
A survey on quality attributes in service-based systems

David Ameller • Matthias Galster • Paris Avgeriou • Xavier Franch

Published online: 8 February 2015
� Springer Science+Business Media New York 2015

Abstract Service-based systems have become popular in the software industry. In

software engineering, it is widely acknowledged that requirements on quality attributes

(e.g., performance, security, reliability) significantly impact the design of software sys-

tems. This study explores the role of quality attributes during the design of service-based

systems. We investigate the significance of quality attributes when designing service-based

systems and how quality attributes are addressed through design decisions, across appli-

cation domains, and related to other aspects of software development, e.g., architecture

documentation. We conducted a descriptive survey. The survey was done as an online

questionnaire targeting practitioners. Furthermore, we included researchers with practical

design experience. We obtained 56 valid responses. Most survey participants consider

quality attributes and functionality as equally important and treat quality attributes

explicitly rather than implicitly. Furthermore, dependability is the most relevant quality

attribute in service-based systems; we do not find quality attributes that are particularly

important in specific application domains. Most quality attributes are addressed by ad hoc

decisions, rather than established architecture or design patterns or technologies. Only few

decision alternatives are considered when making architectural decisions to address quality

D. Ameller (&) � X. Franch
Department of Service Engineering and Information Systems, Universitat Politècnica de Catalunya,
Barcelona, Spain
e-mail: dameller@essi.upc.edu

X. Franch
e-mail: franch@essi.upc.edu

M. Galster
Department of Computer Science and Software Engineering, University of Canterbury, Christchurch,
New Zealand
e-mail: mgalster@ieee.org

P. Avgeriou
Department of Mathematics and Computer Science, University of Groningen, Groningen,
The Netherlands
e-mail: paris@cs.rug.nl

123

Software Qual J (2016) 24:271–299
DOI 10.1007/s11219-015-9268-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9268-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9268-4&domain=pdf

attributes. Our results partially confirm anecdotal evidence from current literature, but also

strengthen previous claims by providing empirical evidence. Our results point to future

research directions (e.g., exploring the impact of decision types on how well quality

attributes can be achieved) and implications for practitioners (e.g., training makes a dif-

ference to how quality attributes are treated).

Keywords Quality attributes � Service-based systems � Software design � Survey �
Empirical study

1 Introduction

Quality attributes (QAs) are characteristics that affect the quality of software systems

(IEEE 1990). Bass et al. (2003) differentiate qualities of the system (e.g., availability,

modifiability), business qualities (e.g., time to market) and qualities that are about the

architecture (e.g., correctness, consistency, conceptual integrity). Considering QAs

throughout software development, and especially during the design stage, is crucial to

produce systems that meet their quality requirements (i.e., requirements on quality attri-

butes; for example, ‘‘The system shall provide a response time of 1 s to queries that do not

involve images’’ is a quality requirement for quality attribute ‘‘performance’’).

Service-based systems (SBS, also called service-oriented systems) have become popular

in the software industry. The underlying architecture paradigm of SBS is Service-Oriented

Architecture (SOA). In SBS design (as in software engineering in general), achieving

quality and QAs is a top challenge (Gu and Lago 2009). However, the role of quality

attributes in SBS design has not been studied extensively. To address this challenge and to

contribute to better understanding QAs of SBS in practice, this article studies the role of

QAs in SBS design.

1.1 Problem statement and motivation

QAs play a significant role when designing software systems. Some design methodologies,

especially the ones for architecture design, treat QAs as drivers (Barbacci et al. 2003;

Wojcik et al. 2006; Bachmann et al. 2005; de Oliveira Cavalcanti et al. 2011; Kim et al.

2009). Also, QAs may be used to select specific software components (Franch and Carvallo

2003) as part of the detailed design, or to evaluate software architectures (Barbacci et al.

1997). According to O’Brien et al. (2007), choosing an architecture that satisfies the QAs is

vital to the success of a system. Furthermore, QAs shape the architecture design. To create

successful SBS designs, it is important to understand how SBS supports different QAs

(O’Brien et al. 2007). According to O’Brien et al., this has not been thoroughly researched.

Instead, current research has mostly investigated quality metrics for SBS. For example,

Sindhgatta et al. (2009) focused on metrics for intrinsic qualities (cohesion, coupling,

reusability, composability, granularity) but ignore QAs visible to the end user (e.g., per-

formance). Furthermore, Voelz and Goeb (2010) argue that QAs such as interoperability

and changeability are supported in SBS, but implications of SBS design on performance

and security are not well understood. This means, there is currently a lack of understanding

the role of QAs in SBSs in industrial practice. Also, to our knowledge, there are no

272 Software Qual J (2016) 24:271–299

123

thorough empirical studies on the role of QAs in SBS. Thus, we present a survey to

understand the role of QAs in the design of SBSs.

1.2 Paper goal and contribution

To get an in-depth understanding of the role of QAs in SBS, we need to get insights from

industrial practice. Therefore, the objective of this study is to collect and report infor-

mation, from practitioners as well as researchers with practical experience, about what

QAs are considered important and how these QAs are addressed during SBS design.

Following the four perspectives for describing a goal in the Goal-Question-Metric (GQM)

approach (purpose, issue, object, viewpoint) (Basili et al. 1994), the goal of our study is

defined as follows:

• Purpose: analyze and characterize.

• Issue: role of quality attributes.

• Object: in service-based systems design.

• Viewpoint: from the viewpoint of practitioners, as well as researchers with practical

experience.

By addressing this goal, we aim to:

(a) Identify the influence of QAs on the design of SBSs (e.g., how QAs are treated

compared to functional requirements),

(b) Identify how practitioners and researchers with practical experience handle QAs

(e.g., what kinds of decisions are used to accommodate QAs).

Detailed research questions are provided in Sect. 3.1.

The target audience of our study is twofold: first, we aim at researchers who would like

to get insights into how QAs are treated in SBSs design in industry, and who would like to

get directions for improvement of current practices and future research. Our results help

researchers align their work with industrial needs. Second, we aim at practitioners who

would like to find out what QAs are important and how these can be addressed.

Even though some of our results confirm what other research has claimed in an anec-

dotal manner, our study provides empirical evidence for the importance and treatment of

quality attributes in SBS. For example, a design quality model for SOA was proposed by

Shim et al. (2008). However, this model has not been empirically validated nor has it been

linked to industrial practice.

The work presented in this paper is an extension of our previous work (‘‘The Role of

Quality Attributes in Service-based Systems Architecting: A Survey’’) (Ameller et al.

2013). The work presented in this paper differs from our previous work in that we

(a) include additional research questions, (b) include more data and more survey responses,

and (c) perform additional analyses of the data.

1.3 Paper structure

In Sect. 2, we discuss SBS, QAs, and architectural decisions. Section 3 discusses the

research method and introduces detailed research questions. In Sect. 4, we present the

results of our study. These results are interpreted in Sect. 5. Section 6 discusses limitations

of our study. Section 7 concludes the paper and evaluates the quality of the survey based

on a predefined checklist.

Software Qual J (2016) 24:271–299 273

123

2 Background

2.1 Service-based systems

Service-orientation is a standard-based, technology-independent computing paradigm for

distributed systems. As there is no universal definition for service-based design (O’Brien

et al. 2005), we utilize a broad definition: we consider service-based design as the design of

a system which is assembled from individual services that are invoked using standardized

communication models (Kontogogos and Avgeriou 2009; OASIS 2006). Service-based

design produces SBS. The two important principles of SBS are (a) the identification of

services aligned with business drivers and (b) the ability to address multiple execution

environments by separating the service description (i.e., interface) from its implementation

(Cohen and Krut 2010).

Designing SBS requires well-documented interfaces for all conceptual services iden-

tified during analysis, before constructing services. Service design is based on the logical

part of a system (e.g., business logic) and on the physical part of the SOA abstraction layers

(e.g., actual software services). The purpose of logical service design is to define single

services and to compose services. The physical design part focuses on how to design

component implementations that implement services at an acceptable level of granularity,

often following component-based development techniques (Papazoglou 2007).

2.2 Quality attributes

For QAs, we adapt the definition proposed by ISO standards for software quality (ISO/IEC

2001, 2003a, b, 2004): a QA is a measurable physical or abstract property of software

product that bears on its ability to satisfy stated and implied needs. According to Bala-

subramaniam et al. (2009), achieving QAs in SBS is critical due to the following reasons:

• Application developers need to be confident that the services (and compositions of

them) will meet end user quality requirements.

• Application developers need to understand the cost and risk of achieving quality

requirements, given that system QAs often must be traded off or built in (O’Brien et al.

2007).

• Application developers require information for selecting between alternate services

with similar functional capability.

• Application developers require information about Quality of Service (QoS) to monitor

and enforce service level agreements (SLAs).

This is because SBS lack central control and authority, and impose limited end-to-end

visibility of services, unpredictable usage patterns and dynamic composition (Balasubr-

amaniam et al. 2009). Desired QoS goals cannot be achieved by tuning the system after the

SBS is implemented. Instead, according to Balasubramaniam et al. (2009), achieving

desired QoS goals in SOA environments will require a life-cycle approach to verification

and the incorporation of techniques that focus on architecture, source code, and runtime

monitoring.

