
Fail-safe testing of safety-critical systems: a case study
and efficiency analysis

Ahmed Gario1 • Anneliese Andrews1 • Seana Hagerman1

Published online: 23 July 2015
� Springer Science+Business Media New York 2015

Abstract This paper proposes an approach for testing of safety-critical systems. It is

based on a behavioral and a fault model. The two models are analyzed for compatibility,

and necessary changes are identified to make them compatible. Then, transformation rules

are used to transform the fault model into the same model type as the behavioral model.

Integration rules define how to combine them. This approach results in an integrated model

which then can be used to generate tests using a variety of testing criteria. The paper

illustrates this general framework using a CEFSM for the behavioral model and a fault tree

for the fault model. We apply the technique to an aerospace launch system. We also

investigate the scalability of the approach and compare its efficiency with integrating a

state chart and a fault tree.

Keywords CEFSM � Finite-state machine � Safety-critical � Testing � FTA � Behavioral
model � Fault model � Integration

1 Introduction

Safety-critical systems are systems in which a failure could lead to significant property

damage, severe injuries, or loss of life. These systems have become an essential part of

everyday life. For example, automobiles, medical devices, and aircraft systems are used on

a daily basis. Most of these rely heavily on software. With such systems also comes the

& Ahmed Gario
agario@du.edu

Anneliese Andrews
andrews@cs.du.edu

Seana Hagerman
seana.l.hagerman@lmco.com

1 Department of Computer Science, University of Denver, Denver, CO, USA

123

Software Qual J (2018) 26:3–48
https://doi.org/10.1007/s11219-015-9283-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9283-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9283-5&domain=pdf
https://doi.org/10.1007/s11219-015-9283-5

exposure to risks because they may fail or may not work properly resulting in damage,

injury, or death. Potential system failure is referred to as a mishap risk. For example, there

is a danger that a railroad crossing system will fail, resulting in the mishap of a train

colliding with a pedestrian or vehicles crossing the railway.

Testing is an important part of ensuring safe, dependable systems. Model-based testing

(MBT) (Dalal et al. 1999) is common for functional testing. Models are representations of

systems. They provide a functional view of the system that can be used to produce test

cases without using the actual system implementation details because it is very difficult to

cover all code structures especially for complex dependable systems (Utting and Legeard

2007). MBT focuses on testing the system behavior (also known as desired behavior), i.e.,

whether the system behaves as it should or not. However, when testing safety in safety-

critical software (also known as undesired behavior), these models may not be sufficient,

and more information about safety-related aspects of the system is needed. We cannot use

a behavioral model to test an undesired behavior that it does not describe. Thus, using

behavioral models alone to test the undesired behavior of a system will not be adequate.

Behavioral models such as unified modeling language (UML), finite-state machines

(FSMs), extended finite-state machines (EFSMs), and communicating extended finite-state

machines (CEFSMs) do not systematically model fault behavior. On the other hand,

techniques to model failure behavior (Ericson 2005) and failure mitigation (Amberkar

et al. 2001; Leaphart et al. 2005) do not address testing since these techniques are basically

a static or a procedural description of the undesired behavior.

Besides the techniques used in testing software generally, testing safety-critical software

systems requires analyzing the hazards beforehand by using analysis techniques such as

fault tree analysis (FTA), failure modes and effects analysis (FMEA), hazard and oper-

ability analysis (HAZOP), and hazard and risk analysis (HRA) (Ericson 2005). However,

there is still a gap between testing and analysis activities which negatively impacts the

effectiveness of testing.

Fault tree analysis (FTA) is a safety analysis technique that is commonly used to

analyze the safety of systems. It was originally designed for safety analysis in a different

scientific paradigm and later used in analyzing safety-critical software (Leveson and

Harvey 1983). A fault tree (FT) describes how the combination of behaviors of system

components results in a hazard or a failure of a system. Although it is one of the most

common techniques, it may not be suitable for software safety analysis because it is a static

model that describes the overall cause of a hazard and cannot answer the questions why,

when, and how the hazard occurs during software execution. On the other hand, models

that are used to describe system behaviors concentrate on how a single software component

behaves internally and when it interacts with other components in the system or with its

environment (Ariss et al. 2011). Communicating extended finite-state machines (CEFSMs)

are a type of finite-state machine used to model and test the behavior of interacting

software components. Conceptually, we can think of a safety-critical system as a collection

of behavioral processes that may trigger failure processes leading to specific failure events

to which the safety-critical system reacts with required fail-safe mitigation actions. A

common modeling technique for communicating processes is CEFSMs (Brand and

Zafiropulo 1983).

Very few papers integrate the behavioral and failure models and are used for safety

analysis only (Ortmeier et al. 2007; Kaiser et al. 2003; Ariss et al. 2011; Kim et al. 2010).

Fewer still address testing with an integrated model (Sánchez and Felder 2003; Nazier and

Bauer 2012). Unfortunately, they have only been applied to relatively small examples, so

4 Software Qual J (2018) 26:3–48

123

their scalability is uncertain. Compatibility between fault models and behavioral models is

also an issue.

This paper extends and evaluates a technique to integrate failure and behavioral models

(Gario 2014; Gario et al. 2014) for the purpose of testing both functional and fail-safe

behaviors that allow for a variety of testing criteria, is scalable, and includes a step that

formalizes compatibility between behavioral and failure models. The integrated model can

be thought of as communicating processes where behavior and failure processes interact.

We also present a case study, a launch vehicle (LV). In addition, we present an efficiency

analysis of the LV and several examples from Gario et al. (2014), Gario (2014) comparing

the approach to Sánchez and Felder (2003), Nazier and Bauer (2012). We also present the

results of a simulation experiment to show scalability again comparing it to Sánchez and

Felder (2003), Nazier and Bauer (2012).

The remainder of this paper is organized as follows. Section 2 provides a background

related to behavioral and fault models and reviews the existing work. Section 3 describes

the overall approach; defines CEFSM and fault tree (FT); and describes the transformation

rules, the transformation procedure of FT into CEFSM, and test case generation from

CEFSMs. Section 4 applies the technique to LV. Scalability and efficiency are discussed in

Sect. 5. Finally, Sect. 6 provides conclusions.

2 Background and related work

2.1 Communicating extended finite-state machines (CEFSMs)

CEFSMs (Brand and Zafiropulo 1983) are an extended type of the traditional FSMs that

provide data flow modeling and communication mechanisms. CEFSMs are capable of

modeling and testing communicating systems as their specification includes variables,

operations based on variables, and interactions between them that FSMs cannot model in a

concise way (Lee and Yannakakis 1996). They are the basis for many design languages

such as petri nets, message sequence chart (MSC), and specification and description lan-

guage (SDL) (Li and Wong 2002). Communicating processes can often be modeled and

tested as a collection of CEFSMs (Brand and Zafiropulo 1983). A variety of automated

tools exist for testing CEFSM such as SDT/ITEX (Ek et al. 1997), EFTG (Bourhfir et al.

1999), and construction and analysis of distributed processes (CADP) [62], known as

CAESAR/ALDEBARAN.

Some of the work in testing concurrent systems deals only with communicating finite-

state machines (CFSMs) where the data part of the protocol is not considered (Bourhfir

et al. 1998), while others consider data and control. Henniger et al. (2004) present an

algorithm to generate a test purpose description of the behavior of a system of asyn-

chronous CEFSMs. A test purpose can be expressed by a MSC that describes the behavior

to be checked. Bourhfir et al. (1998, 2001) generate test cases for systems modeled by

CEFSM. The test cases are generated for the global system by performing a complete

reachability analysis and generating test cases.

Hessel and Pettersson (2007) present an algorithm for generating test suites by reach-

ability analysis. The algorithm uses, in each step, global information about the state space

to guide the analysis and to speed up termination. Kovács et al. (2002) designed methods

and mutation operators to enable the automation of test selection in a CEFSM. The

Software Qual J (2018) 26:3–48 5

123

mutation operators create erroneous specifications that provide the basis for test case

selection.

Boroday et al. (2002) use a CEFSM to generate test cases by combining the specifi-

cation and fault coverage. They compute a test suite that offers specification coverage.

They derive a confirming sequence from the fault model to check both states and data of

each test with respect to the fault model. Li and Wong (2002) use FSMs to model behavior

and events. The extension of events with variables is used to model data, while the events’

interaction channels are used to model communication. The tests are generated based on a

combination of behavior, data, and communication specifications. The method addresses

branching coverage for data-related decision coverage and behavioral transition coverage.

2.2 Fault modeling and analysis

In safety-critical systems, it is essential to prevent failures so that the system can be

considered safe. To make these systems low risk and fail-safe, software for safety critical

systems (SCSs) must deal with the hazards identified by safety analysis. There are over 100

different hazard analysis techniques in existence. The most common analysis methods for

SCSs are preliminary hazard list analysis (PHL), preliminary hazard analysis (PHA),

subsystem hazard analysis (SSHA), system hazard analysis (SHA), FTA, event tree

analysis (ETA), failure mode and effects analysis (FMEA), fault hazard analysis (FHA),

functional hazard analysis (FuHA), sneak circuit analysis (SCA), petri net analysis (PNA),

Markov analysis, hazard and operability analysis (HAZOP), cause sequence analysis, and

common cause failure analysis (Ericson 2005). These techniques aid in the detection of

safety flaws, design errors, and weaknesses of technical systems. The area of fault-based

testing focuses mainly on faults in software (Sánchez and Felder 2003).

FTA has been used in safety-critical software. FTA was borrowed from other scientific

paradigms and applied for the first time in software safety analysis in Leveson and Harvey

(1983). It is a top–down deductive analysis technique used to detect the specific causes of

possible hazards (Tribble and Miller 2004; Leaphart et al. 2005). The top event in a fault

tree is the system hazard. FTA works downward from the top event to determine potential

causes of a hazard. It uses boolean logic to represent these combinations of individual

faults that can lead to the top event (Leaphart et al. 2005). FTA is a qualitative model

which discloses the possible combinations of identified basic events sufficient to cause the

hazard. However, it is also used in probabilistic analysis, such as frequency calculation of

the hazard (Xiang et al. 2004). Each of the specific failures is reviewed, and appropriate

hardware and software mitigation techniques are identified to reduce the possibility that the

top event will occur (Leaphart et al. 2005).

FMEA is a bottom–up method of analyzing and evaluating safety problems in a system.

The FMEA technique consists of identifying and listing all possible failure modes, eval-

uating the effects on the whole system for each failure mode and identifying all potential

causes that may lead to each failure mode (Wang and Pan 2010). The main difference

between FMEA and FTA is that the FMEA looks at all failures and their effects, whereas

the FTA is applied only to those effects that are safety related and that are of the highest

criticality (Czerny et al. 2005). Medikonda et al. (2011) apply FMEA and FTA to the

software functions of a prototype SCS—railroad crossing control system (RCCS)—to

identify possible hazardous software faults.

Due to the growth of complexity of the modern software systems, the manual verifi-

cation activities are no longer practical especially for testing. MBT became a very common

method for testing such complex systems. Recent techniques for model-based testing do

6 Software Qual J (2018) 26:3–48

123

not sufficiently take into consideration the information derived from the safety analysis

such as failure mode and effect analysis (FMEA) and FTA (Kloos et al. 2011). Hence,

people realized that there is a considerable gap between the safety analysis models and the

behavioral models that needed to be covered. Therefore, some different approaches to

integrate the fault analysis and system models were proposed and used in safety analysis

and testing.

2.3 Integration of safety analysis and behavioral models

2.3.1 Safety analysis

Safety analysis improves the probability of uncovering possible faults in safety-critical

software. Ariss et al. (2011) present an approach for integrating fault-tree-based safety

analysis into a functional model. They transform a FT to a statechart preserving the

semantics of the fault tree and the statechart. The model shows how the system behaves

when a failure condition occurs. The integrated model’s purpose is for the validation of

safety requirements rather than testing.

Kim et al. (2010) develop an algorithm to transform hazards of an FT into a UML

statechart diagram in order to perform safety analysis. The primary events and gates of a

FT are represented in a UML statechart notation. Transformation rules create a statechart

diagram that can be used for safety analysis. The transformed fault tree falls into the lowest

level of the composed state machine making it difficult to analyze the diagram for safety

due to the indirect paths to causes of hazards.

Kaiser et al. (2003), Kaiser (2003) propose a compositional extension of the FTA

technique. Each technical component in the system is represented by an extended fault tree

that has, besides its basic events and gates, input and output ports. These components can

be developed independently and can be integrated into a higher-level model by connecting

these ports. Both qualitative and quantitative analyses can be applied on this FTA.

Kaiser (2005), Kaiser et al. (2007) proposed a combination of fault trees with an explicit

state/event semantics, using a graphical notation called state/event fault trees (SEFTs).

This model uses the fault tree to represent the faults which are connected to the state or

event in the state/event model that describes the system behavior. However, this model is

used for safety analysis. Furthermore, identifying the events for an FT and connecting them

to state or event are done manually which makes the process of constructing SEFT very

difficult, time-consuming, and error-prone especially for large and complicated systems.

This model is used for safety analysis only. Ortmeier et al. (2007) present an approach to

formally model failure modes. The functional model and the failure modes are represented

as a statechart and integrated as orthogonal regions of a statechart. The integrated model is

used for safety analysis only.

Many works have addressed the multi-formalism modeling of critical systems and

infrastructures. These works formalized fault trees (FT), Bayesian networks (BN), and

generalized stochastic petri nets (GSPN). Di Giorgio and Liberati (2011) present a dynamic

bayesian network (DBN) framework for the interdependency analysis of the critical

infrastructure. Three kinds of analyses on critical infrastructures based on the DBN, reli-

ability study, an adverse events’ propagation study, and a failure identification analysis can

be performed with this framework. Boudali and Dugan (2005) propose a reliability

modeling and analysis framework based on Bayesian network formalism to investigate

timed petri nets and to find a reliable framework for dynamic systems. Montani et al.

(2008) present a software tool to analyze a dynamic fault tree relying on its conversion into

Software Qual J (2018) 26:3–48 7

123

a dynamic Bayesian network. These works use BN and PNs to analyze the reliability and

dependability of the critical systems and do not address safety testing. Buchacker et al.

