
Empirical analysis of factors affecting confirmation bias
levels of software engineers

Gul Calikli • Ayse Bener

Published online: 6 September 2014
� Springer Science+Business Media New York 2014

Abstract Confirmation bias is defined as the tendency of people to seek evidence that

verifies a hypothesis rather than seeking evidence to falsify it. Due to the confirmation bias,

defects may be introduced in a software product during requirements analysis, design,

implementation and/or testing phases. For instance, testers may exhibit confirmatory

behavior in the form of a tendency to make the code run rather than employing a strategic

approach to make it fail. As a result, most of the defects that have been introduced in the

earlier phases of software development may be overlooked leading to an increase in

software defect density. In this paper, we quantify confirmation bias levels in terms of a

single derived metric. However, the main focus of this paper is the analysis of factors

affecting confirmation bias levels of software engineers. Identification of these factors can

guide project managers to circumvent negative effects of confirmation bias, as well as

providing guidance for the recruitment and effective allocation of software engineers. In

this empirical study, we observed low confirmation bias levels among participants with

logical reasoning and hypothesis testing skills.

Keywords Confirmation bias � Human factors � Software psychology

G. Calikli (&)
Computing and Communications, Faculty of Maths, Computing and Technology, The Open University,
Milton Keynes, UK
e-mail: gul.calikli@open.ac.uk

A. Bener
Data Science Laboratory, Mechanical and Industrial Engineering, Ryerson University, Toronto,
Canada
e-mail: ayse.bener@ryerson.ca

123

Software Qual J (2015) 23:695–722
DOI 10.1007/s11219-014-9250-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-014-9250-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-014-9250-6&domain=pdf

1 Introduction

In cognitive psychology, confirmation bias is defined as the tendency of people to seek

evidence that could verify their hypotheses rather than seeking evidence that could falsify

them. The term confirmation bias was first used by Wason in his rule discovery task

(Wason 1960) and later in his selection task (Wason 1968).

One can observe the effects of confirmation bias during any phase of the software

development process. Due to confirmation bias, conditions which have the potential to

make the software fail may be overlooked during requirements analysis and design phases

of SDLC. This, in turn, leads to an increase in software defect density. In addition to the

defects which are introduced during early phases of the SDLC, significant number of

defects may also be introduced and/or overlooked during the implementation phase. Due to

confirmation bias, developers might prefer only the unit tests to make their code run rather

than unit tests, which aim to make their code fail. We argue that testers with high con-

firmation bias levels will employ testing strategies, which do not include adequate attempts

to fail the code. As a result, most of the defects that have propagated from earlier phases of

the SDLC (e.g., requirements analysis, design and implementation phases) may be over-

looked leading to a significant increase in the post-release defect density.

To the best of our knowledge, Stacy and MacMillian are the two pioneers who rec-

ognized the potential effects of confirmation bias on software engineering (Stacy and

MacMillan 1995). There is also empirical evidence showing the existence of confirmation

bias among testers. According to the results obtained by Teasley et al. in both naturalistic

and laboratory studies of test case selection, testers are four times more likely to choose

positive tests (i.e., tests that make the code run) than negative tests (i.e., tests that break the

code).

In our previous empirical studies, we found a positive correlation between developers’

confirmation biases and software defect density (Calikli and Bener 2010, 2013). We also

discovered that more post-release defects are overlooked in the modules that are tested by

software engineers with high confirmation bias (Calikli and Bener 2010). In another

research study, we compared confirmation bias values of developer groups from three

different projects and two different companies (Calikli et al. 2013). We defined developer

groups as the set of developers who contribute to the development of a common set of

source code files. Developer groups were identified for each project by mining log files that

were obtained from version management systems. Two of the project groups, Telecom1

and Telecom2, belonged to a large-scale telecommunication company and the third project

group ERP belonged to an independent software vendor specialized in Enterprise-Resource

Planning. Developer groups of Telecom2 and ERP project groups had confirmation bias

values that were much closer to ideal values compared to those of developer groups

belonging to project group Telecom1. As a result of the interviews we conducted with

developers and projects managers, we discovered that negative tests were part of testing

routine of developers in project groups Telecom2 and ERP besides positive tests, while

only positive tests were conducted by developers in project group ERP.