The S-Cube network defines quality as the degree to which a set of characteristics

described as QAs fulfills a set of requirements (Gehlert and Metzger 2009). At least three

different views on quality can be distinguished: process quality, product quality, and

quality in use. Using the definitions in the S-Cube network (Gehlert and Metzger 2009) and

similar to (ISO/IEC 2001), we can differentiate quality as follows:

274 Software Qual J (2016) 24:271–299

123

• Process quality is the quality of the production process of a product.

• Product quality refers to the degree to which a product fulfills its requirements.

• Quality in use describes the quality of a product evaluated in specific usage contexts

and for specific tasks.

Our work focuses on product quality (design time and runtime). We do not address the

quality of the process of developing SBS. Furthermore, quality in use is indirectly

addressed as product quality affects the quality in use.

Gu and Lago (2009) found more than 50 quality challenges in SBS related to QAs, such

as security, reusability, flexibility, interpretability, and performance. Furthermore, O’Brien

et al. (2007) discuss how QAs are affected by service-based design. The S-Cube network

mentioned before also proposed a quality model for SBS (Gehlert and Metzger 2009). Our

survey design (Sect. 3.2) uses this quality model as reference in the questionnaire. As

S-Cube classifies more than 60 QAs, we do not include the S-Cube quality model in the

paper.

2.3 Architectural design and design decisions

An architectural decision (AD) is a decision that affects the architecture of a system

(Harrison et al. 2007). A decision addresses QAs and functional requirements through a

justified solution. Each decision can address some requirements, but leave others unre-

solved (Bosch 2004). ADs might cause the creation of architecture components, assign

functionality to existing components, add requirements to a components’ expected

behavior, or add constraints on the software architecture (Bosch 2004).

Kruchten (2004) describes several types of ADs: (a) existence decisions relate to the

behavior or structure in the system’s design or implementation; (b) non-existence decisions

describe behavior that is excluded from the system; (c) property decisions state an

enduring, overarching system trait or quality, which might include design guidelines or

constraints; and (d) executive decisions are those driven by external forces, such as

financial constraints.

For documenting decisions, it is crucial to decide what to document. A decision should

include a problem, motivation, cause, context, potential solutions (alternatives), and

decision (Jansen et al. 2009). Tyree and Akerman (2005) provide a template to record AD.

In our survey design (Sect. 3.2), we will use this template to derive questions for the survey

questionnaire to obtain decisions.

3 Research method

Surveys collect qualitative and quantitative information to provide a ‘‘snapshot’’ of the

current status related to a phenomenon (Wohlin et al. 2003). This information is used to

describe, compare, or explain knowledge, attitudes, or behavior (Gray 2009; Pfleeger and

Kitchenham 2001). To ensure rigor and repeatability of our study, and to reduce researcher

bias while conducting the survey, we designed a survey protocol. The protocol followed

the template for surveys proposed for evidence-based software engineering.1 Furthermore,

the study itself followed the six-step survey process proposed by Ciolkowski et al. (2003)

1 http://www.dur.ac.uk/ebse/resources/templates/SurveyTemplate.pdf.

Software Qual J (2016) 24:271–299 275

123

http://www.dur.ac.uk/ebse/resources/templates/SurveyTemplate.pdf

(Fig. 1, including the iterations in the process) and used activities of a survey process as

described by Pfleeger and Kitchenham (2001):

1. Survey definition: we determined the goal of the study in terms of a specific objective:

investigating the role of QAs in SBS design (see also Sect. 1.2).

2. Survey design: we operationalized the survey goal into questions. We defined research

questions and designed an online questionnaire as data collection instrument.

Furthermore, we validated the data collection instrument. Details of the design are

discussed in the following sub-sections.

3. Survey implementation: we operationalized the study design to make the survey

executable. This included scheduling the survey and setting up an online infrastructure

to collect the data.

4. Survey execution: we collected and processed data.

5. Survey analysis: we interpreted data collected during study execution.

6. Survey packaging: we report the results of the survey in this article.

3.1 Research questions

Based on the goal of the study, we defined two research questions, each divided into sub-

questions with an explicit rationale:

• RQ1: How important are quality attributes in the context of SBS design?

• RQ1.1: How important are quality attributes in comparison to functionality?

• RQ1.2: Are certain quality attributes more important in particular application

domains?

• RQ2: How are quality attributes addressed in the context of SBS design?

• RQ2.1: What kinds of decisions are used to address quality attributes?

• RQ2.2: What is the impact of these decisions on other quality attributes?

• RQ2.3: What rationale is behind the architectural decisions?

• RQ2.4: After the decision was made, were quality attributes satisfied?

RQ1 provides us with an overview of the role of QAs in industrial practice when

designing SBS. Here, we first compare how QAs are treated compared to functionality

(RQ1.1). Current literature (see Sect. 5.1) suggests that even though QAs and functionality

are equally important, QAs drive the architecture process of software. We are interested in

finding out whether this is also the case in SBS, or if QAs in SBS are mainly treated as

Survey
analysis

Survey
design

1 2 3 4 5 6
Survey

implementa�on
Survey

packaging
Survey

execu�on
Survey

defini�on

Fig. 1 Survey process

276 Software Qual J (2016) 24:271–299

123

factors that suggest the use of a service-based solution: SBS design has been claimed as an

approach to achieve ‘‘qualities’’ such as interoperability, flexibility, or reusability (Erl

2005). Second, we are interested in finding out whether there are QAs that are more

common in specific application domains, such as telecommunication or e-government

(RQ1.2). This will provide us with information that can be used to provide guidance for

architects through the design process by focusing on QAs that are important for a certain

domain.

RQ2 aims at obtaining insights into how practitioners address QAs when designing

SBS. In detail, we are interested in the kind of decisions that practitioners use (RQ2.1). We

used Kruchten’s taxonomy of decisions (Kruchten 2004):

• Property decision ‘‘A property decision states an enduring, overarching trait or quality of

the system.Property decisions canbedesign rules orguidelines (when expressed positively)

or design constraints (when expressed negatively), as some trait that the system will not

exhibit’’, e.g., ‘‘all domain-related classes are defined in the domain layer.’’

• Existence decision ‘‘An existence decision states that some element/artifact will

positively show up, i.e., will exist in the systems’ design or implementation’’, e.g., ‘‘the

logical view is organized in 3 layers.’’

• Executive decision ‘‘These are the decisions that do not relate directly to the design

elements or their qualities, but are driven more by the business environment (financial),

and affect the development process (methodological), the people (education and

training), the organization, and to a large extend the choices of technologies and tools’’,

e.g., ‘‘the system is developed using J2EE.’’

Also, we are interested in understanding how decisions made to accommodate one QA

would affect other QAs (RQ2.2). This information provides us with impacts of decisions

on QAs and associated trade-offs. This information can be used as reusable architectural

knowledge and as starting point for formulating best practices. For example, we could

recommend decisions to accommodate certain QAs and at the same time make architects

aware of possible negative impacts of such decisions on other QAs. RQ2.3 is about finding

out what rationales exist behind decisions. We are interested in why practitioners would

choose a decision alternative over other alternatives. RQ2.4 is about finding out if and how

QAs are verified after decisions have been made to ensure that they satisfy stakeholders. A

significant part of systems and software architecting is the evaluation of systems. Often,

QAs are verified during testing, after a system has been implemented. However, this often

leads to expensive changes in the architecture if quality requirements cannot be met at a

later stage of development.

Answering all these research questions provides us with an empirical foundation of the

importance of QAs and how QAs are treated during SBSs design. This will help researchers

and practitioners developing new methods for handling QAs in SBS based on solid theories

rather than anecdotal evidence. Furthermore, it will help to identify problems that architects

face when making decisions about how to address QAs when designing SBS.

3.2 Survey design

3.2.1 Form of the survey

There are three types of surveys: (1) descriptive surveys enable assertions about some

population and measure what occurred, rather than why (Gray 2009); (2) explanatory

surveys make explanatory claims about a population; and (3) exploratory surveys are used

Software Qual J (2016) 24:271–299 277

123

as a pre-study to a more thorough investigation and in cases where ‘‘research looks for

patterns, ideas, or hypotheses rather than research that tries to test or confirm hypotheses’’

(Vogt 2005). We conducted a descriptive survey (Kitchenham and Pfleeger 2002) to study

how QAs are treated during SBSs design, rather than why.

3.2.2 Population, sampling technique, sample size, and participant recruitment

and selection

Our population was the global community of software engineering practitioners, as well as

researchers that have practical experience with, and knowledge about, designing SBS. We

did not restrict the population with regard to the number of years of practical experience as

long as participants had experience from real-world projects.

To find participants, we used purposive sampling (Creswell 2014) because all partici-

pants needed to have practical experience in SBS design. Other sampling techniques, such

as random sampling, may have resulted in many invalid responses as most likely not all

randomly picked participants would have had the required background to properly answer

the survey questions. To recruit participants, we advertised the survey in around 20

LinkedIn groups (e.g., the Service-Oriented Architecture Special Interest group, the SOA

Professionals Worldwide group, the Software Architecture group) and several mailing lists

(e.g., ISO/IEC/IEEE 42010 user group, re-online). Furthermore, we advertised through

online communities and blogs (e.g., Iniciativa Española de Software y Servicios, Mode-

lingLanguages). We also advertised the survey at premium conferences and workshops

(ICSE, ECSA, WICSA, CAiSE) and professional meetings (e.g., meeting of the S-Cube

consortium). Finally, we asked individuals in our personal network to participate as well as

to spread the survey to other individuals that might be interested in participating in the

survey (chain referral sampling) (Mack et al. 2005). We did not announce the survey in all

venues and through all channels at the same time, but spread the announcements over a

longer period of time. The reason is that potential respondents might be members of

several online groups, or have subscriptions for several mailing lists. Sending announce-

ments to different groups and mailing lists at different times acted as reminder to members

of the population who had already received the announcement before through other

channels.

