
Assessing vulnerability exploitability risk using software
properties

Awad Younis1 • Yashwant K. Malaiya1 • Indrajit Ray1

Published online: 27 March 2015
� Springer Science+Business Media New York 2015

Abstract Attacks on computer systems are now attracting increased attention. While the

current trends in software vulnerability discovery indicate that the number of newly dis-

covered vulnerabilities continues to be significant, the time between the public disclosure

of vulnerabilities and the release of an automated exploit is shrinking. Thus, assessing the

vulnerability exploitability risk is critical because this allows decision-makers to prioritize

among vulnerabilities, allocate resources to patch and protect systems from these vul-

nerabilities, and choose between alternatives. Common vulnerability scoring system

(CVSS) metrics have become the de facto standard for assessing the severity of vul-

nerabilities. However, the CVSS exploitability measures assign subjective values based on

the views of experts. Two of the factors in CVSS, Access Vector and Authentication, are

the same for almost all vulnerabilities. CVSS does not specify how the third factor, Access

Complexity, is measured, and hence it is unknown whether it considers software properties

as a factor. In this work, we introduce a novel measure, Structural Severity, which is based

on software properties, namely attack entry points, vulnerability location, the presence of

the dangerous system calls, and reachability analysis. These properties represent metrics

that can be objectively derived from attack surface analysis, vulnerability analysis, and

exploitation analysis. To illustrate the proposed approach, 25 reported vulnerabilities of

Apache HTTP server and 86 reported vulnerabilities of Linux Kernel have been examined

at the source code level. The results show that the proposed approach, which uses more

detailed information, can objectively measure the risk of vulnerability exploitability and

results can be different from the CVSS base scores.

& Awad Younis
younis@cs.colostate.edu

Yashwant K. Malaiya
malaiya@cs.colostate.edu

Indrajit Ray
indrajit@cs.colostate.edu

1 Computer Science Department, Colorado State University, 1873 Campus Delivery, Fort Collins,
CO 80523-1873, USA

123

Software Qual J (2016) 24:159–202
DOI 10.1007/s11219-015-9274-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9274-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9274-6&domain=pdf

Keywords Risk assessment � Software vulnerability � Software security metrics �
Attack surface � CVSS metrics � Source code analysis

1 Introduction

Security of the computer systems and networks depend on the security of software running

on them. Many of the attacks on computer systems and networks are due to the fact that

attackers try to potentially compromise these systems by exploiting vulnerabilities present

in the software. Recent trends have shown that newly discovered vulnerability still con-

tinues to be significant (?8000 vulnerabilities in 2012–2013) (National Vulnerability

Database 2013) and so does the number of attacks (?37 million attacks in 2012–2013)

(Ponemon Institute (2013)). Studies have also shown that the time gap between the vul-

nerability public disclosure and the release of an automated exploit is getting smaller (Frei

et al. 2008). Therefore, assessing the risk of exploitation associated with software vul-

nerabilities is needed to aid decision-makers to prioritize among vulnerabilities, allocate

resources, and choose between alternatives.

A security metric is a quantifiable measurement that indicates the level of security for an

attribute of a system (Jansen 2009). Security metrics give a way to prioritize threats and

vulnerabilities by considering the risks they pose to information assets based on quanti-

tative or qualitative measures. The metrics proposed include: vulnerability density, attack

surface, flaw severity and severity-to-complexity, security scoring vector for web appli-

cations, and CVSS metrics. Each of them is based on specific perspectives and assumptions

and measures different attributes of software security. They are intended to objectively

help decision-makers in resource allocation, program planning, risk assessment, and pro-

duct and service selection.

CVSS is the de facto standard that is currently used to measure the severity of individual

vulnerabilities (Mell et al. 2007). CVSS base score measures severity based on the ex-

ploitability (the ease of exploiting a vulnerability) and impact (the effect of exploitation).

The base score is rounded to one decimal place, and it is set to zero if the impact is equal to

zero regardless of the formula. Exploitability is assessed based on three metrics: Access

Vector (AV), Authentication (AU), and Access Complexity (AC) as shown by the

following:

Exploitability ¼ 20� AV� AU� AC

The AV metric reflects how the vulnerability is exploited in terms of local (L), adjacent

network (A), or network (N). The AC metric measures the complexity of the attack

required to exploit the vulnerability (once an attacker has gained access to the target

system) in terms of high (H), medium (M), or low (L). The AU metric counts the number

of times an attacker must authenticate to reach a target (in order to exploit a vulnerability)

in terms of multiple (M), single (S), or none (N).

However, CVSS exploitability metrics have the following limitations. First, they as-

sign static subjective numbers to the metrics based on expert knowledge regardless of the

type of vulnerability. For instance, they assign AV 0.395 if the vulnerability requires

local access, 0.646 if the vulnerability requires adjacent network access, and 1 if the

vulnerability requires global network access. Second, two of its factors (AV and AU)

have the same value for almost all vulnerabilities (Allodi and Massacci 2013). Third,

160 Software Qual J (2016) 24:159–202

123

there is no formal procedure for evaluating the third factor (AC) (Mell et al. 2007).

Consequently, it is unclear whether CVSS considers the software structure and properties

as a factor.

On the other hand, the impact subscore measures how vulnerability will directly affect

an IT asset as the degree of losses in Confidentiality (IC), Integrity (II), and Availability

(IA). The impact subscores are all assessed in terms of None (N), Partial (P), or Complete

(C) by security experts and assigned one of the mentioned qualitative letter grades. Thus,

there is a need for an approach that can take into account detailed information about the

access complexity and the impact factors for less subjective exploitability measures.

1.1 Problem description and research motivation

The risk of vulnerability exploitability is dependent upon two factors: Exploitability and

Impact, as expressed in:

Exploitation risk = f Exploitability, Impactð Þ

The first factor, Exploitability, is the likelihood that a potential vulnerability can be

successfully exploited. This factor concerns the question ‘‘Is the vulnerability ex-

ploitable?’’ The other factor, Impact, measures the losses that occur given a successful

exploitation. This factor is related to the question ‘‘Which is the most exploitable

vulnerability?’’

There are challenges in assessing the exploitation risk that are needed to be addressed.

In this work, we look into the major challenges in assessing the exploitability factor, and

identify key questions that need to be addressed. Then, we discuss the challenges in

assessing the impact factor and also identify a key question that is required to be tackled.

To guide our analysis of the problem and to ensure that our solution is guided by recog-

nized criteria, we used two guides from National Institute of Standards and Technology

(NIST) namely: the Risk Management Guide for Information Technology Systems (Jansen

2009) and Directions in Security Metrics Research Report (Stoneburner et al. 2002).

Table 1 Limitations of exploitability estimators

Exploitability estimator Limitations

1. Existence of an exploit The data required to measure this attribute are not always
available

2. Existence of a patch The existence of a patch does not tell whether it has been applied
or not because the study (Arbaugh et al. 2000) shows patches’
application depends on the administrators’ behavior

3. Number of vulnerabilities and
number of attack entry points

These estimators are not informative as they do not specify which
vulnerability is exploitable and rather they estimate the
exploitability of the whole system

4. Exploit Kit in the black market This approach requires a vulnerability intelligence provider, as the
information about the attacks and tools are dynamic in nature.
Moreover, if the vulnerability right now is not used by a tool or
it is not a target of an attack, it does not mean that it is going to
be so continually

5. Proof of concept It is difficult and time consuming to generate a reliable exploit

Software Qual J (2016) 24:159–202 161

123

1.1.1 Exploitability factor

There are three main challenges when it comes to assessing the exploitability factor. They

are explained as follows.

(a) Exploitability Estimators:

The main challenge is determining the estimator (attribute) to be used in assessing ex-

ploitability factor. There are a number of estimators such as: existence of exploits, existence

of patches, number of vulnerabilities, number of attack entry points, exploit kits in the black

market, and proof of concept. Which one of those makes a good estimator of exploitability?

To answer this question, let us look at every one of those estimators. As is summarized in

Table 1, each of the estimators assesses exploitability from a specific perspective and has its

own limitations. Thus, a good estimator should have the following characteristics: it should

be measurable, it should not be expensive to obtain, and it should be obtained objectively.

(b) Evaluation of the Measures:

The next challenge is evaluating the exploitability estimators. Obtaining the measures

can be achieved by using security expert opinions, one of the estimators mentioned above,

or the software structure. Relying on expert opinions leads to subjectivity and can po-

tentially hinder the accuracy of the assessment. The challenge is: How can we reduce

subjectivity and minimize human involvement in exploitation assessment? On the other

hand, the data regarding reported vulnerabilities or exploits are not always available

especially for newly released software. Thus, the question is: How can the risk of ex-

ploitation be assessed in the absence of historical data? The alternative could be using the

software code. However, in that case, the challenges would be: What type of features can

be used as an indicator of vulnerability exploitability? How can these features be objec-

tively derived? These questions are addressed in this paper.

(c) Level of Assessment:

A further challenge is deciding on the level of assessment that the exportability should

be assessed at. Should we assess exploitability for each individual vulnerability or the

whole software? Assessing the vulnerability exploitability at the software level is not

informative as it assumes that all vulnerabilities have the same risk of exploitation. This is

unrealistic as different vulnerabilities have different risk of exploitation. Thus, assessing

the exploitation risk at the individual vulnerability level needs to be done first. Thereafter,

we can combine risk value of each individual vulnerability and get the total risk of

exploitation for the whole system.

1.1.2 Impact factor

Estimating the impact factor is challenging because it is context dependent. For instance, a

shutdown of a mission critical server may be more ‘‘severe’’ than a print server. Manadhata

and Wing (2011) introduced two types of impacts: Technical impact (e.g., privilege

elevation) and Business impact (e.g., monetary loss). While the latter depends on the

mission and the priority of the given context, the former can be estimated at a function

level. For the technical impact the key question is: What estimators should be used to

determine the technical impact? The answer could be any one of these estimators: function

privilege, existence of dangerous system calls, presence of authentication, or presence of

exploit mitigation. These estimators are explained as follows:

162 Software Qual J (2016) 24:159–202

123

• The higher the privilege of a function (e.g., root), the more damage is going to be.

• Having a dangerous system call (e.g., open) in an entry point can help the attackers

escalate their privileges and hence can cause more damage to the compromised system.

• An authentication procedure along the attack path to the vulnerable location makes

exploiting a vulnerability harder and hence reducing the impact.

• Exploit mitigation reduces the impact of a vulnerability exploitation.

1.2 Research objectives and contribution

The main objective of this research is to propose an approach that can address the chal-

lenging questions discussed in the problem description. We mainly focus on reducing

subjectivity in assessing vulnerability exploitation risk. To that end, we base our analysis

on software properties. These properties represent measures that can objectively be derived

from the source code using the attack surface analysis, the vulnerability analysis, and the

exploitation analysis, irrespective of the level of security knowledge one has. Our proposed

measure evaluates vulnerability exploitability based on the presence of a function call

connecting attack surface entry points to the vulnerability location within the software

under consideration. If such a call exists, we estimate how likely an entry point is going to

be used in an attack based on the presence of the dangerous system calls. The dangerous

system calls paradigm has been considered because they allow attackers to escalate a

function privilege and hence cause more damage.

To determine the effectiveness of the proposed approach, the Apache HTTP server and

Linux Kernel were selected as a case study. The two software systems have been selected

because of: their rich history of publicly available vulnerabilities, availability of an inte-

grated repository (which enables us to map vulnerabilities to their location in the source

code), availability of the source code (which enables us to collect the measures of the

proposed metrics), and their diversity in size and functionalities.

The paper is organized as follows. Section 2 presents the background. In Sect. 3, the key

steps of our approach are introduced. In Sect. 4, the evaluation and the results of the

proposed approach are shown. In the following section, some observations and threats to

validity are presented. Section 6 presents the related work. Finally, concluding comments

are given along with the issues that need further research.

2 Background

In this section, we describe the concepts and terminology related to the vulnerability

exploitation risk. This section provides a brief introduction to software vulnerabilities, the

attack surface metric used in the proposed approach, the system dependence graph used for

reachability analysis, and the exploit databases used to validate the analysis.

2.1 Software vulnerabilities

A software vulnerability is defined as a defect in software systems which presents a consid-

erable security risk (Pfleeger and Pfleeger 2006). A subset of the security-related defects,

vulnerabilities, are to be discovered and become known eventually (Pfleeger and Pfleeger

2006). The vulnerabilities are thus a subset of the defects that are security related. The finders

of the vulnerabilities disclose them to the public using some of the common reporting

mechanisms available in the field. The databases for the vulnerabilities are maintained by

Software Qual J (2016) 24:159–202 163

123

several organizations such as National Vulnerability Database (NVD) (National Vulnerability

Database 2013), Open Source Vulnerability Database (OSVDB) (OSVDB 2014), BugTraq

(SecurityFocus 2015), as well as the vendors of the software. Vulnerabilities are assigned a

unique identifier using MITRE Common Vulnerability and Exposure (CVE) service.

2.2 Attack surface metric

A system’s attack surface is the subset of the system’s resources that are used by an

attacker to attack the system (Manadhata and Wing 2011). This includes the functions that

serve as the entry points and exit points, the set of channels (e.g., sockets), and the set of

untrusted data items (Manadhata and Wing 2011). Entry and exit points can be used by an

attacker to either send or receive data from the system. Channels are the means that are

used by an attacker to connect to the system. Untrusted data items are the data that an

attacker can either send or receive from the system. In this study, we consider the entry

points and the potential paths leading to the functions containing the vulnerabilities.

2.3 System dependence graph

A system dependence graph (SDG) introduced by (Horwitz et al. 1990) is an extension of

the Program dependence graph (PDG) (Ferrante et al. 1987; Horwitz et al. 1990; Kuck

et al. 1972). PDG is a directed graph representation of a program, where vertices represent

program points (e.g., assignment statements, call sites, variables, and control predicates)

that occur in the program and edges represent different kinds of control or data depen-

dencies. An SDG consists of interconnected PDGs (one per procedure in the program) and

extends the control and data dependencies with interprocedural dependencies. An inter-

procedural control-dependence edge connects procedure call sites to the entry points of the

called procedure, and an interprocedural data-dependence edge represents the flow of data

between actual parameters and formal parameters (and return values). A system depen-

dence graph can be used for purposes such as code optimization, reverse engineering,

program testing, program slicing, software quality assurance, and software safety analysis.

This work employs SDG to determine the call sequence among functions in a source code,

which may lead to a potential exploitation.

2.4 Exploit database (EDB)

EDB records exploits and vulnerable software (The Exploits Database 2013). It is used by

penetration testers, vulnerability researchers, and security professionals. It reports vul-

nerabilities for which there is at least a proof-of-concept exploit. EDB is considered as a

regulated market for the exploits. EDB contains around 24075 exploits as the time of

writing this paper. Most of its data are derived from Metasploit Framework, a tool for

creating and executing exploit code against a target machine. It provides a search utility

that uses a CVE number to find vulnerabilities that have an exploit.