In our previous studies, we defined a methodology to quantify confirmation bias levels

that resulted in the formation of a confirmation bias metrics set (Calikli and Bener 2010a,

b, 2013; Calikli et al. 2010a, b;). Having found a correlation between confirmation biases

of developers and software defect density, we built predictive models to identify defect

prone parts of software. The performance of our prediction model, which we built by using

confirmation bias metrics, was comparable with the performance of the models, which we

696 Software Qual J (2015) 23:695–722

123

built by using product (i.e., static code) and process (i.e., churn) metrics (Calikli and Bener

2013).

In order to circumvent negative effects of confirmation bias as well as providing

guidance to recruit new software engineers and to allocate existing ones to positions where

they can perform most effectively, it is crucial to identify factors having significant impact

on confirmation bias. In this paper, we present a methodology to quantify confirmation bias

levels in terms of a single derived metric and investigate the factors which affect confir-

mation bias levels of software engineers.

The rest of the paper is organized as follows: In Sect. 2, we explain our research goal

and the corresponding hypotheses. Our methodology to quantify/measure confirmation bias

levels of software engineers is explained in Sect. 3. We give the details of our empirical

analysis in Sect. 4. Results of our empirical study and discussions are presented in Sect. 5.

Section 6 addresses threats to validity. Finally, we conclude and mention future work in

Sect. 7.

2 Goals and hypotheses

The goal of this research is to investigate the factors which significantly affect confirmation

bias levels of software engineers. The hypotheses that are derived from the factors of

interest are listed in Table 1 as well as being mentioned in this section. During our

empirical analysis, in addition to the factors of interest, confounding factors also had to be

taken into account. We defined ‘‘confounding factor’’ as an extraneous variable (i.e., a

variable that is not the focus of the study) that is statistically related to one or more of the

independent variables whose effects on the response variable (i.e., dependent variable) are

analyzed. We explored the factors of interest and the confounding factors under the fol-

lowing three categories:

2.1 Characteristics of the software engineers

The characteristics of software engineers that we took into consideration are education, job

title, years of experience in development and years of experience in testing, respectively.

As confounding factors, we included age and gender into our empirical analysis.

In cognitive psychology literature, there are studies indicating the effects of education

and profession (i.e., job title) on confirmation bias. In a study conducted by Inglis and

Simpson (2004), mathematics students, mathematicians and history students were com-

pared. It turned out that mathematicians and mathematics students employ more discon-

firmatory strategies compared to history students and hence are less prone to confirmation

bias. Similar studies were conducted with samples from engineers, scientists and statisti-

cians, who were found to be less prone to confirmation bias compared to the subjects from

the rest of the population (Einhorn and Hogarth 1978; Mahoney and DeMonbreun 1977).

In this paper, one of our goals is to analyze the effect of education and professions on

confirmation bias within the context of software engineering. Therefore, we aim to test the

validity of the following hypotheses:

H1
0

Confirmation bias levels of software engineers are not affected by their educational

background (undergraduate study).

H2
0

Confirmation bias levels of software engineers are not affected by their level of

education (Bachelor’s and Master’s degree).

Software Qual J (2015) 23:695–722 697

123

T
a
b
le

1
T
h
e
h
y
p
o
th
es
es

w
h
ic
h
ar
e
d
er
iv
ed

fr
o
m

th
e
o
b
je
ct
iv
es

o
f
th
is
re
se
ar
ch

H
y
p
o
th
es
is

E
x
p
la
n
at
io
n

H
1 0

C
o
n
fi
rm

at
io
n
b
ia
s
le
v
el
s
o
f
so
ft
w
ar
e
en
g
in
ee
rs

ar
e
n
o
t
af
fe
ct
ed

b
y
th
ei
r
ed
u
ca
ti
o
n
al

b
ac
k
g
ro
u
n
d
(u
n
d
er
g
ra
d
u
at
e
le
v
el
)

H
2 0

C
o
n
fi
rm

at
io
n
b
ia
s
le
v
el
s
o
f
so
ft
w
ar
e
en
g
in
ee
rs

ar
e
n
o
t
af
fe
ct
ed

b
y
th
ei
r
le
v
el

o
f
ed
u
ca
ti
o
n
(B
ac
h
el
o
r’
s
v
s.
M
as
te
r’
s
d
eg
re
e)