The sample size was restricted with regard to the responses we could obtain. Our survey

was very focused as it required experience with QAs and SBS design in a practical context.

Thus, we had limited impact on the sample size. Consequently, we also could not apply

power analysis to determine the sample size needed to achieve statistically significant

results (Kitchenham and Pfleeger 2002).

3.3 Data preparation and collection: questionnaire

We used a self-administered online questionnaire for data collection (Gray 2009). The

questionnaire was published at a dedicated URL (www.soasurvey.com; note that the

survey has been deactivated, but we include the list of questions used in the survey in the

appendix). The reasons for using an online questionnaire rather than interviews or paper-

based questionnaires were as follows:

• Survey participants and researchers did not need to synchronize time and place to

collect data (participants filled in the questionnaire independent from researchers).

• It allowed us to collect data from participants from all over the world.

278 Software Qual J (2016) 24:271–299

123

http://www.soasurvey.com

• An electronic questionnaire avoided introducing errors in data when manually entering

data into computer systems from paper-based questionnaires.

We acknowledge that interviews would have allowed us to gain in-depth information

about QAs in SBS design. Furthermore, interviews would have allowed us to target

questions toward interviewees and to explain misunderstandings in questions. However, as

we conducted a descriptive survey and aimed at a larger sample, we used a questionnaire.

All questions in the questionnaire referred to one particular project that participants

worked in. Based on our experience with previous surveys, it is easier for participants from

industry to answer questions if they can relate to a particular project (van Heesch and

Avgeriou 2011). We also acknowledge that answers can be biased by the participants’

perception of what they believe their company does, but since participants have actively

participated in the project that they referred to in the questionnaire, we believe that this risk

is minimized. Some questions were optional and some mandatory. Structured questions

could be answered using Likert scale or pre-defined answer options (Kitchenham and

Pfleeger 2002), unstructured questions allowed numeric answers or free text. For some

questions, more than one answer was applicable (e.g., the role of participants). In this case,

participants chose the answer that describes them best. Furthermore, in most questions, we

allowed participants to provide additional comments to complement their answer. We

included different types of questions:

1. Questions related to the profile of participants were used to ensure reliability and

documentation of the survey as well as to filter and group participants.

2. We asked questions about the project that participants had in mind when answering the

questionnaire. These questions did not address a particular research question but

helped compare if project specifics have an impact on how QAs are treated. Before

answering project-related questions, we included a check question to ensure that

participants had design responsibility in the project. Participants could only proceed if

this question was answered with ‘‘yes’’.

3. Another set of questions elicited the most relevant QAs in the project. These QAs were

specified as scenarios because different participants might have had different

understandings of a QA. Scenarios helped ‘‘operationalize’’ QAs. The questions to

specify scenarios for QAs were based on the QA scenarios introduced by Bass et al.

(2003). Here, we did not use all parts of a QA scenario but only stimulus, artifact

(system), and response/measure. These questions aim at answering RQ1.

4. We had questions that describe ADs made to accommodate QAs, and the relationship

of these decisions to other QAs. These questions aimed at answering RQ2. They were

derived from the template to describe ADs as proposed in Tyree and Akerman (2005)

and used in Harrison et al. (2007) (i.e., this template requires that decisions were

described in terms of the issue they address, alternatives considered for that decision,

the rationale for the decision, etc.). Referring to this template, the ‘‘issue’’ to be

addressed by a decision would be the QA elicited before. Participants were asked to

provide at least one decision but could provide up to three. We also asked participants

for comments on QAs or QAs that may have not been listed in the S-Cube model.

5. Finally, we asked three open questions to get further details about the context and the

respondent: ‘‘In your projects, do you usually document information about design

decisions?’’, ‘‘What problems do you think occur when you try to satisfy quality

attributes in the context of SBS (if any)?’’, and ‘‘Upon reflection of answering the

questions, is there anything you can add and that you feel is relevant in the context of

this questionnaire?’’.

Software Qual J (2016) 24:271–299 279

123

The questionnaire was made available in two iterations from May 2011 to December

2012. The first iteration ended in September 2011 with 31 responses; the second iteration

ended in December 2012 with 25 additional responses. On average, the questionnaire took

around 20 min to be completed. In total, 235 potential respondents started the survey, but

only 56 completed it.

3.4 Data analysis

To ensure the quality of the data obtained from the questionnaire, we applied sanity checks.

These sanity checks aimed at finding obvious errors in data. Sanity checks also helped

ensure that responses expressed what we interpret as decisions or QAs. Furthermore, the

quality of input data was ensured by restricting possible input values through predefined

options for some questions (see ‘‘Appendix’’). Table 1 shows the mapping between the

research questions and the questions in the questionnaire as outlined in the appendix. Note

that not all questions from the questionnaire were used for data analysis. In particular, we

remark that there are two questions about the domain: company domain (P10) and project

domain (PS2), only the last one was used during analysis. The initial list of domains was

based on (Neill and Laplante 2003) and refined during the piloting of the survey.

We applied descriptive statistics, qualitative analysis, and content analysis to analyze

the data (Kitchenham and Pfleeger 2003). In particular, we analyzed the variables using

frequency analysis and correlation analysis with cross-tabulation and Fisher’s exact test.

Questions which resulted in free text were coded (Miles and Huberman 1994) and

underwent content analysis (Krippendorff 2003). Each content analysis involved three of

the authors (two plus one to resolve the conflicts), in varying combinations. For example,

to identify decision types, the researchers independently judged each decision and a final

judgment was achieved through consolidation of the different judgments. We determined

consistency among the involved researches using Cohen’s kappa statistic. Cohen’s kappa

ranges from -1 to 1 with 1 indicating perfect agreement and -1 indicating perfect dis-

agreement. A kappa value of 0 implies that there is no relationship between the ratings of

raters and agreements/disagreements are by chance (Landis and Koch 1977).

3.5 Protocol review

The survey was validated as follows (Kitchenham and Pfleeger 2002):

1. The protocol was reviewed by two external reviewers from outside our research

groups not involved in this research. The external reviewers were researchers

Table 1 Mapping of research
questions to questions in the
questionnaire

Research question Questions in questionnaire

RQ1

RQ1.1 PS7, PS8

RQ1.2 PS2, QA1, QA2, QA3, QA4, QA5

RQ2

RQ2.1 QA1, AD1, AD2, AD4

RQ2.2 AD5

RQ2.3 AD3

RQ2.4 QA1, QA5

280 Software Qual J (2016) 24:271–299

123

experienced in empirical studies, and in particular in the execution of surveys.

Furthermore, reviewers had knowledge about SBS.

2. The survey procedure was piloted.

a. Researchers other than the authors piloted the data collection instrument and data

analysis. Problems were identified and revisions made accordingly (Kitchenham

and Pfleeger 2002). These pilots included the two reviewers of the protocol and

additional researchers from within and outside our research groups not involved in

this research.

b. An initial test of the questionnaire was performed with participants from the target

population. The questionnaire was redesigned accordingly. Furthermore, as

suggested by (van Heesch and Avgeriou 2011), participants were asked to explain

questions to ensure that questions were well understood.

4 Results

4.1 Demographic data of respondents

The 56 participants came from different organizations and/or different projects (as men-

tioned above, participants referred to one particular project when answering the ques-

tionnaire). Thus, our results not only reflect how QAs are treated by individuals, but also

how organizations and projects treat QAs. In this section, we provide information about the

location, distribution, practical experience, educational background, and the role of par-

ticipants, as well as the size of participants’ organizations.

4.1.1 Location of participants

Participants were from countries all over the world. The countries with the most partici-

pation were Brazil (9, 16.1 %), Spain (7, 12.5 %), and Argentina and Germany (both 5,

8.9 %), but we had participants from 6 different continents: Europe (22, 39.3 %), South

America (15, 26.8 %), North America (8, 14.3 %), Asia (6, 10.7 %), Australia (4, 7.1 %),

and Africa (1, 1.8 %).

4.1.2 Distribution of participants

More than half of the participants (58.9 %) were both researchers and practitioners (e.g.,

industrial researchers or research consultants). See Table 2 for details. Note that

researchers who are not practitioners at the same time (17.9 %) still have practical design

experience.

Table 2 Distribution of practi-
tioners and researchers with
practical design experience

Practitioner

No Yes

Researcher

No 0 (0 %) 13 (23.2 %)

Yes 10 (17.9 %) 33 (58.9 %)

Software Qual J (2016) 24:271–299 281

123

4.1.3 Practical experience of participants

Practitioners had, on average, 11.17 years of experience in SBS design (standard deviation

8.14). Researchers with practical experience had, on average, 4.14 years of practical SBS

design experience (standard deviation 6.52).