(1999) combined extended fault trees with stochastic petri nets for the evaluation and

analysis of the model.

Bobbio et al. (2001) explore the capabilities of BN formalism in the analysis of

dependable systems. They show that any FT can be directly transformed into BN to be used

to improve systems dependability analysis. They show that basic inference techniques in

the BN can be used to obtain classical parameters computed from the FT (i.e., reliability of

the top event or of any subsystem and criticality of components). They also showed that by

using BN, several restrictive assumptions in the FT methodology can be removed,

dependencies among components can be taken into account, and general diagnostic

analysis can be performed. Raiteri et al. (2004) extend fault trees with repairing capabil-

ities. This extended formalism can be used to model and evaluate repair strategies for

systems. It has been integrated in a multi-formalism multi-solution framework and sup-

ported by an enhanced solving techniques based on generalized stochastic petri nets

(GSPN). Flammini et al. (2005) show how to use RFT advantages by evaluating the effects

of different repair policies on the availability of the radio block center (RBC) of the

European railway standard systems ERTMS/ETCS. Flammini et al. (2014) employed

multi-formalism model to perform an availability analysis on the European railway traffic

management system/European train control system (ERTMS/ETCS) system. They per-

formed bottom–up failure model analysis from subsystem (expressed by means of gen-

eralized stochastic petri nets, fault trees, and repairable fault trees) up to the overall system

model to evaluate the effect of basic design parameters on the probability of system failure

modes and its availability based on its specification. Marrone et al. (2014) describe a

model-driven engineering approach that proposes using UML profiles containing system

analysis and test case specification capabilities, together with tool chains for model

transformations and analysis in order to allow end users to focus on high-level holistic

models and specification of non-functional requirements. This will guide design choices,

minimize the chances of failures/non-compliance, and considerably reduce the overall

assessment effort. This approach is applied to the ERTMS/ETCS. Other works such as

Wada et al. (2005), Petricic et al. (2008), France and Rumpe (2007), and Petricic et al.

(2009) discuss different model transformation approaches for domain-specific languages

(DSL) and UML.

The CENELEC EN50128 (European Committee for Electrotechnical Standardization)

guidelines for software development of safety critical system require providing a set of

tests that cover 100 % of the code. However, this requirement increases the costs asso-

ciated with testing phase significantly. Hence, Ghazel (2014) presents a model for formal

V&V. The aim of his work was to use formal techniques to check system requirement

specifications (SRS) in order to prevent specification errors. Angeletti et al. (2009) present

a methodology to automatically generate test achieving the desired code coverage. The

automation of the test generation, applied to some modules of the ERTMS, increased the

productivity and reduced the costs of the entire software development process.

2.3.2 Safety testing

Testing safety-critical software differs from testing non-safety-critical software in many

ways. Before testing safety-critical software systems, we need to conduct a safety analysis

for the system to find possible safety breaches and what may cause them. We need to test

desired behavior in the presence of failures. Sánchez and Felder (2003) proposed a fault-

8 Software Qual J (2018) 26:3–48

123

based approach for generating test cases to overcome the limitations of specification-based

approaches that derive from the incompleteness of the specification of undesirable

behavior, and from the tendency of specifications to focus on the desired behavior, rather

than potential faults. Minimum cut sets of the FT are used to determine how undesirable

states can occur in a system. These sets are transformed to equivalent statechart compo-

nents. These components are integrated into the behavioral model of the system and

transformed to EFSMs to flatten the hierarchical and concurrent structure of states and to

eliminate broadcast communication. The problem is that flattening a statechart into an

EFSM model makes it grow exponentially causing scalability problems.

Similarly, Nazier and Bauer (2012) transform fault tree events into elements of a

statechart behavior model. They verify system correctness and criticality using a model

checker.

3 Approach

Testing safety-critical systems requires testing proper behavior in the presence of failures.

This means that the behavior process and failure processes interact. For MBT, we need a

model that describes behavior and failure processes and their interactions, (of Fig. 1).

Interaction of communicating processes is conventionally modeled by CEFSMs, while

fault trees describe how certain behaviors of system components can combine to result in a

system hazard or a failure. Other hazard analysis techniques do not have the same

expressive capabilities.

In this approach, we propose an integration of the behavioral model with a fault model

to take advantage of the two for testing. We need to generate behavioral tests to test the

system behavior, generate failures at appropriate points, e.g., by injecting events into the

test model (Vaos and McGraw 1998), and test proper mitigation. We also need to define

coverage criteria for all three. This work is based on Gario et al. (2014), Gario (2014). We

expand on this work by adding a case study and investigating scalability and efficiency.

3.1 Test generation process

The test generation process shown in Fig. 2 uses the behavioral model and a FT to generate

test cases. It starts with the compatibility transformation step. The modified fault tree FT0

produced from this step is transformed into gate CEFSMs (GCEFSMs) according to the

transformation rules. Then, the model integration step integrates the GCEFSM with the

behavioral model (BM) according to the integration rules. The resultant model is the

integrated communicating extended finite-state machine (ICEFSM). Test case generation

methods can use this model to generate test cases based on test criteria (IC). The following

subsections explain each step in more detail.

Fig. 1 Safety-critical system
behavior

Software Qual J (2018) 26:3–48 9

123

3.2 Behavioral model: communicating EFSM (CEFSM)

A wide variety of choices for the behavioral model is possible, ranging from UML to petri

nets. We chose EFSMs, because they have been widely used for testing in the embedded

systems community (Sinha and Smidts 2006) including operational flight programs

(Savage et al. 1997). The TestMaster tool (Software and Test 1999) uses EFSM-based test

model for test generation. CEFSM has the capability of modeling a collection of com-

municating EFSMs. A safety-critical system is a collection of communicating behavioral

processes and failure processes, and this makes CEFSM a proper modeling language to

model such processes.

CEFSM has been used in modeling and testing distributed systems and network pro-

tocols. The strength of CEFSM is that it can model orthogonal states of a system in a flat

manner and does not need to compose the whole system in one state as in statecharts which

would make it more complicated and harder to analyze and/or test. Hessel and Pettersson

(2007), Bourhfir et al. (2001), and Kovács et al. (2002) have been proposed to test systems

modeled as CEFSM. These approaches are explained in more detail in Sect. 3.7.

CEFSMs can be defined as a finite set of consistent and completely specified EFSMs

(Cheng and Krishnakumar 1993) that are composed via communication channels that carry

input and output messages (Lee and Yannakakis 1996) along with two disjoint sets of input

and output signals. A CEFSM is defined as Brand and Zafiropulo (1983):

(CEFSM = S, s0, E, P, T, A, M, V, C), such that:

• S is a finite set of states,

• s0 is the initial state,

• E is a set of events,

• P is a set of Boolean predicates,

• T is a set of transition functions such that T: S�P�E!S�A�M,

• M is a set of communicating messages,

• A is the set of actions,

• V is a set of variables, and

• C is the set of input/output communication channel used in this CEFSM.

State changes (action language): The function T returns a next state, a set of output signals,

and action list for each combination of a current state, an input signal, and a predicate. It is

defined as:

Fig. 2 Test process

10 Software Qual J (2018) 26:3–48

123

T(si; pi, get(mi))/(sj, A, send(mj1 ,..., mjk)) where,

• si is the current state,

• sj is the next state,

• pi is the predicate that must be true in order to execute the transition,

• ei is the event that when combined with a predicate triggers the transition function, and

• mi1 ; :::;mik are the messages that carry the events ei for i = 1,2,...,.

The communicating message mi is defined as:

(mId; ei, mDestination) where

• mId is the message identifier, and

• mDestination is the CEFSM the message is sent to.

An event ei is defined as: (eId, eOccurrence, eStatus) where,

• eId is the event identifier that uniquely identifies it, and

• eOccurrence is set to false as long as the event has never occurred. When the event

occurs for the first time, eOccurrence is set to true and stays true, and

• eStatus is set to true when the event occurs and to false when it no longer applies.

Note that eStatus allows reoccurring events to happen multiple times (loops in the model).

CEFSMs communicate by exchanging messages through communication channels C

that connect the outputs of one CEFSM to the input of other CEFSMs. Let C denote the set

fhname; SYNC j ASYNC i j for all the channels in the system} where name is the name of

the communication channel and SYNC and ASYNC indicate that the channel is synchronous

or asynchronous. A communication channel can be used by different transitions. A channel

c 2 C can be represented as hname; t; getðÞ=sendðÞi where name is the name of the channel,

t 2 T refers to the transition linked to this use of the channel, and get()/send() indicates

whether this channel is an input or an output channel.

The action ai may include an assignment and mathematical operation on the variables.

The predicate is a condition that must be met prior to the execution of the function. For

example, TðS0; ½total ¼ 4�; e0Þ=ðS1; fm0; m1g, (total = 0; increment(i))) describes that if a

CEFSM is in a state S0, receives an event e0 and the predicate total = 4 is true at that time,

it will move to the next state S1 and output m0 and m1 after setting the total to zero and

performing increment(i). For full formal semantics, see (Brand and Zafiropulo 1983).

3.3 Fault tree (FT)

A FT is composed of nodes, edges, and gates. Gates are logical connectors of events, while

nodes represent events, and edges connect nodes to gates. Every major failure is repre-

sented by a separate fault tree. Table 1 lists the gate types we consider here. A fault tree is

analyzed either qualitatively or quantitatively (Vesely et al. 2002). Quantitative analysis is

done by computing the probability of the occurrence of the root node from the probabilities

of the lower-level nodes, while qualitative analysis shows the set of events that, when they

happen together, contribute to cause the hazard. Qualitative analysis is applicable when

integrating faults into the system model because the analysis is performed on the actual

occurrence of the set of possible faults rather than on their probabilities of occurrence.

Software Qual J (2018) 26:3–48 11

123

3.4 Compatibility transformation

The basic events in fault trees (leaf nodes) depend on the scope, resolution, and the ground

rules (Vesely et al. 2002). The scope of the FT indicates which failure will be included and

which will not, the resolution is the level of detail at which these basic events will be

developed, and the ground rules include the procedure and terminology used to name these

events. Often, the basic events in fault trees are informally described, i.e., in a natural

language. If the resolution or the event naming does not match that of the behavioral

model, which is often the case, we say these models are not compatible. Therefore, we

need to make these models compatible in order to be able to integrate them. Behavioral and

fault models are said to be compatible if they describe the same level of abstraction and the

same events in both models have the same meaning.

The compatibility transformation procedure takes the BM and the FT as inputs and

produces a FT0 that is compatible with the BM. The attributes of entities in FT (each leaf)

and behavioral model are formalized by creating a class diagram.

1. Identify entities that have capability of failure or contributing to a failure at the

behavioral model. An entity could be a state or an event.

2. For each such entity, create a BEntityName class with behavioral attributes.

3. Identify leaf node entities from fault trees.

4. For each such entity, create FEntityName class with attributes related to failure and

failure condition.

5. Express entity.failure condition in terms of attributes of FEntityName.

6. Combine both BEntityName and FEntityName in BFEntityName by identifying

attributes common to both entities such that, if values in FEntityName and

BEntityName are the same, we combine the attributes, otherwise we create Battribute

and Fattribute.

Figure 3 shows a BEntityName, a FEntityName, and a BFEntityName. The BEntityName

contains either a state BS (a state at the behavioral model) or an event BE (an event at the

behavioral model) from the behavioral model that contributes to a failure at the fault

model. These events are carried in the communicating messages from the behavioral to the

fault models when these models are integrated. The FEntityName contains a state FS (a

state at the failure model) or an event FE (an event at the failure model) as described in a

leaf node of a FT along with their conditions FC (if any). The BFEntityName contains

either a combination of BEntityName and FEntityName attributes if these attributes are the

Table 1 Fault tree gate types (Vesely et al. 2002; Ariss et al. 2011)

Symbol Gate Meaning

^ AND The gate occurs only when all its inputs occur

Z PRIORTY AND The gate occurs only when all its inputs occur in a specified order

_ OR The gate occurs when at least one of its inputs occurs

e INHIBIT The gate occurs only when the input occurs and the enabling condition is true

� XOR The gate occurs only when the XOR of the inputs is true

TIMING
GATES

These gates occur only when event occurs and the time-out is triggered

12 Software Qual J (2018) 26:3–48

123

same as shown in Fig. 3c or separate Battributes and Fattributes are created as shown in

Fig. 3d when the attributes of FEntityName and FEntityName are not the same.

For example, the fault tree (^,Air Present, Gas leaks[4 s) depicted in Fig. 4 contains

two events that contribute to an unsafe environment. These events need to be made

compatible with the events that have the same meaning in the behavioral model. Let us

assume that the entities that have capability of failure or contributing to a failure in the

behavioral model are ‘‘Air Valve’’ and ‘‘Gas Valve.’’ Therefore, BEntityName class named

BAirValve will be created for the entity ‘‘Air Valve.’’ The attribute of this class is of type

BS; and its values are ‘‘Open’’ or ‘‘Closed.’’ The FEntityName class named FAirValve will

be created for the leaf node ‘‘Air present.’’ The name of the attribute is ‘‘AirPresent,’’ its

type is FS, its values are ‘‘yes’’ or ‘‘no,’’ and the condition of this attribute AirPresent =

yes. Since the names of these entities are not the same although they have the same

meaning, we create a BFAirValve class that contains separate attributes of both BAirValve

and FAirValve as described in Fig. 3d. The BFAirValve attributes are BState:Open, Closed,

FState:Airpresent:yes, no and BFEventCondition:AirPresent= yes (Fig. 5). Also, the

BEntityName class named BGasValve will be created for the entity ‘‘Gas Valve.’’ The

attribute of this class is of type BS; and its values are ‘‘Open’’ or ‘‘Closed.’’ The FEnti-

tyName class named FGasValve will also be created for the leaf node ‘‘Gas leaks[4 s.’’

The name of the attribute is ‘‘Leaks,’’ its type is FS, its values are ‘‘yes’’ or ‘‘no,’’ and the

condition of this attribute is Leaks & TimeInState[4 s. We create a BFGasValve class that

contains separate attributes of both BGasValve and FGasValve. The BFGasValve attributes

are BState:Open, Closed, FState:Leaks:yes, no, FTimeInState: 4 s, and BFEventCondi-

tion:Leaks & FTimeInState[4 s (Fig. 6).