H
3 0

L
o
g
ic
al

re
as
o
n
in
g
an
d
st
ra
te
g
ic

h
y
p
o
th
es
is
te
st
in
g
sk
il
ls
ar
e
n
o
t
d
if
fe
re
n
ti
at
in
g
fa
ct
o
rs

in
lo
w

co
n
fi
rm

at
io
n
b
ia
s
le
v
el
s

H
4 0

C
o
n
fi
rm

at
io
n
b
ia
s
le
v
el
s
o
f
a
so
ft
w
ar
e
en
g
in
ee
r
is
n
o
t
re
la
te
d
to

h
is
/h
er

ro
le

(e
.g
.,
an
al
y
st
,
d
ev
el
o
p
er
,
te
st
er
)
in

th
e
so
ft
w
ar
e
d
ev
el
o
p
m
en
t
p
ro
ce
ss

H
5 0

C
o
n
fi
rm

at
io
n
b
ia
s
le
v
el

o
f
a
so
ft
w
ar
e
en
g
in
ee
r
is
n
o
t
af
fe
ct
ed

b
y
h
is
/h
er

in
d
u
st
ri
al

so
ft
w
ar
e
d
ev
el
o
p
m
en
t
ex
p
er
ie
n
ce

(i
n
y
ea
rs
)

H
6 0

C
o
n
fi
rm

at
io
n
b
ia
s
le
v
el

o
f
a
so
ft
w
ar
e
en
g
in
ee
r
is
n
o
t
af
fe
ct
ed

b
y
h
is
/h
er

in
d
u
st
ri
al

so
ft
w
ar
e
te
st
in
g
ex
p
er
ie
n
ce

(i
n
y
ea
rs
)

H
7 0

T
h
e
m
et
h
o
d
o
lo
g
y
th
at

is
u
se
d
fo
r
th
e
d
ev
el
o
p
m
en
t
o
f
a
so
ft
w
ar
e
p
ro
d
u
ct

(e
.g
.,
in
cr
em

en
ta
l,
ag
il
e
an
d
T
D
D
)
d
o
es

n
o
t
af
fe
ct

co
n
fi
rm

at
io
n
b
ia
s
le
v
el
s
o
f
th
e

so
ft
w
ar
e
en
g
in
ee
rs

H
8 0

T
h
er
e
is

n
o
si
g
n
ifi
ca
n
t
d
if
fe
re
n
ce

b
et
w
ee
n
co
n
fi
rm

at
io
n
b
ia
s
le
v
el
s
o
f
so
ft
w
ar
e
en
g
in
ee
rs

w
h
o
w
o
rk

fo
r
la
rg
e-
sc
al
e
so
ft
w
ar
e
d
ev
el
o
p
m
en
t
co
m
p
an
ie
s
an
d

co
n
fi
rm

at
io
n
b
ia
s
le
v
el
s
o
f
th
o
se

w
h
o
w
o
rk

fo
r
S
m
al
l-
M
ed
iu
m

E
n
te
rp
ri
se
s
(S
M
E
s)

698 Software Qual J (2015) 23:695–722

123

Information about the effect of education on confirmation bias levels of software engineers

may guide the human resources in the recruitment process. Moreover, we would like to

investigate whether obtaining logical reasoning and hypotheses testing skills lead to lower

confirmation bias levels. For this purpose, we would like to test the validity of the fol-

lowing hypothesis:

H3
0

Logical reasoning and strategic hypotheses testing skills are not differentiating

factors in low confirmation bias levels.

In the long run, information, which we gain testing hypotheses H1
0 , H

2
0 and H3

0 may lead to

the modification of curriculum to integrate de-biasing techniques into the fields of edu-

cation, if necessary. Moreover, further investigation of practices and problem solving

techniques, which are unique to certain professions and areas of expertise, may guide us to

develop certain de-biasing techniques. There are opportunities to use recent results from

meta-cognition research to circumvent negative effects of confirmation bias and other

cognitive biases. Although meta-cognitive skills can be taught (Borkowski et al. 1987),

these are not necessarily automatically transferred to another context. As Mair and

Shepperd suggest, it is required to design context-specific materials and techniques for use

by software professionals (Mair and Shepperd 2011). Moreover, there are techniques and

tools, which aid circumvention of the negative effects of cognitive biases, such as decision

analysis, expert systems and various programming techniques (Merkhofer 1998). Some of

these techniques and tools are part of the daily practice of specific areas of expertise in

software engineering (i.e., developer, tester, analyst). In other words, there might be a

correlation between the role of a software engineer (i.e., developer, tester, analysts) and

confirmation bias levels. Therefore, it is crucial to analyze the effects of these specific roles

on confirmation bias within the context of software engineering by testing the validity of

the following hypothesis:

H4
0

Confirmation bias level of a software engineer is not related to his/her role in the

software development (i.e., developer, tester and analysts).

