGA-II algorithm for the problem of model refactoring.

3.1 Approach overview

The goal of our approach is to generate the best refactoring sequence that improves the

quality of different diagrams at the same time while preserving behavioral preservation

constraints. Therefore, we use a multi-objective optimization algorithm to compute an

optimal sequence of refactorings in terms of finding trade-offs between maximizing the

quality of class diagrams and activity diagrams, and minimizing the number of violating

behavioral preservation constraints. In fact, the evaluation of refactorings applied on a

class diagram depends on their impact on the related diagrams such as activity diagrams. In

addition, activity diagrams should be used to verify whether the behavior is changed after

applying the refactorings on the class diagram.

Fig. 4 Multi-objective model refactoring: overview

Software Qual J (2017) 25:473–501 481

123

The general structure of our approach is sketched in Fig. 4. The search-based process

takes as inputs the list of 15 possible types of refactoring that can be applied to a class

diagram, the list behavioral preservation constraints, the co-evolution rules to generate the

equivalent activity diagram from a refactored class diagram, a list of metrics to evaluate

the quality of class diagrams and activity diagrams, and the system design to refactor. The

process of generating a solution can be viewed as the mechanism that finds the best

refactorings sequence among all possible solutions that minimizes the number of violated

behavioral constraints, maximizes the quality of the class diagram, and also maximizes the

quality of the related activity diagram. The size of the search space is determined not only

by the number of refactorings, but also by the order in which they are applied. Due to the

large number of possible refactoring combinations and the three objectives to optimize, we

considered model refactoring as a multi-objective optimization problem. In the next sub-

section, we describe the adaptation of NSGA-II proposed by Deb et al. (2002) to our

problem domain (Fig. 5).

3.2 Multi-objective formulation

3.2.1 Nsga-II

The basic idea of NSGA-II (Deb et al. 2002) is to make a population of candidate solutions

evolve toward the near-optimal solution in order to solve a multi-objective optimization

problem. NSGA-II is designed to find a set of near-optimal solutions, called non-dominated

solutions or the Pareto front. A non-dominated solution is one that provides a suitable

compromise between all objectives without degrading any of them. As described in

Algorithm 1, the first step in NSGA-II is to create randomly a population P0 of individuals

encoded using a specific representation (line 1). Then, a child population Q0 is generated

from the population of parents P0 using genetic operators such as crossover and mutation

(line 2). Both populations are merged into a new population R0 of size N (line 5).

Fast-non-dominated-sort is the algorithm used by NSGA-II to classify individual

solutions into different dominance levels. Indeed, the concept of Pareto dominance consists

of comparing each solution x with every other solution in the population until it is dom-

inated by one of them. If no solution dominates it, the solution x will be considered non-

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.

Create an initial population P0

Generate an offspring population Q0

t=0;
while stopping criteria not reached do

Rt = Pt Qt;
F = fast-non-dominated-sort (Rt);
Pt+1 = and i=1;
while | Pt+1| +|Fi| • N do

 Apply crowding-distance assignment(Fi);
Pt+1 = Pt+1 Fi ;
i = i+1;

end
Sort(Fi, n);
Pt+1 = Pt+1 Fi[1 : (N-| Pt+1 |)];
Qt+1 = create-new-pop(Pt+1);
t = t+1;
end

Fig. 5 High-level pseudo-code
of NSGA-II

482 Software Qual J (2017) 25:473–501

123

dominated and will be selected by the NSGA-II to be a member of the Pareto front. If we

consider a set of objectives fi; i; j 2 1. . .n, to maximize, a solution x dominates x0

iff 8i; fiðx0Þ fiðxÞ and 9 jjfiðx0Þ\fiðxÞ:

The whole population that contains N individuals (solutions) is sorted using the dom-

inance principle into several fronts (line 6). Solutions on the first Pareto-front F0 get

assigned dominance level of 0. Then, after taking these solutions out, fast-non-dominated-

sort calculates the Pareto-front F1 of the remaining population; solutions on this second

front get assigned dominance level of 1, and so on. The dominance level becomes the basis

of selection of individual solutions for the next generation. Fronts are added successively

until the parent population Pt?1 is filled with N solutions (line 8). When NSGA-II has to

cut off a front Fi and select a subset of individual solutions with the same dominance level,

it relies on the crowding distance to make the selection (line 9). This parameter is used to

promote diversity within the population. This front Fi to be split, is sorted in descending

order (line 13), and the first (N - |Pt?1|) elements of Fi are chosen (line 14). Then, a new

population Qt?1 is created using selection, crossover, and mutation (line 15). This process

will be repeated until reaching the last iteration according to the stop criteria (line 4). It is

interesting to mention that NSGA-II is an elitist algorithm that does not use any explicit

archive of elite individuals. In fact, elitism is ensured by the crowded comparison operator

that prefers solutions having better Pareto ranks. In this way, NSGA-II preserves elite

solutions by keeping best non-dominated fronts in the race, and when considering the last

non-dominated front, only least crowded solutions are selected from this latter to build the

next population of N individuals.

3.2.2 NSGA-II adaptation for model refactoring

This section describes how NSGA-II (Deb et al. 2002) can be used to find design refac-

toring solutions with multiple conflicting objectives. To apply NSGA-II to a specific

problem, the following elements have to be defined:

• Representation of the individuals;

• Evaluation of individuals using a fitness function for each objective to optimize to

determine a quantitative measure of their ability to solve the problem under

consideration;

• Selection of the individuals to transmit from one generation to another;

• Creation of new individuals using genetic operators (crossover and mutation) to explore

the search space.

Next, we describe the adaptation of the design of these elements for the generation of

model refactoring solutions using NSGA-II.

3.2.2.1 Solution representation To represent a candidate solution (individual), we used a

vector representation. Each vector’s dimension represents a class diagram refactoring

operation. Thus, a solution is defined as a long sequence of refactorings applied to different

parts of the design. The size of the solution represents the number of refactoring (di-

mensions) in the vector. When created, the order of applying these refactorings corre-

sponds to their positions in the vector. In addition, for each refactoring, a set of controlling

parameters (stored in the vector), e.g., actors and roles are randomly picked from the class

diagram to be refactored and stored in the same vector. For example, the controlling

Software Qual J (2017) 25:473–501 483

123

parameters of a move method refactoring are the source and target classes, and the method

to move from the source class as described in the example of Fig. 6. Thus, the refactorings

and its parameters are encoded as logic predicates (Strings). Each dimension of the vector

is a logic predicate describing the refactoring type and its parameters.

An example of a solution is given in Fig. 6 on the class diagram of the motivating

example of Fig. 2. This solution contains three dimensions that correspond to three

refactorings applied to different parts of the source class diagram. For instance, the

predicate move method (Circle, Point, distance(int, int)) means that the method dis-

tance(int, int) is moved from class Circle (source class) to class Point (target class).