At this point, the conditions are aggregated from the leaves of the FT to the root. The

compatibility transformation is an essential step to solve the ambiguity between the events

in the behavioral model and fault model. The output of this step is a FT 0 which is described
in terms of BFClass.BFEventCondition combined with logical operators. The compatible

fault tree for this example will be: FT 0 = (^,BFAirValve.BFEventCond,
BFGasValve.BFEventCond).

Fig. 4 Fault tree example

Fig. 3 Behavioral and fault classes combination

Software Qual J (2018) 26:3–48 13

123

3.5 FT0 model transformation

Events can be classified as either ‘‘transient’’ or ‘‘persistent’’ (Ortmeier et al. 2007). A

transient event is an event that is reversible, i.e., it can appear and disappear completely,

while the persistent event once it occurs stays. An ordinary fault tree, which statically

describes a hazard, does not consider this distinction between events because this dis-

tinction would not make a difference for a static model. However, it is essential to consider

the event type attribute when making a fault tree dynamic. The event type determines

whether the status of the event can be ‘‘not occurred’’ after it had already ‘‘occurred.’’ The

change in the event status makes the integrated fault tree react according to the status of the

event in the behavioral model. Note that our transformation rules allow for modeling

transient events unlike the classical fault trees where all the events are persistent. However,

the FT0 is a static model that describes the hazard as a specific combination of events. In

order for the FT0 to be integrated into a behavioral model, it has to be dynamic, and every

event at the leaf nodes has to have an equivalent event in the behavioral model. To

accomplish that, we have to transform the FT0 to a CEFSM format. Every gate in the FT0 is
represented as a GCEFSM. This GCEFSM represents a specific part of the failure process.

Messages connect it to the behavioral process where failure process and behavioral process

interact. The whole model forms a tree-like structure. The ICEFSM consists of a collection

of CEFSMs that represent the behavioral model and GCEFSMs (the transformed FT)

model. The communication between the behavioral model and FT0 model is achieved by

sending and receiving messages between the models. The behavioral model sends mes-

sages that contains events that contribute in the failure to the fault-related GCEFSMs.

These GCEFSMs, however, do not send any message back to the behavioral model because

they are only used to indicate when the carried events contribute in the root node. Upon

receiving those messages, the GCEFSMs at the lower level of the tree sends messages that

carry ‘‘the event occurred’’ or ‘‘has not occurred’’ to the upper level GCEFSMs and so on.

The output message from one GCEFSM is taken as a parameter to a generic event in the

receiving GCEFSM, e.g., event(param) = get ðmiÞ.

Fig. 5 Air valve class

Fig. 6 Gas valve class

14 Software Qual J (2018) 26:3–48

123

To make the FT0 to GCEFSM transformation automatic, the representation of the FT

events and gates in GCEFSM is standardized. Each gate must be given an identifier that

uniquely identifies it. The output of the gate, which is an input to another gate, should carry

the same identification number as the gate that outputs it. If the gate event has occurred, a

message mi is sent to the receiving gate, indicating that the event has occurred. The output

of each gate is an input to another gate. The GCEFSM may be in one of three conditions; it

has not received any input messages so far, it received a message that says the gate event

has occurred, or received a message that says the gate event has not occurred.

3.5.1 Transformation rules

The transformation rules use the notation for e,m introduced for CEFSM in Sect. 3.2. Every

gate in the FT0 is converted to an equivalent representation in CEFSM, i.e., Gate CEFSM

(GCEFSM). Every GCEFSM is identified by a unique identifier Gi that uniquely identifies

the gate. The set of variables V are:1

• TotalNoOfEvents is the total number of input events to the gate.

• NoOfOccurredEvents is the number of occurred events that the gate received so far.

• NoOfPositiveEvents is the number of occurred events whose eStatus is true.

• update() is a proposition that updates the values of NoOfOccurredEvents and

NoOfPositiveEvents according to the input event ei.

• xor() is a proposition that performs xor function on the occurred events.

• [reset(Timer)] is a proposition that resets the timer to zero.

Table 2 Event sequence table

ej Event ðejÞ TotalNoOfEvents NoOfPositiveEvents NoOfOccurredEvents

ej:eOccurred ej:eState

2 0 0

e1 T T 2 1 1

e1 T F 2 0 1

e2 T T 2 1 2

e2 T F 2 0 2

e1 T T 2 1 2

e2 T T 2 2 2

Fig. 7 AND gate representation in FT and GCEFSM

1 For readability, we omit some of the variables for the gates.

Software Qual J (2018) 26:3–48 15

123

Table 2 shows the values of variables for the gates upon receiving sequence of events.

Each GCEFSM consists of states and transitions that perform the same Boolean function as

the gates in an FT. The difference is that in the original FT, a gate produces a single output

when all the input events satisfy the gate conditions. Otherwise, no output would be

produced. However, in the transformed FT, a gate has two kinds of outputs. One output is

defined as the ‘‘gate occurred’’ and the other is defined as ‘‘gate not occurred’’ such that:

mi ¼

Gate Occurred if Giðe1; e2; :::ekÞ ¼ true;

Gate not Occurred if Giðe1; e2; :::ekÞ ¼ false

and eOccurrence ¼ true

8ei; i ¼ 1 to k

8
>>><

>>>:

For example, an AND gate = true if GANDðe1 \ e2::: \ ekÞ ¼ true. Each structure and

behavior of each GCEFSM is predefined, and for this matter, we present the commonly

used gates in this section, and the rest of the gates is presented in Sect. 7.

3.5.2 AND gate

When combining some events with an AND gate, the output occurs when all the events

occur. Otherwise, no output would occur. An AND gate is represented as shown in Fig. 7.

It consists of two states and four transitions. State S0 is the initial state, and S1 is the ‘‘gate

occurred’’ state. The transition T2 will never be taken unless its predicate NoOfOc-

curredEvents=TotalNoOfEvents & ei.eOccurrence =true & ei.eStatus = true is true which

means all the inputs are received, and their status is true. When T2 is taken, the message

‘‘gate occurred’’ is sent to a GCEFSM that is supposed to receive it.

The transition T0 is as follows:

T0 : ðS0; ½ej:eOccurrence ¼ true& ej:eStatus ¼ true&NoOfOccurredEvents\TotalNo

OfEvents�; getðmjÞÞ=ðS0; updateðeventsÞ;�Þ where

1. The event get(mj) gets input messages from the environment or from another CEFSM.

mi contains an event that could be ‘‘gate occurred’’ or ’’gate not occurred.’’

2. Update (events) is an action performed upon executing this transition. It updates the

number of occurred events and their status based on the last input message received.

3. The predicate ‘‘[ej.eOccurrence = true & ej.eStatus = true & NoOfOccurredEvents \
TotalNoOfEvents]’’ ensures that the event has occurred, and the number of inputs

received so far is less than the total number of inputs, and the input status is true. Note

that ‘‘gate not occurred’’ implies that eOccurrence=true&eStatus=false, while ‘‘gate

occurred’’ implies that eOccurrence=true&eStatus=true.

If all the messages to this GCEFSM are received and all the events have occurred, then the

transition T2 will be taken.

T2 : ðS0; ½NoOfPositiveEvents ¼ TotalNoOfEvents&ej:eOccurrence ¼ true&ej:e Status

¼ true�; getðmjÞÞ=ðS1; updateðeventsÞ; SendðGateOccurredÞÞ
When this transition is taken based on the input and the predicate, it moves to state S1,

increments the number of inputs, and send an output message saying that the gate has

occurred.

T1 : ðS0; ½ej:eOccurrence ¼ true&ej:eStatus ¼ false�; getðmjÞÞ=ðS0; updateðeventsÞ;�Þ,
where ‘‘-’’ means no output produced. When on state S0 and the input message implies that

the event has changed its status, the transition T1 is taken. T1 decrements the number of

inputs and updates the status of the event from occurred to not occurred.

16 Software Qual J (2018) 26:3–48

123

T3 : ðS1; ½ej:eStatus ¼ false�; getðmjÞÞ=ðS0; updateðeventsÞ; SendðGatenotOccurredÞÞ
At the state S1, transition T3 is taken when the coming input status is false. When this

transition is taken, it decrements NoOfOccurredEvents and NoOfPositiveEvents, updates

the status of the input from occurred to not occurred, and sends ‘‘gate not occurred’’

message to the receiving gate.

3.5.3 Priority AND gate

As shown in Fig. 8, the priority AND gate is very similar to the AND gate in the overall

structure and transitions. It differs from the AND gate in that the events have to happen in

predetermined order. This difference is taken care of by manipulating the predicate con-

dition in such a way that it considers the order of occurrence of the events. For example, if

the events are ordered E0; then E1, they have to happen in this order so that the gate can

occur. Otherwise, the gate will not occur. T0 to T3 are the transitions that control the

priority AND gate.

T0 : ðS0; ½NoOfPositiveEvents\TotalNoOfEvents

&ei:eStatus ¼ true�; getðmiÞÞ=ðS0; updateðeventsÞ;�Þ
T1 : ðS0; ½ej:eStatus ¼ false&ej:eOccurrence ¼ true�; getðmjÞÞ=ðS0; update ðeventsÞ;�Þ
T2 : ðS0; ½NoOfPositiveEvents ¼ TotalNoOfEvents&orderedðejÞ ¼ true&ej:eStatus ¼
true�; getðmjÞÞ=ðS1; updateðeventsÞ; SendðGateOccurredÞÞ
T3 : ðS1; ½ei:eStatus ¼ false�; getðmiÞÞ=ðS0; updateðeventsÞ; Sendð Gate Not OccurredÞÞ
The predicate ordered() returns true of the input event in the message mi is received in

its predefined order and returns false otherwise.

3.5.4 OR gate

The OR gate occurs if at least one event occurs. This gate, as shown in Fig. 9, consists of

two states and four transitions. When in S0 and the input message carries an event whose

eOccurrence and eStatus are true (i.e., the event has occurred), T0 is taken, and the OR gate

occurs. In state S1 and if the events in the input messages have not occurred (i.e., their

eStatus is false), and there was only one input so far, which means this input has changed

its status, then a ‘‘gate not occurred’’ message is sent. Otherwise, no message is sent out of

this gate and only update(events) actions take place.

T0 : ðS0; ½ej:eStatus ¼ true�; getðmjÞÞ=ðS1; updateðinputsÞ; SendðGateOccurredÞÞ
T1 : ðS1; ½ej:eStatus ¼ false&NoOfPositiveEvents ¼ 0�; getðmjÞÞ=ðS1;
updateðinputsÞ; SendðGatenotOccurredÞÞ
T2 : ðS1; ½ej:eStatus ¼ true�; getðmjÞÞ=ðS1; updateðeventsÞ;�Þ
T3 : ðS1; ½ej:eStatus ¼ false�; getðmjÞÞ=ðS1; updateðeventsÞ;�Þ

Fig. 8 Priority And gate representation in FT and GCEFSM

Software Qual J (2018) 26:3–48 17

123

3.5.5 Transformation procedure

As mentioned above, the transformed GCEFSMs form a tree-like structure, and each

GCEFSM gate is denoted by a unique identifier Gi that uniquely identifies the gate. The

transformation procedure shown in Fig. 10 takes an FT as an input and produces

GCEFSMs according to a postorder tree traversal. An event–gate table is used for the

integration of GCEFSMs with the behavioral model. It contains the entries for all leaf

nodes of the FT and is defined as shown in Table 3. This table is constructed during the

transformation of FT to GCEFSM. The leaf node event name and identifier are inserted

into the table entry along with the identifier of the gate that receives this event.

3.6 Model integration

Before integrating the models, all messages from the behavioral model to the fault model

have the form of Eq. (1). At that time, the event id contains the event name and attribute,

and the receiving gate id of that event is not known yet. During the integration of both

models, the event name in each message in the behavioral model is looked up in the event–

gate table. If the event name and attribute in the behavioral model match those in the

event–gate table, the message is modified such that it contains the event id ei and gate id Gj

as stated in equation (2) according to the procedure in Fig. 11.

mBk ¼ ðmId;EventNameAndAttribute; Þ

be a message from the BM ð1Þ

mBk will be modified to ðmId; ej;GiÞ ð2Þ

Fig. 9 OR gate representation in FT and GCEFSM

Fig. 10 Transformation procedure

18 Software Qual J (2018) 26:3–48

123

Although the compatibility transformation step may be done manually, it does not

prevent the automation of the whole integration approach. In fact, it is especially important

when the work has to be done manually and Sánchez and Felder (2003) would require

constructing the whole integrated model manually. Note that a small number of leaf nodes

in FT may produce a huge model when integrated according to Sánchez et al.’s approach

(Sánchez and Felder 2003), (cf. Sect. 5.1, 19-leaf-node FT with 50-state-60-transition

behavioral model would produce 70245-state-85330-transition integrated model).

In order to use CADP for larger integrated models to produce test cases, we had to

automate the approach. Thus, we have implemented a front-end tool2 that converts the fault

tree into GCEFSM in the LOTOS format, converts CEFSM behavioral model, and converts

it into LOTOS format and then integrating the models as we described in Sect. 3.6. The

result of the front-end component which is an integrated CEFSM (ICEFSM) written in

LOTOS is taken by CADP and transformed into a labeled transition system.

3.7 Test case generation from CEFSM model

Once the ICEFSM exists, a number of existing test generation methods for CEFSMs can be

used. One approach to testing CEFSMs is to compose them all into one machine at once

and using reachability analysis to generate test cases. However, this approach is imprac-

tical due to the state explosion problem and the presence of variables and conditional

statements. Some work has been done in testing the behavior of concurrent systems and

network protocols that were modeled using CEFSM. Hessel and Pettersson (2007) and

Bourhfir et al. (1998), Bourhfir et al. (2001) use reachability analysis to generate test cases

from systems modeled in CEFSMs, while Kovács et al. (2002) design methods and

Fig. 11 Integration procedure

Table 3 Event–gate table for leaf nodes

Event name and attribute Event ID Gate ID

event name as indicated in the FT 0 ei, where ði ¼ 1; :::; nÞ and ei is leaf connected to Gj Gj

Ex. temp[10 �C e1 G1

2 This front-end tool is a collaboration between the University of Denver and the University of North
Dakota.

Software Qual J (2018) 26:3–48 19

123

mutation operators to enable the automation of test selection in a CEFSM model. Henniger

et al. (2004) generate a test purpose description of the behavior of a system of asyn-

chronous CEFSMs. Kovács et al. (2002) use mutation to enable the automation of test

selection in a CEFSM model. Boroday et al. (2002) combine specification and fault

coverage to generate test cases in CEFSM models. Li and Wong (2002) propose a

methodology to generate test cases from CEFSM.