We took experience in development/testing into consideration as another factor, since

information about whether expertise level affects cognitive biases has the potential to give

us insight about circumventing the negative effects of confirmation bias. In cognitive

psychology literature, most studies have shown that experts also have cognitive biases as

much as non-experts. Kahneman found out that highly experienced financial managers

performed no better than chance compared to less experienced ones due to confirmation

bias (Kahneman 2011). In another study, expertise level of stock analysts and traders made

them highly resistant to signals that did not conform to their beliefs while making pre-

dictions about the stock market (Knauff et al. 2010). Existence of cognitive biases has also

been observed in scientists as well as experts in statistics and logic (Garavan et al. 1997).

An accumulating body of research on clinical judgment also reports existence of confir-

matory behavior (Murray and Thompson 2010; Dawson 1993). In their laboratory and field

studies, Teasley et al. also observed that experienced programmers/testers exhibit confir-

matory behavior as much as novices (Teasley et al. 1993, 1994). Our previous findings

within the context of software engineering were in line with all these above-mentioned

studies. In our previous research, we could not find any significant difference between

confirmation bias levels of experienced software developers/testers and less experienced

ones (Calikli et al. 2010a, b; Calikli and Bener 2010). In this paper, we extend our dataset

Software Qual J (2015) 23:695–722 699

123

in order to test the validity of our claim stating that experience in development and testing

does not have a significant positive impact on confirmation bias. Therefore, we aim to test

the validity of the following hypotheses:

H5
0

Confirmation bias level of a software engineer is not affected by his/her industrial

software development experience (in years).

H6
0

Confirmation bias level of a software engineer is not affected by his/her industrial

software testing experience (in years).

If experience in testing and development does not have a significant effect on circum-

venting negative effects of confirmation bias, then it might be crucial to design and conduct

training sessions for software professionals. Such training sessions should inherit findings

from research in meta-cognition, and they can only be designed by multi-disciplinary

teams that include cognitive psychologists as well as computer scientists (Mair and

Shepperd 2011).

2.2 Characteristics of the software product

Among software product characteristics, the factor which we investigated is the software

development methodology. The confounding factors are the type of the development lan-

guage and the level of domain expertise which is required to take part in the development

process of a software product.

Some software development methodologies such as test-driven development (TDD)

(Erdogmus et al. 2005) involve de-biasing strategies. Test-driven development helps to

understand the underlying requirements and to consider test case scenarios before the

implementation of the code itself. Practicing TDD is likely to result in low confirmation

bias levels, since it helps the developer to have a critical view of his/her own code. In this

paper, we investigate possible effects of incremental, agile and TDD methodologies on

confirmation bias levels of software engineers. In other words, we test the validity of the

following hypothesis:

H7
0

The methodology that is used for the development of a software product (e.g.,

incremental, agile and TDD) does not affect confirmation bias levels of software

engineers.

2.3 Characteristics of the software company

In order to investigate the possible effects of company size on confirmation bias, data are

collected from both large-scale software development companies and Small-Medium

Enterprizes (SMEs). One of the companies that took part in this research is located in

Canada, while the rest of the companies are located in Turkey. Therefore, we took geo-

graphical location (i.e., country) into consideration as a confounding factor. Moreover,

each software development company, which took part in this research, is either in-house

development company or an independent software vendor (ISV). For this reason, we

included the type of a software development company regarding its target customers as

another confounding factor.

During our field studies (Calikli and Bener 2010a, b, 2013; Calikli et al. 2010a, b) , we

observed that large-scale companies are process-driven, while individual performance of

software engineers play a significant role in the success of a software product that is

developed by a SME. Confirmation bias is one of the characteristics of an individual.