After the generation of the refactoring for the class diagram, we automatically generate

the equivalent activity diagram refactorings using the co-evolution rules described in

Sect. 2. These activity diagram refactorings are also represented in a vector similar to those

applied to the class diagram. Moreover, when creating a sequence of refactorings (indi-

viduals), it is important to guarantee that they are feasible and that they can be legally

applied. Some of these behavior preservation constraints are defined in both class diagrams

and activity diagrams as described in Sect. 2. For example, to apply the refactoring

operation move method (Circle, Point, distance()), a number of necessary preconditions

should be satisfied, e.g., Circle and Point should exist and should be classes; distance()

should exist and should be a method; the classes Circle and Point should not be in the same

inheritance hierarchy; the method distance() should be implemented in Circle; the method

signature of distance() should not be present in class Point. As postconditions, Circle,

Point, and distance() should exist; distance() declaration should be in the class Point; and

distance() declaration should not exist in the class Circle. Other constraints checked by the

activity diagram are discussed in Sect. 2.

3.2.2.2 Fitness functions After creating a solution, it should be evaluated using fitness

functions. Since we have three objectives to optimize, we are using three different fitness

functions to include in our NSGA-II adaptation. We used the following fitness functions:

1. Quality of the class diagram fitness function is calculated using a set of 11 quality

metrics used by the QMOOD model (Bansiya and Davis 2002) described in Table 2.

All the 11 metrics are aggregated in one fitness function with equal importance and

normalized between 0 and 1.

Quality attribute Definition
Computation

Reusability A design with low coupling and high cohesion is easily reused by other designs.

0.25 9 Coupling ? 0.25 9 Cohesion ? 0.5 9 Messaging ? 0.5 9 Design size

Flexibility The degree of allowance of changes in the design

0.25 9 Encapsulation - 0.25 9 Coupling
? 0.5 9 Composition ? 0.5 9 Polymorphism

move method (Circle, Point, distance(int, int))
move field (Point, Circle, x)
extract class(Circle, Proprieties, radius, distance (int, int, int))

Fig. 6 Representation of an
NSGA-II individual

484 Software Qual J (2017) 25:473–501

123

Quality attribute Definition
Computation

Understandability The degree of understanding and the easiness of learning the design implementation
details.

0.33 9 Abstraction ? 0.33 9 Encapsulation - 0.33 9 Coupling
? 0.33 9 Cohesion - 0.33 9 Polymorphism - 0.33 9 Complexity
- 0.33 9 Design size

Functionality Classes with given functions that are publically stated in interfaces to be used by others.

0.12 9 Cohesion ? 0.22 9 Polymorphism ?
0.22 9 Messaging ? 0.22 9 Design Size ? 0.22 9 Hierarchies

Extendibility Measurement of design’s allowance to incorporate new functional requirements.

0.5 9 Abstraction - 0.5 9
Coupling ? 0.5 9 Inheritance ? 0.5 9 Polymorphism

Effectiveness Design efficiency in fulfilling the required functionality.

0.2 9 Abstarction ? 0.2 9 Encapsulation ? 0.2 9
Composition ? 0.2 9 Inheritance ? 0.2 9 Polymorphism

2. Quality of the activity diagram fitness function represents an aggregation (sum) of 12

metrics described in Table 3. All these metrics are normalized between 0 and 1.

3. Number of violated behavioral constraints fitness function checks how many

behavioral constraints are violated by the generated refactoring solutions when

applied to an activity diagram. These constraints are described in Sect. 2.

3.2.2.3 Selection To guide the selection process, NSGA-II uses a binary tournament

selection based on dominance and crowding distance (Deb et al. 2002). NSGA-II sorts the

population using the dominance principle which classifies individual solutions into dif-

ferent dominance levels. Then, to construct a new offspring population Qt?1, NSGA-II uses

a comparison operator based on a calculation of the crowding distance to select potential

individuals having the same dominance level.

3.2.2.4 Genetic operators To better explore the search space, the crossover and mutation

operators are defined. For crossover, we use a single, random, cut-point crossover. It starts

Table 2 QMOOD metrics for
design properties (Bansiya and
Davis 2002)

Design property Metric Description

Design size DSC Design size in classes

Complexity NOM Number of methods

Coupling DCC Direct class coupling

Polymorphism NOP Number of polymorphic methods

Hierarchies NOH Number of hierarchies

Cohesion CAM Cohesion among methods in class

Abstraction ANA Average number of ancestors

Encapsulation DAM Data access metric

Composition MOA Measure of aggregation

Inheritance MFA Measure of functional abstraction

Messaging CIS Class interface size

Software Qual J (2017) 25:473–501 485

123

by selecting and splitting at random two parent solutions. Then, crossover creates two child

solutions by putting, for the first child, the first part of the first parent with the second part

of the second parent, and, for the second child, the first part of the second parent with the

second part of the first parent. Each solution has a length limit in terms of number of

refactorings. When applying the crossover operator, the new solution may have higher

number of refactorings than the length limit (input of the algorithm). Thus, the algorithm

randomly eliminates some of the dimensions of the vector (refactorings) to respect the size

constraint. As illustrated in Fig. 7a, each child combines some of the refactoring operations

of the first parent with some ones of the second parent. In any given generation, each

solution will be the parent in at most one crossover operation.

The mutation operator picks randomly one or more operations from a sequence and

replaces them with other ones from the initial list of possible refactorings. An example is

shown in Fig. 7b. After applying genetic operators (mutation and crossover), we verify the

feasibility of the generated sequence of refactoring by checking the pre- and post-condi-

tions. Each refactoring operation that is not feasible due to unsatisfied preconditions will be

removed from the generated refactoring sequence. The new sequence after applying the

change operators is considered valid in our NSGA-II adaptation if the number of rejected

refactorings is less than 5 % of the total sequence size.

Overall, the adaptation of NSGA-II to our model refactoring problem is generic; thus, it

can be easily extended to include other modeling languages by adding a new fitness

function (to evaluate the quality of the new type of models). The solution representation

and change operators will remain the same. Of course, the input should be also extended to

integrate new quality metrics related to the new considered modeling language that will be

used by the new fitness function as a new objective to optimize.

4 Validation

In order to evaluate the feasibility and the efficiency of our approach for generating good

refactoring suggestions, we conducted an experiment based on different versions of open-

source systems. We start by presenting our research questions. Then, we describe and

discuss the obtained results.