3.8 Tool support

Construction and analysis of distributed processes (CADP) [62], formerly known as

‘‘CAESAR/ALDEBARAN Development Package,’’ is a toolbox for communicating sys-

tems engineering. CADP’s development started in 1986 by the VASY team of INRIA and

the Verimag laboratory with contributions from the PAMPA team of Institute for Research

in IT and Random Systems (IRISA) and the formal methods and tools (FMT) group at the

University of Twente. In 2013, more than 11,000 licenses have been granted for different

machines. Later, statistics are not available since academic institutions no longer have to

sign a license to obtain CADP. CADP is a tool for verifying asynchronous concurrent

systems. It consists of 45 tools that offer a set of functionalities that covers the design cycle

of asynchronous systems such as specification, interactive simulation, rapid prototyping,

verification, testing, and performance evaluation (Garavel et al. 2013). CADP can be seen

as a rich set of powerful, interoperating software components. All these tools are integrated

for interactive use with a graphical user interface (i.e., Eucalyptus) and for batch use with a

user-friendly scripting language (SVL).

CADP [62], as supporting tool for our approach, can manage as large as 1010 explicit

states, and much larger state spaces can be handled by employing compositional verifi-

cation techniques on individual processes (Garavel et al. 2013). Because the textual file

format that was used in the early 1990s by most verification tools is adequate for small

graphs, CADP was equipped in 1994 with binary-coded graphs (BCG), a portable file

format for sorting LTSs. BCG is capable of handling large state spaces (up to 1013 states

and transitions CADP 2011 for 64-bit machines) (Garavel et al. 2013).

LTSs (Keller 1976) have been used to precisely represent the semantics of behavioral

specifications. LTSs are used to reason about processes, such as specification, imple-

mentations, and tests. In general, an LTS provides a global monolithic description of the

set of all possible behaviors of the system. It differentiates between internal and external

actions. LTSs are represented by graphs of states and edges. The states represent config-

urations of systems, and the edges represent the moves between these configurations on the

occurrence of actions. However, except for the most trivial systems, a visual representation

by means of a tree or a graph is not feasible. Realistic systems would normally have

billions of LTS states, therefore drawing them is not an option (Tretmans 2008).

Garavel et al. (2013) explored the distributed state spaces of a large-scale grid involving

several clusters by the distributed verification tools recently added to the CADP toolbox.

These experiments were intended to push the PBG machinery to its limits to study how this

influences performance and scalability. They found that CADP can handle about

289,130,000 states and 542,000,000 transitions for a Dijkstra protocol of four processes.

Compositional verification techniques offered by CADP are applied by Garavel et al.

(2009) to overcome the state space explosion of a graph of 155,377,200 states and

371,146,000 transitions.

20 Software Qual J (2018) 26:3–48

123

4 Application: aerospace launch system

4.1 Description of launch system

In this section, we demonstrate our approach with a launch system example to show the

integration of multiple fault trees into CEFSMs. A launch system consists of a launch

conductor, ground system, launch pad, mobile launch platform, and a launch vehicle which

is comprised of a booster, upper stage, and a payload. The booster and upper stage are

fueled by cryogenic fuels which can only be liquefied at extremely low temperatures.

Cryogenic fuels are chosen because they generate a high specific impulse, which defines

their efficiency of fuel relative to the amount consumed. A medium lift vehicle is capable

of lofting a payload weighing between 4000 and 40,000 lbs. into low earth orbit. The

launch controller is responsible for initiating the launch sequence and verifying the safety

and security of the launch control system throughout the launch. The launch conductor

communicates to the vehicle through the ground system. The ground system is physically

connected to the launch vehicle via ethernet cables, serial cables, 1553 data cables, and fuel

lines.

The sequence begins about 24 h before a launch when the launch conductor initiates the

countdown clock. The launch conductor then clears the area of nonessential personnel

using a public announcement system. The mobile launch pad is prepared for jacking. The

launch conductor initiates environmental control system (ECS) on the launch pad, solicits a

weather briefing, and turns on both search lights and amber warning lights. The MLP and

vehicle are moved to the launch pad. Cryogenic tanking begins on the launch vehicle, and

an instrumentation check is performed. A test to detect hazard gas is performed. The

launch vehicle’s liquid oxygen LO2 is verified as well as the upper stage’s liquid hydrogen

LH2. The launch conductor periodically conducts polls of the stakeholders to obtain

concurrence to continue the sequence. When concurrence is received, the launch conductor

initiates the chilldown procedures and flight pressures. The safe arm device (SAD) is

initiated. The SAD is used to terminate the flight, should there be a problem after launch.

The launch conductor commands the launch vehicle to switch to internal power and the

vehicle lifts off the launch pad. Figure 4 shows the CEFSM model of the launch system

including transitions, variables, events, and messages.

4.2 Launch system failure

The Aerospace launch system fault trees include initialization, fire, preflight, and launch

fail. Initialization fail is the first fault that can occur in the system, these faults are less

extreme. The initialization sequence includes connection fail, countdown clock fail, and

hazard lights fail. Any of these can be mitigated with a retry before an abort command is

issued. The fire fault tree sequence contains the most critical failures that could result in

explosion of the system. These failures are LO2, helium, and LH2 fail. Preflight fail is the

fault that can occur before a launch command is issued. Preflight fail includes battery

check, initialize fuel, and battery switch fail. Launch is the final set of faults that can occur

after the launch command has been issued. It includes environmental control system ECS

and preflight fail. ECS includes the air conditioning failures and Nitro Purge failures.

Preflight fail includes the instrument, cryotesting, and chilldown failures. The fire, pre-

launch, and launch faults must be mitigated with an abort to protect the payload.

Software Qual J (2018) 26:3–48 21

123

Four launch failure occurrences are described as four FTs, one FT for each failure. The

FT in Fig. 12 shows what causes the initialization failure of the launch vehicle, and the FT

in Fig. 13 shows what can cause a fire and possible explosion. The preflight failure is

illustrated by the FT in the Fig. 14, and the launch failure is shown in Fig. 15. These FTs

will be integrated in the behavioral model shown in Fig. 4. The mitigation actions for this

system are to abort. Therefore, mitigations are not applicable.

Initialization fail FT and the event description are as follows:

• Connection fail: The first step in the launch sequence requires that a connection is made

between the launch vehicle, upper stage, launch platform, and ground system. This

connection consists of ethernet cable to establish the ground network and 1553 cables

for commanding and getting status from the launch vehicle. Failure for one of the

networks to communicate would result in the launch being canceled or delayed. A retry

action could be taken to attempt to establish the connection.

• CountDownClk fail: The launch vehicle and the ground system heavily rely on the

countdown clock to synchronize time between them. If the countdown clock fails to

start, pause or stop the result could fail to synchronize and cause a tank to be over/under

filled and an explosion. If the fault were caught early on, the ground operator could

retry to sync them or abort the launch.

• HazardLight fail: Hazard lights are used for safety around a launch vehicle. They

consist of flashing or strobe lights to warn people in the area to keep away. The launch

should not be conducted with a failure in the safety light mechanism.

Fig. 12 Initialization fail FT

Fig. 13 Fire occurrence FT

Fig. 14 Preflight fail FT

22 Software Qual J (2018) 26:3–48

123

Fire fail FT and the event description are as follows:

• LO2 fail Liquid oxygen is cryogenic liquid oxidizer propellant for a launch vehicle. It

creates a high specific impulse. The launch vehicle tank is made of thin material which

is filled with L02 to pressurize it. However, LO2 will boil off and must be replenished

before launch. Liquid oxygen is fed into the engine using valves. Faults associated with

LO2 include: failure to pressurize, failure to top off tank, stuck valve, or defective

structural integrity of the tank. The faults if not mitigated in time would result in a fire

or explosion.

• Helium fail Helium is used by the upper stage to purge fuel and as an oxidizer from

ground support equipment, and pre-cool liquid hydrogen. A failure from helium would

result in liquid oxygen overheating and an explosion of the system.

• LH2 fail Liquid hydrogen is the upper stage cryogenic rocket propellant. It has the

lowest molecular weight of any substance and burns with extreme intensity. Liquid

hydrogen creates the highest specific impulse. The faults associated with liquid

hydrogen include exposure to heat and leaking out of tank weld seams which would

cause an explosion.

Preflight fail FT and the event description are as follows:

• BAChk fail: Battery checks are performed on the launch vehicle by the ground system.

Batteries are tested for condition, state of charge is measured in volts, cell resistance is

measured in ohms, and a percent of life expectancy is evaluated. Faults include: bad

condition, low voltage, low cell resistance, and low life expectancy.

Fig. 15 Launch fail FT

Fig. 16 Network connection class

Software Qual J (2018) 26:3–48 23

123

• InitFuel fail: Fuel initialization is the process of preparing the booster LO2 system and

the upper stage LH2 system. The fuel systems are prepared by locking the valves and

measuring gas pressure. Faults include low fuel pressures or bad valves.

• BASwitch fail: Prior to launching, the ground system must switch the launch vehicle

from external power to internal power. This is accomplished by switching the power to

the internal batteries. Internal battery failures include failure to switch, bad battery

condition, low voltage, low cell resistance, and low life expectancy.

Launch fail FT and the event description are as follows:

• ACInit fail: Launch pad environmental control system air conditioning is initialized.

The system fails when the air conditioning unit fails to power, or temperature is not

within an acceptable range.

• NitroPurge fail: Launch pad environmental control system performs a nitrogen purge of

the tanks prior to launch. Nitrogen is used to clean the impurities of the tanks. It will

also displace oxygen and reduce the risk of fire or oxidation. Faults that could occur are

low nitrogen pressure or stuck valve.

• Instrument fail: Prior to launch, the vehicle’s instrumentation is verified by running a

self or BIT (built-in test) test, and the self-test verifies the instrumentation is running

properly and performs a check sum to ensure that the proper version of software is

loaded. Instrumentation faults include self-test failure, checksum error, or telemetry

data error.

• ChillDown fail: The chilldown procedure is used to condition fuel lines to handle the

extreme cold temperatures of the cryogenic fuel. Small amounts of fuel are released

from the storage tanks into the lines the feed the vehicle. Failures include: low

chilldown pressure or ruptured fuel line.

• CryoTesting fail: Cryotesting is used to determine whether the vehicle will operate

under extreme temperatures. This demonstration fills and drains the tanks several times.

Failures include: failure to pressurize tanks and valve failure.

4.3 Compatibility transformation step

At this step, we create Bclass and Fclass for failure-related entities and combine the related

classes according to the compatibility transformation procedure. At this step, we create

Bclass and Fclass. In this example, four FTs will be integrated to the behavioral model. We

start with the left most leaf node of the FT in Fig. 12. The leaf node Connection fail of the

fault tree in Fig. 12 is related to the entity Network Connection. Therefore, according to the

compatibility transformation rules, since the attribute of the Bclass BNetworkConnection

and the Fclass FConnection is the same, they are combined in the BFclass BFConnection.

Next, we take its sibling, the CountDownCLK fail, which is represented as FCount-

DownCLK class. This Fclass is related to the entity Countdown Clock at the behavioral

model which is represented as BCountDownClock. Therefore, they are combined into

BFCountDownCLK class. The third leaf node in this FT is the HazardLights fail. This leaf

node event is related to the HazardLights On. Therefore, we combine their related Bclass

and Fclass into BFHazardLights. Notice that, here the values of the attributes are different,

therefore, we need to include a BAttribute (Bstate) from the BhazardLights and FAttribute

from the FHazardLights into the BFHazardLights.

Next, we do the compatibility transformation for the second FT Fig. 13. We start with

the left most leaf node which is the event LO2 fail that is represented as FLO2Chk. This

24 Software Qual J (2018) 26:3–48

123

event is related to the entity LO2Chk which is represented as BLO2Chk. Since the attri-

butes of these classes are the same, we combine them into BFLO2 as shown in Fig. 19. The

next event to transform is the Helium fail. It is related to the HeliumChk entity, and both

have the same attributes. Therefore, they are combined into BFHelium (Fig. 20). The next

event in this FT is the leaf node LH2 fail. It is related to the LH2Chk entity at the

behavioral model. The LH2Chk and LH2 fail are represented as BLH2Chk and FLH2,

respectively. Since these events have the same attributes, they are combined in BFLH2.

Having finished all leaf node events in the FT in Fig. 13, we start with the left most leaf

node event of the PreFlight fail FT (Fig. 14), which is BAChk fail that is represented as

FBAChk. It is related to the entity BatteryChk which is represented as BBatteryChk class.

These classes are combined in BFBatteryChk class (cf Fig. 22). InitiFuel fail, represented

as FInitFuel, is related to InitiateFueling entity which is represented as BInitiateFueling.

As shown in Fig. 23, these two classes are combined in BFInitFuel. Figure 24 shows the

combination of the event BASwitch fail and IntBattery. These two events are represented in

BInternalBattery and FBSwitch classes, respectively.

Next, we analyze the fault tree for launch fail (Fig. 15) starts with the left most leaf node

event which is ACInit fail. This event is represented as FACInition class and is related to

the entity Air Conditioning which is also represented as BAirCondition. The attributes of

these classes are the same so they are combined in BFACInitiation class as shown in

Fig. 25. The next leaf node event is NitroPurge fail which is related to the entity Nitro-

genPurge at the behavioral model. The NetroPurge fail is represented as FNitrogenPurge

class, and the BNitrogenPurge is represented as NitrogenPurge class. These two classes are

combined in BFNitrogenPurge as shown in Fig. 26. Next, we take the event Instrument

Fig. 19 LO2 class

Fig. 18 Hazard lights class

Fig. 17 Countdown clock class

Software Qual J (2018) 26:3–48 25

123

fail. This event is related to the INSTChk entity. They are represented as FInstrument and

BINSTChk, respectively, and combined into BFInstrument as illustrated in Fig. 27.