3 Approach

Figure 1 shows an overview of our approach for assessing vulnerability exploitability risk.

It is based on combining the attack surface analysis, the vulnerability analysis, and the

exploitation analysis.

164 Software Qual J (2016) 24:159–202

123

We start by identifying the attack entry points and a vulnerability location from the

source code. Next, we apply the reachability analysis to the identified attack entry points

and the vulnerability location. The outcome of this step is to determine whether a vul-

nerability is reachable from any of the identified attack entry points (R) or not reachable

(NR). After that, we verify whether any of the identified attack entry points has dangerous

system calls. The result of this step is either the attack entry point has a dangerous system

call (DSC) or it does not have a dangerous system call (NDSC). Then, we assess vul-

nerability exploitability based on the results of the steps three and four. The outcome of

this step is a vulnerability is reachable with DSC, reachable with NDSC, or not reachable.

Based on the result of this step, the risk of exploitation of a given vulnerability is assigned

as shown in Table 2. The following subsections will explain these steps in detail.

3.1 Identify attack entry points

We define the attack entry points using the system’s attack surface entry point framework

proposed by Manadhata and Wing (2011). Entry points are the functions that an attacker

uses to send data to the system. In this paper, we used only the entry points because they

are the main target of malicious attacks. A function is a direct entry point if it receives data

directly from the environment; read function defined in unistd.h in C library is an example

(Manadhata and Wing 2011). Figure 2 shows how the entry points are identified. The

required steps are as follows:

(a) Obtain the source code

(b) Identify all functions that receive data from the user environment (C/C?? Library

functions)

(c) Verify whether these functions are used by any of the user functions

• Identify all functions called by the main function using cflow.

• Use python script to verify whether any of these functions has one of the C/C??

input functions.

• If you find any, then consider that function as an EP

(d) Get the list of all entry points

3.2 Find vulnerability location

The vulnerability location can be found by looking at the report in the vulnerability

database or by using a static code analyzer such as Splint (Evans and Larochelle 2002).

Figure 3 shows the way vulnerabilities are mapped to their locations.

Fig. 1 Overview of the proposed approach

Software Qual J (2016) 24:159–202 165

123

(a) Mapping vulnerabilities using databases:

• From the vulnerability database, identify the vulnerability.

• From the Bug Repository and Version Archive:

• Identify the vulnerable version (e.g., Apache 1.3.0)

• Identify files by mapping Bug ID to CVE number

• Identify the vulnerable function

• For the selected vulnerable version:

• Search inside all folders in the main folder and find all. c files and store them

in a list

• From the list, select the. c files that contain the vulnerabilities

• For every selected file, find the vulnerable function(s)

(b) Mapping vulnerabilities using a static code analyzer

Finding a vulnerability location can also be determined by using static code analyzers

when the report does not finalize such information. The static code analyzers are tools that

Fig. 2 Identification of attack
entry points

Version
Archive

Bug
Repository

Vulnerability
Database

Source
Code

Static Code
Analyzer

Map Vulnerabilities to their Locations (Functions)

Vulnerable Functions

Fig. 3 Vulnerability location identification

Table 2 Structural Severity
measure

Metric 1 Metric 2 Measure
Reachability Dangerous system call (DSC) Structural severity

Not Reachable No DSC exist Low

Not Reachable DSC exist Low

Reachable No DSC exist Medium

Reachable DSC exist High

166 Software Qual J (2016) 24:159–202

123

are used to find common bugs or vulnerabilities in the code base without the need to

execute the code. Secure Programming Lint (Splint) is an example. It is a tool that uses

static analysis to detect vulnerabilities in programs (Evans and Larochelle 2002). However,

in this paper, the vulnerability report was used to find the location of the vulnerability. The

use of static tools was left as a future work.

3.3 Apply reachability analysis

Reachability means the analysis of the call relationships between the entry points and the

vulnerability locations (vulnerable functions). We employed a system dependence graph

(SDG) proposed by Horwitz et al. (1990) to determine the calls from an entry point

function to a vulnerability location (vulnerable function). There are many tools available

for automatically generating SDG from the source code. We have selected Understand.

Understand is a static analysis tool for maintaining, measuring, and analyzing critical or

large source code. We have used the Understand tool (Scientific Toolworks, Understand

2014), to generate this graph from the source code. This tool has been chosen because it is

user-friendly and it has a good set of APIs that allows interaction with programming

languages such as Python, Perl, and C??. Figure 4 shows how reachability analysis is

used.

After identifying the entry points and the vulnerable functions, the reachability analysis

was conducted as follows:

• Generate a (called by) graph that captures all functions that call the vulnerable function

directly or indirectly

• Verify whether any of these functions is

• Directly calling the vulnerable function and an entry point

• Indirectly calling the vulnerable function and an entry point

• If so, the vulnerable function is recognized as reachable

• If not, the vulnerable function is recognized as not reachable.

3.4 Find dangerous system calls

System calls are the entry points to privileged kernel operations (Silberschatz et al. 2009).

Calling a system call from a user function in a program can violate the least privilege

principle. Massimo et al. (2002) define DSCs as specific system calls that can be used to

take complete control of the system and cause a denial of service or other malicious acts.

Fig. 4 Reachability analysis

Software Qual J (2016) 24:159–202 167

123

These system calls have been identified and classified into four levels of threats. Level one

allows full control of the system, while level two is used for denial-of-service attack. On

the other hand, level three is used for disrupting the invoking process and level four is

considered harmless. Table 3 shows some of the DSCs as classified by Massimo et al.

(2002). There are 22 system calls of the threat level one and 32 of the threat level two.

We used the existence of DSCs as an estimate of the impact of exploitation. This is

because having DSCs in a user function helps the attackers escalate their privileges and

hence cause more damage to the compromised system. As the attack entry points are the

main entries for the attacker to the system, we verify whether these points have DSCs. We

do that by looking at the list of the identified attack entry points and verify whether each

entry point contains DSCs by using a python script. If any DSCs are found, we annotate

that function as an entry point with DSCs.

3.5 Assess vulnerability exploitability

An individual vulnerability exploitability risk is assessed using the measures obtained from

step 1–4. Thus, a vulnerability can be classified as one of the following:

• Reachable with Dangerous System Calls.

• Reachable with No Dangerous System Calls.

• Not reachable.

4 Evaluation and Results

This section presents the results of the evaluation of the proposed measure and assesses its

performance. To implement our approach, 111 vulnerabilities of Apache HTTP server and

Linux Kernel have been chosen as shown in Table 4. These vulnerabilities have been

collected from the National Vulnerability Database (National Vulnerability Database

2013). They have been selected based on the availability of information about their lo-

cations and their exploits. It should be noted that we have considered all Apache HTTP

server vulnerabilities that have an exploit. Out of the 73 Linux Kernel vulnerabilities that

have an exploit, we only examined 64 vulnerabilities. This is because seven out of the nine

vulnerabilities depends on a configuration property and not a user input. In addition, we

could not find information about the location of the other two vulnerabilities. Further, as

Table 3 Dangerous system calls

Threat level Dangerous system calls

1. Full control of the system chmod, fchmod, chown, fchown, lchown, execve, mount, rename, open,
link

2. Denial of service umount, mkdir, rmdir, umount2, ioctl, nfsservctl, truncate, ftruncate,
quotactl, dup, dup2, flock, fork, kill, iopl, reboot, ioperm, clone

3. Used for subverting the
invoking process

read, write, close, chdir, lseek, dup, fcntl, umask, chroot, select, fsync,
fchdir, llseek, newselect, readv, writev, poll, pread, pwrite, sendfile,
putpmsg, utime

4. Harmless getpid, getppid, getuid, getgid, geteuid, getegid, acct, getpgrp, sgetmask,
getrlimit, getrusage, getgroups, getpriority, sched getscheduler, sched
getparam, sched get

168 Software Qual J (2016) 24:159–202

123

the main focus of this research is to evaluate the capability of the proposed measure, we

have only considered a few of the vulnerabilities that have no exploit. We also tried to

select the vulnerabilities that are at least 3 or 4 years old, so that their lack of exploit is not

due to their recent discovery.

Our approach in assessing software vulnerability exploitability is based on the se-

quential steps that have been discussed in Sect. 3. As applying the steps of our approach are

the same for Apache HTTP server and Linux Kernel, we are only including the detailed

explanation for Apache HTTP server here. However, the final results of the investigation

are going to be presented in two separate tables.

4.1 Define attack entry points

Identifying the attack surface entry points requires looking at the code base and finding all

entry points which could be a part of the attack surface. After finding such points, we then

classify each one of them into an attack class. The code bases of the chosen version were

obtained from (Archive.apache.org 2014).

The entry points along the method dimension were defined using the cflow tool and a

python script. The cflow tool analyzes a code base written in C programming language and

produces a graph charting dependencies among various functions (GNU Cflow 2013).

Using the python script, we identified the entry points for the whole system and selected

the ones that are related to the chosen vulnerabilities location. These entry points are

shown in Table 5.

4.2 Find vulnerability location

The vulnerability location was determined by mapping information from NVD, Apache

HTTP server bug repository (Red Hat Bugzilla Main Page 2014) and Apache SVN archive

databases (Apache-SVN 2014). Vulnerabilities are either located in one of the entry points

or located in a function that is called by the entry points directly or indirectly. By per-

forming the following steps, we identified the location of the vulnerabilities.

(a) From the NVD, we selected the vulnerability. The following report shows one of the

selected vulnerabilities. As can be seen, the vulnerable file and Apache version can

be easily determined from the following report description.

(b) CVE-2012-0053 protocol.c in the Apache HTTP server 2.2.x through 2.2.21 does

not properly restrict header information during construction of Bad Request (aka

400) error documents, which allows remote attackers to obtain the values of HTTP-

only cookies via vectors involving a (1) long or (2) malformed header in conjunction

with a crafted web script.

(c) Using Bugzilla, we mapped the CVE number to the Bug ID. Bugzilla is a bug- or

issue-tracking system. Figure 5 shows the mapping step.

Table 4 Apache HTTP server and Linux Kernel vulnerabilities dataset

Software Exploit exist No exploit exist Total each

Apache HTTP server 11 14 25

Linux Kernel 64 22 86

Total all 75 36 111

Software Qual J (2016) 24:159–202 169

123

(d) From Bugzilla, we accessed the Apache SVN to determine the vulnerable code.

Apache SVN is a software used to maintain the current and historical versions of

files such as source code, web pages, and documentation. We used diff link, which

is shown circled at the bottom of Fig. 5, to access the source code and identify the

vulnerable code (function). Basically, the diff link shows the difference between

before the code has been changed and after the code has been modified. The diff

page is shown in Fig. 6 where the vulnerable function ap_get_mime_headers_core

has been circled with red color. The diff link shows the code for a bug fix, which

corresponds to a vulnerability fix. The (—) symbol indicates the part of the code

that has been removed, whereas (???) symbol shows the code that has been

added.

Once the vulnerable function name is identified, we look at the source code and identify

the. c file name that contains the function and annotate its location. We followed the same

Table 5 Entry points and dangerous system calls

File name Entry points Dangerous system calls

C/C?? input
functions

Entry point function Denial of
service

Full
control

protocol.c read ap_get_mime_headers – –

read ap_read_request – –

get ap_set_sub_req_protocol – –

http_filter.c scanf ap_http_filter – –

http_core.c scanf register_hooks – –

mod_usertrack.c get spot_cookie – –

mod_proxy.c scanf register_hooks – link

mod_rewrite.c scanf register_hooks,
hookuri2file

– –

mod_proxy_ajp.c read ap_proxy_ajp_request – –

mod_deflate.c read packets deflate_out_filter dup –

mod_proxy_http.c read, get,
gethostbyname

Stream_reqbody_cl, – –

Ap_proxy_http_reques, dup –

proxy_http_handler dup –

mod_proxy_ftp.c read packets Proxy_send_dir_filter dup –

mod_proxy_balancer.c get balance_handler dup –

mod_status.c get Ststus_handler – –

core.c get include_config – –

main.c get main, exit open

mod_autoindex read index_directory dup open

proxy_http.c read socket ap_proxy_http_handler dup –

proxy_util.c read buffer ap_proxy_send_fb – –

mod_include.c getc get_tag – –

mod_imap.c getline imap_handler – open

mod_negotiation.c get do_negotiation dup open

170 Software Qual J (2016) 24:159–202

123

steps to identify the location of the remaining vulnerabilities. Table 6 shows the locations

of the chosen vulnerabilities. It has been noticed that some of the vulnerabilities have been

located in more than one function.

Fig. 5 Mapping from CVE number to Bug ID

Fig. 6 Identifying vulnerable code (Function)

Software Qual J (2016) 24:159–202 171

123

4.3 Apply reachability analysis

Once the vulnerable functions and the entry points were identified, reachability analysis can

be achieved using the Understand tool. This tool automatically generates a graph that con-

tains a chain of all functions that can call the selected function. This graph is known as

Called By graph. It shows what calls the selected function. Each line connecting an entity is

read as ‘‘x is called by y’’. It should be noted that this graph is read from the bottom up.

When x is called by y, x is in the bottom and y is in the top. We have added to the generated

graph the entry point (EP) label, and vulnerability CVE number to make the graph easily

viewable. The reachability analysis for all selected vulnerabilities can make the length of the

paper more than it should be; therefore, only five vulnerabilities were selected. Those vul-

nerabilities are representative of the common trends among the studied vulnerabilities.

(a) CVE-2012-0053

Looking at Table 6, it can be verified that this vulnerability is located in the function

ap_get_mime_headers_core, which in turn resides in the file protocol.c. To determine

whether this vulnerability is reachable from an entry point, we performed the following:

Table 6 Vulnerabilities locations (functions)

Vulnerability File name Vulnerable function name

CVE-2012-0053 protocol.c ap_get_mime_headers_core

CVE-2011-4415 util.c ap_pregsub

CVE-2011-4317 mod_proxy.c proxy_handler

mod_rewrite.c hook_fixup

CVE-2011-3192 byterange_filter.c parse_byterange

CVE-2010-0434 protocol.c clone_headers_no_body

CVE-2010-0408 mod_proxy_ajp.c ap_proxy_ajp_request

CVE-2009-1891 mod_deflate.c deflate_out_filter

CVE-2009-1890 mod_proxy_http.c Stream_reqbody_cl

CVE-2008-2939 mod_proxy_ftp.c Proxy_send_dir_filter

CVE-2007-6420 mod_proxy_balancer.c balance_handler

CVE-2006-5752 mod_status.c Ststus_handler

CVE-2009-1195 config.c process_resource_config_nofnmatch, ap_process_config_tree

CVE-2007-5000 mod_imagemap.c menu_header

CVE-2007-4465 mod_autoindex index_directory

CVE-2010-0010 Proxy_util.c ap_proxy_send_fb

CVE-2004-0940 mod_include.c get_tag

CVE-2007-6388 mod_status.c status_handler

CVE-2005-3352 mod_imap.c read_quoted

CVE-2004-0488 ssl_util.c ssl_util_uuencode_binary

CVE-2008-0455 mod_negotiation.c make_variant_list

CVE-1999-0107 http_request.c process_request_internal

CVE-2004-0493 protocol.c ap_get_mime_headers

CVE-2006-3747 mod_rewrite.c apply_rewrite_rule

CVE-2013-1896 mod_dav.c dav_method_merge

CVE-2006-3918 http_protocol.c get_canned_error_string

172 Software Qual J (2016) 24:159–202

123

• Generate a called by graph that captures all functions that call the vulnerable function

directly or indirectly. Figure 7 shows the generated graph with the function name at the

top of the rectangle and.c file name in the bottom.