4.1.4 Educational background of participants

The academic background of participants was mostly a degree in Computer Science with at

least a Bachelor degree (see Fig. 2). The majority of our participants (64.3 %) had received

training in service-oriented computing.

4.1.5 Role of participants on their organization

As can be seen in Fig. 3, the majority of the 46 practitioners (including practitioners that

were also researchers) were architects or designers, but there were also developers, project

managers, and a few who had other responsibilities (e.g., software analyst). We note that

even if some practitioners were not architects or designers as their main role, all of them

indicated (by answering a dedicated question) that they had architecting responsibilities for

the project on which they based their answers.

4.1.6 Size of participants’ organization

Figure 4 shows that the majority of responses came from participants from large compa-

nies. Note that Fig. 4 only includes responses from practitioners (including practitioners

that were also researchers), but not from researchers with practical design experience that

were not practitioners at the same time.

4.1.7 Context of the projects

Participants provided a short description of the project they referred in their answers. There

was a high diversity of projects, e.g., administration support applications for government

and academia (e.g., ‘‘information system for the [country name omitted] employment

department’’ or ‘‘student admission system, that use web service to register students’’),

health and bioinformatics-related systems (e.g., ‘‘B2B between insurance institutions and

healthcare organization’’ or ‘‘a service-based architecture for federating multiple bioin-

formatics databases’’), or smaller projects that were centered around service-based tools

Other
PhD in Comp. Sci.

Bachelor in Comp. Sci.
Master in Comp. Sci.

Academic background (n=56)

Number of respondents
0 5 10 15 20 25 30 35

9 (16.1%)
12 (21.4%)

15 (26.8%)
20 (35.7%)

Fig. 2 Academic background and practitioner role

282 Software Qual J (2016) 24:271–299

123

(e.g., ‘‘a tool for web service monitoring and SLA checking’’). Since the quality of the

answers in many cases did not allow a proper interpretation, we skipped details about each

individual project in the content analysis of this question.

4.2 RQ1: How important are quality attributes in the context of service-based systems

design?

4.2.1 RQ1.1: How important are quality attributes in comparison with functionality?

The results are shown in Fig. 5 (five respondents did not provide an answer). The majority

of respondents indicated that functionality and QAs were considered equally important

across most projects that participants related to when answering the questionnaire. Fur-

thermore, in most projects, QAs were made explicit, but still a significant amount of

respondents stated that QAs were treated implicitly.

To study the dependency between the importance of QAs and the implicit or explicit

nature of QAs, we created a cross-tabulation (see Table 3). Fisher’s exact test led to

p\ 0.001 which means that there is a statistically significant relationship between the

importance of QAs and their implicit or explicit nature. It means that there is a high

probability that projects which treat functionality and quality equally important also treat

QAs explicitly. On the other hand, there is a very low probability that QAs would be

treated equally important to functionality when QAs were considered implicitly.

We did not find any statistically significant correlation (based on cross-tabulation and

Fisher’s exact test) between the background of participants as stated in Sect. 4.1 (years of

experience, educational background and role of participants, size of organization/project)

and whether QAs are treated more or less important than functionality. Similarly, we did

Other
Project managers

Developers
Architects

Practitioner role (n=46)

Number of respondents
0 5 10 15 20 25 30 35

6 (13.0%)
7 (15.2%)

8 (17.4%)
25 (54.3%)

Fig. 3 Practitioner role

Less than 10 employees
Between 10 and 50 employees

Between 50 and 250 employees
More than 250 employees

Company size (n=46)

Number of respondents
0 10 20 30 40

5 (10.9%)
12 (26.1%)

4 (8.7%)
25 (54.3%)

Fig. 4 Company size

Software Qual J (2016) 24:271–299 283

123

not find any statistically significant correlation between the background of participants and

whether or not QAs are considered implicitly or explicitly.

4.2.2 RQ1.2: Are certain quality attributes more important in particular application

domains?

We mapped all QAs stated by participants to QAs for SBSs as defined by the S-Cube

quality model (Gehlert and Metzger 2009). This was done through content analysis of

quality attribute scenarios where three researchers categorized each QA (inter-rater

agreement based on Cohen’s kappa: 0.688, p\ 0.001). Figure 6 shows the frequency

distribution of QAs. Four participants did not specify a valid QA. In Fig. 6, we group data-

related QAs based on the S-Cube quality model (data reliability, completeness, accuracy,

integrity, validity). As can be seen, dependability and performance are the most frequently

addressed QAs.

Figure 6 also shows the frequency distribution of project domains (as described in

Sect. 3.3, participants provided answers based on their experiences in one specific project).

The category ‘‘Other’’ includes domains such as aerospace, real state, social networking,

bioinformatics, etc.

Fisher’s exact test did not reveal any relationship between QAs and domains

(p = 0.635). Also, cross-tabbing QAs and domains did not show a QA that would be

addressed more than twice by a domain (with the only exception of domain Government

and the QA Performance with three occurrences). This means, we could not identify any

QA that would be particularly relevant for a certain domain.

Table 3 Cross-tabulation of the importance of QAs and their implicit or explicit nature

QA explicit QA implicit Total

Quality attributes and functionality were equally important 24 (47.1 %) 9 (17.6 %) 33 (64.7 %)

Quality attributes were less important than functionality 2 (3.9 %) 10 (19.6 %) 12 (23.5 %)

Quality attributes were more important than functionality 6 (11.8 %) 0 (0.0 %) 6 (11.8 %)

Total 32 (62.7 %) 19 (37.3 %) 51 (100 %)

Quality attributes
were more important

than functionality

Quality attributes
were less important

than functionality

Quality attributes
and functionality were

equally important

QAs importance (n=51)

Number of respondents

6
(11.8%)

12
(23.5%)

33
(64.7%)

Im
pl

ic
it

Ex
pl

ic
it

Explicit/implicit (n=51)

Number of respondents
0 10 20 30 40 0 10 20 30 40

19
(37.3%)

32
(62.7%)

Fig. 5 Role of QAs

284 Software Qual J (2016) 24:271–299

123

4.3 RQ2: How are quality attributes addressed in the context of service-based systems

design?

4.3.1 RQ2.1: What kinds of decisions are used to address quality attributes?

We asked the participants about the most important AD they made related to the QA they

selected as most important. We classified these decisions into decision types based on

Kruchten’s (2004) taxonomy (see Sect. 3.1, inter-rater agreement based on Cohen’s kappa:

0.484, p\ 0.001). Furthermore, we classified decisions into the following three categories

of decisions that emerged during data analysis (inter-rater agreement based on Cohen’s

kappa: 0.427, p\ 0.001):

• Ad hoc Solution that is specific to a concrete problem of the project (e.g., the architect

decides to create a separate service to store sensitive information about the users to

improve the security of the system).

• Pattern Reusable and widely known architectural solution (e.g., the decision to use of

the Model-View-Controller (MVC) pattern (Buschmann et al. 1996) for structuring the

user interaction).

• Technology A piece of implemented software that fulfills some required functionality

(e.g., the decision to use PostgreSQL instead of other DBMS because the project only

uses OSS licenses).

As Fig. 7 shows that property decisions are used (and considered) most (Fig. 7 not only

shows the actual decision made but also alternative decisions considered for that decision).

Furthermore, most of the decisions were classified as ad hoc or pattern, and only few

decisions are technology-related decisions. Note that one decision was not classified

because the participant did not provide a description for it. The fact that ad hoc decisions

dominate could mean that SBS is still not a mature area and architects need to come up

with new solutions frequently (rather than reusing existing and established architecture/

design patterns and technologies).

Conf. & Mng.

Data-related

Interoperability

Reusability

Usability

Security

Performance

Dependability

Frequency distribution of QAs (n=52)

Number of respondents

2 (3.8%)

3 (5.8%)

4 (7.7%)

4 (7.7%)

5 (9.6%)

6 (11.5%)

10 (19.2%)

18 (34.6%)

Embedded systems
Finance

Human resources
Transportation

Education
Healthcare

Manufacturing
Telecommunication

Insurance
E-commerce

Enterprise computing
Research and dev.

Software engineering
E-Government

Other

Frequency distribution of domains (n=51)

Number of respondents
0 5 10 15 20 25 30 0 5 10 15 20 25 30

1 (2.0%)
1 (2.0%)
1 (2.0%)
1 (2.0%)
2 (3.9%)
2 (3.9%)
2 (3.9%)
2 (3.9%)
3 (5.9%)
4 (7.8%)
4 (7.8%)
5 (9.8%)
6 (11.8%)
7 (13.7%)

10 (19.6%)

Fig. 6 Frequency distribution of QAs and domains

Software Qual J (2016) 24:271–299 285

123

Half of the participants indicated that the mentioned decision had at least one alternative

(28, 50.0 %). Furthermore, a clear majority declared that decisions related to QAs were

documented explicitly (39, 86.7 %).

Other observations

(a) There is a correlation between having the QA explicitly as requirements of the

project and documenting decisions (Fisher’s exact test: p = 0.009). All participants

that treated QA explicitly documented the decisions, and also, all participants that

did not document decisions treated QA implicitly.