The event CryoTesting fail is transformed next. This event is represented in

FCryoTesting and is related to the CryoTesting entity which is also represented as

BCryoTesting class. The combination of these two classes is the BFCryoTesting class

which can be seen in Fig. 28. Finally, we transform the event ChillDown fail to be

compatible with the entity ChillDown. They are represented as FChilldown class and

BChilldown class and are combined in BFChilldown class as Fig. 29 shows.

After the compatibility transformation procedure is finished, the fault tree of the ini-

tialization failure Fig. (12) is represented as:

FT0 ¼(_, (BFConnection.BFCond,BFCountDownCLK.
BFCond,BFHazardLight.BFCond)).

The FT in Fig. 13 is presented as:

FT0 ¼(_,(BFLO2.BFCond,BFHeluim.BFCond,LH2.BFCond))
The FT in Fig. 14 is presented as:

FT0 ¼(_,(BFBatteryChk.BFCond,BFInitFuel.BFCond,BFIntBatSwitch. BFCond))
The FT in Fig. 15 is presented as:

FT0 ¼(_,(_,BFACInitia
tion.BFCond,BFNitrogenPurge.BFCond),(_,(BFInstrument.
BFCond,BFCryoTesting.BFCond,BFChilldown.BFCond)))

Fig. 20 Helium class

Fig. 21 LH2 class

Fig. 22 Battery class

26 Software Qual J (2018) 26:3–48

123

Fig. 23 Initiating fueling class

Fig. 24 Battery switching class

Fig. 25 Air conditioning initiation class

Fig. 26 Nitrogen class

Fig. 27 Instruments class

Fig. 28 Cryo class

Software Qual J (2018) 26:3–48 27

123

4.4 Fault tree transformation

The fault CEFSM is constructed according to a tree postorder traversal. Each FT is read

gate by gate starting from the root node until we reach the left most leaf node. The

transformation starts with the left most leaf of the FT. The events are described in terms of

class diagram states and events as shown in the compatibility transformation step. We start

with the Initialization fail FT of Fig. 12. We traverse this FT from the root to the left most

leaf node, the connection fail. Since this is a leaf node, we give it an event ID and the gate

ID, and insert it in the event–gate table. Each event and the gate ID is assigned a unique

sequential ID according to their appearance in the table. The next event is the Count-

DownCLK fail as expressed in the condition determined by the compatibility step, and the

third is HazardLights fail. These events are shown in Table 5. This FT contains only one

gate, and its GCEFSM can be seen in Fig. 30.

The next FT to transform into GCEFSM is the fire occurrence FT, Fig. 13. We start with

the left most leaf node which is LO2 fail. Since it is a leaf node, we give it an event ID and

the gate ID, and insert it in the event–gate table. Then, we take its siblings from left to

right. The next sibling is the Helium fail event. We give it an event ID and insert it in the

event–gate table. Then we take the last sibling and apply the same steps on it. At this point,

all the leaf nodes of this FT are processed, we create the gate and give it a Gate ID.

Figure 31 shows the GCEFSM for this FT, and Table 6 shows the event–gate table after the

transformation of this FT.

The preflight fail FT in Fig. 14 is then transformed following the same procedure. The

first leaf node is BAChk fail. We give this event an event ID and inset it into the event–gate

table with the gate ID that this event is linked to. We take its sibling, InitFuel fail, and we

give it an event ID and inset it into the event–gate table. We do the same thing with the last

event in this FT, which is the BASwitch fail; and then we create the gate. The GCEFSM of

this FT is shown in Fig. 32, and the event–gate table is shown in Table 7.

The Launch fail FT is then transformed to an equivalent GCEFSM. The leaf node

ACInit fail is read first, given an event ID and inserted into the table. Second, the event

NitroPurge fail is read and given an event ID and inserted into the event–gate table. Then,

the GCEFSM OR gate is created. This step is shown in Fig. 33.

Next, we take the leaf node Instrument fail, CryoTesting fail, and ChillDown fail one

after another, and we take the same action for each one. At this point, all the leaf nodes of

this FT are read, and all the related gates are transformed into GCEFSMs. Figure 34 shows

the GCEFSM for this gate, and Table 8 shows the contents of the event–gate table at this

point. Next, the gate is transformed into GCEFSM.

Then, we take the gate at the upper level of this FT. This gate is an OR gate. We

transform it and assign the events from the lower-level gates. Figure 35 shows the whole

flight fail GCEFSM.

Fig. 29 Chilldown class

28 Software Qual J (2018) 26:3–48

123

Table 4 CEFSM model for a launch system

T1:(Idle,[startSequence=True],startConnection)/(NetworkConnection,-)

T2:(NetworkConnection,[ConnectionConfirmed=falsejtime-out[=30000])/(NetworkConnection,-
,send(mf2‘‘NetworkConnectionfail’’))

T3:(NetworkConnection,[ConnectionConfirmed=True],TurnLightsOn)/(HazardLightsOn,-,-)

T4:(HazardsightsOn,[AllHazardLighsOn=false],)/(HazardLightsOn,,send(mf4‘‘HazardLightsfail’’))

T5:(HazardLightsOn,[AllHazardLighsOn=true],ResetClock)/(CountDownClockReset,-,-)

T6:(CountDownclockRwset,[ClkError=true],)/(CountDownClockReset,-,send(mI1’’startAC’’))

T7:(CountDownclocLReset,[ClkError=false],)/(CountDownClockReset,-,send(mf7‘‘CLKFail’’))

T8:(Idle,get(startAC))/(AirConditioning,-,-)

T9:(AirConditioning,[ACError=true],purge)/(AirConditioning,,send(mf9’’ACError’’))

T10:(AirConditioning,[ACError=false],purge)/(NitrogenPurge,-,-)

T11:(NitrogenPurge,[ECSError=false])/(NitrogenPurge,-,send(mf11’’fuelcheckFail’’))

T12:(NitrogenPurge,[ECSError=ture])/(NitrogenPurge,,send(mfI2‘‘LH2Chk’’))

T13:(Idle,,get(m2’’fuelcheck’’)/(LO2Chk,-,-)

T14:(LO2Chk,[LO2leak=truejLO2PressureOk=flase])/(LO2Chk,,send(mf14’’LO2fail’’))

T15:(LO2Chk,[LO2leak=false&LO2PressureOK=true])/(HeliumChk,-,-)

T16:(HeliumChk,[Heliumleak=truejHeliumPressureOK=false])/(HeliumChk,,send(mf16’’Heliumfail’’))

T17:(HeliumChk,[Heliumleak=false&HeliumPressureOK=true])/(LH2Chk,-,)

T18:(LH2Chk,[LH2leak=truejLH2PressureOk=false])/(LH2Chk,-,send(mf18’’Heliumfail’’))

T19:(LH2Chk,[LH2leak=false&LH2PressureOK=true])/(LH2Chk,-,send(mI3’’PreFlight’’))

T20:(Idle,,get(m3’’PreFlight’’)/(INSTChk,-,-)

T21:(INSTChk,[ChkcksumOK=falsejLaunchConductCommOk=false])/(INSTChk,-,send(mf21’’Instrufail’’))

T22:(INSTChk,[ChecksumOk=true&LaunchConductCommOk=true])/(CryoTesting,-,-)

T23:(CryoTesting,[IntTempOK=falsejIntPressureOk=false])/(CryoTesting,,send(mf23’’INSTfail’’))

T24:(CryoTesting,[IntTempOK=true&IntPressureOk=true])/(ChillDown,-,-)

T25:(ChillDown,[IntTempOK=falsejInterPssurOK=false])/(ChillDown,-,send(mf25’’ChillDownfail’’))

T26:(ChillDown,[IntTemIOK=true&IntPressurOK=true])/(BatteryChk,-,-)

T27:(BatteryChk,[BatteryPresent=falsejPowerLevelOK=false jBatteryLifeOK=false])/(BatteryChk,-
,send(mf27’’Batteryfail’’))

T28:(BatteryChk,[BatteryPresent=true&PowerLevelOK=true&BatteryLifeOK=true])/(InitiatFueling,-,-)

T29:(InitiateFueling,[TankPressureOK=falsejFuelLevelOK=falsejTankTempOK=false])/
(InitiatFueling,,send(mf29’’Fuelingfail’’))

T30:(InitiateFueling,[TankPressureOK=true&FuelLevelOK=true&TankTempOK=true])/(InitiateFueling,-
,send(mI4’’Flight’’))

Software Qual J (2018) 26:3–48 29

123

4.5 Model integration

After all fault trees are transformed to GCEFSMs, we start integrating them into the

behavioral model. At this point, every message in the BM contains an event name that is

related to an event in one of the fault trees. We check the class diagram and the event–gate

table to find the event ID and the gate ID for the event. These event ID and gate ID are

Table 4 continued

T31:(Idle,,get(m4’’ Flight’’)/(InternalBattery,-,-)

T32:(InternalBattery,[SwitchToBatteryOK=falsejPowerLevelOK=false])/(InternalBattery,-
,send(mf32’’InternalBatteryfail’’))

T33:(InternalBattery,[SwitchToBattOK=true&PowerLevelOK=true])/(FlightCommand,-,-)

T34:(FlightCommand,[StartFlight=true],StartFlight)/(Success,-,send(m5))

Fig. 30 GCEFSM for the FT in Fig. 12

Fig. 31 GCEFSM for fire occurrence FT in Fig. 13

Table 5 Event–gate table after
transforming FT in Fig. 12

Event name and attribute Event ID Gate ID

BFConnection.BFCond eB1 G1

BFCountDownCLK.BFCond eB2 G1

BFHazardLight.BFCond eB3 G1

30 Software Qual J (2018) 26:3–48

123

Table 6 Event–gate table after
transforming FT in Fig. 13

Event name and attribute Event ID Gate ID

BFConnection.BFCond eB1 G1

BFCountDownCLK.BFCond eB2 G1

BFHazardLight.BFCond eB3 G1

BFLO2.BFCond eB4 G2

BFHeluim.BFCond eB5 G2

LH2.BFCond eB6 G2

Table 7 Event–gate table after
transforming FT in Fig. 14

Event name and attribute Event ID Gate ID

BFConnection.BFCond eB1 G1

BFCountDownCLK.BFCond eB2 G1

BFHazardLight.BFCond eB3 G1

BFLO2.BFCond eB4 G2

BFHeluim.BFCond eB5 G2

LH2.BFCond eB6 G2

BFBatteryChk.BFCond eB7 G3

BFInitFuel.BFCond eB8 G3

BFIntBatSwitch.BFCond eB9 G3

Fig. 32 GCEFSM for the preflight failure FT in Fig. 14

Fig. 33 GCEFSM for an OR gate in Fig. 15

Software Qual J (2018) 26:3–48 31

123

inserted into the message at the BM. The event ‘‘NetworkConnection fail’’ in the message

mf2 is represented in the class diagram as BFConnection.BFCond. This event is looked up

inside the event–gate table to obtain its event ID ðeB1Þ and the gate ID ðG1Þ for the gate that
receives this event. The message is modified as ðmB1; eB1; G1Þ.

The event ‘‘HazardLights fail’’ in the next message mf2 is represented as BFCount-

DownCLK.BFCond in the class diagram. This event is looked up in the event–gate table to

obtain its event ID and the gate ID for the gate that receives this event. They are eB2 and

G1; respectively. The message is modified as ðmB2; eB2; G1Þ. The next message to be

modified is the message that carries the event ‘‘CountDownCLK fail.’’ This event is

represented as BFCountDownCLK.BFCond. The event ID and the gate ID for this event are

eB3 and G1; respectively. The modified message will look like ðmB3; eB3; G1Þ. These events
happen to be for the same FT, and this FT has only these three events as leaf nodes which

means that the first FT is integrated.

The next event to check is ’’ACError’’ in the message mf9. This event is represented in

the class diagram as BFACInitiation.BFCond. This event is looked up in the event–gate

table to obtain its event ID and the gate ID this event is an input to which are eB10 and G4.

The message will be ðmB10; eB10; G4Þ. The next event from the BM is ’’fuelcheck Fail’’ in

the message mf12. This event is represented as BFNitrogenPurge.BFCond. Its event ID and

Fig. 34 GCEFSM for the second Or gate in Fig. 15

Table 8 Event–gate table after
transforming FT in Fig 15

Event name and attribute Event ID Gate ID

BFConnection.BFCond eB1 G1

BFCountDownCLK.BFCond eB2 G1

BFHazardLight.BFCond eB3 G1

BFLO2.BFCond eB4 G2

BFHeluim.BFCond eB5 G2

LH2.BFCond eB6 G2

BFBatteryChk.BFCond eB7 G3

BFInitFuel.BFCond eB8 G3

BFIntBatSwitch.BFCond eB9 G3

BFACInitiation.BFCond eB10 G4

BFNitrogenPurge.BFCond eB11 G4

BFInstrument.BFCond eB12 G5

BFCryoTesting.BFCond eB13 G5

BFChilldown.BFCond eB14 G5

32 Software Qual J (2018) 26:3–48

123

gate ID are looked up in the event–gate table. This message will be modified as

ðmB11; eB11; G4Þ.
The event ’’LO2 fail’’ in the message mf14 which is represented as BFLO2.BFCond is

looked up in the event–gate table for the event ID and the gate ID. The message will be

modified to be ðmB4; eB4; G2Þ. The ‘‘Helium fail’’ event in the message mf16 is looked up in

the event–gate table to obtain its event ID and the gate ID for the gate that receives this

event. This event is represented as BFHelium.BFCond. The message is modified to be

ðmB5; eB5; G2Þ. The event ’’LH2fail’’ in the message mf18 at the behavioral model is taken

next. According to the compatibility transformation, this event is represented as

LH2.BFCond; and from the event–gate table, its event ID is eB6 and the gate ID for the gate

that receives this event is G2. Therefore, the message is modified as ðmB6; eB6; G2Þ. The
next event from the begavioral model to check is ‘‘Instrufail’’ in the message mf21. This

event is represented as BFInstrument.BFCond. Its event ID and gate ID are looked up in

the event–gate table, and they are eB12; G5. Therefore, the message is modified as

ðmB12; eB12; G5Þ.
The integration procedure continues for all remaining messages from the behavioral

model. These messages are: the message mf23 carrying the event ‘‘cryoTestingfail’’

becomes ðmB13; eB13; G5Þ, the message mf25 carrying the event ‘‘ChillDownfail’’ becomes

ðmB14; eB14; G5Þ, the message mf27 carrying the event ‘‘Batteryfail’’ becomes

ðmB7; eB7; G3Þ, the message mf29 carrying the event ‘‘initiateFueling fail’’ becomes

ðmB8; eB8; G3Þ, and the message mf32 carrying the event ‘‘InternalBatteryfail’’ becomes

ðmB9; eB9; G3Þ. Once all the messages are assigned to their GCEFSM destinations, the

behavioral model and the fault trees are integrated. Figure 9 shows the integrated model

ICEFSM.