Table 3 Activity diagrams
metrics

Metric Description

NP Number of parameters

NNO Number of nodes

NED Number of edges

NAC Number of actions

CFC Control-flow Complexity

ICOM Interface complexity

HAC Halstead-based activity complexity

CNC Coefficient of network complexity

FIFO Fan-in/fan-out metrics for activities

TD Tree depth metric

TW Tree width metric

LO Locality

486 Software Qual J (2017) 25:473–501

123

4.1 Research questions

In our study, we assess the performance of our model refactoring approach of finding out

whether it could generate meaningful sequences of refactorings that improve the structure

of class diagrams and activity diagrams while preserving the behavior. Our study aims at

addressing the following research questions outlined below. We also explain how our

experiments are designed to address these questions. To this end, we defined the following

research questions:

RQ1 To what extent can the proposed approach improve the quality of class diagrams

and activity diagrams?

RQ2 To what extent the proposed approach preserves the behavior while improving the

quality?

RQ3 How does the proposed multi-objective approach based on NSGA-II perform

compared to a mono-objective approach where only one objective is considered to

improve the quality of class diagrams?

RQ4 How does the proposed multi-objective design refactoring approach performs

compared to an existing model refactoring approach (Moghadam and Cinneide

2012) not based on heuristic search?

RQ5 Insight. How our multi-objective model refactoring approach can be useful for

software engineers in real-world setting?

To answer RQ1, we validate the proposed design refactoring solutions to improve the

quality of the system by evaluating their ability to fix some design defects that can be

detected on class diagrams extracted from four open-source systems. We adapted our

previous work (Kessentini et al. 2011) based on quality metrics rules to detect three types

Fig. 7 Changes operators. a Crossover operator. b Mutation operator

Software Qual J (2017) 25:473–501 487

123

of design defects: Blob (it is found in designs where one large class tends to centralize the

functionalities of a system, and the other related classes primarily exposing data.), Long

Parameter List (methods with numerous parameters are a challenge to maintain, especially

if most of them share the same data-type) and Data Clumps (interrelated data items which

often occur as clump in the model. The same data items are often together in different

places such as attributes in classes or parameters in method signatures). We defined a

measure NFD, Number of Fixed Defects, which corresponds to the ratio of the number of

corrected design defects over the initial number of detected defects on a class diagram

before applying the suggested refactoring solution.

NFD ¼ #fixed design defects on a class diagram

#defects before applying refactorings

It is also important to assess the refactoring impact on the design quality and not only on

a class diagram. The expected benefit from refactoring is to enhance the overall software

design quality as well as fixing design defects. The quality metrics considered by our

approach can improve different aspects of the design quality related to reusability, flexi-

bility, understandability, functionality, extendibility, and effectiveness. The improvement

in quality can be assessed by comparing the quality before and after refactoring inde-

pendently to the number of fixed design defects. Hence, the total gain in quality G before

and after refactoring can be easily estimated as:

G� Class Diagram ¼
Pi¼12

i¼1 jq0i � qij
12

andG� ActivityDiagram ¼
Pi¼11

i¼1 jq0i � qij
11

;

where qi
0 and qi represent the value of the quality attribute i, respectively, after and before

refactoring. As described in the previous section, we considered a total of 12 metrics

related to class diagrams and 11 metrics for activity diagrams.

To answer RQ2, we asked groups of potential users of our refactoring tool to evaluate,

manually, whether the suggested refactorings are feasible and preserve the behavior or not.

The users evaluated the entire best solutions proposed by our approach. We define the

metric ‘‘refactoring precision’’ (RP) which corresponds to the number of meaningful

refactorings over the total number of suggested refactoring operations:

RP ¼ #feasiblerefactorings

#proposed refactorings
To answer RQ3, we compare our approach to a mono-objective formulation using a

genetic algorithm (GA) that considers the refactoring suggestion task only from the class

diagram quality improvement perspective (single objective). The use of a single-objective

algorithm is to show that the two objectives of our multi-objective formulation are con-

flicting. If the two objectives were not conflicting then the results of NSGA-II will be

similar to GA. Thus, in that case we will not need to propose a multi-view approach.

To answer RQ4, we compared our design refactoring results with a recent tool, called

DesignImpl proposed recently by Iman and Mel (Moghadam and Cinneide 2012) that does

not use heuristic search techniques. The current version of DesignImpl is implemented as

an Eclipse plug-in that proposes a list of class diagram and code refactorings based on an

interaction with the designer who specify the desired design based on an evaluation of the

class diagram.

To answer RQ5, we asked a group of eight software engineers to refactor manually

some of the detected design defects on the class diagrams, and then compare the results

with those proposed by our tool. To this end, we define the following precision metric MP

488 Software Qual J (2017) 25:473–501

123

(manual precision): MP ¼ Rj j\ Rmj j
Rmj j , where R is the set of refactorings suggested by our tool

and Rm is the set of refactorings suggested manually by software engineers. In fact, several

equivalent refactoring solutions can be proposed to improve the quality. Thus, the tool can

propose some refactorings that are different than those proposed by the designers, but

improve the overall quality of the design. Thus, MP corresponds to the portion of the

correct refactorings after manually evaluating them by the developers (that can be dis-

similar from their suggestions).

4.2 Experimental settings

Our study considers 27 model fragments extracted from four open-source projects using the

IBM Rational Rose tool (http://www-03.ibm.com/software/products/en/ratirosefami):

Xerces-J, GanttProject (Gantt for short), JFreeChart, and Rhino. Xerces-J is a family of

software packages for parsing XML. GanttProject is a cross-platform tool for project

scheduling. JFreeChart is a powerful and flexible Java library for generating charts. Finally,

Rhino is a JavaScript interpreter and compiler written in Java and developed for the Mozilla/

Firefox browser. Table 4 summarizes for each model the number of detected design defects

using our previous work (Kessentini et al. 2011), as well as the number of model elements.

A model fragment is a set of model elements extracted from the open-source system. In fact,

we extracted these model fragments from the different open-source systems (we did not

consider the open-source system as one model, but we extracted several fragments from

these systems). The number of elements in Table 4 is not the number of model fragments,

but the number of elements in all the model fragments per open-source system.

We selected these systems for our validation because they range from medium- to large-

sized open-source projects that have been actively developed over the past 10 years, and

include a large number of design defects. Our study involved six subjects from the

University of Michigan, and some of them are working in automotive industry companies.

Subjects include four master students in Software Engineering and two PhD students in

Software Engineering. Four of them are working in industry as senior software engineers.

All the subjects are volunteers and familiar with Java development. The experience of

these subjects on Java programming ranged from 6 to 16 years. The subjects manually

evaluated the best refactoring solutions proposed by the different techniques. In addition,

they manually refactor some of the detected design defects on the class diagrams. This

outcome was compared with the solutions proposed by our techniques.

Parameter setting has a significant influence on the performance of a search algorithm

on a particular problem instance. For this reason, for each algorithm and for each system,

we perform a set of experiments using several population sizes: 50, 100, 200, 300, and 500.