700 Software Qual J (2015) 23:695–722

123

Therefore, it is probable that software quality in a SME might be affected by confirmation

bias more, whereas having defined software development processes in large-scale com-

panies may assist circumvention of the negative effects of confirmation bias. In order to

test this hypothesis, in our previous study (Calikli et al. 2010), we compared confirmation

bias levels of software engineers working for a large-scale company with confirmation bias

levels of software engineers who work for SMEs. Results of our previous study did not

indicate any significant effect of company size on confirmation bias levels of software

engineers. In this research, having extended the dataset, we test the validity of our previous

findings and hence that of the following hypothesis:

H8
0

There is no significant difference between confirmation bias levels of software

engineers who work for large-scale software development companies and

confirmation bias levels of those, who work for SMEs.

3 Measurement/quantification of confirmation bias

Our methodology to measure/quantify confirmation bias consists of the following steps:

3.1 Preparation of the confirmation bias test

The confirmation bias test, which we prepared, consists of the interactive question and the

written question set. Interactive question is Wason’s Rule Discovery Task (Wason 1960)

itself, whereas written question set is based on Wason’s Selection Task (Wason 1968).

Details about these two psychological experiments, which were designed by Wason, can be

found in our previous research, (Calikli and Bener 2010, b, 2013; Calikli et al. 2010a,

2010). Our previous research (Calikli and Bener 2013) also contains a discussion of the

analogy of Wason’s Rule Discovery Task and Selection Task with software unit testing.

Written question set consists of eight abstract and seven thematic questions. Abstract

questions are based on the original Wason’s Selection Task. In cognitive psychology

literature, there are variants of the Selection Task (Cox and Griggs 1982; Griggs and Cox

1982; Cheng and Holyoak 1985; Cosmides 1989; Manktelow and Over 1990; Wason and

Shapiro 1971; Manktelow and Evans 1979; Johnson-Laird and Tridgell 1972; Griggs

1983). Thematic questions in our confirmation bias test are based on these psychological

experiments which were inspired by Wason’s original work (Wason 1968).

3.2 Administration of the confirmation bias test

We prepared both Turkish and English versions of the confirmation bias test. Details about

the standard procedure, which is followed during the administration of the confirmation

bias test, was explained in our previous paper (Calikli and Bener 2013).

3.3 Definition and extraction of the confirmation bias metrics

Interactive question metrics and written question metrics are briefly explained in Tables 2

and 3, respectively. Our previous paper (Calikli and Bener 2013) contains extensive

information about confirmation bias metrics as well as the analogy between software

testing and Wason’s experiments.

Software Qual J (2015) 23:695–722 701

123

In Tables 2 and 3, ideal case and worst-case values for each confirmation bias metric are

also listed. Ideal case values are among the indications of low confirmation bias values,

while worst-case values imply high confirmation bias levels.

High values of the metrics Indelim=enum, Fnegative and UnqRs=Time are among the indi-

cations of low confirmation bias. Wason discovered that participants with high Indelim=enum
and Fnegative values performed better in his rule discovery task (Wason 1960). Our previous

empirical findings showed that developers with low Indelim=enum, Fnegative and UnqRs=Time

values are more inclined to select positive tests to verify their code which, in turn, leads to

an increase in software defect density (Calikli and Bener 2013). Therefore, as shown in

Table 2, we indicate the ideal values of these metrics by Indmaxelim=enum, Fmax
negative and

UnqRs=Timemax, respectively.
On the contrary, high values of the metrics NA, FIR and avgLIR are among the indica-

tions of high confirmation bias. In our previous empirical analysis, we found a significant

correlation between the values of these three metrics and software defect density (Calikli

and Bener 2013). In Table 2, the worst-case values of the metrics FIR and avgLIR are

denoted by Fmax
IR and avgLmaxIR , respectively.

In this research, except for the metric NA, the maximum value of each metric M (Mmax)

is assigned the corresponding maximum value obtained from the data that have been

collected so far (Calikli and Bener 2010a, b2013; Calikli et al. 2010a, b). Nabort
A is used to

denote the worst-case value of the metric NA, since a participant aborts the interactive

question session in the worst case. In this empirical study, we set Nabort
A to be equal to twice

the maximum number of rule announcements we have observed so far (i.e., Nabort
A =

2*Nmax
A).

Finally, written question set metrics can take values in the range ½0; 1�. Hence, for each
written question set metric Mwr, M

max
wr ¼ 1 and Mmin

wr ¼ 0.

3.4 Deriving a single metric to quantify confirmation bias levels of software engineers

In order to quantify confirmation bias, we preferred to define a set of confirmation bias

metrics. Our confirmation bias metrics set got its final form in our previous research

(Calikli and Bener 2013). Our goal was to avoid under-representation of ‘‘confirmation

bias’’ that is one of the threats to construct validity (Cook and Campbell 1979).