(b) There is a correlation between the number of alternatives considered to accommo-

date QAs and the fact that a participant received some SOA training in the past

(Fisher’s exact test: p = 0.164). Seventy-five percent of participants that provided at

least 1 alternative had SOA training. Sixty-five percent of participants without SOA

training did not provide any alternative.

(c) We tried to find correlations between the decision classifications and the QAs

mentioned by the participants, but in this case, the results are not significant enough.

We obtained p = 0.320 and p = 0.440 for decision types and categories,

respectively.

4.3.2 RQ2.2: What is the impact of these decisions on other quality attributes?

We asked participants which attributes of the S-Cube quality model (Gehlert and Metzger

2009) had been affected by the mentioned decision. In particular, we first asked which of

the nine top-level S-Cube QAs (performance, security, data-related, cost, dependability,

configuration and management, usability, quality in use, and standard compliance related)

were affected by the decision. The impact could be from very negative to very positive (on

a Likert scale). In Fig. 8, we show the number of decisions that impacted each QA. Few

correlations were found between decisions types and their impact in quality attributes.

Remarkably, 73.3 % of existence decisions impacted in data quality attribute (p = 0.035),

66.7 % of executive decisions impacted in configuration and management (p\ 0.001), and

80.0 % of executive decisions impacted in performance (p = 0.045). Note that these

correlations do not differentiate between positive and negative impact on quality attributes.

Similarly, decision categories did not show any significant correlation to quality attributes.

On average, each decision that was made in order to accommodate one QA impacted

three other QA (mean = 3.05, and standard deviation = 1.656).

Executive
decision

Existence
decision

Property
decision

Decision types (n=55, alternatives=50)

Number of decisions

21
(42.0%)

17
(34.0%)

12
(24.0%)

15
(27.3%)

15
(27.3%)

25
(45.5%)

Ad-hoc

Pattern

Technology

Decision categories (n=55, alternatives=47)

Number of decisions
0 10 20 30 40 0 10 20 30 40 50 60

Decisions made Alternatives Decisions made Alternatives

28
(59.6%)

9
(19.1%)

10
(21.3%)

26
(47.3%)

20
(36.4%)

9
(16.4%)

Fig. 7 Classification of decisions

286 Software Qual J (2016) 24:271–299

123

4.3.3 RQ2.3: What rationale is behind the architectural decisions?

We asked participants why they chose a decision over its alternatives. We obtained 35

responses to this question. The results shown in Fig. 9 were obtained using content analysis

(inter-rater agreement based on Cohen’s kappa: 0.839, p\ 0.001). From these responses,

16 (45.7 %) stated the positive impact on certain QAs as the primary reason, e.g., ‘‘[The

decision showed] better performance measurement results’’. Another group of 10 partici-

pants (28.6 %) used their experience as the principal reason, e.g., ‘‘[The decision was]

based on previous experience and consultancy’’. ‘‘Business’’ includes reasons related to the

business goals of the project, e.g., ‘‘[The decisions was chosen because] we had invested

too much in the first project, and we wanted some return on that investment’’.

Interestingly, 60.0 % of decisions made based on experience were from architects

without SOC training, while 83.3 % of decisions made based on QA were from architects

that had some kind of SOC training (Fisher’s exact test: p = 0.104).

4.3.4 RQ2.4: After the decision was made, were quality attributes satisfied?

We asked participants whether they validated the mentioned QA, and how (we obtained 42

responses to this question). We classified the responses in three evaluation methods. These

evaluation methods emerged during data analysis (inter-rater agreement based on Cohen’s

kappa: 0.711, p\ 0.001):

• Testing Executing the system using different test cases (depending on the QA), for

example, stress testing to validate reliability. Here, we refer explicitly to tests that are

planned and executed during system development.

• Measuring Collection of measures that result from applying several metrics (depending

on the QA), for example, measuring the response time to validate the performance. We

refer explicitly to monitoring activities done once the system is deployed.

• Observation Gathering feedback obtained from the users of the software product. The

feedback could come from a beta testing phase or from the final customer. The

difference with monitoring is that this method is not done automatically and is normally

triggered by the unsatisfied users (e.g., a report of the issues detected in the system to

validate quality in use).

Figure 10 shows how Testing was the favorite option. In most cases, one of the three

evaluation methods was used (83.3 %), just 16.7 % of the responses indicated that no

Other
Quality in use

Conf. & Manag.
Usability

Dependability
Cost
Data

Security
Performance

Positive impact
Negative impact
Neutral impact

Number of respondents
0 10 20 30 40

4 (2.3%)
10 (5.8%)

15 (8.7%)
17 (9.9%)

20 (11.6%)
24 (14.0%)
25 (14.5%)

28 (16.3%)
29 (16.9%)Fig. 8 Impact of decisions in the

software quality

Software Qual J (2016) 24:271–299 287

123

evaluation was performed. Also, we found that 50 % of participants that did not document

the decisions were participants that did not perform evaluation. Interestingly, 84.7 % of

participants that documented the decisions also performed some kind of evaluation

(Fisher’s exact test: p = 0.083). This is an indicator that documentation implies that more

systematic and structured development approaches are in place, which also include more

thorough evaluation.

5 Discussion of results

5.1 Relation to existing literature

5.1.1 Important quality attributes

Quality requirements in industry were studied by Svensson et al. (2011) who found that

usability and performance are currently the most important quality requirements in

industry. On the other hand, reusability and maintainability seem to be the least important

QAs. Even though these quality requirements apply to general software development rather

than SBS, our study confirmed that performance and usability are also important in SBS

design.

A study in the embedded systems industry (Svensson et al. 2009) studied how quality

requirements are handled in practice. The study involved interviews with five product

managers and five project leaders from five companies. Even though the research questions

and the domain of this study were different than our research questions, the study found

that usability and performance are the most important quality aspects. In contrast, our study

found dependability and performance as the most important QA. The difference in the

importance of usability could be due to the nature of embedded systems versus SBS: in

embedded systems user interfaces receive great attention and can determine the acceptance

of a system by end users; in SBS, the composition of a system by third-party services

imposes considerable challenges on dependability and performance.

Business
Other

Experience
QA

Reason for the decision made (n=35)

Number of respondents
0 5 10 15 20 25

4 (11.4%)
5 (14.3%)

10 (28.6%)
16 (45.7%)

Fig. 9 Reasons given for the
decisions made

Measuring
No validation
Observation

Testing

Evaluation of the QA (n=42)

Number of respondents
0 5 10 15 20 25

7 (16.7%)
7 (16.7%)

10 (23.8%)
18 (42.9%)

Fig. 10 Evaluation of the QA

288 Software Qual J (2016) 24:271–299

123

In Becha and Amyot (2012), the authors conducted a survey to evaluate a catalogue of

non-functional properties for SOA, from the perspective of service consumers. The design

and goal of this survey differed to ours: the survey required participants to evaluate a

catalogue with 19 non-functional properties. These QA were prescribed, rather than elic-

ited from participants as in our study. The study found that security was prioritized as

being absolutely essential in a quality model for SOA. However, our study showed that

security was only a concern in six projects. Also, from the eight QA (Fig. 6) found in our

study, only three (performance, security, usability) are also included in the list of non-

functional properties for SOA proposed as a result of the survey presented in (Becha and

Amyot 2012). Interoperability, a QA found in our study was considered as relevant for

service providers, not for service consumers in Becha and Amyot (2012). Interestingly,

reusability and dependability, two main features of SBS, were not found to be relevant

non-functional characteristic in SOA in (Becha and Amyot 2012).

5.1.2 Relevance of quality attributes

Literature argues that QAs are important and are a major challenge when designing SBS

(Gu and Lago 2009). This is not directly confirmed in our study but only hinted as 65.1 %

of the participants indicated that QAs were made explicit. The fact that QAs are made

explicit could be an indicator that special attention is paid to QA because they pose a major

challenge.

General literature about software architecting and design claim that quality require-

ments drive the architecture (Bass et al. 2003). Our study cannot confirm or reject this

theory for the domain of SBS. We found that QAs were rarely indicated to be more

important than functionality. However, stating that QAs drive the architecture is different

from stating that QAs are more important than functionality. In fact, both (QAs and

functionality) are important, but design methods (e.g., Bachmann and Bass 2001) usually

start with analyzing QAs as key drivers which then help select architecture solutions such

as patterns and tactics. This could be an indicator that QAs were treated as architectural

drivers for high-level architectural decisions. It also indicates that using a service-based

solution is not only a technology-driven decision but has sound rationale based on QAs.

A study on the reasoning process of professional software architects revealed that most

architects consider functionality as important or very important, but quality requirements

as clearly more important than functional requirements (van Heesch and Avgeriou 2011).

This study acknowledges that one of the most important things in architectural decision

making is to treat both functional and non-functional requirements as first-class concerns

(van Heesch and Avgeriou 2011). Our study confirms this for SBS since the majority of

participants treated QAs and functionality as equally important. The authors of this study

also mention that almost all of their participants think about alternatives for their decisions

(van Heesch and Avgeriou 2011). On the other hand, our results indicate that only half of

the participants thought about at least one alternative decision.

In another study, van Heesch and Avgeriou studied the reasoning process of junior

architects (van Heesch and Avgeriou 2010). In their study, more than 80 % of participants

indicated that quality requirements play a prominent role during design. A similar result

can be found in our study with practitioners in the context of SBSs as only 12 % of our

participants indicated that QAs were less important than functionality. On the other hand,

our results show that only 23 % of participants treated QAs as more important than

functionality (i.e., QAs did not play the most prominent role for 23 % of the participants).