The transformed system shown in Fig. 9 forms a graph to which suitable coverage

criteria can be applied. The FT gates that are directly connected to the behavioral model

receive messages from the behavioral model and act accordingly. The messages m1 to m5

represent the global transitions between the GCEFSMs for the FTs, while mI1 to mI5

represent the messages between the components of the behavioral model and mB1 to mB14

represent the communicating messages between the behavioral and fault models. If we

Fig. 35 GCEFSM for flight fail FT in Fig. 15

Software Qual J (2018) 26:3–48 33

123

Table 9 ICEFSM model for a launch system

T1:(Idle,[startSequence=True],startConnection)/(NetworkConnection,-)

T2:(NetworkConnection,[ConnectionConfirmed=falsejtime-out[=30000])/(NetworkConnection,-
,send(mB1))

T3:(NetworkConnection,[ConnectionConfirmed=True],TurnLightsOn)/(HozardLightsOn,-,-)

T4:(HazardsightsOn,[AllHazardLighsOn=false],)/(HazardLightsOn,,send(mB2))

T5:(HazardLightsOn,[AllHazardLighsOn=true],ResetClock)/(CountDownClockReset,-,-)

T6:(CountDownclockReset, [ClkError = true],)/ (CountDownClockReset,send(mI1))

T7:(CountDownclocLReset, [ClkError = false],)/ (CountDownClockReset,-,send(mB3))

T8:(Idle,get(mI1))/(AirConditioning,-,-)

T9:(AirConditioning,[ACError=true],purge)/(AirConditioning,-,send(mB10))

T10:(AirConditioning,[ACError=false],purge)/(NitrogenPurge,-,-)

T11:(NitrogenPurge,[ECSError=false])/(NitrogenPurge,-,send(mB11))

T12:(NitrogenPurge,[ECSError=ture])/(NitrogenPurge,-,send(mI2))

T13:(Idle,,get(m2’’fuelcheck’’)/(LO2Chk,-,-)

T14:(LO2Chk,[LO2leak=truejLO2PressureOk=flase])/(LO2Chk,send(mB4))

T15:(LO2Chk,[LO2leak=false&LO2PressureOK=true])/(HeliumChk,-,-)

T16:(HeliumChk,[Heluimleak=truejHeliumPressureOK=false])/(HeliumChk,- ,send(mB5))

T17:(HeliumChk,[Heliumleak=false&HeliumPressureOK=true])/(LH2Chk,-,-)

T18:(LH2Chk,[LH2leak=truejLH2PressureOk!=false])/(LH2Chk,send(mB6))

T19:(LH2Chk,[LH2leak=false&LH2PressureOK=true])/(LH2Chk,,send(mI3))

T20:(Idle,,get(m3’’PreFlight’’)/(INSTChk,-,-)

T21:(INSTChk,[ChkcksumOK=falsejLaunchConductCommOk=false])/(INSTChk,send(mB12))

34 Software Qual J (2018) 26:3–48

123

apply the algorithm in Hessel and Pettersson (2007) to the graph in Fig. 9 by imposing the

edge coverage criteria, we obtain the test paths shown in Table 10. Note that this approach

forces a proper prioritization if the tests are executed in order, i.e., there is no need for extra

test prioritization rules.

The difference between our approach and those that use statecharts such as Sánchez and

Felder (2003), Ariss et al. (2011), Kim et al. (2010) is that our approach is used to

explicitly model systems (with communication edges) where the behavior process and the

failure process intersect. Therefore, paths can be produced. These paths can be used for

feasibility testing and planning for mitigation actions, and mitigation testing. It is also

possible to manipulate sensor values and create failure events during system testing.

Moreover, in our approach, different levels of details can be used for different testing

Table 9 continued

T22:(INSTChk,[ChecksumOk=true&LaunchConductCommOk=true])/(CryoTesting,-,-)

T23:(CryoTesting,[IntTempOK=falsejIntPressureOk=false])/(CryoTesting,send(mB13))

T24:(CryoTesting,[IntTempOK=true&IntPressureOk=true])/(ChillDown,-,-)

T25:(ChillDown,[IntTempOK=falsejInterPssurOK=false])/(ChillDown,,send(mB14)

T26:(ChillDown,[IntTemIOK=true&IntPressurOK=true])/(BatteryChk,-,-)

T27:(BatteryChk,[BatBeryPresent=falsejPowerLevelOK=falsejBatteryLifeOK=false])/(BatteryChk,-
,send(mB7))

T28:(BatteryChk,[BatteryPresent=true&PowerLevelOK=true&ButteryLifeOK=true])/(InitiateFueling,-,-)

T29:(InitiateFueling,[TankPressureOK=falsejFuelLevelOK=falsejTankTempOK=false])/
(InitiateFueling,send(mB8))

T30:(InitiateFueling,[TankPressureOK=true&FuelLevelOK=true&TankTempOK=true])/
(InitiateFueling,send(mI4)

T31:(Idle,,get(m4’’Flight’’)/(InternalBattery,-,-)

T32:(InternalBattery,[SwitchToBatteryOK=falsejPowerLevelOK=false])/(InternalBattery,send(mB9)

T33:(InternalBattery,[SwitchToBatteryOK=true&PowerLevelOK=true])/(FlightCommand,-,-)

T34:(FlightCommand,[StartFlight=true],StartFlight)/(Success,-,send(mI5))

mB1:(mB1, eB1, G1)

mB2:(mB2, eB2, G1)

mB3:(mB3, eB3, G1)

mB4:(mB4, eB4, G2)

mB5:(mB5, eB5, G2)

mB6:(mB6, eB6, G2)

mB7:(mB7, eB7, G3)

mB8:(mB8, eB8, G3)

mB9:(mB9, eB9, G3)

mB10:(mB10, eB10, G4)

mB11:(mB11, eB11, G4)

mB12:(mB12, eB12, G5)

mB13:(mB13, eB13, G5)

mB14:(mB14, eB14, G5)

Software Qual J (2018) 26:3–48 35

123

Table 10 Aerospace launch system test paths

r1: Initialization[Idle�!
T1

NetworkConnection�!T3 HazardLightsOn�!T5 CountDownClockReset]

r2: ECSInitialization[idle�!
T8

AirConditioning�!T10 NitrogenPurge�!T11 NitrogenPurge]

r3: FuelCheck[Idle�!
T13

LO2Chk�!T15 HeliumChk�!T17 LH2Chk�!T18 LH2Chk]

r4: PreFlight[Idle�!
m20

InstrumentChk]�!mb12
S9�!m5

S11�!T51 S12

r5: PreFlight[Idle�!
m20

InstrumentChk�!T22 CryoTesting�!T24 ChillDown�!T26

BatteryChk�!T28 InitiaFueling�!T29 InitiateFueling]

r6: PreFlight[Idle�!
m20

InstrumentChk�!T22 CryoTesting�!T24 ChillDown�!T26 BatteryChk]�!mb8
S5�!T39 S6

r7: Initialization[Idle�!
T1

NetworkConnection�!T2 NetworkConnection]�!mb1
S0 �!T31 S1

r8: Initialization[Idle�!
T1

NetworkConnection�!T3 HazardLightsOn]�!mb2
S0�!T31 S1

r9: Initialization[Idle�!
T1

NetworkConnection�!T3 HazardLightsOn�!T5 CountDownClockReset]�!mb2
S0�!T31 S1

r10: Initialization[Idle�!
T1

NetworkConnection�!T3 HazardLightsOn�!T4

HazardLightsOn�!T5 CountDownClock Reset]

r11: Initialization[Idle�!
T1

NetworkConnection�!T3 HazardLightsOn�!T5

CountDownClockReset]�!m1
ECSInitialization[Idle�!T8 AirConditioning�!T10 NitrogenPurge]

r12: ECSInitialization[Idle�!
T8

AirConditioning�!T9 Airconditioning�!T10 NitrogenPurge]

r13: ECSInitialization[Idle�!
T8

AirConditioning�!T10 NitrogenPurge]�!mb11
S7�!m4

S11�!T51 S12

r14: ECSInitialization[Idle�!
T8

AirConditioning�!T10 NitrogenPurge]�!m2
FuelChk

[idle�!T13 LO2Chk�!m15
HeliumChk]�!mb5

S3

r15: FuelChk[Idle�!
T13

LO2Chk�!T14 LO2Chk�!T15 HeliumChk]�!mB5
S4

r16: FuelChk[Idle�!
T13

LO2Chk�!T15 HeliumChk�!T16 HeliumChk]�!mB5
S4

r17: FuelChk[Idle�!
m13

LO2Chk�!T15 HeliumChk�!T17 LH2Chk]�!mI3
PreFlight[

Idle�!T20 InstrumentChk]�!mB12
S9�!m5

S11�!T51 S12

r18: PreFlight[Idle�!
T20

InstrumentChk�!T22 CryoTesting]�!mB13
S9�!m5

S11�!T51 S12

r19: PreFlight[Idle�!
T20

InstrumentChk�!T22 CryoTesting�!T24 ChillDown]�!mB14
S9�!m5

S11�!T51 S12

r20: PreFlight[Idle�!
m20

InstrumentChk�!T22 CryoTesting�!T23 CryoTesting�!T24

ChillDown�!T26 BatteryChk�!T28 InitiaFueling]

r21: PreFlight[Idle�!
m20

InstrumentChk�!T22 CryoTesting�!T24 ChillDown�!T25

ChillDown�!T26 BatteryChk�!T28 InitiaFueling]

36 Software Qual J (2018) 26:3–48

123

purposes. For example, if we want to test the system, we can look at every GCEFSM as a

unit and not worry about the GCEFSMs’ internal details (transitions and states) since we

know how they behave.

When we compared the number of states and transitions produced by our integrated

approach with those of Sánchez and Felder (2003) on this aerospace launch system example,

we found that our ICEFSM contains 41 states and 117 transitions, whereas the EFSMmodel

of Sánchez and Felder (2003) will contain at least 4316 states and 8335 transitions.

5 Scalability

5.1 Comparison of case studies

We compare the number of nodes and transitions between the model integration approach

presented here and Sánchez and Felder (2003) approach (EFSM from statecharts and FTs).

First, we compare the number of nodes of three case studies:

1. The railroad crossing control system (RCCS) in Gario and Andrews (2014),

2. The gas burner example (GB) of Gario (2014), and

3. The launch vehicle (LV) presented here.

Table 11 shows the comparison of case studies that we have actually conducted. The left

column identifies the case study. The column labeled BM reports the number of states

(S) and transitions (T) in the behavioral model, respectively. The column labeled FM

reports the number of leaves in the fault tree and how many gates of various types are in

the FT. The columns marked CEFSMs and EFSMs report the number of states and tran-

sitions in our approach versus Sánchez and Felder (2003) approach. Note that our approach

roughly increases states and transitions as a proportion of the number of leaves in the fault

tree, while Sánchez et al.’s approach shows an exponential increase. Clearly, our approach

looks more scalable. To investigate this further, we used our tool as a simulator with a

range of model and fault tree sizes.

5.2 Simulation with increasing size

We developed a tool to calculate the number of states and transitions of the integrated

behavioral and fault models according to the approach’s transformation rules (CEFSMs

Table 10 continued

r22: PreFlight[Idle�!
m20

InstrumentChk�!T22 CryoTesting�!T24 ChillDown�!T26

BatteryChk�!T27 BatteryChk�!T28 InitiaFueling]

r23: PreFlight[Idle�!
m20

InstrumentChk�!T22 CryoTesting�!T24 ChillDown�!T26

BatteryChk�!T28 InitiaFueling]�!mB8
S5�!T39 S6

r24: PreFlight[Idle�!
m20

InstrumentChk�!T22 CryoTesting�!T24 ChillDown�!T26

BatteryChk�!T28 InitiaFueling]�!m4
Flight[idle�!T31 IntBattery�!T33 FlightCommand�!T34 Success]

r25: Flight[Idle�!
T31

IntBattery�!T32 IntBattery�!T33 FlightCommand�!T34 Success]

Software Qual J (2018) 26:3–48 37

123

with FTs) and to estimate the number of nodes and transitions according to Sánchez and

Felder (2003) approach (EFSM from statecharts and FTs).

5.3 In CEFSM

The tool calculates the number of nodes and transitions of the integrated model by adding

the number of the nodes and transitions of the behavioral model to the number of the states

and transitions of the GCEFSM part of the model. As we have seen in section 3, the FT

gates are transformed into a collection of GCEFSMs. Every GCEFSM has a specific

number of nodes and transitions. Thus, the tool calculates the number of nodes and

transitions of the ICEFSM based on the number and type of gates.

5.4 For EFSM in Sánchez and Felder (2003)

The tool estimates the number of nodes and transitions of the integrated model according to

the approach’s transformation rules. The integration rules of the Sánchez and Felder (2003)

approach uses the minimum cut set of the leave node events. For every member of the cut

set they create an independent region, add a state to the behavioral model, or do nothing.

This depends on whether the event already existed in the behavioral model, or may need

human intervention to decide whether to model the cut as an independent region or to add

it to the behavioral model as a single state and transition. Therefore, we calculated the size

of the integrated model based on these options repeatedly and computed an average. Each

time, we change the percentage of creating an independent region. We run the tool 10

times for each input data varying the probability of creating an independent region between

50 and 60 %. Then, we calculated the average of these runs.