The stopping criterion was set to 100,000 evaluations of all algorithms in order to ensure

fairness of comparison. The other parameters’ values were fixed by trial-and-error and are

as follows: (1) crossover probability = 0.8; mutation probability = 0.5 where the

Table 4 The systems studied
Systems Release #Elements #Smells

JFreeChart v1.0.9 81 22

GanttProject v1.10.2 114 28

Xerces-J V2.7.0 96 31

Rhino v1.7R1 88 26

Software Qual J (2017) 25:473–501 489

123

http://www-03.ibm.com/software/products/en/ratirosefami

probability of gene modification is 0.3; stopping criterion = 100,000 evaluations. The

elitism can cause premature convergence since population members would be converging

toward the same region of the search space. Based on our experimentations, we concluded

that for our problem, it is effective and efficient to use an elitist schema while using a high

mutation rate (0.8). The latter allows the continued diversification of the population, which

discourage premature convergence to occur.

Since metaheuristic algorithms are stochastic optimizers, they can provide different

results for the same problem instance from one run to another. For this reason, our

experimental study is performed based on 51 independent simulation runs for each problem

instance, and the obtained results are statistically analyzed by using the Wilcoxon rank-sum

test with a 99 % confidence level (a = 1 %). The latter verifies the null hypothesis H0 that

the obtained results of the two algorithms are samples from continuous distributions with

equal medians, as against the alternative that they are not, H1. The p value of the Wilcoxon

test corresponds to the probability of rejecting the null hypothesis H0 while it is true (type I

error). A p value that is less than or equal to a (B0.01) means that we accept H1 and we reject

H0. However, a p value that is strictly greater than a ([0.01) means the opposite. In this way,

we could decide whether the outperformance of NSGA-II over one of each of the others (or

the opposite) is statistically significant or just a random result.

The Wilcoxon signed-rank test allows verifying whether the results are statistically

different or not. However, it does not give any idea about the difference in magnitude. The

effect size could be computed by using the Cohen’s d statistic (Cohen 1988). The effect

size is considered: (1) small if 0.2 B d\ 0.5; (2) medium if 0.5 B d\ 0:8, or (3) large if

d[0.8. Table 5 gives the effect sizes in addition to the p values of the Wilcoxon test when

comparing the results of NSGA-II to the GA.

We note that the mono-objective algorithm provides only one refactorings solution,

while NSGA-II generates a set of non-dominated solutions. In order to make meaningful

comparisons, we select the best solution for NSGA-II using a knee point strategy (Rach-

mawati and Srinivasan 2009). The knee point corresponds to the solution with the maximal

trade-off between the three objectives. Hence, moving from the knee point in either

direction is usually not interesting for the user. We use the trade-off ‘‘worth’’ metric

proposed by Rachmawati and Srinivasan (Rachmawati and Srinivasan 2009) to find the

knee point. This metric estimates the worthiness of each non-dominated merging solution

in terms of trade-off between our three conflicting objectives. After that, the knee point

corresponds to the solution having the maximal trade-off ‘‘worthiness’’ value.

5 Results

5.1 Results for RQ1

As described in Fig. 8, after applying the proposed refactoring operations by our approach

(NSGA-II), we found that, on average, more than 85 % of the detected design defects

Table 5 Statistical test results when comparing NSGA-II to the mono-objective approach

Scenario JFreeChart GanttProject Xerces-J Rhino

p value 6.12E-06 3.51E-09 8.27E-04 2.32E-04

Effect size 0.13 0.69 0.52 0.82

490 Software Qual J (2017) 25:473–501

123

(model smells) were fixed (NFD) for all the class diagrams extracted from the four studied

systems.

This high score is considered significant to improve the quality of the refactored dia-

grams by fixing the majority of defects that were from different types. We found that the

majority of non-fixed defects are related to the blob type. The similar observation is also

valid for the other techniques used in our experiments. This type of defect usually requires

a large number of refactoring operations and is known to be very difficult to fix (Dag

2013).

Another observation is that our technique may introduce some new defects after

refactoring. These new defects can be fixed by our approach since the fitness function

counts the number of remaining defects in the system (to minimize) after executing the

refactorings sequence.

In Figs. 9 and 10, we show the obtained gain values that we calculated for all the

metrics considered for both class diagrams and activity diagrams before and after refac-

toring for each studied system. We found that the diagrams quality increases across all the

quality factors. As a consequence, we noticed that the quality of both class diagrams and

activity diagrams is improved. The highest quality improvement scores of all systems are

mainly observed on class diagrams.

To sum up, we can conclude that our approach succeeded in improving the design

quality not only by fixing the majority of detected model smells but also by improving the

user understandability, the reusability, the flexibility, as well as the effectiveness of the

refactored design. Figure 10 shows that all the quality metrics were improved on all the

systems except the functionality attribute for JFreeChart and Xerces-J. We looked to

experiments data to understand the reason of the loss on Functionality of JFreeChart and

Xerces-J. In fact, the functionality measure is calculated as the following: 0.12 9

Cohesion ? 0.22 ? Polymorphism ? 0.22 9 Messaging ? 0.22 9 Design size ? 0.22 9

Hierarchies. We found that the design size of some JFreeChart and Xerces-J models after

refactoring was lower than the design size before refactoring. Several move methods/fields

were applied, leading to some empty classes after refactoring (thus not considered in the

design size anymore). Furthermore, we found that the best refactoring solution included few

extract class refactorings thus the design size was not increased with new classes (model

Fig. 8 NFD median values of NSGA-II, GA, and DesignImpl over 51 independent simulation runs using
the Wilcoxon rank-sum test with a 99 % confidence level (a\ 1 %)

Software Qual J (2017) 25:473–501 491

123

elements). This can be explained by the fact that JFreeChart and Xerces-J were the only

systems that did not include several large classes, and most of the classes have a small or

medium size in terms of number of methods. Of course, the overall functionalities of the

system were the same before refactoring as demonstrated later in RQ2 by the manual

refactoring evaluation (RP).

5.1.1 Results for RQ2

As described in Fig. 11, we found that an average of more than 80 % of proposed

refactoring operations are considered as feasible and do not generate behavior incoherence.

A slight loss in the NFD and G is largely compensated by the significant improvement in

terms of refactorings feasibility and behavior preservation.

5.1.2 Results for RQ3

As described in Figs. 8, 9, and 11, it is clear that our proposal outperforms both the mono-

objective GA and DesignImpl. Figures 8 and 9 show that our approach improves the

quality of the design with a comparable value to both GA and DesignImpl. However, in

terms of behavior preservation, it is clear that our approach provides much more feasible

refactorings than GA and DesignImpl for all the systems considered in our experiments.

This can be explained by the fact that our proposal checks the behavior preservation using

the activity diagrams, however existing approaches did not consider it.