Confirmation bias can be represented in the form of a vector cb, where each component

cbi of the vector is one of the confirmation bias metrics that are listed in Tables 2 and 3. For

instance, the first component of the vector cb corresponds to the confirmation bias metric

Table 2 List of interactive question metrics

Metric Explanation Values for

Ideal case Worst case

NA Number of rule announcements 1 Nabort
A

Indelim=enum Eliminative/enumerative index by Wason Indmaxelim=enum 0

Fnegative Frequency of negative instances Fmax
negative 0

FIR Immediate rule announcement frequency 0 Fmax
IR

avgLIR Average length of immediate rule announcements 0 avgLmaxIR

UnqRs=Time Number of unique reasons which are given per unit time UnqRs=Timemax 0

702 Software Qual J (2015) 23:695–722

123

T
a
b
le

3
L
is
t
o
f
w
ri
tt
en

q
u
es
ti
o
n
se
t
m
et
ri
cs

M
et
ri
c

E
x
p
la
n
at
io
n

V
al
u
es

fo
r

Id
ea
l

ca
se

W
o
rs
t

ca
se

S
A
b
s

S
co
re

in
ab
st
ra
ct

q
u
es
ti
o
n
s

1
0

S
A
b
s
=
S
T
h

R
at
io

o
f
th
e
sc
o
re

in
ab
st
ra
ct

q
u
es
ti
o
n
s
to

sc
o
re

in
th
em

at
ic

q
u
es
ti
o
n
s

A
B
S
C
o
m
p
le
te
In
si
g
h
t

R
at
io

o
f
th
e
n
u
m
b
er

o
f
ab
st
ra
ct

q
u
es
ti
o
n
s
th
at

ar
e
an
sw

er
ed

w
it
h
co
m
p
le
te

in
si
g
h
t
to

to
ta
l
n
u
m
b
er

o
f
p
o
si
ti
v
e
ab
st
ra
ct

q
u
es
ti
o
n
s

1
0

A
B
S
P
a
rt
ia
lI
n
si
g
h
t

R
at
io

o
f
th
e
n
u
m
b
er

o
f
ab
st
ra
ct

q
u
es
ti
o
n
s
th
at

ar
e
an
sw

er
ed

w
it
h
p
a
rt
ia
l
in
si
g
h
t
to

to
ta
l
n
u
m
b
er

o
f
p
o
si
ti
v
e
ab
st
ra
ct

q
u
es
ti
o
n
s

0
1

A
B
S
N
o
In
si
g
h
t

R
at
io

o
f
th
e
n
u
m
b
er

o
f
ab
st
ra
ct

q
u
es
ti
o
n
s
th
at

ar
e
an
sw

er
ed

w
it
h
n
o
in
si
g
h
t
to

to
ta
l
n
u
m
b
er

o
f
p
o
si
ti
v
e
ab
st
ra
ct

q
u
es
ti
o
n
s

0
1

T
h
C
o
m
p
le
te
In
si
g
h
t

R
at
io

o
f
th
e
n
u
m
b
er

o
f
th
em

at
ic

q
u
es
ti
o
n
s
th
at

ar
e
an
sw

er
ed

w
it
h
co
m
p
le
te

in
si
g
h
t
to

to
ta
l
n
u
m
b
er

o
f
th
em

at
ic

q
u
es
ti
o
n
s

1
0

T
h
P
a
rt
ia
lI
n
si
g
h
t

R
at
io

o
f
th
e
n
u
m
b
er

o
f
th
em

at
ic

q
u
es
ti
o
n
s
th
at

ar
e
an
sw

er
ed

w
it
h
p
a
rt
ia
l
in
si
g
h
t
to

to
ta
l
n
u
m
b
er

o
f
th
em

at
ic

q
u
es
ti
o
n
s

0
1

T
h
N
o
In
si
g
h
t

R
at
io

o
f
th
e
n
u
m
b
er

o
f
th
em

at
ic

q
u
es
ti
o
n
s
th
at

ar
e
an
sw

er
ed

w
it
h
n
o
in
si
g
h
t
to

to
ta
l
n
u
m
b
er

o
f
th
em

at
ic

q
u
es
ti
o
n
s

0
1

R
F
a
ls
if
ie
r

R
at
io

o
f
th
e
n
u
m
b
er

o
f
R
ei
ch

an
d
R
u
th
’s

te
n
d
en
cy

q
u
es
ti
o
n
s
th
at

ar
e
an
sw

er
ed

w
it
h
o
n
ly

fa
ls
if
y
in
g
te
n
d
en
cy

to
to
ta
l
n
u
m
b
er

o
f

te
n
d
en
cy

q
u
es
ti
o
n
s

1
0

R
V
er
if
ie
r

R
at
io

o
f
th
e
n
u
m
b
er

o
f
R
ei
ch

an
d
R
u
th
’s

te
n
d
en
cy

q
u
es
ti
o
n
s
th
at

ar
e
an
sw

er
ed

w
it
h
o
n
ly

v
er
if
y
in
g
te
n
d
en
cy

to
to
ta
l
n
u
m
b
er

o
f

te
n
d
en
cy

q
u
es
ti
o
n
s

0
1

R
M
a
tc
h
er

R
at
io

o
f
th
e
n
u
m
b
er

o
f
R
ei
ch

an
d
R
u
th
’s

te
n
d
en
cy

q
u
es
ti
o
n
s
th
at

ar
e
an
sw

er
ed

w
it
h
o
n
ly

m
at
ch
in
g
te
n
d
en
cy

to
to
ta
l
n
u
m
b