We fed the tool with input data of different size ranges of BM and FM. The behavioral

models vary from 13 states and 15 transitions to 50 states and 60 transitions while the fault

trees vary from five leaves to 19 leaves as shown in Table 12. The fault tree is constructed

of leaves which denote the number of input events to the fault tree and different types and

numbers of gates, AND (0–6) gates, OR (1–10) gates, XOR (0–6) gates, and Timing gates

(0–4) gates. The AND gate includes AND gate, Priority AND gate, and Inhibit gate.

We assume that the behavioral model is connected, and no part of is isolated; therefore,

the number of transitions must not be less than the number of states �1. We also assumed

that the fault tree is a binary tree where the number of gates equals the number of leaf

nodes �1. The timing gates, however, are excluded from this calculation because they take

only one event and they appear only at the leaf nodes. However, we need to consider them

to calculate the number of states and transitions of our integrated model, the ICEFSM. We

assume that every behavioral model is integrated with every fault model. Therefore, the

Table 11 Comparison

System BM FM CEFSMs EFSMs

S T leaves AND OR XOR Timing S T S T

GB 13 15 5 3 1 0 2 27 55 79 162

RRC 14 19 8 2 5 0 0 28 70 303 514

LV 21 39 14 0 10 0 0 41 117 4316 8335

S state, T transition, timing = timing gates

38 Software Qual J (2018) 26:3–48

123

Table 12 Simulation data and results

BM FM CEFSMs EFSMs

S T Leaves AND OR XOR Timing S T Avg (S) Avg (T)

13 15 5 3 1 0 2 27 55 79 162

13 15 7 3 2 1 1 28 64 178 304

13 15 8 2 5 0 0 27 66 263 416

13 15 14 0 10 0 0 33 93 2672 3280

13 15 19 6 5 6 4 59 158 18264 21342

13 17 5 3 1 0 2 27 57 79 174

13 17 7 3 2 1 1 28 66 178 332

13 17 8 2 5 0 0 27 68 263 456

13 17 14 0 10 0 0 33 95 2672 3691

13 17 19 6 5 6 4 59 160 18264 24152

15 19 5 3 1 0 2 29 59 92 197

15 19 7 3 2 1 1 30 68 206 374

15 19 8 2 5 0 0 29 70 303 514

15 19 14 0 10 0 0 35 97 3083 41335

15 19 19 6 5 6 4 61 162 21074 27003

17 18 5 3 1 0 2 31 58 104 202

17 18 7 3 2 1 1 32 67 233 376

17 18 8 2 5 0 0 31 69 343 5115

17 18 14 0 10 0 0 37 96 3494 3958

17 18 19 6 5 6 4 63 161 23883 25640

19 19 5 3 1 0 2 33 59 116 219

19 19 7 3 2 1 1 34 68 260 405

19 19 8 2 5 0 0 33 70 384 549

19 19 14 0 10 0 0 39 97 3905 4194

19 19 19 6 5 6 4 65 162 26693 27086

21 39 5 3 1 0 2 35 79 128 352

21 39 7 3 2 1 1 36 88 288 694

21 39 8 2 5 0 0 35 90 424 971

21 39 14 0 10 0 0 41 117 4316 8335

21 39 19 6 5 6 4 67 182 29503 55225

30 40 5 3 1 0 2 44 80 183 408

30 40 7 3 2 1 1 45 89 411 777

30 40 8 2 5 0 0 44 91 606 1069

30 40 14 0 10 0 0 50 118 6165 8677

30 40 19 6 5 6 4 76 183 42147 56817

40 45 5 3 1 0 2 54 85 244 493

40 45 7 3 2 1 1 55 94 548 921

40 45 8 2 5 0 0 54 96 808 1257

40 45 14 0 10 0 0 60 123 8220 9858

40 45 19 6 5 6 4 86 188 56196 64049

50 60 5 3 1 0 2 64 100 305 639

50 60 7 3 2 1 1 65 109 685 1204

Software Qual J (2018) 26:3–48 39

123

simulator calculates the size (states and transitions) of the integrated model of every

behavioral model with every fault model as inputs.

We started with the relatively small behavioral model (GB) with 13 states and 15

transitions. This model is integrated with different fault trees as shown in Table 12. We can

see that the number of states and transitions of the integrated model of the EFSM approach

grows exponentially. The number of the states produced by our integration approach grows

from 21 to 59, and the number of transitions grows from 41 to 137, whereas the number of

states produced by the EFSM integration approach grows on average from 79 to 70,245

and transitions from 162 to 85,330. It is very clear that the numbers of the states and

transitions of both approaches are quite different.

Table 12 shows that even for the larger BMs and larger fault trees with more leaves, our

approach produces integrated models of efficient sizes, while the approach by Sánchez et al.

very quickly reaches scalability limits. Figures 36, 37, 38, and 39 show the growth of the

integratedmodels as a function of the number of leaves in the fault tree.While Sánchez et al.’s

approach is highly affected by the number of leaves in the fault tree, our approach is not.

Figure 39 represents the (50 states and 60 transitions) model. We can clearly notice that

the trend of the curves in Figs. 36 and 39 is the same. The only difference is the number of

states and transitions which depends on the size of the behavioral and the fault models.

5.5 Scalability of CEFSM approach

Our approach used CEFSMs to integrate the fault model with the behavioral model. For

small behavioral models, integrating the FTs makes a large difference in the integrated

model because of the FT’s relatively large size compared to the size of the behavioral

model. Although the growth of integrating small behavioral models with FTs seems rel-

atively large compared to the behavioral model, it does not mean that the integrated model

is really large. In fact, it may be even smaller than other large behavioral models. However,

for large behavioral models, the increase in the size of the integrated model is relatively

small when many or a large FT is integrated.

6 Conclusion and future work

This paper describes a testing technique that allows testing of safety-critical systems and

evaluating its scalability. We defined a test generation framework that takes a behavioral

and a fault model, transforms the fault model, and integrates it with the behavioral model.

The integrated model can then be used with a variety of test criteria to generate tests. We

Table 12 continued

BM FM CEFSMs EFSMs

S T Leaves AND OR XOR Timing S T Avg (S) Avg (T)

50 60 8 2 5 0 0 64 111 1010 1648

50 60 14 0 10 0 0 70 138 10275 13093

50 60 19 6 5 6 4 96 203 70245 85330

S state, T transition, timing= timing gates, Avg (S) = the average of the number of states, and Avg (T) the
average of the number of transitions of 10 runs

40 Software Qual J (2018) 26:3–48

123

provided a specific set of transformation and integration rules for a CEFSM as a behavioral

model and a fault tree as a fault model. The key to this integration was compatibility in

naming events and conditions for event occurrence. While one might be tempted to skip

FTA and include the fault information ‘‘ad hoc’’ in the CEFSM directly, this is unsys-

tematic and error-prone. It also fails to provide a proper FTA, an important part of

developing safety-critical systems. Model scalability is also investigated in this paper. To

this end, we developed a tool that estimates the number of states and transitions both for

Fig. 36 EFSM and CEFSM approaches model growth for 13 S and 15 T behavioral model

Fig. 37 EFSM and CEFSM approaches model growth for 15 S and 19 T behavioral model

Software Qual J (2018) 26:3–48 41

123

our approach and Sánchez and Felder (2003) approach. We then compared model sizes and

investigated scalability. We clearly showed that our approach is more scalable.

Future work includes providing a testing approach for testing proper mitigation and a

selective regression testing approach when there are changes to the behavioral model or the

fault model.

Acknowledgments This work was partially supported by NSF Grant Numbers 0934413, 1127947, and
1332078.

Fig. 39 EFSM and CEFSM approaches model growth for 50 S and 60 T behavioral model

Fig. 38 EFSM and CEFSM approaches model growth for 21 S and 39 T behavioral model

42 Software Qual J (2018) 26:3–48

123

Appendix

INHIBIT gate

INHIBIT is similar to the AND gate. They have the same states and transitions. The only

difference is that the predicate for the transitions T2 and T3 should include the enabling

condition. We do not need to have a separate gate representation for NOT gate since we

can express it in any predicate. If we want to negate any event, we can use the NOT logical

operator inside the gate that the negated event is one of its inputs.

XOR gate

This gate is slightly different from the AND gate, although it has the same structure and

same number of transitions and states. At this gate, it is necessary to distinguish between

the event that has not occurred in the first place and the one whose status is false. The

representation of GCEFSM XOR gate is shown in Fig. 40. T0 to T3 are the possible

transitions that may be taken based on their predicates.

T0 : ðS0; ½NoOfOccurredEvents ¼
0&ej:eOccurrence ¼ true�; getðmjÞÞ=ðS0; updateðeventsÞÞ
T1 : ðS0; ½NoOfOccurredEvents ¼
1&ej:eOccurrence ¼ true&xorðeventsÞ ¼ false�; getðmjÞÞ=ðS0; updateðeventsÞ;�Þ
T2 : ðS0; ½NoOfOccurredEvents ¼ 1&ej:eOccurrence ¼ true&xorðeventsÞ ¼
true�; getðmjÞÞ=ðS1; updateðeventsÞ; SendðgateOccurredÞÞ
T3 : ðS1; ½inputStatusChanged
ðejÞ ¼ true�; getðmjÞÞ=ðS0; updateðeventsÞ; SendðgatenotoccurredÞÞ

Timing an event gate

FT gates such as AND, OR, and INHIBIT are well defined and can be syntactically

represented. Events in FT can be simple or composed. A composed event can be

decomposed further to simple events or a timed simple event. A timed simple event is the

simple event that should occur for a specific period of time to contribute to a hazard.

However, FT has no timing gates. Therefore, we need to have a representation that can

handle the timing issue (either a minimum or maximum timing). A CEFSM can be sup-

plemented with timers and timer-related operations. A timer is set with a time value during

a transition. If the timer is not canceled by the CEFSM, the timer will generate a time

expiration signal after the time period has been exceeded (Byun et al. 2001, 2002; Byun

2003; Byun and Sanders 2005, 2006). Thus, we introduce this gate that can time an event

and the gate in the subsection 7 that deals with the timing intervals. This gate works as

follows. Upon receiving a message that indicates the occurrence of the event, the transition

Fig. 40 XOR gate representation in FT and GCEFSM

Software Qual J (2018) 26:3–48 43

123

T0 takes place which starts the timer. When the time expires and no further ‘‘gate not

occurred’’ message was received that indicates that the event is no longer happening, the

transition T2 is taken and sends a ‘‘gate occurred’’ message. Otherwise, the gate does not

occur. T2 is taken when the event status ei.eStatus changes to false.

T0 : ðS0; ½ej:eStatus ¼ true�; getðmjÞÞ=ðS1; setTimerðv; TimeriÞ;�Þ
T1 : ðS1; time� outÞ=ðS2;�; SendðGateOccurredÞÞ
T2 : ðS1; ej:eStatus ¼ false�; getðmjÞÞ=ðS0; resetðTimeriÞ; updateðeventsÞÞ
T3 : ðS2; ei:eStatus
¼ false�; getðmiÞÞ=ðS0; resetðTimeriÞ; updateðeventsÞ; SendðGateNotOccurredÞÞ

Timing an event for continuous intervals gate

Some event may need to be timed for continuous intervals. For example, we may need to

observe an occurrence of an event every consecutive 5 sec as long as the system is

operational. Fig. 42 shows that as long as the transition T0 is fired and T2 was not, the event

will be timed for fixed consecutive amounts of time and it keeps timing until the status of

the event ei:eStatus changes to false. Upon receiving this event change, the transition T3 to

the state S1 is fired sending out a ‘‘gate not occurred’’ message.

T0 : ðS0; ½ej:eStatus ¼ true�; getðmjÞÞ=ðS1; setTimerðv; TimeriÞ; SendðGateOccurredÞÞ
T1 : ðS1; time� outÞ=ðS2;�; SendðGatenotOccurredÞÞ
T2 : ðS1; ½ej:eStatus ¼ false�; getðmjÞÞ=ðS0; resetðTimeriÞ; SendðGateNotOccurredÞÞ
T3 : ðS2; setTimerðv; TimeriÞÞ=ðS1;�; SendðGateOccurredÞÞ

References

Amberkar, S., Murray, M. T., Demerly, J. D., D’Ambrosio, J. G., & Czerny, B. J. (2001). A comprehensive
hazard analysis technique for safety-critical automotive systems.

Angeletti, D., Giunchiglia, E., Narizzano, M., Puddu, A., & Sabina, S. (2009). Automatic test generation for
coverage analysis of ERTMS software. In International Conference on Software Testing Verification
and Validation, 2009. ICST ’09 (pp. 303–306). Washington, DC, USA.

Bobbio, A., Portinale, L., Minichino, M., & Ciancamerla, E. (2001). Improving the analysis of dependable
systems by mapping fault trees into bayesian networks. Reliability Engineering and System Safety,
71(3), 249–260.

Fig. 41 Event timer GCEFSM

Fig. 42 Timing continuous intervals GCEFSM

44 Software Qual J (2018) 26:3–48

123

Boroday, S., Petrenko, A., Groz, R., & Quemener, Y. M. (2002). Test generation for CEFSM combining
specification and fault coverage. In Proceedings of the IFIP 14th International Conference on Testing
Communicating Systems XIV, TestCom ’02 (pp. 355–372). Deventer: Kluwer, B.V.

Boudali, H., & Dugan, J. B. (2005). A discrete-time bayesian network reliability modeling and analysis
framework. Reliability Engineering and System Safety, 87, 337–349.

Bourhfir, C., Aboulhamid, E., Dssouli, R., & Rico, N. (2001). A test case generation approach for con-
formance testing of SDL systems. Computer Communications, 24(3–4), 319–333.

Bourhfir, C., Dssouli, R., Aboulhamid, E. M., & Rico, N. (1998). A guided incremental test case generation
procedure for conformance testing for CEFSM specified protocols. In Proceedings of the IFIP TC6
11th International Workshop on Testing Communicating Systems, IWTCS (pp. 275–290). Deventer:
Kluwer, B.V.

Bourhfir, C., Dssouli, R., Aboulhamid, M., & Rico, N. (1999). A test case generation tool for conformance
testing of SDL systems. In SDL forum (pp. 405–420).