• Verify whether any of these functions is an entry point. Using the entry points in

Table 5, the attacker can have an access to the vulnerability by two ways:

• Directly: The protocol.c component has two entry points namely: ap_get_mime_

headers and ap_read_request that directly can call the vulnerable function. These

two entry points are located in the protocol.c file where the vulnerable function is

located. None of these entry points have a dangerous system call.

• Indirectly: The component core.c has an entry point function ‘‘register_hooks’’

that indirectly can call the vulnerable function in the component protocol.c from

multiple paths. This entry point does not have a dangerous system call.

As a result, it can be concluded that there is a call relationship between the entry points

and the vulnerable functions. The vulnerable function is also indirectly reachable from an

entry point located in a different component. Neither of these entry points has DSCs.

(b) CVE-2004-0488

Looking at Table 6, it can be shown that this vulnerability is located in the function

ssl_utill_uuencode_binary, which lives in the file ssl_util.c. To determine whether this

vulnerability is reachable from an entry point, we performed the following:

• Generate a called by graph that captures all functions that call this function directly or

indirectly. Figure 8 shows the generated graph.

• Verify whether any of these functions is an entry point. Using the entry points in

Table 5, the attacker has no way of manipulating this vulnerability because there are no

entry points found in any of these functions including the vulnerable function.

As a result, it can be concluded that this vulnerable function is not reachable from an

entry point.

Fig. 7 Direct and indirect call sequences from the EP to the vulnerable function

Software Qual J (2016) 24:159–202 173

123

(c) CVE-2007-4465

From Table 6, it can be verified that this vulnerability is located in the function in-

dex_directory, which resides in the mod_autoindex.c. To determine whether this vul-

nerability is reachable from an entry point, we performed the following:

• Generate a called by graph that captures all functions that call this function directly or

indirectly. Figure 9 shows the generated graph.

• Verify whether any of these functions is an entry point. Using the entry points in

Table 5, it has been found that the vulnerable function itself is also an entry point.

Besides, register_hooks is an entry point too. Thus, the attacker has an access to this

vulnerability by invoking the vulnerable function directly. This entry point has a DSC.

As a result, it can be concluded that this vulnerability is reachable by directly calling the

vulnerable function. Besides, this function has a DSC.

(d) CVE-2010-0434

From Table 6, it can be confirmed that this vulnerability is located in the function

clone_headers_no_body, which resides in the file protocol.c. To determine whether this

vulnerability is reachable from an entry point, we performed the following:

• Generate a called by graph that captures all functions that call the vulnerable function

directly or indirectly. Figure 10 shows the generated graph.

• Verify whether any of these functions is an entry point. Using the entry points in

Table 5, it has been found that the attacker can reach the vulnerable function in two

ways:

• Directly: The component protocol.c has an entry point: ap_set_sub_req_protocol

that can directly call the vulnerable function. This entry point has no DSCs.

• Indirectly: The component mod_rewrite.c has two entry points namely: regis-

ter_hooks and hookuri2file. Thus, the attacker has an access to this vulnerability

from multiple paths as shown in Fig. 11. This entry point has NDSCs.

Fig. 8 No call sequence that
reaches the vulnerable function in
sll_util.c

174 Software Qual J (2016) 24:159–202

123

As a result, it can be concluded that this vulnerability is reachable by directly and

indirectly calling the vulnerable function from multiple paths. Besides, these functions

have NDSCs.

Fig. 9 Direct call sequence from
the EP to the vulnerable function
in mod_autoindex.c

Fig. 10 Direct and indirect call sequences from the EP to the vulnerable function in prorotocol.c

Software Qual J (2016) 24:159–202 175

123

(e) CVE-2009-1195

From Table 6, it can be decided that this vulnerability is located into two functions

namely: ap_process_cnfig_tree and process_resource_config_nofnmatch, which both live

in the file config.c. To determine whether this vulnerability is reachable from an entry

point, we performed the following:

• Generate a called by graph that captures all functions that call the vulnerable function

directly or indirectly. Figure 11 shows the generated graph.

• Verify whether any of these functions is an entry point. Using the entry points in

Table 5, the attacker has an access to this vulnerability by invoking the vulnerable

function in two ways:

• Indirectly: The main.c component has an entry point namely: main that can

indirectly call the vulnerable function process_resource_config_nofmatch through-

out the path: main, ap_read_config, and ap_process_resource_config as shown on

the left side of the graph. The entry points have a DSC.

• Directly: There are two ways the vulnerable function can be directly called. First,

the main.c component has an entry points namely: ap_process_resource_config that

can directly call the vulnerable function. Second, throughout the same entry point

main, the vulnerable function ap_process_resource_config_tree can be directly

called as shown on the right side of the graph. The entry points have a DSC.

As a result, it can be concluded that there is a call relationship between the entry points

in the component main.c and the two vulnerable functions in the component config.c. The

vulnerable function is also indirectly reachable from an entry point located in a different

component. The entry point has DSCs.

Fig. 11 Direct and indirect call sequences from the EP to the vulnerable function in config.c

176 Software Qual J (2016) 24:159–202

123

T
a
b
le

7
O
b
ta
in
ed

m
et
ri
cs

o
f
th
e
p
ro
p
o
se
d
m
ea
su
re

V
u
ln
er
ab
il
it
y

F
u
n
ct
io
n
n
am

e
P
at
h
fr
o
m

en
tr
y
p
o
in
ts

D
an
g
er
o
u
s
sy
st
em

ca
ll

R
ea
ch
ab
il
it
y

C
V
E
-2
0
0
4
-0
4
8
8

ss
l_
u
ti
l_
u
u
en
co
d
e_
b
in
ar
y

n
o
p
at
h

N
D
S
C

N
R

C
V
E
-2
0
0
4
-0
9
4
0

g
et
_
ta
g

g
et
_
ta
g

N
D
S
C

R

C
V
E
-2
0
0
5
-3
3
5
2

re
ad
_
q
u
o
te
d

im
ap
_
h
an
d
le
r

D
S
C

R

C
V
E
-2
0
0
6
-5
7
5
2

S
ts
tu
s_
h
an
d
le
r

st
st
u
s_
h
an
d
le
r

N
D
S
C

R

C
V
E
-2
0
0
7
-6
4
2
0

b
al
an
ce
_
h
an
d
le
r

b
al
an
ce
_
h
an
d
le
r

D
S
C

R

C
V
E
-2
0
0
7
-5
0
0
0

m
en
u
_
h
ea
d
er

n
o
p
at
h

N
D
S
C

N
R

C
V
E
-2
0
0
7
-4
4
6
5

in
d
ex
_
d
ir
ec
to
ry

in
d
ex
_
d
ir
ec
to
ry

D
S
C

R

C
V
E
-2
0
0
7
-6
3
8
8

st
at
u
s_
h
an
d
le
r

st
at
u
s_
h
an
d
le
r

N
D
S
C

R

C
V
E
-2
0
0
8
-2
9
3
9

p
ro
x
y
_
se
n
d
_
d
ir
_
fi
lt
er

p
ro
x
y
_
se
n
d
_
d
ir
_
fi
lt
er

D
S
C

R

C
V
E
-2
0
0
8
-0
4
5
5

m
ak
e_
v
ar
ia
n
t_
li
st

d
o
_
n
eg
o
ti
at
io
n
?

st
o
re
_
v
ar
ia
n
t_
li
st

D
S
C

R

C
V
E
-2
0
0
9
-1
8
9
1

d
efl
at
e_
o
u
t_
fi
lt
er

d
efl
at
e_
o
u
t_
fi
lt
er

N
D
S
C

R

C
V
E
-2
0
0
9
-1
1
9
5

p
ro
ce
ss
_
re
so
u
rc
e_
co
n
fi
g
_
n
o
fn
m
at
ch
,

m
ai
n
?

ap
_
re
ad
_
co
n
fi
g
?

ap
_
p
ro

ce
ss
_
re
so
u
rc
es
_
co
n
fi
g

D
S
C

R

in
cl
u
d
e_
co
n
fi
g
?

ap
_
p
ro
ce
ss
_
re
so
u
rc
es
_
co
n
fi
g

N
D
S
C

ap
_
p
ro
ce
ss
_
co
n
fi
g
_
tr
ee

M
ai
n

D
S
C

C
V
E
-2
0
0
9
-1
8
9
0

st
re
am

_
re
q
b
o
d
y
_
cl

st
re
am

_
re
q
b
o
d
y
_
cl

N
D
S
C

R

ap
_
p
ro
x
y
_
h
tt
p
_
re
q
u
es
t
?

p
ro
x
y
_
h
tt
p
_
h
an
d
le
r

D
S
C

C
V
E
-2
0
1
0
-0
0
1
0

ap
_
p
ro
x
y
_
se
n
d
_
fb

ap
_
p
ro
x
y
_
se
n
d
_
fb

N
D
S
C

R

ap
_
p
ro
x
y
_
h
tt
p
_
h
an
d
le
r
(P
ro
x
y
_
h
tt
p
.c
)

D
S
C

C
V
E
-2
0
1
0
-0
4
3
4

cl
o
n
e_
h
ea
d
er
s_
n
o
_
b
o
d
y

ap
_
se
t_
su
b
_
re
q
_
p
ro
to
co
l

N
D
S
C

R

C
V
E
-2
0
1
0
-0
4
0
8

ap
_
p
ro
x
y
_
aj
p
_
re
q
u
es
t

ap
_
p
ro
x
y
_
aj
p
_
re
q
u
es
t

N
D
S
C

R

C
V
E
-2
0
1
1
-4
4
1
5

ap
_
p
re
g
su
b

re
g
is
te
r_
h
o
o
k
s
?

sp
o
t_
co
o
k
ie

N
D
S
C

R

C
V
E
-2
0
1
1
-3
1
9
2

p
ar
se
_
b
y
te
ra
n
g
e

re
g
is
te
r_
h
o
o
k
s
?

ap
_
b
y
te
ra
n
g
e_
fi
lt
er

N
D
S
C

R

C
V
E
-2
0
1
1
-4
3
1
7

p
ro
x
y
_
h
an
d
le
r

re
g
is
te
r_
h
o
o
k
s

D
S
C

R

h
o
o
k
_
fi
x
u
p

re
g
is
te
r_
h
o
o
k
s

N
D
S
C

C
V
E
-2
0
1
2
-0
0
5
3

ap
_
g
et
_
m
im

e_
h
ea
d
er
s_
co
re

re
g
is
te
r_
h
o
o
k
s
?

ap
_
h
tt
p
_
fi
lt
er

?
p
_
g
et
_
m
im

e_
h
ea
d
er
s

N
D
S
C

R

C
V
E
-1
9
9
9
-0
1
0
7

p
ro
ce
ss
_
re
q
u
es
t_
in
te
rn
al

S
ta
n
d
al
o
n
e_
m
ai
n
?

m
ak
ec
h
il
d
?

ch
il
d
m
ai
n
?

ap
_
p
ro
ce
ss
_
re
q
u
es
t

N
D
S
C

R

Software Qual J (2016) 24:159–202 177

123

T
a
b
le

7
co
n
ti
n
u
ed

V
u
ln
er
ab
il
it
y

F
u
n
ct
io
n
n
am

e
P
at
h
fr
o
m

en
tr
y
p
o
in
ts

D
an
g
er
o
u
s
sy
st
em

ca
ll

R
ea
ch
ab
il
it
y

C
V
E
-2
0
0
4
-0
4
9
3

ap
_
g
et
_
m
im

e_
h
ea
d
er
s

re
g
is
te
r_
h
o
o
k
s
?

ap
_
h
tt
p
_
fi
lt
er

N
D
S
C

R

C
V
E
-2
0
0
6
-3
7
4
7

ap
p
ly
_
re
w
ri
te
_
ru
le

re
g
is
te
r_
h
o
o
k
s
?

h
o
o
k
_
u
rl
fi
le

?
ap
p
ly
_
re
w
ri
te
_
li
st

N
D
S
C

R

C
V
E
-2
0
1
3
-1
8
9
6

d
av
_
m
et
h
o
d
_
m
er
g
e

re
g
is
te
r_
h
o
o
k
s
?

av
_
h
an
d
el
r

D
S
C

R

C
V
E
-2
0
0
6
-3
9
1
8

g
et
_
ca
n
n
ed
_
er
ro
r_
st
ri
n
g

ap
_
re
ad
_
re
q
u
es
t
?

ap
_
se
n
d
_
er
ro
r_
re
sp
o
n
se

N
D
S
C

R

R
re
ac
h
ab
le
,
N
R
n
o
t
re
ac
h
ab
le
,
D
S
C
d
an
g
er
o
u
s
sy
st
em

ca
ll
,
N
D
S
C
n
o
d
an
g
er
o
u
s
sy
st
em

ca
ll

178 Software Qual J (2016) 24:159–202

123

4.4 Find dangerous system calls

For the identified attack entry points, we have checked whether an entry point has dan-

gerous system calls. These dangerous system calls are shown in Table 5.

4.5 Assessing vulnerability exploitability

After tracing the call sequence from the entry points to the vulnerability location and

identifying the DSCs, the individual vulnerability Structural Severity can be evaluated

using the results included in Table 7. Looking at Table 7, a vulnerability is either:

1. Reachable with dangerous system calls.

2. Reachable with no dangerous system calls.

3. Not reachable.

Table 7 gives the Structural Severity measures of the Apache HTTP server vul-

nerabilities using the proposed method. Every vulnerability has its own location and the

availability of the path from the entry point next to it. If a path from an entry point to a

vulnerable function is found, the vulnerability considered to be reachable; otherwise, it is

considered not reachable. Besides, the existence of the DSCs for every entry point has been

specified.

4.6 Assigning a vulnerability Structural Severity value

The Structural Severity is measured using the reachability and DSCs metrics. It is then

assigned one of the three values: high, medium, and low as described in Sect. 3. Based on

these three values, the chosen vulnerabilities were assessed and compared to the CVSS

overall severity scores. In following subsections, we will show the Structural Severity

values for the selected vulnerabilities of Apache HTTP server and Linux Kernel datasets,

respectively. It should be noted that we have used the exploit database (EDB), Open

Source Vulnerability Database, and the Meta exploit database (Metasploit Database 2014)

for gathering the exploits for the chosen vulnerabilities. Besides, the authors are not aware

of a database that reports the impact of vulnerabilities exploitation and hence comparing

those factors is not visible. The abbreviations used in the tables are explained as follows:

• DSC: Dangerous System Call.