Software Qual J (2016) 24:271–299 289

123

Non-functional requirements as seen by architects in general were studied by Poort et al.

(2012). The study found that as long as architects are aware of non-functional require-

ments, they do not adversely affect project success. This is in line with our results that most

participants consider quality attributes explicitly and at least equally important as func-

tionality. Furthermore, Poort et al. found that modifiability requires special attention if it is

business-critical. In contrast, we did not find any indicator that modifiability could threaten

project success. This may be due to the fact that SBS are considered highly flexible and

reconfigurable systems by definition, so the focus is on run-time adaptation.

5.2 Implications for researchers

Even though QAs for SBSs have been proposed in previous research (e.g., in O’Brien et al.

2007), there has not yet been any empirical evidence for the importance of these QAs and

how they are addressed in industry. Consequently, our study is one of the few, to the best of

our knowledge, empirical studies on QAs for SBSs. Thus, future research might aim at

identifying in detail how QAs are handled in industrial practice (e.g., through case studies

rather than broad surveys) to confirm or refute our findings.

A promising direction for future research on QAs in SBS is to focus on dependability

and performance, as these are the two most mentioned QAs. On the other hand, as we could

not identify any QA that is specific for a particular domain (see Sect. 4.2.2 for identified

domains), we can conclude that this could mean that each domain has several QAs of

interest and the distribution between them is random. The same applies when comparing

the architectural decisions with QA and software domains. However, these results should

be validated in further studies to find out if decisions, QA, and domains are really unre-

lated, because in all cases, significance was insufficient to make any claim about

dependencies.

As previously studied, many architecture-related problems are rooted in requirements

(Ferrari and Madhavji 2008). These problems are often about quality requirements and

quality drivers (e.g., identification of quality drivers, understanding and modeling of

quality requirements). Our study complements these findings for SBSs and highlights the

need for further research to identify more specific quality-related problems. For example,

certain types of QAs (e.g., performance, security) could be targeted to identify if and how

problems related to these QAs during design are rooted in requirements for SBSs, or if we

need better design methodologies for SBS, or we need better alignment between

requirements engineering and architecting. Also, new methods for handling QAs in

industry could be developed. As there is no QA specific to one industry, we might benefit

from generic solutions that could fit SBSs design in many industries. For example, research

could identify tactics for SBS design or SOA-specific analysis methods based on current

frameworks for reasoning about QAs (Bachmann et al. 2005).

While most participants (86.7 %) agreed that they document architectural decisions, no

comment was made to what extent decisions were documented. In literature, there are

diverse templates to document architectural decisions, such as Tyree and Akerman (2005)

that could help improve documentation. However, probably none of them is used by

practitioners (Tofan et al. 2014). Thus, it could be interesting to extend our study to get

more insights into what is documented as architectural decision in practice. Also, it seems

that documentation of decisions is linked to explicit QAs, because we found that when a

project had explicit QAs, it also had decisions explicitly in the documentation. Further-

more, when the decisions were documented, the QAs were in most cases also validated in

some way. Thus, there are two trends: participants that document both decisions and QAs

290 Software Qual J (2016) 24:271–299

123

and then validate the software, and participants that do not document and do not validate.

There do not seem to be many cases in the middle, i.e., partially documenting and partially

validating.

5.3 Implications for practitioners

The majority of participants with SOC training treated QAs and functionality equally

important. Furthermore, even the majority of untrained participants treated QAs and

functionality as equally important. Consequently, with regard to training, our results are

inconclusive: receiving training in SOC does not affect whether practitioners treat QAs as

more important than functionality. The only difference we observed is that trained par-

ticipants consider quality explicitly more than untrained participants.

We have found that larger companies tend to treat QAs explicitly and equally important

to functionality. As larger companies usually have more mature software development

processes in place, we can suggest that explicit QAs and equal importance of QAs and

functionality is a best practice for the design of SBS.

When it comes to making architectural decisions, having specific training in SOC makes

a difference: participants with training provided more alternatives to the decisions than

participants without training. This means that they consider a wider spectrum of possi-

bilities to design the architecture. We also found that participants with training in SOC

make decisions using some criteria such as QA or business goals, while participants

without training normally use their experience or gut feeling. All these facts together seem

to point out that participants with some kind of SOA training make decisions of better

quality. This is because decisions are made in a systematic manner, with a clear reasoning

behind decisions. However, for further validation, we would need to conduct further

studies and relate our results to the quality of the actual outcome of a design process.

One of the most impacted QA once the architectural decision is made is cost. Cost is the

QA which is most negatively affected. As only a small number of decisions had no impact

on cost, it seems that most decisions increase or decrease of the cost of producing a system.

It is important to note, however, that cost was never mentioned as the motivating QA for

making a certain decision.

Furthermore, there is no decision that had a negative impact on dependability or

usability, which could mean that causing a negative impact on any of these two QA is

considered a very bad practice in SBS. We can also notice that performance, security, and

dependability are the three QA which are mostly positively affected.

6 Validity

There might have been confounding variables and other sources that could bias our results

(Kitchenham et al. 2002). When designing surveys, variables are difficult to control (Ci-

olkowski et al. 2003), in particular when using online questionnaires. To control variables,

exclusion or randomization can be applied (van Heesch and Avgeriou 2011). Exclusion

means that participants who are not sufficiently experienced were excluded from the study.

We ensured this by having a check question that only allowed participants with design

responsibility in a project to proceed with the questionnaire. Randomization means that we

used a sampling technique which leads to random participants. Furthermore, validity is

subject to ambiguous and poorly phrased questions. To mitigate this risk, we piloted the

data collection instrument in multiple iterations until potential respondents understood our

Software Qual J (2016) 24:271–299 291

123

questions and intentions. Another limitation is that participants might not have answered

truthfully to the questions (van Heesch and Avgeriou 2011). To address this problem, we

made participation voluntary and anonymous. Furthermore, participants spent personal

time on answering the questionnaire. We can therefore assume that those who volunteered

to spend time have no reason to be dishonest (van Heesch and Avgeriou 2011). Also,

participants might not have had the same understanding as we required them (e.g., what is

a decision, what is a QA); we tried to mitigate this through sanity checks.

External validity is concerned with the problem of generalizing the results to the target

population. We assume that our results are applicable to a population that meets the

sampling criteria of our survey (i.e., practitioners with design responsibility in SBSs).

However, answers are not just influenced by the understanding of participants, but also the

characteristics of companies and software projects in which participants worked. We

provided a brief discussion of how company and project size affected the results. This

helped us understand the influence of the domain on the results (van Heesch and Avgeriou

2011). Furthermore, we only had a limited number of participants. However, this is due to

the fact that our survey targeted a very specific population and required participants with

knowledge about QAs, experience with designing SBSs, and involvement in a real project.

The participation of this study (56 participants) compared to other empirical studies in

software architecture is slightly above [e.g., 11 software companies (Svensson et al. 2011),

53 industrial software architects (van Heesch and Avgeriou 2011), 22 students (van Heesch

and Avgeriou 2010)]. It is worth to remark that the mentioned examples were not limited to

SBS.

7 Conclusions

This paper presented an empirical study to investigate the role of QAs in SBS design. We

collected data in a survey with participants from industry, and from different organizations

and project domains. We interpreted results in terms of implications for both researchers

and practitioners. Furthermore, we compared our results with previous research on QAs

and architectural decision making.

With regard to RQ1, we found that QAs are mostly considered as important as func-

tionality, and that QAs are often made explicit. The most important QAs in SBS are

dependability and performance. We did not find QAs that would be important specifically

in a particular domain. As suggested in (Svensson et al. 2011), quality requirements are

poorly addressed in industrial practice; our position is that future studies should focus on

the most important QAs (i.e., dependability and performance) rather than finding a blanket

solution for QAs in general.

With regard to RQ2, we found that most decisions made to accommodate QAs are

property decisions and ad hoc solutions. Furthermore, we found trade-offs between QAs,

when decisions made to accommodate one QA had a negative impact on other QAs. This

means, when considering architectural decisions, one should always reflect on their impact

on QAs. Also, the positive impact of a decision was the primary driver for taking a certain

decision. Regarding evaluation of QAs, testing during the system development was the

most used approach, and few cases mentioned the use of monitoring techniques once a

system is produced and deployed.