5.1.3 Results for RQ4

To evaluate the relevance of our suggested design refactorings for real software engineers,

we compared the refactoring strategies proposed by our technique and those proposed

manually by the subjects (software engineers) to fix several model smells on the diagrams

considered in our experiments. Figure 12 shows that most of the suggested refactorings by

NSGA-II are similar to those applied by developers with an average of more than 70 %. In

fact, we calculated the intersection between the recommended refactorings by NSGA-II

and the manually suggested refactorings by the subjects over the total number of

Fig. 9 Design quality improvements median values for class diagrams and activity diagrams of NSGA-II,
GA, and DesignImpl over 51 independent simulation runs

492 Software Qual J (2017) 25:473–501

123

recommend refactorigs. Some defects can be fixed by different refactoring strategies, and

also the same solution can be expressed in different ways. Thus, we consider that the

average of precision of more than 70 % confirms the efficiency of our tool for real

developers to automate the refactoring process. It is clear that our proposal outperforms

GA and DesignImpl on all the diagrams; this can be explained by the fact that both of these

techniques do not consider the behavioral constraints defined on the activity diagrams.

Another advantage related to the use of our multi-objective approach is the diversity of

non-dominated solutions as described in Fig. 13. Figure 13 depicts the Pareto front

obtained on Xerces using NSGA-II to optimize the three considered objectives. Similar

fronts were obtained on the remaining systems. The 2-D projection of the Pareto front

helps software engineers select the best trade-off solution between the three objectives

based on their own preferences.

The selection of the ‘‘best’’ solution is based on the preferences of the developer. In fact,

the developer may select a solution providing a high quality of class and activity diagrams,

but violating several constraints since he has enough time to fix them before the next

release for example. In another situation, the developer may select a solution that do not

violate constraints (or only violating few of them) and slightly increase the quality of the

models because he do not have enough time to fix the errors created by the constraints or if

he want to minimize the risk related to the new refactorings. In case that the developer do

not have any specific preferences and he wants to optimize all the three objectives at the

same time, then he can select the solution at the knee point or the closest solution to the

ideal point (the ideal point is (0,0,0) if all the objectives are to minimize and normalized

between zero and one).

Based on the plots of Fig. 13, the engineer could degrade quality in favor of behavior

preservation. In this way, the user can select the preferred refactoring solution to realize.

This is a very interesting feature, since recent studies (Fowler et al. 1999) showed that

software developers still select refactoring solutions that could change the behavior with a

high-quality improvement because they believe that it is easy to fix the behavior violation.

It is important to contrast the results of multiple executions with the execution time to

evaluate the performance and the stability of our approach. In fact, usually in the opti-

mization research field, the most time-consuming operation is the evaluation step. All the

Fig. 10 Quality factors median values of NSGA-II, over 51 independent simulation runs

Software Qual J (2017) 25:473–501 493

123

algorithms under comparison were executed on machines with Intel Xeon 3 GHz pro-

cessors and 4 GB RAM. The execution time for finding the optimal refactoring solution

with 100,000 evaluations was 48 min as an average execution time of all case studies

(models). The average time required by the developers to fix the defects in the different

systems was more than two hours. The execution of our approach can be acceptable since it

is executed, in general, up front (at night) to find suitable refactorings.

5.2 Threats to validity

We explore, in this section, the factors that can bias our empirical study. These factors can

be classified in three categories: construct, internal, and external validity. Construct

validity concerns the relation between the theory and the observation. Internal validity

concerns possible bias with the results obtained by our proposal. Finally, external validity

is related to the generalization of observed results outside the sample instances used in the

experiment.

In our experiments, construct validity threats are related to the absence of similar work

that uses multi-objective techniques for automated multi-view model refactoring. For that

reason, we compare our proposal with GA-based approach and an existing semi-automated

design refactoring technique. Another threat to construct validity arises because, although

we considered three types of model smells, we did not evaluate the performance of our

proposal with other model smell types. In future work, we plan to use additional model

smell types and evaluate the results. For the selection threat, the subject diversity in terms

of profile and experience could affect our study. First, all subjects were volunteers. We also

mitigated the selection threat by giving written guidelines and examples of refactorings

already evaluated with arguments and justification. Additionally, each group of subjects

evaluated different operations from different systems using different techniques/

algorithms.

We take into consideration the internal threats to validity in the use of stochastic

algorithms since our experimental study is performed based on 51 independent simulation

runs for each problem instance and the obtained results are statistically analyzed by using

the Wilcoxon rank-sum test with a 99 % confidence level (a = 1 %). However, the

parameter tuning of the different optimization algorithms used in our experiments creates

Fig. 11 The refactoring precision (RP) median values of NSGA-II, GA, and DesignImpl over 51
independent simulation runs using the Wilcoxon rank-sum test with a 99 % confidence level (a\ 1 %)

494 Software Qual J (2017) 25:473–501

123

another internal threat that we need to evaluate in our future work by additional experi-

ments. The parameter tuning of the different optimization algorithms used in our experi-

ments creates another internal threat that we need to evaluate in our future work. In fact,

parameter tuning of search algorithms is still an open research challenge till today. We

have used the trial-and-error method which is one of the most used ones. However, the use

of ANOVA-based technique could be another interesting direction from the viewpoint of

the sensitivity to the parameter values.

External validity refers to the generalization of our findings. In this study, we performed

our experiments on diagrams extracted from different widely used open-source systems

belonging to different domains and with different sizes. However, we cannot assert that our

results can be generalized to other applications, and to other practitioners. Future repli-

cations of this study are necessary to confirm the general aspect of our findings and

evaluate the scalability of our approach with larger models.

6 Related work

With respect to the contribution of this work, we organize related approaches using three

categories of related work: (i) refactoring approaches working solely on the model level,

(ii) refactoring working on model and code level that may be also considered as a kind of

multi-view refactoring, and (iii) widely related approaches working solely on the code

level.

6.1 Model refactorings

Two surveys concerning model refactorings are available (Mohamed et al. 2009; Mens

et al. 2007a), proposed by Mens et al., that discuss different research trends and classifi-

cations for model refactoring. One of the first investigations in this area was done by Sunyè

et al. (2001) who define a set of UML refactorings on the conceptual level by expressing

pre- and post-conditions in OCL. Boger et al. (2002) present a refactoring browser for

UML supporting the automatic execution of pre-defined UML refactorings. While these

0

10

20

30

40

50

60

70

80

90

100

JFreeChart Gan�Project Xerces-J Rhino

MP-NSGA-II

MP-GA

MP-DesignImpl

Fig. 12 The MP median values of NSGA-II, GA, and DesignImpl over 51 independent simulation runs
using the Wilcoxon rank-sum test with a 99 % confidence level (a\ 1 %)

Software Qual J (2017) 25:473–501 495

123

two approaches focus on pre-defined refactorings, approaches by Porres (2005), Zhang

et al. (2005), and Kolovos et al. (2007) discuss the introduction of user-defined refactorings

by using dedicated textual languages for their implementation. A similar idea is followed

in (Biermann et al. 2006; Mens 2006) Biermann et al., where graph transformations are

used to describe refactorings and graph transformation theory is applied for analyzing

model refactorings. Pattern-based refactoring for UML models with model transformations

is presented in (France et al. 2003) Sun et al.