• NDSC: No Dangerous System Call.

• AC: Access Complexity metric. Its values are Low (L), Medium (M), and High (H).

• AV: Access Vector metric. Its values are Network (N), Local (L), and Adjacent

Network (A).

• AU: Authentication metric. Its values are none (N), single (S), and multiple (M).

• The CVSS impact metrics use C for Confidentiality, I for Integrity, A for Availability.

These metrics takes the following values: None (N), Partial (P), and Complete (C).

• SS: Total subscore

4.6.1 Apache HTTP server

Table 8 shows the Structural Severity and the CVSS Metrics values for the Apache HTTP

server dataset. The table also shows the availability of an exploit for every vulnerability.

The following has been observed from Table 8:

Software Qual J (2016) 24:159–202 179

123

T
a
b
le

8
O
b
ta
in
ed

st
ru
ct
u
ra
l
se
v
er
it
y
m
et
ri
cs

co
m
p
ar
ed

to
C
V
S
S
m
et
ri
cs

o
f
ap
ac
h
e
H
T
T
P
se
rv
er

d
at
as
et

N
o

V
u
ln
er
ab
il
it
y

S
tr
u
ct
u
ra
l
se
v
er
it
y

C
V
S
S

E
x
p
lo
it
ex
is
te
n
ce

R
ea
ch
ab
il
it
y

D
S
C

S
ev
er
it
y

E
x
p
lo
it
ab
il
it
y

Im
p
ac
t

S
ev
er
it
y

A
C

A
V

A
U

S
S

C
I

A
S
S

1
C
V
E
-2
0
0
4
-

0
4
8
8

N
R

N
D
S
C

L
L

N
N
R

1
0

P
P

P
6
.4

H
N
E
E

2
C
V
E
-2
0
0
7
-

5
0
0
0

N
R

N
D
S
C

L
M

N
N
R

8
.6

N
P

N
2
.9

M
N
E
E

3
C
V
E
-2
0
0
8
-

0
4
5
5

R
D
S
C

H
M

N
N
R

8
.6

N
P

N
2
.9

M
E
E

4
C
V
E
-2
0
0
9
-

1
8
9
0

R
D
S
C

H
M

N
N
R

8
.6

N
N

C
6
.9

H
E
E

5
C
V
E
-2
0
1
0
-

0
0
1
0

R
D
S
C

H
M

N
N
R

8
.6

P
P

P
6
.4

M
E
E

6
C
V
E
-2
0
1
3
-

1
8
9
6

R
D
S
C

H
M

N
N
R

8
.6

N
N

P
2
.9

M
E
E

7
C
V
E
-2
0
0
4
-

0
9
4
0

R
N
D
S
C

M
M

L
N
R

3
.4

C
C

C
1
0

M
E
E

8
C
V
E
-2
0
1
1
-

3
1
9
2

R
N
D
S
C

M
L

N
N
R

1
0

N
N

C
6
.9

H
E
E

9
C
V
E
-2
0
1
2
-

0
0
5
3

R
N
D
S
C

M
M

N
N
R

8
.6

P
N

N
2
.9

M
E
E

1
0

C
V
E
-1
9
9
9
-

0
1
0
7

R
N
D
S
C

M
L

N
N
R

1
0

N
N

P
2
.9

M
E
E

1
1

C
V
E
-2
0
0
4
-

0
4
9
3

R
N
D
S
C

M
L

N
N
R

1
0

N
P

P
4
.9

M
E
E

1
2

C
V
E
-2
0
0
6
-

3
7
4
7

R
N
D
S
C

M
H

N
N
R

4
.9

C
C

C
1
0

H
E
E

1
3

C
V
E
-2
0
0
6
-

3
9
1
8

R
N
D
S
C

M
M

N
N
R

8
.6

N
P

N
2
.9

M
E
E

180 Software Qual J (2016) 24:159–202

123

T
a
b
le

8
co
n
ti
n
u
ed

N
o

V
u
ln
er
ab
il
it
y

S
tr
u
ct
u
ra
l
se
v
er
it
y

C
V
S
S

E
x
p
lo
it
ex
is
te
n
ce

R
ea
ch
ab
il
it
y

D
S
C

S
ev
er
it
y

E
x
p
lo
it
ab
il
it
y

Im
p
ac
t

S
ev
er
it
y

A
C

A
V

A
U

S
S

C
I

A
S
S

1
4

C
V
E
-2
0
0
6
-

5
7
5
2

R
N
D
S
C

M
M

N
N
R

8
.6

N
P

N
2
.9

M
N
E
E

1
5

C
V
E
-2
0
0
7
-

6
3
8
8

R
N
D
S
C

M
M

N
N
R

8
.6

N
P

N
2
.9

M
N
E
E

1
6

C
V
E
-2
0
0
9
-

1
8
9
1

R
N
D
S
C

M
M

N
N
R

8
.6

N
N

C
6
.9

H
N
E
E

1
7

C
V
E
-2
0
1
0
-

0
4
3
4

R
N
D
S
C

M
M

N
N
R

8
.6

P
N

N
2
.9

M
N
E
E

1
8

C
V
E
-2
0
1
0
-

0
4
0
8

R
N
D
S
C

M
L

N
N
R

1
0

N
N

P
2
.9

M
N
E
E

1
9

C
V
E
-2
0
1
1
-

4
4
1
5

R
N
D
S
C

M
H

L
N
R

1
.9

N
N

P
2
.9

L
N
E
E

2
0

C
V
E
-2
0
0
5
-

3
3
5
2

R
D
S
C

H
M

N
N
R

8
.6

N
P

N
2
.9

M
N
E
E

2
1

C
V
E
-2
0
0
7
-

6
4
2
0

R
D
S
C

H
M

N
N
R

8
.6

N
P

N
2
.9

M
N
E
E

2
2

C
V
E
-2
0
0
7
-

4
4
6
5

R
D
S
C

H
M

N
N
R

8
.6

N
P

N
2
.9

M
N
E
E

2
3

C
V
E
-2
0
0
8
-

2
9
3
9

R
D
S
C

H
M

N
N
R

8
.6

N
P

N
2
.9

M
N
E
E

2
4

C
V
E
-2
0
0
9
-

1
1
9
5

R
D
S
C

H
L

L
N
R

3
.9

N
N

C
6
.9

M
N
E
E

2
5

C
V
E
-2
0
1
1
-

4
3
1
7

R
D
S
C

H
M

N
N
R

8
.6

N
P

N
2
.9

M
N
E
E

E
E
ex
p
lo
it
ex
is
t,
N
E
E
n
o
ex
p
lo
it
ex
is
t,
S
S
su
b
sc
o
re

Software Qual J (2016) 24:159–202 181

123

• Two out of the 25 vulnerabilities are not reachable and have no exploits.

• Thirteen out of the 25 vulnerabilities are reachable with no existing exploits. More

than half of these vulnerabilities have DSCs and hence have been assigned a high

Structural Severity value.

• The remaining 11 vulnerabilities are reachable and have exploits. Four out of them

have DSCs and thus have been assigned a high Structural Severity value.

• The majority of the vulnerabilities have been assigned high exploitability value by both

metrics.

• More than half of the vulnerabilities have been found to have a low impact value by

both metrics (CVSS impact SS, and Structural Severity DSC). This could be attributed

to the type of software.

• More than half of the vulnerabilities have been assigned a medium severity value by

the two metrics.

• It should be noted that all the vulnerabilities require no Authentication, whereas only

three vulnerabilities require a local network access vector (L). The majority of the

Access Complexity metric values are low and medium, and these values have no

significant effect on the overall CVSS exploitability subscore.

• The exploitability total subscore is significantly changed only when the Access

Complexity metric value is high. Nonetheless, there are only two vulnerabilities that

have a high Access Complexity metric value.

• Out of the 11 vulnerabilities that have an exploit, only two vulnerabilities have been

assigned a low CVSS exploitability subscore.

It should be notated that the vulnerabilities in Table 8 have been grouped into five

groups based on their similarity with regard to their reachability, DSCs, and availability of

exploit. This demonstrates their relationship. The following explains these groups.

(a) CVE-2004-0488 and CVE-2007-5000:

According to the CVSS metrics, the CVE-2004-0488 has a low Access Complexity

value and a high overall severity, whereas CVE-2007-5000 has a low Access Complexity

and a medium overall severity. Considering the network accessibility factor is useful but

not sufficient. In order for a vulnerability to be exploited, it first has to be reachable

regardless of the access conditions. However, based on the software structure analysis, we

did not find any call relationship between the vulnerable function and any of the entry point

functions. Additionally, no exploit was found for these vulnerabilities in any of the exploit

databases. Thus, based on the proposed metrics, they have been assigned a low Structural

Severity. Having just a potential vulnerability does not mean that it is groining to be

exploited.

(b) CVE-2008-0455, CVE-2009-1890, CVE-2010-0010, and CVE-2013-1896:

As stated by the CVSS metrics, the CVE-2008-0455, CVE-2010-0010, and CVE-2013-

1896 have a medium Access Complexity value and a medium overall severity, whereas

CVE-2009-1890 has a medium Access Complexity and a high overall severity. Based on

software structure analysis, we found the two vulnerabilities to be reachable and to have a

DSC. Additionally, there exists an exploit for these vulnerabilities. However, based on the

proposed metrics, they have been assigned a high Structural Severity.

182 Software Qual J (2016) 24:159–202

123

(c) CVE-2012-0053, CVE-2004-0940, and CVE-2011-3192:

Based on the CVSS metrics, both CVE-2012-0053 and 2004-0940 have a medium

Access Complexity value and a medium overall severity. On the other hand, CVE-2011-

3192 has a low Access Complexity value and a high overall severity. Based on software

structure analysis, we found these three vulnerabilities to be reachable and to have no DSC.

Additionally, there exist an exploit for these vulnerabilities. Thus, based on the proposed

metrics, the vulnerabilities have been assigned a medium Structural Severity.

(d) CVE-2006-5752, CVE-2007-6388, CVE-2009-1891, CVE-2010-0434, CVE-2010-

0408, CVE-2011-4415:

Consistent with the CVSS metrics, the following vulnerabilities: CVE-2006-5752,

CVE-2007-6388, and CVE-2010-0434 have a medium Access Complexity and a medium

overall severity. Besides, CVE-2009-1891 has a medium Access Complexity and a high

overall severity. Additionally, CVE-2010-0408 has a low Access Complexity and a

medium overall severity. Moreover, CVE-2011-4415 has a medium Access Complexity

and a high overall severity. However, based on software structure analysis, we found that

all of the vulnerabilities are reachable and have no DSC. Furthermore, no exploit was

found for these vulnerabilities. Based on the proposed metrics, these vulnerabilities have

been assigned a medium Structural Severity.

(e) CVE-2005-3352, CVE-2007-6420, CVE-2007-4465, CVE-2008-2939, CVE-2009-

1195, CVE-2010-0010, and CVE-2011-4317:

According to the CVSS metrics, all the above vulnerabilities have a medium Access

Complexity value except for CVE-2009-1195 which has a low Access Complexity sub-

score. Besides, all of them had a medium overall severity. However, based on software

structure analysis, we found that all of them are reachable and have a DSC. Additionally,

there was no exploit found for these vulnerabilities. Based on the proposed metrics, these

vulnerabilities have been assigned a high Structural Severity.

4.6.2 Linux Kernel

Table 11 in the Appendix shows the Structural Severity and the CVSS Metrics values for

Linux Kernel. The table also shows the availability of an exploit for every vulnerability.

The following can be observed from Table 11 in the Appendix:

• Three out of the 86 vulnerabilities are not reachable and have no exploits. Two of them

have DSCs.

• Nineteen out of the 86 vulnerabilities are reachable with no exploit exist for them.

More than half of these vulnerabilities have DSCs and hence have been assigned a high

Structural Severity value.

• All 64 vulnerabilities that have an exploit have been found to be reachable. More than

half of these vulnerabilities have a DSC and thus have been assigned a high Structural

Severity value.

• The majority of the vulnerabilities have been assigned a high exploitability value by the

Structural Severity Reachability metric. On the other hand, most of the vulnerabilities

have been assigned a low exploitability value by the CVSSS exploitability metrics.

This could be attributed to the fact that most of the vulnerabilities are accessed locally.

• The majority of the vulnerabilities have been found to have a high impact value by both

metrics (CVSS impact SS and Structural Severity DSC).

Software Qual J (2016) 24:159–202 183

123

• More than half of the vulnerabilities have been assigned a high severity value by the

Structural Severity metrics, whereas only a few have been assigned a low severity

value. This can be explained by the previous two observations. On the other hand, the

CVSS severity metrics do not have noticeable variation among their values except for a

slightly larger number of medium severity values.

• It should be noted that most of the vulnerabilities require no Authentication except for

two, which required only a Single System Authentication (SS). The majority of the

vulnerabilities require a local network access vector (L). However, there are 14

vulnerabilities that require a network access vector (N), and there are only two

vulnerabilities that require an adjacent network access vector (A). The majority of the

Access Complexity metric values are low.

• Neither the low nor the medium Access Complexity metric values have a significant

effect on the overall CVSS exploitability subscore. The exploitability total subscore is

significantly changed only when the Access Complexity metric value is high.

Nonetheless, there are only five vulnerabilities that have a high Access Complexity

value.

• Out of the 64 vulnerabilities that have an exploit, seven vulnerabilities have been

assigned a high CVSS exploitability subscores and 12 vulnerabilities have been

assigned low CVSS exploitability subscores.

It should be notated that the vulnerabilities in Table 11 in the Appendix have been

grouped into two groups based on the availability of exploit. As the number of the vul-

nerabilities of Linux Kernel is large, we will only discuss some noteworthy vulnerabilities.

(a) CVE-2003-0462, CVE-2004-1235, CVE-2006-2629, CVE-2006-5757, and CVE-

2010-4258:

According to the CVSS metrics, these vulnerabilities have a high Access Complexity

value and hence low overall exploitability subscore. Four of them have a medium overall

severity and only one (CVE-2003-0462) has a low overall severity. Based on software

structure analysis, we found that these vulnerabilities are reachable and three of them have

a DSC. The other two vulnerabilities (CVE-2003-0462 and CVE-2006-5757) do not have a

DSC. Additionally, there exists an exploit for these vulnerabilities. Thus, based on the

proposed metrics, the three vulnerabilities that have a DSC have been assigned a high

Structural Severity value, while the other two vulnerabilities that do not have DSCs have

been assigned a medium Structural Severity value.