er

o
f

te
n
d
en
cy

q
u
es
ti
o
n
s

0
1

Software Qual J (2015) 23:695–722 703

123

NA, the second component of the vector cb corresponds to the metric Indelim=enum and the

last component of the vector corresponds to the metric RMatcher. As a result, the dimension

of the vector cb is equal to the total number of confirmation bias metrics (N ¼ 17).

However, it is much easier to understand and interpret scalars rather than a set of

multiple parameters such as vectors (Hirschi and Frey 2002). Interpretation of the results of

multi-way ANOVA is also much easier and hence less prone to incorrect interpretations

compared to MANOVA which is preferred in the case of multiple response variables.

Therefore, we decided to derive a single metric to quantify confirmation bias levels by

using confirmation bias metrics. As a result, it was possible to perform multi-way ANOVA

test for empirical analysis instead of multi-way MANOVA where multiple response

variables are taken into account as well as multiple independent variables (i.e., factors).

We define confirmation bias level of an ith software engineer (CBi) as the deviation of

confirmation metrics values of the ith software engineer from the corresponding ideal

metrics values. In order to quantify confirmation bias levels of software engineers in the

form of a scalar value (i.e., a single derived metric), we formulated Eq. 1 as follows:

CBi ¼ Di=maxDist ð1Þ

In Eq. 1, CBi stands for the confirmation bias level of the ith software engineer. Di is used

to measure the deviation of confirmation bias metrics values of the ith software engineer

(cbi) from ideal values of the confirmation bias metrics (cbIdeal). We calculate Di as the

Euclidean distance between two vectors cbi and cbIdeal.

Di ¼

ffi

X

N

j

ðcbij � cbIdealj

 !2
v

u

u

t ð2Þ

The members of both vectors cbi and cbIdeal are the confirmation bias metrics that are listed

in Tables 2 and 3, respectively. Values for the components of the vector cbi are the values

of the confirmation bias metrics of the ith software professional. As it can be deduced from

Tables 2 and 3, cbIdeal ¼ ½1Indmaxelim=enumF
max
negative00UnqRs=Time

max111100100100�. Confir-
mation bias metrics, which are listed in Table 3, are in the range ½0; 1� (i.e., 0� cbij � 1).

In order to guarantee the equivalent contribution of each metric to the calculation of the

resulting confirmation bias levels, during the calculation, we also mapped the values for the

metrics Indelim=enum, Fnegative and UnqRs=Time to the range ½0; 1�, so that the following

holds for all components of the vector cbi: 0� cbij � 1. For this purpose, we divided the

metrics values by the corresponding maximum values (i.e., Indmaxelim=enum, Fmax
negative and

UnqRs=Timemax). As a result, the exact value of the vector cbIdeal that we used during our

empirical analysis is cbIdeal ¼ ½111001111100100100�.
In order to map the estimated Euclidean distance Di to the range [0,1] (i.e., 0�Di � 1),

we divided Di by maxDist, which is the distance between the vectors cbworst and cbIdeal.