The mentioned approaches cover mostly single-view refactorings and focus on the

implementation of semi-automatic executable refactorings. Only some approaches for

tackling consistency between different views in the context of refactorings have been

presented. For instance, Markovic and Baar (2008), and Correa and UML (2004) proposed

to refactor UML class diagrams, also adapting attached OCL constraints. Another approach

that considers the effect of refactorings of UML class diagrams on operations implemented

in OCL with respect to behavioral equivalence is presented in Sun et al. (2013). A con-

straint-based refactoring approach for UML is presented in (Steimann 2011), proposed by

Steimann, which considers well-formedness rules and translates refactorings to CSP to

eventually compute the additional changes required for a semantic-preserving model

refactoring.

Reuse of model refactorings for different languages is discussed in Reimann et al.

(2010) by specifying a generic role-based refactorings that can be bound to specific lan-

guages. Another approach aiming for generic model refactorings is presented in Wimmer

et al. (2012) by using a combination of aspect weaving and model typing. Refactorings are

developed on a generic metamodel and may be reused for specific metamodels which fulfill

the model typing relationship to the generic metamodel.

In Arendt and Taentzer (2013), a tool support for defining model metrics, smells, and

refactorings is presented. In particular, language-specific and project-specific metrics,

smells, and refactorings for the design level may be defined based on graph transforma-

tions. A refactoring approach considering performance optimization of models, i.e., run-

time level, is presented in Arcelli et al. (2012). In this context, refactorings are used to

eliminate anti-patterns that may have a negative impact on performance aspects.

Fig. 13 Pareto front for NSGA-II obtained on Xerces-J

496 Software Qual J (2017) 25:473–501

123

Related to multi-view refactoring is the field of multi-view consistency (Eramo et al.

2008). We have early works on multi-view consistency (Kolovos et al. 2007; Mens 2006)

using a generic representation of modifications and relying on users to write code to handle

each type of modification in each type of view. This idea influenced later efforts on model

synchronization frameworks in general (Van Der Straeten et al. 2004; Van Gorp et al.

2003) and in particular bidirectional model transformations (Moha et al. 2009; France et al.

2003). Other approaches use so-called correspondence rules for synchronizing models in

the contexts of RM-ODP and model-driven web engineering (Cicchetti et al. 2009; Grundy

et al. 1998; Wimmer et al. 2012). All these approaches have in common that they consider

only atomic changes when reconciling models and not refactorings. In previous work

(Wimmer et al. 2012), we presented coupled transformations to refactor different views

altogether by automatically executing the coupled transformations when initial transfor-

mations are executed. Another work we are aware of allowing the propagation of more

complex changes such as refactorings is (Ráth et al. 2009) based on a kind of

event/condition/action rules.

In previous work (Ghannem et al. 2013), we have proposed to use Interactive Genetic

Algorithm (IGA) for model refactoring allowing the modelers to provide feedback during

refactoring focusing on single-view improvements.

To sum up, all these mentioned model refactoring approaches are mostly considering a

single view during refactoring. If multiple views are considered by approaches from multi-

view synchronization, the only quality aspect that is taken care of is having consistency

between the different viewpoints. To the best of our knowledge, our approach is the first

one that considers multi-view model refactoring as an optimization problem for finding an

optimal refactoring solution considering quality criteria for different views at once.

6.2 Model/code refactorings

The synchronization of models and code is of course also a challenging issue when it

comes to refactoring. In Bottoni et al. (2003), distributed graph transformations are used to

specify coupled refactorings on UML models and Java code. Van Gorp et al. (2003) have

presented an extension of the UML metamodel which allows expressing the pre- and post-

conditions for refactorings as well as for representing method implementations in UML

class diagrams based on the UML action semantics—a predecessor of fUML. Furthermore,

they use OCL to detect code smells on the model level and propose to refactor designs

independent of the underlying programming language on the model level by applying the

following transformation chain: reverse engineering, model refactoring, and forward

engineering. The approach for constraint-based model refactoring (MoDELS 2011) dis-

cussed before has been also extended to dealing model/code co-refactoring by so-called

bridge constraints that capture the correspondences between model elements and the code

elements (von Pilgrim et al. 2013).

To sum up, there are some approaches that consider refactorings on both model and

code level, but we are not aware of any approach considering the models aligned with the

code as a multi-objective optimization problem.

6.3 Code refactorings

Harman et al. (2007) have proposed a search-based approach using Pareto optimality that

combines two quality metrics, CBO (coupling between objects) and SDMPC (standard

deviation of methods per class), in two separate fitness functions. The authors start from

Software Qual J (2017) 25:473–501 497

123

the assumption that good design quality results from good distribution of features

(methods) among classes. Their Pareto optimality-based algorithm succeeded in finding a

good sequence of move method refactorings that should provide the best compromise

between CBO and SDMPC to improve code quality. However, one of the limitations of

this approach is that it is limited to unique refactoring operation (move method) to improve

software quality and only two metrics to evaluate the preformed improvements. Recently,

Ó Cinnéide et al. (2012) have proposed a multi-objective search-based refactoring to

conduct an empirical investigation to assess some structural metrics and to explore rela-

tionships between them. To this end, they have used a variety of search techniques (Pareto-

optimal search, semi-random search) guided by a set of cohesion metrics.

The main problem in all of these code-level approaches is that the consistency

preservation are not considered to obtain correct and meaningful refactorings.

7 Conclusion

This paper presented a novel multi-view refactoring approach taking into consideration

multiple criteria to suggest good and feasible design refactoring solutions to improve the

design quality. The suggested refactorings preserve the behavior of the design to

restructure and consider the impact of refactoring a class diagram on related diagrams such

as activity diagrams. Our search-based approach succeeded to find the best trade-off

between these multiple criteria. Thus, our proposal produces more meaningful refactorings

in comparison with some of those discussed in the literature (Moghadam and Cinneide

2012). Moreover, the proposed approach was empirically evaluated on several diagrams

extracted from four open-source systems, and compared successfully to an existing

approach not based on heuristic search (Moghadam and Cinneide 2012).

In future work, we are planning to perform an empirical study to consider additional

views when suggesting refactorings such as sequence diagrams as well as object diagrams.

We are also planning to consider a larger set of refactoring operations to fix additional

types of model smells.

References

Arcelli, D., Cortellessa, V., & Trubiani, C. (2012). Antipattern-based model refactoring for software per-
formance improvement. In QoSA, pp. 33–42.

Arendt, T., & Taentzer, G. (2013). A tool environment for quality assurance based on the Eclipse modeling
framework. Automated Software Engineering, 20(2), 141–184.