Brand, D., & Zafiropulo, P. (1983). On communicating finite-state machines. Journal of ACM, 30(2),
323–342.

Buchacker, K., & Friedrich Alexander Universitht, I. (1999). Combining fault trees and petri nets to model
safety-critical systems. In Society for Computer Simulation International (pp. 439–444).

Byun, Y. (2003). Pattern-based design and validation of communication protocols. Ph.D. thesis, University
of Florida, Gainesville, FL, USA.

Byun, Y., Beverly, S., & Chung, K. (2002). A pattern language for communication protocols. In Pro-
ceedings of the 9th Conference on Pattern Languages of Programs (PLoP).

Byun, Y., & Sanders, B. A. (2005). A pattern-based development methodology for communication proto-
cols. In Hisham Haddad, Lorie M. Liebrock, Andrea Omicini, & Roger L. Wainwright, (Eds.) SAC (pp.
1524–1528). ACM.

Byun, Y., & Sanders, B. A. (2006). A pattern-based development methodology for communication proto-
cols. Journal of Information Science and Engineering, 22(2), 315–335.

Byun, Y., Sanders, B. A., & Keum, C. (2001). Design patterns of communicating extended finite state
machines in sdl. In In proceedings of the 8th Conference on Pattern Languages if Programs.

Cheng, K. T., & Krishnakumar, K. S. (1993). Automatic functional test generation using the extended finite
state machine model. In 30th Conference on Design Automation (pp. 86–91).

Czerny, B. J., Ambrosio, J. G., Murray, B. T., & Sundaram, P. (2005) Effective application of software
safety techniques for automotive embedded control systems. Engineering, 1(724).

Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C. M., Patton, G.C., et al. (1999). Model-based
testing in practice. In ICSE (pp. 285–294).

Ek, A., Grabowski, J., Hogrefe, D., Jerome, R., Koch, B., & Schmitt II, M. (1997). Towards the industrial
use of validation techniques and automatic test generation methods for SDL specifications. In SDL
forum (pp. 245–260).

El Ariss, O., Xu, D., & Wong, W. E. (2011). Integrating safety analysis with functional modeling. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 41(4), 610–624.

Ericson, C. A. (2005). Hazard analysis techniques for system safety. New Jersey: wiley-interscience.
Flammini, F., Marrone, S., Iacono, M., Mazzocca, N., & Vittorini, V. (2014). A multiformalism modular

approach to ERTMS/ETCS failure modeling. International Journal of Reliability, Quality and Safety
Engineering, 21(01), 1–29.

Flammini, F., Mazzocca, N., Iacono, M., & Marrone, S. (2005). Using repairable fault trees for the eval-
uation of design choices for critical repairable systems. In Proceedings of the Ninth IEEE International
Symposium on High-Assurance Systems Engineering, HASE ’05 (pp. 163–172). Washington, DC,
USA, 2005. IEEE Computer Society.

France, R., & Rumpe, B. (2007). Model-driven development of complex software: A research roadmap. In
2007 future of software engineering, FOSE ’07 (pp. 37–54). Washington, DC: IEEE Computer Society.

Garavel, H., Helmstetter, C., Ponsini, O., & Serwe, W. (2009). Verification of an industrial systemC/TLM
model using LOTOS and CADP. In MEMOCODE (pp. 46–55).

Garavel, H., Lang, F., Mateescu, R., & Serwe, W. (2013). CADP 2011: a toolbox for the construction and
analysis of distributed processes. The International Journal on Software Tools for Technology Transfer
(STTT), 15(2), 89–107.

Garavel, H., Mateescu, R., & Serwe, W. (2013). Large-scale distributed verification using CADP: Beyond
clusters to grids. Electronic Notes Theory Computer Science, 296, 145–161.

Gario, A. (2014). Fail-Safe testing of safety-critical systems. PhD thesis, University of Denver, Denver, CO,
USA, 11.

Gario, A., & Andrews, A. (2014). Fail-safe testing of safety-critical systems. In Software Engineering
Conference (ASWEC), 2014 23rd Australian (pp. 190–199). IEEE.

Software Qual J (2018) 26:3–48 45

123

Gario, A., Andrews, A., & Hagerman, S. (2014). Testing of safety-critical systems: An aerospace launch
application. In Aerospace Conference, 2014 IEEE (pp. 1–17). IEEE.

Ghazel, M. (2014). Formalizing a subset of ERTMS/ETCS specifications for verification purposes.
Transportation Research Part C: Emerging Technologies, 42, 60–75.

Di Giorgio, A., & Liberati, F. (2011). Interdependency modeling and analysis of critical infrastructures
based on dynamic bayesian networks. In 19th Mediterranean Conference on Control Automation
(MED), 2011 (pp. 791–797).

Henniger, O., Lu, M., & Ural, H. (2004). Automatic generation of test purposes for testing distributed
systems. In Alexandre Petrenko & Andreas Ulrich (Eds.), Formal approaches to software testing (Vol.
2931, pp. 1105–1105). Lecture Notes in Computer Science Berlin/Heidelberg: Springer.

Hessel, A., & Pettersson, P. (2007). A global algorithm for model-based test suite generation. Electronic
Notes in Theoretical Computer Science, 190(2), 47–59.

Kaiser, B. (2003). A fault-tree semantics to model software-controlled systems. Softwaretechnik-Trends,
23(3), 33–39.

Kaiser, B. (2005). Extending the expressive power of fault trees. In Proceedings on Reliability and
Maintainability Symposium, 2005 (pp. 468–474). Alexandria, Virginia.

Kaiser, B., Gramlich, C., & Förster, M. (2007). State/event fault trees—A safety analysis model for soft-
ware-controlled systems. Reliability Engineering and System Safety, 92(11), 1521–1537.

Kaiser, B., Liggesmeyer, P., & Mäckel, O. (2003). A new component concept for fault trees. In Proceedings
of the 8th Australian workshop on Safety critical systems and software, volume 33 of SCS ’03 (pp.
37–46). Darlinghurst: Australian Computer Society Inc.

Keller, R. M. (1976). Formal verification of parallel programs. Communications of the ACM, 19(7),
371–384.

Kim, H., Wong, W. E., Debroy, V., & Bae, D. (2010). Bridging the gap between fault trees and UML state
machine diagrams for safety analysis. In 17th Asia Pacific Software Engineering Conference (APSEC)
(pp. 196–205).

Kloos, J., Hussain, T., & Eschbach, R. (2011). Risk-based testing of safety-critical embedded systems driven
by fault tree analysis. In IEEE International Conference on Software Testing Verification and Vali-
dation Workshop (ICSTW 2011) (pp. 26–33). Los Alamitos, CA: IEEE Computer Society.

Kovács, G., Pap, Z., & Csopaki, G. (2002). Automatic test selection based on CEFSM specifications. Acta
Cybernet, 15(4), 583–599.

Leaphart, E. G., Czerny, B. J., Ambrosio, J. G. D., Denlinger, C. L., & Littlejohn, D. (2005). Survey of
software failsafe techniques for safety-critical automotive applications. Engineering, 1(724).

Lee, D., & Yannakakis, M. (1996). Principles and methods of testing finite state machines- a survey.
Proceedings of the IEEE, 84(8), 1090–1123.

Leveson, N. G., & Harvey, P. R. (1983). Analyzing software safety. IEEE Transactions on Software
Engineering, SE–9(5), 569–579.

Li, J. J., & Wong, W. E. (2002). Automatic test generation from communicating extended finite state
machine (CEFSM)-based models. In Fifth IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2002) Proceedings (pp. 181–185).

Marrone, S., Flammini, F., Mazzocca, N., Nardone, R., Vittorini, V. (2014). Towards model-driven V&V
assessment of railway control systems. International Journal on Software Tools for Technology
Transfer (pp. 669–683).

Medikonda, B. S., Ramaiah, P. S., & Gokhale, A. A. (2011). FMEA and fault tree based software safety
analysis of a railroad crossing critical system. Global Journal of Computer Science and Technology
GJCST, 11, 57–62.

Montani, S., Portinale, L., Bobbio, A., & Codetta-Raiteri, D. (2008). Radyban: A tool for reliability analysis
of dynamic fault trees through conversion into dynamic bayesian networks. Reliability Engineering
and System Safety, 93(7), 922–932.

Nazier, R., & Bauer, T. (2012). Automated risk-based testing by integrating safety analysis information into
system behavior models. In IEEE 23rd International Symposium on Software Reliability Engineering
Workshops (ISSREW) (pp. 213–218).

Ortmeier, F., Güdemann, M., & Wolfgang, R. (2007). Formal failure models. In Proceedings of the 1st IFAC
Workshop on Dependable Control of Discrete Systems (DCDS 07). Elsevier.

Petricic, A., Crnkovic, I., & Zagar, M. (2008). Models transformation between UML and a domain specific
language. In Eight Conference on Software Engineering Research and Practice in Sweden (SERPS 08).

Petricic, A., Lednicki, L., & Crnkovic, I. (2009). Using UML for domain-specific component models. In
Proceedings of the 14th International Workshop on Component-Oriented Programming.

46 Software Qual J (2018) 26:3–48

123

Raiteri, D. C., Franceschinis, G., Iacono, M., & Vittorini, V. (2004). Repairable fault tree for the automatic
evaluation of repair policies. In 2004 International Conference on Dependable Systems and Networks
(pp. 659–668).

Sánchez, M., & Felder, M. (2003). A systematic approach to generate test cases based on faults. In Argentine
Symposium in Software Engineering, Buenos Aires, Argentina.

Savage, P., Walters, S., & Stephenson, M. (1997). Automated test methodology for operational flight
programs. In Aerospace Conference, 1997. Proceedings, IEEE (Vol. 4, pp. 293–304).

Sinha, A., & Smidts, C. (2006). An experimental evaluation of a higher-ordered-typed-functional specifi-
cation-based test-generation technique. Empirical Software Engineering, 11(2), 173–202.

Teradyne Software and Systems Test, (1999). Testmaster: User’s guide. New Hampshire: Empirix Inc.
Tretmans, J. (2008). Model based testing with labeled transition systems. In Formal methods and testing (pp.

1–38).
Tribble, A. C., & Miller, S. P. (2004). Software intensive systems safety analysis. IEEE Aerospace and

Electronic Systems Magazine, 19(10), 21–26.
Utting, M., & Legeard, B. (2007). Practical model-based testing: A tools approach. San Francisco, CA:

Morgan Kaufmann Publishers Inc.
VASY. CADP (Caesar/Aldebaran Development Package). http://cadp.inria.fr/
Vesely, W., Dugan, J., Fragola, J., Minarick, & Railsback, J. (2002). Fault tree handbook with aerospace

applications. Washington, DC: Handbook, National Aeronautics and Space Administration.
Vaos, J. M., & McGraw, G. (1998). Software fault injection: Inoculating programs against errors. New

Jersey: Wiley Computer Pub.
Wada, H., Suzuki, J., & Takada, S. (2005). A model transformation framework for domain specific lan-

guages: An approach using UML and attribute-Oriented programming. In In Proceedings of the 9th
World Multi-Conference on Systemics, Cybernetics and Informatics.

Wang, D., & Pan, J. (2010). An optimization to automatic fault tree analysis and failure mode and effect
analysis approaches for processes. In 2010 International Conference on Computer Design and
Applications (ICCDA) (Vol. 3, pp. 153–157).

Xiang, J., Futatsugi, K., & He, Y. (2004). Formal fault tree construction and system safety analysis. In
IASTED Conference on Software Engineering (pp. 378–384).

Ahmed Gario received his BSc, MSc, and PhD degrees in computer
science from Tripoli University, Tripoli, Libya; Concordia University,
Montreal, Canada; and University of Denver, Denver, CO, USA,
respectively. His current research interests include software safety and
software testing.

Software Qual J (2018) 26:3–48 47

123

http://cadp.inria.fr/

Anneliese Andrews is Professor of Computer Science at the Univer-
sity of Denver. Before joining the University of Denver, she held the
Huie Rogers Endowed Chair in Software Engineering and served as
Associate Director of the School of Electrical Engineering and Com-
puter Science at Washington State University. Dr. Andrews is the
author of a text book and over 200 articles in the area of Software and
Systems Engineering, particularly software testing, system quality, and
reliability. Dr. Andrews holds an MS and PhD from Duke University
and a Dipl.-Inf. from the Technical University of Karlsruhe. She
served as Editor in Chief of the IEEE Transactions on Software
Engineering. She has also served on several other editorial boards
including the IEEE Transactions on Reliability, the Empirical Software
Engineering Journal, the Software Quality Journal, the Journal of
Information Science and Technology, and the Journal of Software
Maintenance. Dr. Andrews is currently the DU site Director of a NSF
Industry/University Collaborative Research Center for Safety, Secu-

rity, Search, and Rescue.

Seana Hagerman is a PhD candidate at the University of Denver. The
focus of her research is on security testing autonomous systems using
model-based test methodologies. She has 15 years of experience in
software engineering in the aerospace industry. She holds a BS in
Computer Science from Colorado Mesa University and an MS in
Computer Science from the University of Denver.

48 Software Qual J (2018) 26:3–48

123

	Fail-safe testing of safety-critical systems: a case study and efficiency analysis
	Abstract
	Introduction
	Background and related work
	Communicating extended finite-state machines (CEFSMs)
	Fault modeling and analysis
	Integration of safety analysis and behavioral models
	Safety analysis
	Safety testing

	Approach
	Test generation process
	Behavioral model: communicating EFSM (CEFSM)
	Fault tree (FT)
	Compatibility transformation
	FTvprime model transformation
	Transformation rules
	AND gate
	Priority AND gate
	OR gate
	Transformation procedure

	Model integration
	Test case generation from CEFSM model
	Tool support

	Application: aerospace launch system
	Description of launch system
	Launch system failure
	Compatibility transformation step
	Fault tree transformation
	Model integration

	Scalability
	Comparison of case studies
	Simulation with increasing size
	In CEFSM
	For EFSM in Sánchez and Felder (2003)
	Scalability of CEFSM approach

	Conclusion and future work
	Acknowledgments
	Appendix
	INHIBIT gate
	XOR gate
	Timing an event gate
	Timing an event for continuous intervals gate

	References