(b) CVE-2003-0619, CVE-2004-1137, CVE-2006-2444, CVE-2007-1357, CVE-2009-

0065, CVE-2009-3613 and CVE-2010-1173:

According to the CVSS metrics, these vulnerabilities have a network Access Vector

value and thus have been assigned a high overall exploitability subscore. Six vulnerabilities

have been assigned a high overall severity and only one vulnerability, CVE-2003-0619,

that has been assigned a medium overall severity. Based on the software structure analysis,

these vulnerabilities have been found reachable and three of them have a DSC. The other

four vulnerabilities (CVE-2003-0619, CVE-2009-0065, CVE-2009-3613, and CVE-2010-

1173) do not have a DSC. Besides, there exists an exploit for these vulnerabilities. Thus,

based on the proposed metrics, the three vulnerabilities that have DSCs have been assigned

a high Structural Severity value, while the other four vulnerabilities that do not have DSCs

have been assigned a medium Structural Severity value.

184 Software Qual J (2016) 24:159–202

123

(c) CVE-2005-0124, CVE-2005-2492, and CVE-2005-2500:

According to the CVSS metrics, these vulnerabilities have a low Access Complexity

value. Two of them (CVE-2005-0124 and CVE-2005-2492) have been assigned a low

overall exploitability subscore and a low overall severity, and this is because they are

locally accessed. On the other hand, CVE-2005-2500 has been assigned a high overall

exploitability subscore and a high overall severity, and this is because it is accessed via

a network. Based on software structure analysis, these vulnerabilities have been found

not reachable and one of them, CVE-2005-0124, does not have a DSC. Moreover, no

exploit was found for these vulnerabilities in any of the exploit databases. Hence,

based on the proposed metrics, they have been assigned a low Structural Severity

value.

(d) CVE-2002-0499, CVE-2003-0462, CVE-2004-1016, CVE-2004-1073, CVE-2004-

1333, CVE-2005-0736, CVE-2005-2973, CVE-2006-5757, CVE-2009-0676, CVE-

2009-1961, CVE-2010-1636, and CVE-2010-4073:

According to the CVSS metrics, these vulnerabilities have a local Access Vector

value and thus have been assigned a low overall exploitability subscore and a low overall

severity. All of these vulnerabilities require no authentication. Besides, eight out of these

vulnerabilities have a low Access Complexity value. Out of the remaining four vul-

nerabilities, only two vulnerabilities (CVE-2003-0462 and CVE-2006-5757) have a high

Access Complexity value whereas the other two have a medium access complexity

(CVE-2009-1961 and CVE-2010-4073). Based on the software structure analysis, we

found that these vulnerabilities are reachable and seven of them have a DSC. Besides,

there exists an exploit for all of them. Hence, based on the proposed metrics, the

vulnerabilities that have a DSC have been assigned a high Structural Severity value,

while the vulnerabilities that do not have DSCs have been assigned a medium Structural

Severity value.

4.7 Performance evaluation of the proposed metric

Since data is available about the existence of exploits, we can compare the Structural

Severity Reachability metric with the CVSS exploitability metrics based on the availability

of exploits. To evaluate the performance of these two metrics, we used sensitivity, pre-

cision, and F-measure measures. These performance measures are explained using a

confusion matrix as shown in Table 9. The confusion matrix table shows the actual vs. the

predicted results. For the two-class problem (a vulnerability is either exploitable or not

exploitable), the following is defined based on Table 9.

• True Positive (TP): the number of the vulnerabilities predicted as exploitable, which do

in fact have an exploit.

• False Negative (FN): the number of vulnerabilities predicted as not exploitable, which

turn out to have an exploit.

• False Positive (FP): the number of vulnerabilities predicted as exploitable when they

have no exploit.

• True Negative (TN): the number of vulnerabilities predicted as not exploitable when

there is no exploit.

The selected performance measures can be derived as follows.

Software Qual J (2016) 24:159–202 185

123

4.7.1 Sensitivity (Recall)

Sensitivity, which also termed recall, is defined as the ratio of the number of vulnerabilities

correctly predicted as exploitable to the number of vulnerabilities that are actually ex-

ploitable as shown by the following:

Sensitivity ¼ TP

TPþ FN

4.7.2 Precision

Precision, which is also known as the correctness, is defined as the ratio of the number of

vulnerabilities correctly predicted as exploitable to the total number of vulnerabilities

predicted as exploitable as shown by the following:

Precision ¼ TP

TPþ FP

For convenient interpretation, we express these twomeasures in terms of percentage, where

a 100 % is the best value and 0 % is theworst value. Both precision and sensitivity should be as

close to the value 100 as possible (no false positives and no false negatives). However, such

ideal values are difficult to obtain because sensitivity and precision often change in opposite

directions. Therefore, a measure that combines sensitivity and precision in a single measure is

needed. Hence, we will introduce the F-measure in the following section. We believe that it is

more important to identify exploitable vulnerabilities even at the expense of incorrectly pre-

dicting some not exploitable vulnerabilities as exploitable vulnerabilities. This is because a

single exploitable vulnerabilitymay lead to serious security failures. Having said that, we think

moreweight should be given to sensitivity than precision. Thus, we include F2-measure, which

weights sensitivity twice as precision, to evaluate the two metrics.

4.7.3 F-measure

F-measure can be interpreted as the weighted average of sensitivity and precision. It

measures the effectiveness of a prediction with respect to a user attaches the b times as

much importance to sensitivity as precision. The general formula for the F-measure is

shown by the following:

Fb �Measure ¼
1þ b2
� �

� Precision� Senetivity

b2 � Precision
� �

þ Senetivity

b is a parameter that controls a balance between sensitivity and precision. When b = 1,

F-measure becomes to be equivalent to the harmonic mean, whereas when b\ 1 it

Table 9 Confusion matrix
Prediction

Exploitable Not exploitable

Actual

Exploitable TP = True Positive FN = False Negative

Not exploitable FP = False Positive TN = True Negative

186 Software Qual J (2016) 24:159–202

123

becomes more precision oriented. However, when b[1, F-measure becomes more sen-

sitivity oriented. In this paper, b has been chosen to be 2.

4.7.4 Comparison of the performance evaluation results

Table 8 and Table 11 in the Appendix report the total subscore (SS column) for the CVSS

exploitability metrics, the values of the Structural Severity Reachability metric, and the

availability of the exploits for the Apache HTTP server and Linux Kernel datasets, re-

spectively. The ranges of CVSS exploitability metrics subscores are 1–10, whereas the

values of the Structural Severity Reachability metric are R or NR. Figure 12 shows the

distribution of the CVSS Exploitability subscore for Apache HTTP server and Linux

Kernel datasets. Here, the population is split into two: vulnerabilities with CVSS ex-

ploitability subscore C 6 are considered exploitable (positive test), and those \6 are

considered not exploitable (negative test). The minimum and maximum exploitability

subscores for Apache and Linux are 1.9 and 10, respectively, whereas the mean and the

standard deviation for Apache are 8.3 and 1.9, respectively. However, the mean and the

standard deviation for Linux are 4.8 and 2.4, respectively.

As can be seen from Fig. 12, most of the vulnerabilities do turn out to have a high

Exploitability subscore for Apache, whereas a low Exploitability subscore for Linux. This

is because of the Access Vector metric. The majority of the vulnerabilities in Apache is

remotely accessed and hence has been assigned a high exploitability subscore (8 out of 10).

On the other hand, most of the vulnerabilities in Linux are locally accessed and thus have

been assigned a low exploitability subscore (3.9 out of 10). It should be noted that neither

the Authentication metric nor the Access Complexity metric values (Low and Medium)

have a significant effect on the exploitability total subscore for both datasets. However,

when the Access Complexity metric value is high, it notably affects the exploitability total

subscore. Nonetheless, only two out of 25 vulnerabilities in Apache dataset and five out of

86 vulnerabilities in Linux dataset have been found to have a high value Access

Complexity.

Table 10 compares the two metrics using the Apache HTTP server and Linux datasets.

From the table, we can observe that the Structural Severity Reachability metric performs

better in terms of all measures than CVSS exploitability metrics for the Apache dataset.

0

2

4

6

8

10

12

14

16

18

0 5 10

Fr
eq

ue
nc

y

CVSS Exploitability

Apache HTTP Server

0

10

20

30

40

50

60

0 5 10

Fr
eq

ue
nc

y

CVSS-Exploitability

Linux Kernel

Fig. 12 Distribution of CVSS Exploitability Subscores for Apache HTTP server and Linux Kernel

Software Qual J (2016) 24:159–202 187

123

However, in the Linux dataset, the Structural Severity Reachability metric performs much

better than the CVSS exploitability metrics. It has been observed that when the software

and the dataset size were changed, the Structural Severity Reachability metric performs

better than CVSS exploitability metrics in terms of precision, F1- and F2-measures. This

can be attributed to the fact that most of the vulnerabilities in the Linux Kernel require an

attacker to have a local access to exploit them and that makes their exploitation harder, and

hence they have been assigned a low exploitability subscore.

For the Apache dataset, the false-positive rate for the two metrics is 85.71 %, whereas

the false-negative rate is 0 % for the Structural Severity metric and 0.09 % for the CVSS

exploitability metrics. Having the 0.09 % false-negative rate is because the vulnerability

CVE-2006-3747 has an exploit and the CVSS exploitability metrics predicted it as being

not exploitable. On the other hand, for the Linux Kernel dataset the false-positive rate

slightly fell for the Structural Severity metric (82 %), whereas it notably reduced for the

CVSS exploitability metrics (41 %). This can be explained by the increase in the false-

negative rate (89 %). This can be attributed to the fact that there are 86 vulnerabilities with

an exploit in Linux Kernel that have been assigned a low exploitability subscore.

We argue that it is better to have more non-exploitable vulnerabilities inspected than to

have one exploitable vulnerability being left unchecked. It should be noted that the

Structural Severity measure captures the exploitability factor by using only one attribute,

reachability, whereas the CVSS exploitability metrics uses three attributes, Access Com-

plexity, Access Vector, and Authentication.

5 Discussion and threats to validity

5.1 Discussion of the case study results

Having an approach that does not depend on the availability of the security experts can be

of great value. The proposed measure is based on software properties that reflect ex-

ploitability factors. We have observed that the proposed approach has not been found to be

less restrictive than its counterpart, CVSS, except in two cases, when the vulnerabilities

(CVE-2004-0488 and CVE-2007-5000) were found not reachable.

We have also observed that identifying critical functions can be accomplished by

looking at the number of functions that are called by the vulnerable function. The more the

functions called by the vulnerable function, the higher the effect if the vulnerable function

is exploited. Figure 13 shows the call graphs of the vulnerability CVE-2009-1195. This

Table 10 Prediction Performance

Software Performance
measures

CVSS exploitability
metrics (%)

Structural severity reachability
metric (%)

Apache HTTP
server

Sensitivity 90.91 100

Precision 45.45 47.83

F1-Measure 61.00 65.00

F2-Measure 75.76 82.09

Linux Kernel Sensitivity 10.90 100.00

Precision 44.00 78.00

F1-Measure 18.00 88.00

F2-Measure 13.00 95.00

188 Software Qual J (2016) 24:159–202

123

graph shows the number of functions that are called by the vulnerable function. This

vulnerability impacts two functions as explained in subsection 5.3. Figure 13a shows the

vulnerable function process_resource_config_nofmatch directly calls 10 functions,

whereas the other vulnerable function ap_process_config_tree directly calls only two

functions as shown in Fig. 13b. Bhattacharya et al. (2012) introduced a bug severity metric

called Node-Rank. It measures the relative importance of a function or module in the

function call or module graphs. It could be interesting if the same can be done for vul-

nerability severity so the risk of exploitation can be further illustrated.

Sparks et al. (2007) studied the penetration depth of reaching a node in a control flow

graph. They found that the nodes at greater depths ([10 edges) become increasingly

difficult to reach. In other words, it is hard to craft an input that can lead to such a node at a

particular depth. If crafting an input that can reach a vulnerable statement for a single

method is difficult, we believe that crafting an input to call a method containing a vul-

nerable statement from other methods could be even harder. If we further assume that the

target system is a closed system, it gets even harder for the attackers to figure out the

sequences of calls and inputs that are needed to trigger them. However, it has been also

observed that the degree of a call depth of vulnerable functions varies among vul-

nerabilities. Some of the vulnerabilities have only one degree of depth, while others have

13. Figure 14 shows the degree of depth of the vulnerability CVE-2010-0434. Due to page

size limitation, we have only showed the depth up to level 5. We believe that the depth

degree of a vulnerable function can inform us about the difficulty of exploiting a vul-

nerability, because the more the functions an attacker has to invoke to reach a vulnerable

function, the harder it is to get it exploited.

Even though most of the property extraction has been automated, it has been noticed that

performing vulnerability exploitation assessment remained dependable on the human. For

instance, looking at a table with 25 vulnerabilities and comparing the selected properties to

decide the risk of a given vulnerability is fairly attainable. However, having a larger dataset can

Fig. 13 Functions that are called by the vulnerable functions (Calls Graph)

Software Qual J (2016) 24:159–202 189

123

be challenging and error prone. It would be helpful if this part of the process can be automated

by using some techniques from machine learning. Having the exploitability properties ex-

tracted from the source code, the machine learning model can automatically assess the ex-

ploitability risk based on the data. This idea could also help inmanaging scalability asmachine

learning techniques have shown success in dealing with sizable data sets. Moreover, it also

makes adding added number of exploitability properties (features) handy.

It has also been noted that even though a vulnerability reachability is an important factor

of exploitation, considering the exploit mitigation guards at the function level could be a

great addition. For instance, having an exploit guards such as GuardStack (GS) can prevent

exploits from exploiting a vulnerability even if the exploit has called the vulnerable

function. Sparks et al. (2007) stated that it is possible to identify functions that have not

been compiled to use GS through the use of simple static analysis tools. This can be used as

an estimator of exploitation impact. Thus, vulnerabilities (vulnerable functions) with ex-

ploit mitigation guards could be considered of a low risk.

5.2 Threats to validity

5.2.1 External validity

The main threat to external validity is choosing two datasets, the Apache HTTP server and

Linux Kernel. However, Apache HTTP server, since its release in 1995, has gone through a

number of improvements which led to the release of several versions: 1.3.x, 2.0.x, 2.2.x,

2.3.x, and 2.4.x. For the release 1.3.x alone, there are 47 versions, whereas for the release

2.2, there are 23 versions. The Apache HTTP server has a richer history of public available

vulnerabilities, more than 169. Besides, its line of code varies between 50,712 LOC to

358,633 LOC. Moreover, Apache HTTP server has varieties of vulnerabilities: Denial of

service (69), Execute Code (24), Overflow (16), XSS (21), Bypass Something (14), Gain

Information (13), Directory Traversal (4), Gain Privilege (6), Memory Corruption (1),

HTTP Response Splitting (1), and CSRF (1) (National Vulnerability Database 2013). Even

though Apache HTTP server has mainly been developed using C/C??, languages such as

Fig. 14 Depth of a vulnerable function calls (Called By Graph)

190 Software Qual J (2016) 24:159–202

123

HTML, JavaScript, Python, and XML have been used too. Web servers form a major

component of the Internet, and they are targeted by attackers (more than 1,000 malicious

HTTP requests in 6 months (Imperva 2012)). According to Usage Statistics and Market

Share (2013), Apache Web server is used by over 64 % among most commonly used Web

servers. On the other hand, Linux Kernel has larger number of vulnerabilities, more than

1200. Its size in line of code has ranged from 10,239 LOC to 15,803,499 LOC. It also has a

greater variety of vulnerabilities: Denial of service (750), Execute Code (58), Overflow

(213), Bypass Something (67), Gain Information (197), Directory Traversal (2), Memory

Corruption (68), and Gain Privilege (149).