Bansiya, J., & Davis, C. G. (2002). A hierarchical model for object-oriented design quality assessment.
IEEE Transactions on Software Engineering, 28(1), 4–17.

Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., & Weiss, E. (2006). Graphical definition of in-
place transformations in the Eclipse modeling framework. In MoDELS’06. LNCS (Vol. 4199,
pp. 425–439). Springer.

Bock, Conrad. (2003). UML 2 activity and action models, Part 2: Actions. Journal of Object Technology,
2(5), 41–56.

Boger, M., Sturm, T., & Fragemann, P. (2002). Refactoring browser for UML. In NetObjectDays’02. LNCS
(Vol. 2591, pp. 366–377). Springer.

Bottoni, P., Parisi-Presicce, F., & Taentzer, G. (2003). Specifying integrated refactoring with distributed
graph transformations. In AGTIVE 2003, pp. 220–235.

Cardoso, J., Mendling, J., Neumann, G., & Reijers, H. A. (2006). A discourse on complexity of process
models. In BPM Workshops.

498 Software Qual J (2017) 25:473–501

123

Cicchetti, A., Ruscio, D. D., & Pierantonio, A. (2009). Managing dependent changes in coupled evolution.
In ICMT’09. LNCS (Vol. 5563, pp. 35–51). Springer.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Mahwah: Lawrence Erlbaum
Associates.

Correa, A., & Werner, C. (2004). Applying refactoring techniques to UML/OCL models. In Proceedings of
Int’l Conference UML 2004. LNCS (Vol. 3273, pp. 173–187). Springer.

Crane, M. L., & Dingel, J. (2008). Towards a formal account of a foundational subset for executable UML
models. In Model driven engineering languages and systems (pp. 675–689). BerlIn Springer.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182–197.

Eramo, R., Pierantonio, A., Romero, J. R., & Vallecillo, A. (2008). Change management in multiviewpoint
systems using ASP. In WODPEC’08. IEEE.

Fenton, N., & Pfleeger, S. L. (1997). Software metrics: A rigorous and practical approach. London, UK:
International Thomson Computer Press.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring: Improving the design of
existing code. Boston, MA: Addison-Wesley. ISBN: 0-201-48567-2.

France, R. B., Ghosh, S., Song, E., & Kim, D.-K. (2003). A metamodeling approach to pattern-based model
refactoring. IEEE Software, 20(5), 52–58.

Ghannem, A., El Boussaidi, G., & Kessentini, M. (2013). Model refactoring using interactive genetic
algorithm. In G. Ruhe & Y. Zhang (Eds.), Search based software engineering (pp. 96–110). Berlin,
Heidelberg: Springer.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Boston: Addison-
Wesley Longman Publishing Co., Inc.

Grundy, J., Hosking, J., & Mugridge, W. B. (1998). Inconsistency management for multiple-view software
development environments. IEEE Transactions on Software Engineering, 24(11), 960–981.

Harman, M., & Tratt, L. (2007). Pareto optimal search based refactoring at the design level. In Proceedings
of the 9th annual conference on genetic and evolutionary computation (pp. 1106–1113). ACM, 2007.

http://www-personal.umd.umich.edu/*marouane/sqj15.htm.
http://www.omg.org/spec/FUML/1.1/.
http://www-03.ibm.com/software/products/en/ratirosefami.
Kessentini, M., Kessentini, W., Sahraoui, H., Boukadoum, M., & Ouni, A. (2011). Design defects detection

and correction by example, In 19th IEEE ICPC11 (pp. 81–90), Kingston, Canada.
Kolovos, D. S., Paige, R. F., Polack, F., & Rose, L. M. (2007). Update transformations in the small with the

Epsilon wizard language. JOT, 6(9), 53–69.
Ma, H., Shao, W., Zhang, L., Ma, Z., & Jiang, Y. (2004). Applying OO metrics to assess UML meta-models.

In «UML» 2004—The Unified Modeling Language. Modeling Languages and Applications (pp.
12–26). Berlin, Heidelberg: Springer.

Markovic, S., & Baar, T. (2008). Refactoring OCL annotated UML class diagrams. Software and Systems
Modeling, 7(1), 25–47.

Mens, T. (2006). On the use of graph transformations for model refactoring. In Generative and transfor-
mational techniques in software engineering. LNCS (Vol. 4143, pp. 219–257). Springer.

Mens, T., Taentzer, G., & Müller, D. (2007a). Challenges in model refactoring. In Proceedings of 1st
workshop on refactoring tools. University of Berlin.

Mens, T., Taentzer, G., & Runge, O. (2007b). Analyzing refactoring dependencies using graph transfor-
mation. Journal on Software and Systems Modeling, 6, 269.

Mens, T., & Tourwé, T. (2004). A survey of software refactoring. IEEE Transactions on Software Engi-
neering, 30(2), 126–139.

Moghadam, I. H., & Cinneide, M. O. (2012). Automated refactoring using design differencing. In Software
maintenance and reengineering (CSMR), 2012 16th European conference on (pp. 43–52). IEEE.

Moha, N., Mahé, V., Barais, O., & Jézéquel, J. M. (2009). Generic model refactorings. In Model driven
engineering languages and systems (pp. 628–643). Berlin, Heidelberg: Springer.

Mohamed, M., Romdhani, M., & Ghédira, K. (2009). Classification of model refactoring approaches. JOT,
8(6), 143–158.

Ó Cinnéide, M., Tratt, L., Harman, M., Counsell, S., & Hemati Moghadam, I. (2012, September). Exper-
imental assessment of software metrics using automated refactoring. In Proceedings of the ACM-IEEE
international symposium on empirical software engineering and measurement (pp. 49–58). ACM.

Porres, I. (2005). Rule-based update transformations and their application to model refactorings. Software
and Systems Modeling, 4(4), 368–385.

Rachmawati, L., & Srinivasan, D. (2009). Multiobjective evolutionary algorithm with controllable focus on
the knees of the pareto front. IEEE Transactions on Evolutionary Computation, 13(4), 810–824.

Software Qual J (2017) 25:473–501 499

123

http://www-personal.umd.umich.edu/%7emarouane/sqj15.htm
http://www.omg.org/spec/FUML/1.1/
http://www-03.ibm.com/software/products/en/ratirosefami

Ráth, I., Varró, G., & Varró, D. (2009). Change-driven model transformations. InMODELS’09. LNCS (Vol.
5795, pp. 342–356). Springer.

Reimann, J., Seifert, M., & Aßmann, U. (2010). Role-based generic model refactoring. In Model driven
engineering languages and systems (pp. 78–92). Berlin, Heidelberg: Springer.

Sjøberg, D. I. K., Yamashita, A. F., Anda, B. C. D., Mockus, A., & Dybå, T. (2013). Quantifying the effect
of code smells on maintenance effort. IEEE Transactions on Software Engineering, 39(8), 1144–1156.