Besides the future work discussed in Sect. 5, future work should focus on validating and

customizing existing quality models specifically for SBS. The S-Cube quality model used

in our research provides a foundation but can be further evaluated in empirical studies. As

292 Software Qual J (2016) 24:271–299

123

Table 4 Checklist to evaluate our survey

Background

Justification of research method Section 3

Background literature review Section 2

Explicit research questions Section 3.1

Clear study objectives Section 1.2

Research method

Description of data analysis methods Section 3.4

Discussion on questionnaire administration Section 3.3

Description of data collection Section 3.2.2

Description of dates of data collection Section 3.3

Number and types of contact1 Section 3.2.2

Sufficient description of method (for replication)2 ‘‘Appendix’’

Evidence for reliability and validity Section 6

Discussion of methods for verifying data entry Sections 3.4 and 3.5

Sample selection

Calculation of sample size3 Section 3.2.2 and 4.1

Description of population and sample Section 3.2.2 and 6

Research tool

n/a (except for online survey system) Section 3.3

Results

Presentation of results of the research Section 4

Did the results address study objectives4 Section 3.4

Description that results are based on partial sample5 Section 4

Description about the generalizability of results Section 6

Interpretation and discussion

Interpretation and discussion of findings Section 5 and 6

Conclusions and recommendations Section 5

Study limitations discussed Section 6

Ethics and disclosure

n/a6 n/a

1 We had no personal contact with all participants but only contacted around 50 potential participants in
person. Most participants were contacted through online postings and advertising at conferences. Thus, we
have no information about the number of contacts we made in total
2 We believe that this criterion is met as we provided details on our sample as well as the questionnaire for
data collection in the appendix
3 We did not calculate the sample size because we do not know the size of the population
4 We mapped survey questions to research questions. Research questions were obtained from the study
objective
5 We highlighted results that are only applicable to a subset of participants (e.g., participants with training in
service-based systems)
6 Due to the nature of our study and the context in which it was conducted, it was not necessary to obtain
consent from participants. As participation was voluntarily, filling in the questionnaire expressed implicit
consent. Also, it was not necessary to obtain ethics approval for the study and to ensure fair treatment of
human subjects. Finally, any sponsorship of the study did not have any impact on the results (sponsorship of
the study is made explicit in the acknowledgements)

Software Qual J (2016) 24:271–299 293

123

it has been found with other quality models, theoretical models without empirical vali-

dation might not be applicable as they are ambiguous and incomplete (Al-Kilidar et al.

2005).

Some of our findings may not be surprising as previous research has already reported

important quality attributes in SBS. However, our research differs in that we (a) provide

empirical evidence about the importance of certain quality attributes in practice and

(b) provide empirical evidence of how quality attributes are treated in practice, rather than

proposing a new methodology for how quality attributes should be treated.

Based on Bennett et al. (2011) and Kitchenham et al. (2008), we compiled a checklist to

evaluate our survey. In the following, we show what items of this checklist are covered by

what section of our paper. We also explain what items on the checklist are not met by our

study, and why. See Table 4 and the corresponding footnotes.

Acknowledgments We would like to thank the reviewers of SQJ journal for their valuable comments.
This research has been partially sponsored by the Spanish Project TIN2013-44641-P and NWO SaS-LeG,
Contract No. 638.000.000.07N07.

Appendix

See Tables 5, 6, 7 and 8.

Table 5 Questions about the profile of participants

ID Question Scale

P1 What country do you reside in? List of countries

P2 What is your educational background (highest degree obtained
so far)?

BSc/MSc/PhD/other

P3 Have you ever received any training related to service-
oriented computing?

Yes/no

P4 Do you have experience in academic research? Yes/no

P5 How many years have you spent on research related to
service-based systems?

Integer[0

P6 Do you have experience in IT industry? Yes/no

P7 How many years of experience do you have in IT industry? Integer[0

P8 What is your main role in your company? Project manager/architect, designer/
developer/other

P9 What is the size of your company (number of employees)? \10/10–50/50–250/[250

P10 What domain is your company in? List of domains/other

P11 How many years have you spent on doing work related to
service-oriented computing?

Integer[0

294 Software Qual J (2016) 24:271–299

123

Table 6 Project-specific questions

ID Question Scale

CHK Did you have design responsibility in the
project?

Yes/no

PS1 Please provide the following metrics related to
the size of the project

Person months/SLOC

PS2 What is the domain of the project you are
thinking about?

List of domains/other

PS3 Please provide a brief description of the project. Free text

PS4 What type of software was developed in the
project?

Single services(s)/service-based system/hybrid
system/other

PS5 Why was service-orientation chosen for the
given project?

Strategic decision of company/certain quality
attributes suggested the use of a service-based
solution/we wanted to experiment with
services/because of other concerns/I don’t
know

PS6 Select the sentence that describes the use of
external services in your project best

Project did not use external services but only
services developed in-house/project used
external services from trusted sources/search
for external services was done, not considering
a specific source/software used self-adapting
mechanism to discover new services when
necessary

PS7 Compared to functionality, how important were
quality attributes when designing the system of
the project you are thinking about?

Quality attributes were not important/Quality
attributes were less important than
functionality/Functionality and quality
attributes were equally important/Quality
attributes were more important than
functionality/I don’t know

PS8 Were quality attributes considered implicitly or
explicitly?

Implicitly (quality attributes existed but were not
considered as particular requirements)/
Explicitly (quality attributes were made
explicit in requirements)

Table 7 Questions to elicit the most important project-specific quality attribute as a scenario

ID Question Scale

QA1 What was the most important quality attribute in your project? Free
text

QA2 What part of the system was affected most by this quality attribute? Free
text

QA3 What situations or events had to happen to make this quality attribute evident or visible to
the end users or other stakeholders?

Free
text

QA4 What restrictions or goals were imposed on this quality attribute? Free
text

QA5 How did you measure or test the satisfaction of this quality attribute (include quantitative
information if applicable)?

Free
text

Software Qual J (2016) 24:271–299 295

123

References

Al-Kilidar, H., Cox, K., & Kitchenham, B. (2005). The use and usefulness of the ISO/IEC 9126 Quality
Standard. In International symposium on empirical software engineering (pp. 126–132). Noosa Heads,
Australia: IEEE Computer Society.

Ameller, D., Galster, M., Avgeriou, P., & Franch, X. (2013). The role of quality attributes in service-based
systems design. In 7th European conference on software architecture (ECSA) (pp. 200–207). Mont-
pellier, France: Springer.

Bachmann, F., & Bass, L. (2001). introduction to the attribute driven design method. In 23rd international
conference on software engineering (pp. 745–746). IEEE Computer Society.

Bachmann, F., Bass, L., Klein, M., & Shelton, C. (2005). Designing software architectures to achieve quality
attribute requirements. IEE Proceedings Software, 152, 153–165.

Balasubramaniam, S., Lewis, G. A., Morris, E., Simanta, S., & Smith, D. B. (2009). Challenges for assuring
quality of service in a service-oriented environment. In 2009 ICSE workshop on principles of engi-
neering service oriented systems (pp. 103–106). Vancouver, Canada: IEEE Computer Society.

Barbacci, M. R., Ellison, R. J., Lattanze, A. J., Stafford, J. A., Weinstock, C. B., & Wood, W. G. (2003).
Quality attribute workshops (QAWs), third edition. Technical report, SEI CMU.

Barbacci, M. R., Kleiin, M. H., & Weinstock, C. B. (1997). Principles for evaluating the quality attributes of
a software architecture. Technical report, SEI CMU.

Basili, V., Caldiera, G., & Rombach, D. (1994). The goal question metric approach. In J. J. Marciniak (Ed.),
Encyclopedia of software engineering (Vol. 1, pp. 528–532). New York, NY: Wiley.

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice. Boston, MA: Addison-
Wesley.

Becha, H., & Amyot, D. (2012). Non-functional properties in service oriented architecture—A consumer’s
perspective. Journal of Software, 7, 575–587.

Bennett, C., Khangura, S., Brehaut, J. C., Graham, I. D., Moher, D., Potter, B. K., & Grimshaw, J. M.
(2011). Reporting guidelines for survey research: An analysis of published guidance and reporting
practices. PLoS Medicine, 8, 1–12.

Bosch, J. (2004). Software architecture: The next step. In First European workshop on software architecture
(pp. 194–199). Springer.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-oriented software
architecture volume 1: A system of patterns. West Sussex: Wiley.

Ciolkowski, M., Laitenberger, O., Vegas, S., & Biffl, S. (2003). Practical experiences in the design and
conduct of surveys in empirical software engineering. In R. Conradi & A. I. Wang (Eds.), Empirical
methods and studies in software engineering (pp. 104–128). Berlin: Springer.

Cohen, S., & Krut, R. (2010). Managing variation in services in a software product line context. Technical
note, CMU SEI.

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.,
p. 246). Thousand Oaks: Sage.

Table 8 Questions to describe architectural decisions related to a quality attribute

ID Question Scale

AD1 What was the most important design decision
that you made in the project that is related to
this quality attribute?

Free text

AD2 What other alternatives did you consider for this
decision?

Free text

AD3 What is the reason why you selected this
decision? Also, why did you reject the other
alternatives?

Free text

AD4 Was this decision related or forced by previous
decisions?

Free text

AD5 What other quality attributes were affected
(negatively or positively) by this decision, and
how?

List of quality attributes from S-Cube and scale
from very negative, negative, positive to very
positive

296 Software Qual J (2016) 24:271–299

123

de Oliveira Cavalcanti, R., de Almeida, E. S., & Meira, S. (2011). Extending the RiPLE-DE process with
quality attribute variability realization. In 7th international ACM Sigsoft conference on the quality of
software architectures (QoSA), (pp. 159–163). Boulder, CO: ACM.

Erl, T. (2005). Service-oriented architecture (SOA): Concepts, technology, and design. Upper Saddle River,
NJ: Prentice Hall.

Ferrari, R. N., & Madhavji, N. H. (2008). Architecting-problems rooted in requirements. Information and
Software Technology, 50, 53–66.