5.2.2 Internal validity

The main threat to internal validity is the chosen factors for measuring the risk of vul-

nerability exploitation: reachability and DSCs. As an exploit in its basic form is an input, a

vulnerability has to be reachable in order for the input to be able to trigger it. Therefore,

reachability can be considered as a major contributor. However, not all vulnerabilities that

are reachable are exploitable and this is because of the degree of difficulty of reaching

vulnerabilities. For instance, vulnerabilities that are hard to reach are also hard to exploit

and should be given less priority. This could introduce false-positive results. Nevertheless,

the degree of difficulty is dependent on whether a vulnerability is reachable or not. Once

that is decided, we need to assess whether the code path to the vulnerable location is hard

to reach or not. We recognize this threat, and we are investigating the possibility of

objectively measuring the difficulty of reachability using the following: (1) the number of

function calls an attacker has to invoke to reach the vulnerable code, (2) an authentication

verification mechanisms along the path to the vulnerable location, and (3) the privilege

required to invoke the vulnerable function.

Even though using DSCs help in eliminating subjectivity, we recognize that capturing

the technical impact by only considering the existence of a DSC might not be sufficient.

Factors such as privilege of the vulnerable function, exploit mitigation, and authentication

could be a major contributor too. However, measuring these factors can introduce sub-

jectivity. Ensuring objective measurements of these factors requires further research.

5.2.3 Construct validity

We used a commercial tool named Understand to automatically generate call graph be-

tween the functions. We also used SVN provided by the Apache project foundation to

identify the vulnerabilities location. Moreover, we used the cflow and a python script to

identify attack entry points. Usage of the third party tools and a python script represent

potential threats to construct validity. We verified the results produced by these tools by

manually checking randomly selected outputs produced by each tool.

Part of our measurement of exploitability uses the attack entry points as an estimate of

the attack resources that an attacker can use to exploit vulnerabilities. Even though a

significant concern resides in areas where the system obtains external data, there are

vulnerabilities that can be exploited without sending data to the system. This represents a

threat to construct validity. However, our vulnerabilities datasets have been collected from

NVD that provides a list of the types of vulnerabilities that it uses. There are 19 types of

vulnerabilities in the NVD. Based on their Common Weakness Enumeration (CWE)

number and the description provided by the CWE and the NVD, we verified that the

selected vulnerabilities are directly influenced by a user input.

Software Qual J (2016) 24:159–202 191

123

6 Related work

In this section, we review the work related to vulnerability exploitation risk assessment.

We organize this section based on the method used to assess exploitation risk into: mea-

surement-based, model-based, test-based, and analysis-based approaches.

6.1 Measurement-based approaches

6.1.1 Attack surface metric

The attack surface notion was first introduced by Howard in his Relative Attack Surface

Quotient metric (Howard et al. 2005). It was later formally defined by Manadhata and

Wing (2011). They proposed a framework that included the notion of entry and exit points

and the associated damage potential–effort ratio. They applied their formally defined

metric to many systems, and the results show the applicability of the notion of the attack

surface. Their new metric has been adapted by a few major software companies, such as

Microsoft, Hewlett-Packard, and SAP. Manadhdata et al. (2006) related the number of

reported vulnerabilities for two FTP daemons with the attack surface metric along the

method dimension. Younis and Malaiya (2012) compared the vulnerability density of two

versions of Apache HTTP server with the attack surface metric along the method di-

mension. However, attack surface metric does not measure the risk of exploitation of

individual vulnerabilities. Rather, it measures the exploitability for the whole system, and

as a result it cannot help in prioritizing among vulnerabilities. Besides, neither Manadhata

et al. (2006) nor Younis and Malaiya (2012), however, related entry points with the

location of the vulnerability to measure its exploitability.

6.1.2 CVSS metrics

CVSS metrics are the de facto standard that is currently used to measure the severity of

vulnerabilities (Mell et al. 2007). CVSS base score measures severity based on the ex-

ploitability (the ease of exploiting vulnerability) and impact (the effect of exploitation).

Exploitability is assessed based on three metrics: Access Vector, Authentication, and

Access Complexity. However, CVSS exploitability measures have come under some cri-

ticism. First, they assign static subjective numbers to the metrics based on expert

knowledge regardless of the type of vulnerability, and they do not correlate with the

existence of known exploit (Bozorgi et al. 2010). Second, two of its factors (Access Vector

and Authentication) have the same value for almost all vulnerabilities (Allodi and Mas-

sacci 2013). Third, there is no formal procedure for evaluating the third factor (Access

Complexity) (Mell et al. 2007). Consequently, it is unclear whether CVSS considers the

software structure and properties as a factor.

6.2 Model-based approaches

6.2.1 Probabilistic model

Joh and Malaiya (2011) formally defined a risk measure as a likelihood of adverse events

and the impact of this event. On one hand, they utilized the vulnerability lifecycle and

applied the Markov stochastic model to measure the likelihood of vulnerability

192 Software Qual J (2016) 24:159–202

123

exploitability for an individual vulnerability and the whole system. On the other hand, they

used the impact related metrics from CVSS to estimate the exploitability impact. They

applied their metric to assess the risk of two systems that had known unpatched vul-

nerabilities using actual data. However, the transition rate between vulnerability lifecycle

events has not been determined, and the probability distribution of lifecycle events remains

to be studied. Moreover, the probability of being in an exploit state requires information

about the attacker behavior which might not be available. Additionally, the probability of a

patch being available but not applied requires information about the administrator be-

havior, which has not been considered by the proposed model and also hard to be obtained.

In contrast, we assess vulnerability exploitability for individual vulnerabilities based on the

source code properties regardless of the availability or unavailability of a patch.

6.2.2 Logistic model

Vulnerability density metric assesses the risk of potential exploitation based on the density

of the residual vulnerabilities (Alhazmi et al. 2007). The density of residual vulnerabilities

is measured based on the number of known reported vulnerabilities and the total number of

vulnerabilities. However, the total number of vulnerabilities is unknown but can be pre-

dicted using vulnerability discovery models (VDMs). Alhazmi and Malaiya (2005) pro-

posed a logistic vulnerability discovery model, termed the AML model. AML examines

the reported known vulnerabilities of a software system to estimate the total number of

vulnerabilities and their rate of discovery. However, considering the number of vul-

nerabilities alone is insufficient in assessing the risk of an individual vulnerability ex-

ploitation. Because different vulnerabilities have different opportunity of being exploited

based on their properties such as reachability.

6.2.3 Machine learning-based metric

Bozorgi et al. (2010) aimed at measuring vulnerability severity based on likelihood of

exploitability. They argued that the exploitability measures in CVSS base score metric

cannot tell much about the vulnerability severity. They attributed that to the fact that CVSS

metrics rely on expert knowledge and static formula. To that end, the authors proposed a

machine learning and data mining technique that can predict the possibility of vulnerability

exploitability. They observed that many vulnerabilities have been found to have a high

severity score using CVSS exploitability metric although there were no known exploits

existing for them. This indicates that the CVSS score does not differentiate between ex-

ploited and non-exploited vulnerabilities. This result was also confirmed by (Allodi and

Massacci 2012, 2013; Allodi et al. 2013). However, unlike their work, ours relies on software

properties such as the attack surface entry points, the source code structure, and the vul-

nerabilities location to estimate vulnerability exploitability. This is particularly important for

newly released applications that do not have a large amount of historical vulnerabilities.

6.3 Test-based approaches (proof of concept)

6.3.1 Automated exploit-generation system (AEG)

Avgerinos et al. (2014) proposed an automated exploit-generation system (AEG) to assess

the risk of vulnerability exploitation. AEG first uses the static analysis to find a potential

Software Qual J (2016) 24:159–202 193

123

bug locations in a program, and then uses a combination of static and dynamic analysis to

find an execution path that reproduces the bug, and then generates an exploit automatically.

AEG generates exploits, which provides an evidence that the bugs it finds are critical

security vulnerabilities. However, generating an exploit is expensive and does not scale.

AEG has only been applied to a specific type of vulnerabilities and software.

6.3.2 Black box fuzz testing

Sparks et al. (2007) extended the black box fuzzing using a genetic algorithm that uses the

past branch profiling information to direct the input generation in order to cover specified

program regions or points in the control flow graph. The control flow is modeled as Markov

process, and a fitness function is defined over Markov probabilities that are associated with a

state transition on the control flow graph. They generated inputs using the grammatical

evolution. These inputs are capable of reaching deeply vulnerable code, which is hidden in a

hard to reach locations. In contrast to their work, ours relies on the source code analysis, a

link between vulnerability location and attack surface entry points, and the DSC analysis that

were specifically intended for measuring vulnerability exploitability.

6.4 Analysis-based approaches

6.4.1 Black market data analysis

Allodi and Massacci (2012, 2013) proposed the black market as an index of risk of vul-

nerability exploitation. Their approach assesses the risk of vulnerability exploitation based

on the volumes of the attacks coming from the vulnerability in the black market. It first looks

at the attack tools and verifies whether the vulnerability is used by such tool or not. It also

analyzes the attacks on the wild to verify whether the vulnerability has been a target of such

attacks or not. If the vulnerability is being used by one of the attack tools or being a target of

real attacks, they consider this vulnerability as a threat for exploitation. This approach has

introduced a new view of measuring the risk of exploitation by considering the history of

attacks at the vulnerabilities. This approach does not require spending large amount of

technical resources to thoroughly investigate the possibility of vulnerability exploitation.

However, this approach requires a vulnerability intelligence provider as the information

about the attacks and tools are dynamic in nature. Moreover, if the vulnerability right now is

not used by a tool or it is not a target of an attack, it does not mean that it is going to be so

continually. Our approach, on the other hand, relies only on software properties and does not

make any assumption about the attacks and attackers’ resources.

6.4.2 Source code analysis

Brenneman (2012) introduced the idea of linking the attack surface entry point to the attack

target to prioritize the effort and resource required for software security analysis. Their

approach is based on the path-based analysis, which can be utilized to generate an attack

map. This helps visualizing the attack surfaces, attack target, and functions that link them.

This is believed to make a significant improvement in software security analysis. In contrast

to their work, we do not only utilize the idea of linking the attack surface entry point with the

reported vulnerability location to estimate vulnerability exploitability, but also check for the

DSCs inside every related entry point to estimate the impact of exploitation. The use of the

DSCs is helpful for inferring an attacker’s motive in invoking the entry point method.

194 Software Qual J (2016) 24:159–202

123

6.4.3 System calls analysis

Massimo et al. (2002) presented a detailed analysis of the UNIX system calls and classify

them according to their level of threat with respect to the system penetration. To control

these system calls invocation, they proposed the Reference Monitor for UNIX System

(REMUS) mechanism to detect an intrusion that may use these system calls, which could

subvert the execution of privileged applications. Nevertheless, our work applies their idea

to estimate the impact of exploitation, as attackers usually look to cause more damage to

targeted systems. Thus, our work is not about intrusion detection but rather measuring the

exploitability of a known vulnerability.

7 Conclusion and future work

Assessing the severity of a vulnerability requires evaluating the potential risk. Existing

measures do not consider software access complexity and tend to rely on subjective

judgment. In this paper, we have proposed an approach that uses system related attributes

such as attack surface entry points, vulnerability location, call function analysis, and the

existence of DSCs. This approach requires us to examine some of the structural aspects of

security such as the paths to the vulnerable code starting from the entry points. We have

demonstrated the applicability of the proposed approach and have compared resulting

measures with overall CVSS severity metrics. Our results show that this approach, in-

volving assessment of the system security based on systematic evaluation and not sub-

jective judgment, is feasible.

While the main parts of the analysis have been automated, providing a framework that

can automate the entire analysis will be helpful in reducing the effort. We plan to develop

techniques to reduce human involvement and thus enhance scalability in assessing ex-

ploitability risk by using machine learning techniques. We plan to examine the effec-

tiveness of machine learning for automatically assessing the risk of vulnerability

exploitation using the proposed properties as features. Given a vulnerable function and

their exploitability features, the machine learning model can predict whether it is an

exploitable function and estimate the impact of its exploitation.

Even though measuring the possibility of reaching a vulnerability is important, quan-

tifying the degree of difficulty of reaching a vulnerability is also valuable for comparing

the severity among similar vulnerabilities, and thus needs to be examined. We plan to

utilize the idea of the function call graph depth which has been presented in the discussion

section. Devising a way of estimating the impact of reachable vulnerabilities will be

valuable for estimating the overall risk of individual vulnerabilities and the whole system.

We plan to further study the Node-Rank proposed by Bhattacharya et al. (2012) as an

estimator of the vulnerability impact. Finally, identifying whether a vulnerable function is

guarded by security control can help better understand the impact of exploitation. We

intend to study how function exploitation properties proposed by Skape (2007) can give

more information about the risk of vulnerability exploitation.

Appendix

See Table 11.