Steimann, F. (2011). Constraint-based model refactoring. In Model driven engineering languages and
systems (pp. 440–454). Berlin, Heidelberg: Springer

Sun, W., France, R. B., & Ray, I. (2013). Analyzing behavioral refactoring of class models. In ME@Mo-
DELS 2013, pp. 70–79.

Sunye, G., et al. (2001). Refactoring UML models. In Proceedings of UML.
Sunyé, G., Pollet, D., Traon, Y. L., & Jézéquel, J. M. (2001). Refactoring UML models. In UML’01. LNCS,

Vol. 2185 (pp. 134–148). Springer.
Van Der Straeten, R., Jonckers, V., & Mens, T. (2004). Supporting model refactorings through behaviour

inheritance consistencies, In UML. LNCS, Vol. 3273 (pp. 305–319), Springer.
Van Gorp, P., Stenten, H., Mens, T., & Demeyer, S. (2003). Towards automating source-consistent UML

refactorings, In UML. LNCS, Vol. 2863 (pp. 144–158). Heidelberg: Springer.
Van Kempen, M., Chaudron, M., Koudrie, D., & Boake, A. (2005). Towards proving preservation of

behaviour of refactoring of UML models. In Proceedings of SAICSIT 2005, pp. 111–118.
von Pilgrim, J., Ulke, B., Thies, A., & Steimann, F. (2013). Model/code co-refactoring: An MDE approach.

In ASE, pp. 682–687.
Wimmer, M., Moreno, N., & Vallecillo, A. (2012). Viewpoint co-evolution through coarse-grained changes

and coupled transformations. TOOLS, 50, 336–352.
Zhang, J., Lin, Y., & Gray, J. (2005). Generic and domain-specific model refactoring using a model

transformation engine. In Model-driven software development—research and practice in software
engineering (pp. 199–217). Springer.

Usman Mansoor is currently a Ph.D. student in computer science at
the University of Michigan under the supervision of Pr. Marouane
Kessentini (University of Michigan). He is a member of the
SBSE@Michigan research laboratory, University of Michigan, USA.
Previously he was a Graduate Research Student of Computer Engi-
neering in Ajou University, South Korea under Brain Korea (BK21)
scholarship initiative undertaken by Korean Government. His research
interests include the application of artificial intelligence techniques to
software engineering (search-based software engineering), software
refactoring, software quality and model-driven engineering.

500 Software Qual J (2017) 25:473–501

123

Marouane Kessentini is a tenure-track assistant professor at Univer-
sity of Michigan. He is the founder of the research group: Search-based
Software Engineering@Michigan. He holds a Ph.D. in Computer
Science, University of Montreal (Canada), 2011. His research interests
include the application of artificial intelligence techniques to software
engineering (search-based software engineering), software testing,
model-driven engineering, software quality, and re-engineering. He
has published around 50 papers in conferences, workshops, books, and
journals including three best paper awards. He has served as program-
committee/organization member in several conferences and journals.

Manuel Wimmer is postdoctoral researcher in the Business Infor-
matics Group (BIG) at the Vienna University of Technology, Austria
where he received his Ph.D. in 2008. He has been a research associate
in the Software Engineering Group at the University of Málaga in
2011/2012. His current research interests comprise Web engineering,
model engineering, and ontology engineering. He is/was involved in
several national and international projects dealing with the application
of model engineering techniques for domains such as tool interoper-
ability, versioning, social Web, and Cloud computing. He is coauthor
of the book Model-driven Software Engineering in Practice (Morgan &
Claypool, 2012) and coauthor of more than 120 scientific articles
published in international conferences (e.g., ICWE, MODELS, ASE,
ICMT) and journals (e.g., ACM CSUR, SoSym, JSS, JOT). Further-
more, he has served as workshop co-chair for ICWE in 2012. For a
more detailed curriculum vitae and list of publications, please visit
http://www.big.tuwien.ac.at/staff/mwimmer.

Kalyanmoy Deb is Koenig Endowed Chair Professor at Electrical and
Computer Engineering in Michigan State University, USA. Prof. Deb’s
research interests are in evolutionary optimization and their application
in optimization, modeling, and machine learning. Prof. Deb has
numerous awards and honours in his name, including the prestigeous
Shanti Swarup Bhatnagar Prize in Engineering Sciences in 2005,
‘‘Thomson Citation Laureate Award,’’ an award given to an Indian
Researcher for making most highly cited research contribution during
1996-2005 in a particular discipline according to ISI Web of Science.,
Friedrich Wilhelm Bessel Research Award and Humboldt Fellowship
from Alexander von Humboldt Foundation, Germany. He is a fellow of
Indian National Science Academy (INSA), Indian National Academy
of Engineering (INAE), Indian Academy of Sciences (IASc), and
International Society of Genetic and Evolutionary Computation
(ISGEC). He has been awarded ‘‘Distinguished Alumnus Award’’ from
his Alma mater IIT Kharagpur in 2011. Author of more than 275

research papers, two textbooks, 17 edited books, his 2001 book on Evolutionary Multiobjective Opti-
mization Algorithms is the first ever compilation of multiobjective optimization algorithms. Because of his
pioneering research in the field of evolutionary multi-objective optimization (EMO), he has been invited to
present 35 Keynote lectures and more than 100 invited lectures and tutorials on the topic. His NSGA-II
paper from IEEE Trans. on Evolutionary Computation (2000) is judged as the Fast-Breaking Paper in
Engineering by ESI Web of Science and now this paper is awarded the ‘‘Current Classic’’ and ‘‘Most Highly
Cited Paper’’ by Thomson Reuters. He is fellow of IEEE and three science academies in India. He has
published 350? research papers with Google Scholar citation of 55,000? with h-index 77. He is in the
editorial board on 20 major international journals. More information about his research can be found from
http://www.egr.msu.edu/*kdeb.

Software Qual J (2017) 25:473–501 501

123

http://www.big.tuwien.ac.at/staff/mwimmer
http://www.egr.msu.edu/%7ekdeb

	Multi-view refactoring of class and activity diagrams using a multi-objective evolutionary algorithm
	Abstract
	Introduction
	Model refactoring challenges
	Quality metrics
	Refactorings
	Consistency rules
	Refactorings and co-refactorings

	Multi-view refactoring challenges and motivating example

	Multi-view model refactoring
	Approach overview
	Multi-objective formulation
	Nsga-II
	NSGA-II adaptation for model refactoring
	Solution representation
	Fitness functions
	Selection
	Genetic operators

	Validation
	Research questions
	Experimental settings

	Results
	Results for RQ1
	Results for RQ2
	Results for RQ3
	Results for RQ4

	Threats to validity

	Related work
	Model refactorings
	Model/code refactorings
	Code refactorings

	Conclusion
	References