Franch, X., & Carvallo, J. P. (2003). Using quality models in software package selection. IEEE Software, 20,
34–41.

Gehlert, A., & Metzger, A. (2009). Quality reference model for SBA. S-Cube.
Gray, D. E. (2009). Doing research in the real world. London: Sage.
Gu, Q., & Lago, P. (2009). Exploring service-oriented system engineering challenges: A systematic liter-

ature review. Service Oriented Computing and Applications, 3, 171–188.
Harrison, N., Avgeriou, P., & Zdun, U. (2007). Using patterns to capture architectural decisions. IEEE

Software, 24, 38–45.
IEEE Computer Society Software Engineering Standards Committee. (1990). IEEE standard glossary of

software engineering terminology. Vol. IEEE Std 610.12-1990.
ISO/IEC. (2001). Software engineering—Product quality—Part 1: Quality model. Vol. ISO/IEC 9126-1,

Geneva, Switzerland.
ISO/IEC. (2003a) Software engineering—Product quality—Part 2: External metrics (pp. 86). Geneva,

Switzerland.
ISO/IEC. (2003b). Software engineering—Product quality—Part 3: Internal metrics (pp. 62). Geneva,

Switzerland.
ISO/IEC3. (2004). Software engineering—Product quality—Part 4: Quality in use metrics (pp. 59). Geneva,

Switzerland.
Jansen, A., Avgeriou, P., & van der Ven, J. S. (2009). Enriching software architecture documentation.

Journal of Systems and Software, 82, 1232–1248.
Kim, S., Kim, D.-K., Lu, L., & Park, S. (2009). Quality-driven architecture development using architectural

tactics. Journal of Systems and Software, 82, 1211–1231.
Kitchenham, B., Al-Khilidar, H., Babar, M. A., Berry, M., Cox, K., Keung, J., et al. (2008). Evaluating

guidelines for reporting empirical software engineering studies. Empirical Software Engineering, 13,
37–121.

Kitchenham, B., & Pfleeger, S. L. (2002a). Principles of survey research—Part 2: Designing a survey. ACM
SIGSOFT Software Engineering Notes, 27, 18–20.

Kitchenham, B., & Pfleeger, S. L. (2002b). Principles of survey research—Part 5: Populations and samples.
ACM SIGSOFT Software Engineering Notes, 27, 17–20.

Kitchenham, B., & Pfleeger, S. L. (2002c). Principles of survey research—Part 3: Constructing a survey
instrument. ACM SIGSOFT Software Engineering Notes, 27, 20–24.

Kitchenham, B., & Pfleeger, S. L. (2003). Principles of survey research—Part 6: Data analysis. ACM
SIGSOFT Software Engineering Notes, 28, 24–27.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., Emam, K. E., & Rosenberg,
J. (2002). Preliminary guidelines for empirical research in software engineering. IEEE Transactions on
Software Engineering, 28, 721–734.

Kontogogos, A., & Avgeriou, P. (2009). An overview of software engineering approaches to service ori-
ented architectures in various fields. In 18th International workshops on enabling technologies:
Infrastructures for collaborative enterprises (WETICE) (pp. 254–259). Groningen, The Netherlands:
IEEE Computer Society.

Krippendorff, K. (2003). Content analysis: An introduction to its methodology. Thousand Oaks, CA: Sage.
Kruchten, P. (2004). An ontology of architectural design decisions in software-intensive systems. In 2nd

Groningen workshop on software variability (pp. 54–61).
Landis, R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics,

33, 159–174.
Mack, N., Woodsong, C., MacQueen, M. M., Guest, G., & Namey, E. (2005). Qualitative research methods:

A data collector’s field guide. Research Triangle Park, NC: Family Health International.
Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis. Thousand Oaks, CA: Sage.
Neill, C. J., & Laplante, P. A. (2003). Requirements engineering: The state of the practice. IEEE Software,

20, 40–45.
OASIS. (2006). Reference model for service oriented architecture 1.0.
O’Brien, L., Bass, L., & Merson, P. (2005). Quality attributes and service-oriented architectures. Technical

note, CMU SEI.

Software Qual J (2016) 24:271–299 297

123

O’Brien, L., Merson, P., & Bass, L. (2007). Quality attributes for service-oriented architectures. In Inter-
national workshop on systems development in SOA environments (pp. 1–7). Minneapolis, MN: IEEE
Computer Society.

Papazoglou, M. (2007). Web services: Principles and technology. Upper Saddle River, NJ: Prentice Hall.
Pfleeger, S. L., & Kitchenham, B. A. (2001). Principles of survey research—Part 1: Turning lemons into

lemonade. ACM SIGSOFT Software Engineering Notes, 26, 16–18.
Poort, E., Martens, N., van de Weerd, I., & van Vliet, H. (2012). How architects see non-functional

requirements: Beware of modifiability. In 18th International working conference on requirements
engineering: Foundations for software quality (REFSQ) (pp. 37–51). Essen, Germany: Springer.

Shim, B., Choue, S., Kim, S., & Park, S. (2008). A design quality model for service-oriented architectures.
In 15th Asia-Pacific software engineering conference (pp. 403–410). IEEE Computer Society.

Sindhgatta, R., Sengupta, B., & Ponnalagu, K. (2009). Measuring the quality of service-oriented design. In
7th international joint conference on service-oriented computing (ISOC-ServiceWave) (pp. 485–499).
Stockholm, Sweden: Springer.

Svensson, R. B., Gorschek, T., & Regnell, B. (2009). Quality requirements in practice: An interview study in
requirements engineering for embedded systems. In 5th international working conference on
requirements engineering: Foundation for software quality (pp. 218–232). Amsterdam, The Nether-
lands: Springer.

Svensson, R. B., Gorschek, T., Regnell, B., Torkar, R., Shahrokni, A., & Feldt, R. (2011). Quality
requirements in industrial practice: An extended interview study at eleven companies. IEEE Trans-
actions on Software Engineering, 38, 923–935.

Tofan, D., Galster, M., Avgeriou, P., & Schuitema, W. (2014). Past and future of software architectural
decisions—A systematic mapping study. Information and Software Technology, 56, 850–872.

Tyree, J., & Akerman, A. (2005). Architecture decisions: Demystifying architecture. IEEE Software, 22,
19–27.

van Heesch, U., & Avgeriou, P. (2010). Naive architecting—Understanding the reasoning process of stu-
dents—A descriptive survey. In 4th European conference on software architecture (pp. 24–37).
Copenhagen, Denmark: Springer.

van Heesch, U., & Avgeriou, P. (2011). Mature architecting—A survey about the reasoning process of
professional architects. In 9th working IEEE/IFIP conference on software architecture (pp. 260–269).
Boulder, CO: IEEE Computer Society.

Voelz, D., & Goeb, A. (2010). What is different in quality management for SOA? In 14th IEEE interna-
tional enterprise distributed object computing conference (EDOC) (pp. 47–56). Vitoria, Brazil: IEEE
Computer Society.

Vogt, P. (2005). Dictionary of statistics and methodology—A non-technical guide for the social sciences.
Thousand Oaks, CA: Sage.

Wohlin, C., Hoest, M., & Henningsson, K. (2003). Empricial research methods in software engineering. In
R. Conradi & A. I. Wang (Eds.), Empirical methods and studies in software engineering (pp. 7–23).
Berlin: Springer.

Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R., & Wood, B. (2006). Attribute-
driven design (ADD), version 2.0. Technical report, SEI CMU.

David Ameller is a research fellow at the Universitat Politècnica de
Catalunya, Spain.

298 Software Qual J (2016) 24:271–299

123

Matthias Galster is a lecturer at the University of Canterbury, New
Zealand.

Paris Avgeriou is professor at the University of Groningen, The
Netherlands.

Xavier Franch is a professor at the Universitat Politècnica de Ca-
talunya, Spain.

Software Qual J (2016) 24:271–299 299

123

	A survey on quality attributes in service-based systems
	Abstract
	Introduction
	Problem statement and motivation
	Paper goal and contribution
	Paper structure

	Background
	Service-based systems
	Quality attributes
	Architectural design and design decisions

	Research method
	Research questions
	Survey design
	Form of the survey
	Population, sampling technique, sample size, and participant recruitment and selection

	Data preparation and collection: questionnaire
	Data analysis
	Protocol review

	Results
	Demographic data of respondents
	Location of participants
	Distribution of participants
	Practical experience of participants
	Educational background of participants
	Role of participants on their organization
	Size of participants’ organization
	Context of the projects

	RQ1: How important are quality attributes in the context of service-based systems design?
	RQ1.1: How important are quality attributes in comparison with functionality?
	RQ1.2: Are certain quality attributes more important in particular application domains?

	RQ2: How are quality attributes addressed in the context of service-based systems design?
	RQ2.1: What kinds of decisions are used to address quality attributes?
	RQ2.2: What is the impact of these decisions on other quality attributes?
	RQ2.3: What rationale is behind the architectural decisions?
	RQ2.4: After the decision was made, were quality attributes satisfied?

	Discussion of results
	Relation to existing literature
	Important quality attributes
	Relevance of quality attributes

	Implications for researchers
	Implications for practitioners

	Validity
	Conclusions
	Acknowledgments
	Appendix
	References