Software Qual J (2016) 24:159–202 195

123

T
ab

le
1
1

O
b
ta
in
ed

st
ru
ct
u
ra
l
se
v
er
it
y
m
et
ri
cs

co
m
p
ar
ed

to
C
V
S
S
m
et
ri
cs

o
f
L
in
u
x
K
er
n
el

d
at
as
et

N
o

V
u
ln
er
ab
il
it
y

S
tr
u
ct
u
ra
l
se
v
er
it
y

C
V
S
S

E
x
p
lo
it
ex
is
te
n
ce

R
ea
ch
ab
il
it
y

D
S
C

S
ev
er
it
y

E
x
p
lo
it
ab
il
it
y

Im
p
ac
t

S
ev
er
it
y

A
C

A
V

A
U

S
S

C
I

A
S
S

1
C
V
E
-2
0
0
2
-0
4
9
9

R
D
S
C

H
L

L
N
R

3
.9

N
P

N
2
.9

L
E
E

2
C
V
E
-2
0
0
3
-0
4
6
2

R
N
D
S
C

M
H

L
N
R

1
.9

N
N

P
2
.9

L
E
E

3
C
V
E
-2
0
0
3
-0
6
1
9

R
N
D
S
C

M
L

N
N
R

1
0

N
N

P
2
.9

M
E
E

4
C
V
E
-2
0
0
3
-0
9
6
1

R
D
S
C

H
L

L
N
R

3
.9

C
C

C
1
0

H
E
E

5
C
V
E
-.
2
0
0
3
-

0
9
8
5

R
N
D
S
C

M
L

L
N
R

3
.9

C
C

C
1
0

H
E
E

6
C
V
E
-2
0
0
4
-0
4
2
4

R
D
S
C

H
L

L
N
R

3
.9

C
C

C
1
0

H
E
E

7
C
V
E
-2
0
0
4
-1
0
1
6

R
D
S
C

H
L

L
N
R

3
.9

N
N

P
2
.9

L
E
E

8
C
V
E
-2
0
0
4
-1
0
7
3

R
D
S
C

H
L

L
N
R

3
.9

P
N

N
2
.9

L
E
E

9
C
V
E
-2
0
0
4
-1
1
3
7

R
D
S
C

H
L

N
N
R

1
0

C
C

C
1
0

H
E
E

1
0

C
V
E
-2
0
0
4
-1
2
3
5

R
D
S
C

H
H

L
N
R

1
.9

C
C

C
1
0

M
E
E

1
1

C
V
E
-2
0
0
4
-1
3
3
3

R
D
S
C

H
L

L
N
R

3
.9

N
N

P
2
.9

L
E
E

1
2

C
V
E
-2
0
0
5
-0
7
3
6

R
D
S
C

H
L

L
N
R

3
.9

N
P

N
2
.9

L
E
E

1
3

C
V
E
-2
0
0
5
-0
7
5
0

R
D
S
C

H
L

L
N
R

3
.9

C
C

C
1
0

H
E
E

1
4

C
V
E
-2
0
0
5
-1
2
6
3

R
D
S
C

H
L

L
N
R

3
.9

C
C

C
1
0

H
E
E

1
5

C
V
E
-2
0
0
5
-1
5
8
9

R
D
S
C

H
L

L
N
R

3
.9

C
C

C
1
0

H
E
E

1
6

C
V
E
-2
0
0
5
-2
7
0
9

R
N
D
S
C

M
L

L
N
R

3
.9

P
P

P
6
.4

M
E
E

1
7

C
V
E
-2
0
0
5
-2
9
7
3

R
N
D
S
C

M
L

L
N
R

3
.9

P
N

N
2
.9

L
E
E

1
8

C
V
E
-2
0
0
5
-3
2
5
7

R
D
S
C

H
L

L
N
R

3
.9

P
P

P
6
.4

M
E
E

1
9

C
V
E
-2
0
0
5
-3
8
0
7

R
D
S
C

H
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

2
0

C
V
E
-2
0
0
5
-3
8
0
8

R
D
S
C

H
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

2
1

C
V
E
-2
0
0
5
-3
8
5
7

R
N
D
S
C

M
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

2
2

C
V
E
-2
0
0
6
-2
4
4
4

R
D
S
C

H
L

N
N
R

1
0

N
N

C
6
.9

H
E
E

196 Software Qual J (2016) 24:159–202

123

T
a
b
le

1
1
co
n
ti
n
u
ed

N
o

V
u
ln
er
ab
il
it
y

S
tr
u
ct
u
ra
l
se
v
er
it
y

C
V
S
S

E
x
p
lo
it
ex
is
te
n
ce

R
ea
ch
ab
il
it
y

D
S
C

S
ev
er
it
y

E
x
p
lo
it
ab
il
it
y

Im
p
ac
t

S
ev
er
it
y

A
C

A
V

A
U

S
S

C
I

A
S
S

2
3

C
V
E
-2
0
0
6
-2
4
5
1

R
D
S
C

H
L

L
N
R

3
.9

P
P

P
6
.4

M
E
E

2
4

C
V
E
-2
0
0
6
-2
6
2
9

R
D
S
C

H
H

L
N
R

1
.9

N
N

C
6
.9

M
E
E

2
5

C
V
E
-2
0
0
6
-5
7
5
7

R
N
D
S
C

M
H

L
N
R

1
.9

N
N

P
2
.9

L
E
E

2
6

C
V
E
-2
0
0
7
-1
0
0
0

R
N
D
S
C

M
L

L
N
R

3
.9

N
N

C
1
0

H
E
E

2
7

C
V
E
-2
0
0
7
-1
3
5
7

R
D
S
C

H
L

N
N
R

1
0

N
N

C
6
.9

H
E
E

2
8

C
V
E
-2
0
0
7
-1
3
8
8

R
N
D
S
C

M
M

L
S
S

2
.7

N
N

C
6
.9

M
E
E

2
9

C
V
E
-2
0
0
7
-1
7
3
0

R
D
S
C

H
L

L
N
R

3
.9

C
N

C
9
.2

M
E
E

3
0

C
V
E
-2
0
0
7
-1
8
6
1

R
D
S
C

H
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

3
1

C
V
E
-2
0
0
8
-4
1
1
3

R
D
S
C

H
M

L
N
R

3
.9

C
N

N
6
.9

M
E
E

3
2

C
V
E
-2
0
0
8
-4
3
0
2

R
N
D
S
C

M
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

3
3

C
V
E
-2
0
0
8
-5
7
1
3

R
N
D
S
C

M
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

3
4

C
V
E
-2
0
0
9
-0
0
6
5

R
N
D
S
C

M
L

A
N
R

1
0

C
C

C
1
0

H
E
E

3
5

C
V
E
-2
0
0
9
-0
6
7
6

R
N
D
S
C

M
L

L
N
R

3
.9

P
P

N
2
.9

L
E
E

3
6

C
V
E
-2
0
0
9
-0
7
4
6

R
D
S
C

H
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

3
7

C
V
E
-2
0
0
9
-1
3
3
7

R
D
S
C

H
M

L
N
R

3
.4

P
P

P
6
.4

M
E
E

3
8

C
V
E
-2
0
0
9
-1
8
9
7

R
D
S
C

H
M

L
N
R

3
.4

C
C

C
1
0

M
E
E

3
9

C
V
E
-2
0
0
9
-1
9
1
4

R
N
D
S
C

M
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

4
0

C
V
E
-2
0
0
9
-1
9
6
1

R
N
D
S
C

M
M

L
N
R

3
.4

N
N

P
2
.9

L
E
E

4
1

C
V
E
-2
0
0
9
-2
6
9
2

R
D
S
C

H
L

L
N
R

3
.9

C
C

C
1
0

H
E
E

4
2

C
V
E
-2
0
0
9
-2
6
9
8

R
D
S
C

H
L

L
N
R

3
.9

C
C

C
1
0

H
E
E

4
3

C
V
E
-2
0
0
9
-2
8
4
7

R
D
S
C

H
L

L
N
R

3
.9

C
N

N
6
.9

M
E
E

4
4

C
V
E
-2
0
0
9
-3
0
0
1

R
D
S
C

H
L

L
N
R

3
.9

C
N

N
6
.9

M
E
E

4
5

C
V
E
-2
0
0
9
-3
0
0
2

R
D
S
C

H
L

L
N
R

3
.9

C
N

N
6
.9

M
E
E

Software Qual J (2016) 24:159–202 197

123

T
a
b
le

1
1
co
n
ti
n
u
ed

N
o

V
u
ln
er
ab
il
it
y

S
tr
u
ct
u
ra
l
se
v
er
it
y

C
V
S
S

E
x
p
lo
it
ex
is
te
n
ce

R
ea
ch
ab
il
it
y

D
S
C

S
ev
er
it
y

E
x
p
lo
it
ab
il
it
y

Im
p
ac
t

S
ev
er
it
y

A
C

A
V

A
U

S
S

C
I

A
S
S

4
6

C
V
E
-2
0
0
9
-3
0
4
3

R
D
S
C

H
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

4
7

C
V
E
-2
0
0
9
-3
2
3
4

R
D
S
C

H
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

4
8

C
V
E
-2
0
0
9
-3
6
1
3

R
N
D
S
C

M
L

A
N
R

1
0

N
N

C
6
.9

H
E
E

4
9

C
V
E
-2
0
0
9
-3
8
8
8

R
N
D
S
C

M
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

5
0

C
V
E
-2
0
1
0
-1
1
7
3

R
N
D
S
C

M
M

N
N
R

8
.6

N
N

C
6
.9

H
E
E

5
1

C
V
E
-2
0
1
0
-1
6
3
6

R
D
S
C

H
L

L
N
R

3
.9

P
N

N
2
.9

L
E
E

5
2

C
V
E
-2
0
1
0
-2
9
5
9

R
D
S
C

H
L

L
N
R

3
.9

C
C

C
1
0

H
E
E

5
3

C
V
E
-2
0
1
0
-3
0
8
1

R
D
S
C

H
L

L
N
R

3
.9

C
C

C
1
0

H
E
E

5
4

C
V
E
-2
0
1
0
-3
4
3
7

R
D
S
C

H
L

L
N
R

3
.9

C
N

C
9
.2

M
E
E

5
5

C
V
E
-2
0
1
0
-3
8
5
8

R
D
S
C

H
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

5
6

C
V
E
-2
0
1
0
-4
0
7
3

R
D
S
C

H
M

L
N
R

3
.4

P
N

N
2
.9

L
E
E

5
7

C
V
E
-2
0
1
0
-4
1
6
5

R
D
S
C

H
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

5
8

C
V
E
-2
0
1
0
-4
2
5
8

R
D
S
C

H
H

L
N
R

1
.9

C
C

C
1
0

M
E
E

5
9

C
V
E
-2
0
1
1
-2
9
1
8

R
D
S
C

H
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

6
0

C
V
E
-2
0
1
2
-3
3
7
5

R
N
D
S
C

M
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

6
1

C
V
E
-2
0
1
3
-1
9
5
9

R
N
D
S
C

M
L

L
N
R

3
.9

N
N

C
6
.9

M
E
E

6
2

C
V
E
-2
0
1
3
-2
0
9
4

R
D
S
C

H
L

L
N
R

3
.9

C
C

C
1
0

H
E
E

6
3

C
V
E
-2
0
1
4
-0
0
3
8

R
D
S
C

H
M

L
N
R

3
.4

C
C

C
1
0

M
E
E

6
4

C
V
E
-2
0
1
4
-2
8
5
1

R
D
S
C

H
M

L
N
R

3
.4

C
C

C
1
0

M
E
E

6
5

C
V
E
-2
0
0
2
-0
4
9
9

R
N
D
S
C

M
L

L
N
R

3
.9

N
P

N
2
.9

L
N
E
E

6
6

C
V
E
-2
0
0
2
-1
5
7
2

R
D
S
C

H
L

N
N
R

1
0

C
C

C
1
0

H
N
E
E

6
7

C
V
E
-2
0
0
3
-0
9
8
6

R
D
S
C

H
L

L
S
S

3
.1

N
N

P
2
.9

L
N
E
E

6
8

C
V
E
-2
0
0
4
-0
0
1
0

R
D
S
C

H
L

L
N
R

3
.9

C
C

C
1
0

H
N
E
E

198 Software Qual J (2016) 24:159–202

123

T
a
b
le

1
1
co
n
ti
n
u
ed

N
o

V
u
ln
er
ab
il
it
y

S
tr
u
ct
u
ra
l
se
v
er
it
y

C
V
S
S

E
x
p
lo
it
ex
is
te
n
ce

R
ea
ch
ab
il
it
y

D
S
C

S
ev
er
it
y

E
x
p
lo
it
ab
il
it
y

Im
p
ac
t

S
ev
er
it
y

A
C

A
V

A
U

S
S

C
I

A
S
S

6
9

C
V
E
-2
0
0
4
-0
3
9
4

R
D
S
C

H
L

L
N
R

3
.9

P
N

N
2
.9

L
N
E
E

7
0

C
V
E
-2
0
0
4
-1
0
7
0

R
D
S
C

H
L

L
N
R

3
.9

C
C

C
1
0

H
N
E
E

7
1

C
V
E
-2
0
0
4
-1
1
5
1

R
D
S
C

H
L

L
N
R

3
.9

C
C

C
1
0

H
N
E
E

7
2

C
V
E
-2
0
0
4
-2
7
3
1

R
D
S
C

H
L

L
N
R

3
.4

P
P

P
6
.4

M
N
E
E

7
3

C
V
E
-2
0
0
5
-0
1
2
4

N
R

N
D
S
C

L
L

L
N
R

3
.9

N
N

P
2
.9

L
N
E
E

7
4

C
V
E
-2
0
0
5
-0
4
4
9

R
D
S
C

H
M

N
N
R

8
.6

N
N

C
6
.9

H
N
E
E

7
5

C
V
E
-2
0
0
5
-0
5
3
1

R
N
D
S
C

M
L

L
N
R

3
.9

N
P

N
2
.9

L
N
E
E

7
6

C
V
E
-2
0
0
5
-2
4
5
6

R
D
S
C

H
L

L
N
R

3
.9

N
N

P
2
.9

L
N
E
E

7
7

C
V
E
-2
0
0
5
-2
4
5
9

R
N
D
S
C

M
L

N
N
R

1
0

N
N

P
2
.9

M
N
E
E

7
8

C
V
E
-2
0
0
5
-2
4
9
2

N
R

D
S
C

L
L

L
N
R

3
.9

P
N

P
4
.9

L
N
E
E

7
9

C
V
E
-2
0
0
5
-2
5
0
0

N
R

D
S
C

L
L

N
N
R

1
0

P
P

P
6
.4

H
N
E
E

8
0

C
V
E
-2
0
0
5
-3
1
1
9

R
N
D
S
C

M
L

L
N
R

3
.9

P
N

N
2
.9

L
N
E
E

8
1

C
V
E
-2
0
0
5
-3
8
0
8

R
D
S
C

H
L

L
N
R

3
.9

N
N

C
6
.9

M
N
E
E

8
2

C
V
E
-2
0
0
5
-3
8
4
8

R
D
S
C

H
L

N
N
R

1
0

N
N

C
6
.9

H
N
E
E

8
3

C
V
E
-2
0
0
5
-3
8
5
8

R
D
S
C

H
L

N
N
R

1
0

N
N

C
6
.9

H
N
E
E

8
4

C
V
E
-2
0
0
5
-4
6
3
5

R
D
S
C

H
L

N
N
R

1
0

N
N

P
2
.9

M
N
E
E

8
5

C
V
E
-2
0
0
6
-6
1
0
6

R
N
D
S
C

M
L

N
N
R

1
0

P
P

P
6
.4

H
N
E
E

8
6

C
V
E
-2
0
0
6
-6
3
3
3

R
D
S
C

H
L

N
N
R

1
0

N
N

c
6
.9

H
N
E
E

E
E
ex
p
lo
it
ex
is
t,
N
E
E
n
o
ex
p
lo
it
ex
is
t,
S
S
su
b
sc
o
re

Software Qual J (2016) 24:159–202 199

123

References

Alhazmi, O. H., & Malaiya,Y. K. (2005). Modeling the vulnerability discovery process. In: Proceedings of
the 16th IEEE international symposium on software reliability engineering (ISSRE’05) (pp. 1–10).
doi:10.1109/ISSRE.2005.30.

Alhazmi, O. H., Malaiya, Y. K., & Ray, I. (2007). Measuring, analyzing and predicting security vul-
nerabilities in software systems. Computers & Security, 26(3), 219–228. doi:10.1016/j.cose.2006.10.
002.

Allodi, L., & Massacci, F. (2012). A preliminary analysis of vulnerability scores for attacks in wild. In:
Proceedings of the 2012 ACM workshop on Building analysis datasets and gathering experience
returns for security (BADGERS 12) (pp. 17–24). ISBN: 978-1-4503-1661-3. doi:10.1145/2382416.
2382427

Allodi, L., & Massacci, F. (2013). My Software has a vulnerability, should I worry? Corrnel Univsity
Library (pp. 12). arXiv:1301.1275. http://www.arxiv.org/pdf/1301.1275v3.pdf. Accessed 2 Aug 2013.

Allodi, L., Shim, W., & Massacci, F. (2013). Quantitative Assessment of risk reduction with cybercrime
black market monitoring. IEEE Security and Privacy Workshops (SPW) (pp. 165–172). doi: 10.1109/
SPW.2013.16

Apache-SVN. (2014). the apache software foundation. http://www.svn.apache.org/viewvc/. Accessed 27
Mar 2014.

Arbaugh, W. A., Fithen, W. L., & John, M. (2000). Windows of vulnerability: A case study analysis.
Computer, 33(12), 52–59. doi:10.1109/2.889093.

Archive.apache.org. (2014). The apache software foundation. http://www.archive.apache.org/dist/httpd/.
Accessed 2 Aug 2014.

Avgerinos, T., Cha, S. K., Rebert, A., Schwartz, E. J., Woo, M., & Brumley, D. (2014). Automatic exploit
generation. Communications of the ACM, 26(3), 74–84. doi:10.1145/2560217.2560219.

Bhattacharya, P., Iliofotou, M., Neamtiu, I., & Faloutsos, M. (2012). Graph-based analysis and prediction for
software evolution. In: Proceedings of the 34th international conference on software engineering
(ICSE ‘12) (pp. 419–429). ISBN: 978-1-4673-1067-3.

Bozorgi, M., Saul, L. K., Savage, S., & Voelker, G. M. (2010). Beyond heuristics: Learning to classify
vulnerabilities and predict exploits. In: Proceedings of the 16th ACM SIGKDD international confer-
ence on knowledge discovery and data mining (KDD ‘10) (pp. 105–114). doi:10.1145/1835804.
1835821

Brenneman, D. (2012). Improving software security by identifying and securing paths linking attack surface
to attack target. McCabe Software Inc. White Paper. http://www.mccabe.com/. Accessed 4 Aug 2014.

Evans, D., & Larochelle, D. (2002). Improving security using extensible lightweight static analysis. IEEE
Software, 19(1), 42–51. doi:10.1109/52.976940.

Ferrante, J., Ottenstein, K. J., & Warren, J. D. (1987). The program dependence graph and its use in
optimization. ACM Transactions on Programming Languages and Systems (TOPLAS), 9(3), 319–349.
doi:10.1145/24039.24041.

Frei, S., Tellenbach, B., & Plattner, B. (2008). 0-day Patch: Exposing vendors (in) security performance.
Black Hat Europe. http://www.techzoom.net/papers/blackhat 0 day Patch 2008.pdf. Accessed 10 Aug
2013.

GNU Cflow (2013) http://www.gnu.org/software/cflow/manual/cflow.html. Accessed 2 Aug 2013.
Horwitz, S., Reps, T., & Binkley, D. (1990). Interprocedural slicing using dependence graphs. ACM

Transactions on Programming Languages and Systems (TOPLAS), 12(1), 26–60. doi:10.1145/77606.
77608.

Howard, M., Pincus, J., & Wing, J. (2005). Measuring relative attack surfaces. Computer Security in the 21st
Century (pp. 109–137). Springer. ISBN 0-387-24005-5, 0-387-24006-3. http://www.link.springer.com/
chapter/10.1007/0-387-24006-3_8.

Imperva, a provider of cyber and data security products (2012). http://www.imperva.com/docs/HII_Web_
Application_Attack_Report_Ed3.pdf. Accesses 19 Apr 2014.

Jansen, W. (2009). Directions in Security Metrics Research. NIST. http://www.csrc.nist.gov/publications/
nistir/ir7564/nistir-7564_metrics-research.pdf. Accessed 15 March 2013.

Joh, H., & Malaiya, Y. K. (2011). Defining and assessing quantitative security risk measures using vul-
nerability lifecycle and CVSS metrics. In: The 2011 international conference on security and man-
agement (SAM’11) (pp. 10–16).

Kuck, D. J., Muraoka, Y., & Chen, S. (1972). On the number of operations simultaneously executable in
fortran-like programs and their resulting speedup. The IEEE Transactions on Computers, 100(12),
1293–1310. doi:10.1109/T-C.1972.223501.

200 Software Qual J (2016) 24:159–202

123

http://dx.doi.org/10.1109/ISSRE.2005.30
http://dx.doi.org/10.1016/j.cose.2006.10.002
http://dx.doi.org/10.1016/j.cose.2006.10.002
http://dx.doi.org/10.1145/2382416.2382427
http://dx.doi.org/10.1145/2382416.2382427
http://www.arxiv.org/pdf/1301.1275v3.pdf
http://dx.doi.org/10.1109/SPW.2013.16
http://dx.doi.org/10.1109/SPW.2013.16
http://www.svn.apache.org/viewvc/
http://dx.doi.org/10.1109/2.889093
http://www.archive.apache.org/dist/httpd/
http://dx.doi.org/10.1145/2560217.2560219
http://dx.doi.org/10.1145/1835804.1835821
http://dx.doi.org/10.1145/1835804.1835821
http://www.mccabe.com/
http://dx.doi.org/10.1109/52.976940
http://dx.doi.org/10.1145/24039.24041
http://www.techzoom.net/papers/blackhat
http://www.gnu.org/software/cflow/manual/cflow.html
http://dx.doi.org/10.1145/77606.77608
http://dx.doi.org/10.1145/77606.77608
http://www.springerlink.bibliotecabuap.elogim.com/chapter/10.1007/0-387-24006-3_8
http://www.springerlink.bibliotecabuap.elogim.com/chapter/10.1007/0-387-24006-3_8
http://www.imperva.com/docs/HII_Web_Application_Attack_Report_Ed3.pdf
http://www.imperva.com/docs/HII_Web_Application_Attack_Report_Ed3.pdf
http://www.csrc.nist.gov/publications/nistir/ir7564/nistir-7564_metrics-research.pdf
http://www.csrc.nist.gov/publications/nistir/ir7564/nistir-7564_metrics-research.pdf
http://dx.doi.org/10.1109/T-C.1972.223501

Manadhata, P. K., & Wing, J. M. (2011). An attack surface metric. The IEEE Transactions on Software
Engineering, 37(3), 371–386. doi:10.1109/TSE.2010.60.

Manadhata, P. K, Wing, J., Flynn M., & McQueen, M. (2006). Measuring the attack surfaces of two FTP
daemons. In: Proceedings of the 2nd ACM workshop on quality of protection (QoP’06) (pp. 3–10).
doi:10.1145/1179494.1179497.

Massimo, B., Gabrielli, E., & Mancini, L. (2002). Remus: A security-enhanced operating system. ACM
Transactions on Information and System Security (TISSEC), 5(1), 36–61. doi:10.1145/504909.504911.

Mell, P., Scarfone, K., & Romanosky, S. (2007). A complete guide to the common vulnerability scoring
system version 2.0. Published by FIRST-Forum of Incident Response and Security Teams (pp. 1–23).
http://www.first.org/cvss/cvss-guide.pdf. Accessed 15 Mar 2013.

Metasploit Database. (2014). http://www.metasploit.com/. Accessed 27 March 2014.
National Vulnerability Database. (2013). http://www.nvd.nist.gov/. Accessed 2 Aug 2013.
OSVDB: Open Sourced Vulnerability Database. (2014). http://www.osvdb.org/. Accessed 19 Feb 2014.
Pfleeger, C. P., & Pfleeger, S. L. (2006). Security in computing. New Jersey: Prentice Hall PTR.
Ponemon Institute. (2013). 2013 Cost of data breach study: Global analysis. Benchmark research sponsored

by Symantec, Independently Conducted by Ponemon Institute. https://www4.symantec.com/mktginfo/
whitepaper/053013_GL_NA_WP_Ponemon-2013-Cost-of-a-Data-Breach-Report_daiNA_cta72382.
pdf. Accessed 10 Mar 2013.

Red Hat Bugzilla Main Page. (2014). https://bugzilla.redhat.com/. Accessed 2 Mar 2014.
Scientific Toolworks Understand. (2014). http://www.scitools.com/. Accessed 22 Mar 2014.
SecurityFocus. (2015). http://www.securityfocus.com/archive/1. Accessed 2 Mar 2015.
Silberschatz, A., Galvin, P. B., & Gagne, G. (2009). Operating system concepts. Wiley.
Skape. (2007). Improving software security analysis using exploitation properties. Uninformed. http://www.

uninformed.org/?o=about. Accessed 29 Mar 2014.
Sparks, S., Embleton, S., Cunningham, R., & Zou, C. (2007). Automated vulnerability analysis: Leveraging

control flow for evolutionary input crafting. In: Computer Security Applications Conference (ACSAC
2007) (pp. 477–486). doi:10.1109/ACSAC.2007.27.

Stoneburner, G., Goguen, A., & Feringa, A. (2002). Risk management guide for information technology
systems. NIST. http://www.security-science.com/pdf/risk-management-guide-for-information-technology-
systems.pdf. Accessed 23 Mar 2013.

The Exploits Database. (2013). http://www.exploit-db.com/. Accessed 7 Aug 2013.
Usage Statistics and Market Share of Web Servers for Websites. (2013). http://www.w3techs.com/

technologies/overview/web_server/all. Accessed 2 Aug 2013.
Younis, A. A., & Malaiya,Y. K. (2012). Relationship between attack surface and vulnerability density: A

case study on apache HTTP server. In: The 2012 international conference on internet computing
(ICOMP’12) (pp. 197–203).

Awad Younis is a Ph.D. student in the Computer Science Department
at Colorado State University. His research interests are software se-
curity metrics, attack surface analysis, vulnerability analysis, ex-
ploitation risk analysis, and modeling the discovery process for
security vulnerabilities. He received an M.Sc. in computer science
from University of Madras, Chennai, India, in 2008, M.C.S in com-
puter science from Colorado State University 2012, and BSc in com-
puter science from Garyounis University, Benghazi, Libya, in 2000.

Software Qual J (2016) 24:159–202 201

123

http://dx.doi.org/10.1109/TSE.2010.60
http://dx.doi.org/10.1145/1179494.1179497
http://dx.doi.org/10.1145/504909.504911
http://www.first.org/cvss/cvss-guide.pdf
http://www.metasploit.com/
http://www.nvd.nist.gov/
http://www.osvdb.org/
https://www4.symantec.com/mktginfo/whitepaper/053013_GL_NA_WP_Ponemon-2013-Cost-of-a-Data-Breach-Report_daiNA_cta72382.pdf
https://www4.symantec.com/mktginfo/whitepaper/053013_GL_NA_WP_Ponemon-2013-Cost-of-a-Data-Breach-Report_daiNA_cta72382.pdf
https://www4.symantec.com/mktginfo/whitepaper/053013_GL_NA_WP_Ponemon-2013-Cost-of-a-Data-Breach-Report_daiNA_cta72382.pdf
https://bugzilla.redhat.com/
http://www.scitools.com/
http://www.securityfocus.com/archive/1
http://www.uninformed.org/?o=about
http://www.uninformed.org/?o=about
http://dx.doi.org/10.1109/ACSAC.2007.27
http://www.security-science.com/pdf/risk-management-guide-for-information-technology-systems.pdf
http://www.security-science.com/pdf/risk-management-guide-for-information-technology-systems.pdf
http://www.exploit-db.com/
http://www.w3techs.com/technologies/overview/web_server/all
http://www.w3techs.com/technologies/overview/web_server/all

Yashwant K. Malaiya is a professor in the Computer Science
Department at Colorado State University. He received M.S. in Physics
from Sagar University, MScTech in Electronics from BITS Pilani, and
PhD in Electrical Engineering from Utah State University. He has
published more than 160 papers in the areas of fault modeling, soft-
ware and hardware reliability, testing and testable design, and quan-
titative security risk evaluation. He served as the General Chair of
1993 and 2003 IEEE International Symposium on Software Reliability
Engineering (ISSRE). He co-edited the IEEECS Technology Series
book Software Reliability Models, Theoretical Developments, Eval-
uation and Applications. He is a recipient of the IEEE Third Millen-
nium Medal and the IEEE Computer Society Golden Core award.

Indrajit Ray is an associate professor in the Computer Science
Department at Colorado State University. His main research interests
are in the areas of data and application security, network security,
attack modeling, risk management, trust models, privacy, and digital
forensics. At Colorado State University, he is member of the Data and
Applications Security Group, the Network Security Group, and the
Software Assurance Laboratory. He was one of the founding members
and the first Chair of the IFIP TC-11 Working Group 11.9 on Digital
Forensics. He has served on numerous conference program committees
as well as organizing committees, on grant review panels, and as ex-
ternal evaluator of academic programs. He is currently serving on the
editorial board of three international journals. He is a member of IEEE
Computer Society, ACM, ACM Special Interest Group on Security
Audit and Control, IFIP WG 11.3 on Data and Applications Security
and IFIP WG 11.9 on Digital Forensics.

202 Software Qual J (2016) 24:159–202

123

	Assessing vulnerability exploitability risk using software properties
	Abstract
	Introduction
	Problem description and research motivation
	Exploitability factor
	Impact factor

	Research objectives and contribution

	Background
	Software vulnerabilities
	Attack surface metric
	System dependence graph
	Exploit database (EDB)

	Approach
	Identify attack entry points
	Find vulnerability location
	Apply reachability analysis
	Find dangerous system calls
	Assess vulnerability exploitability

	Evaluation and Results
	Define attack entry points
	Find vulnerability location
	Apply reachability analysis
	Find dangerous system calls
	Assessing vulnerability exploitability
	Assigning a vulnerability Structural Severity value
	Apache HTTP server
	Linux Kernel

	Performance evaluation of the proposed metric
	Sensitivity (Recall)
	Precision
	F-measure
	Comparison of the performance evaluation results

	Discussion and threats to validity
	Discussion of the case study results
	Threats to validity
	External validity
	Internal validity
	Construct validity

	Related work
	Measurement-based approaches
	Attack surface metric
	CVSS metrics

	Model-based approaches
	Probabilistic model
	Logistic model
	Machine learning-based metric

	Test-based approaches (proof of concept)
	Automated exploit-generation system (AEG)
	Black box fuzz testing

	Analysis-based approaches
	Black market data analysis
	Source code analysis
	System calls analysis

	Conclusion and future work
	Appendix
	References