maxDist ¼

ffi

X

N

j

ðcbworstj � cbIdealj

 !2
v

u

u

t ð3Þ

The components of the vector cbworst are all the worst-case values of the confirmation bias

metrics. Hence, maxDist is equal to the maximum possible deviation from the ideal case

vector cbideal. As a result, we can rewrite our formulation in Eq. 1 as follows:

704 Software Qual J (2015) 23:695–722

123

CBi ¼

ffi

X

N

j

ðcbij � cbIdealj Þ2=
X

N

j

ðcbworstj � cbIdealj Þ2
v

u

u

t ð4Þ

According to Eq. 4, high value of CBi is an indication of high confirmation bias level,

since it implies a high deviation from the ideal case. On the other hand, low value of the

derived metric CBi corresponds to low confirmation bias level which is the desirable case.

In N-dimensional space, confirmation bias value of the ith software engineer is repre-

sented by a set of confirmation bias metrics in the form of the vector cbij, while cbIdealj

stands for the ideal confirmation bias metrics values. By using Eq. 4, confirmation bias

metrics values in N-dimensional space are transformed to a scalar value to measure the

confirmation bias level. CBi is the deviation of the confirmation bias metrics values of the

ith software engineer from the ideal confirmation bias metrics values. Therefore, N-

dimensional vector cbIdealj is transformed to CBideal ¼ 0, while N-dimensional vector

cbworstj is transformed to CBworst ¼ 1.

In order to make the interpretation of the physical meaning of the single derived metric

CBi easier, in Fig. 1 the vectors cbi, cbideal and cbworst are illustrated as two-dimensional

vectors instead of using the actual N-dimensional space. For illustrative purposes, let us

assume that the first component of the vectors cbi is FIR and the second component is

Indelim=enum (i.e., cbi1 : FIR and cbi2 : Indelim=enum). In this two-dimensional case, the

Euclidean distance between the ideal case confirmation bias vector (cbideal) and the worst-

case confirmation bias vector (cbworst) is
ffiffiffi

2
p

. As shown in Fig. 1, if the ith developer has

the confirmation bias metric values cb1 : FIR ¼ 0:75 and cb2 : Indelim=enum ¼ 0:9, then the

value of the single derived metric for the ith software engineer is 0:66. In the ideal case, the
values of the confirmation bias metrics FIR and IndElim=Enum for the ith software engineer

should be 0 and 1, respectively, as it is shown in Table 2. Therefore, CBi is the extent to

which confirmation bias metrics values of the ith software engineer deviates from the ideal

values of these metrics. For convenience, we normalize the resulting Euclidean distance

between cbi and cbideal by the maximum possible distance
ffiffiffi

2
p

, which is the Euclidean

distance between cbideal and cbworst. As a result, 0�CBi � 1. Hence, the lower the value of

the single derived metric CBi, the lower the confirmation bias level, which is the desirable

case.

4 Empirical analysis

4.1 Data

In this research, 174 participants consisting of 18 computer engineering PhD candidates

and 156 software engineers took part. Data of software engineers are collected from seven

different software development companies which are listed in Table 4.

GSM-Company, which is the leading telecommunications (GSM) operator in Turkey,

produces in-house software products. Our research covers three project groups within

GSM-Company which are GSM-CRM, GSM-Billing and GSM-TDD, respectively. Project

group GSM-CRM is responsible from the development of a customer relationship man-

agement (CRM) software which serves to launch new and creative campaigns for com-

pany’s customers. The project group GSM-Billing is responsible from the development of

Software Qual J (2015) 23:695–722 705

123

the software which provides billing, charging and revenue collection services. All project

groups in GSM-Company use incremental software development methodology, except for

the project group GSM-TDD which employs TDD methodology (Table 5).

Bank-IT is a large-scale company, which develops an in-house software for online

banking services by using agile development methodology.

Hi-Tech Corporation is also a large-scale company and it is located in Canada. The

company develops a database management system (DBMS) which is highly demanded by

industry for the storage and the management of large amount of data.

Participants of the group CMPE-Exp consist of Computer Engineering PhD students at

Bogazici University in Turkey, and each member of this group has minimum 2 years of

development experience in software industry. Unlike the members of other groups, CMPE-

Exp members are not active in the field anymore, and hence, they can be defined as

‘‘researchers’’ rather than ‘‘software engineers.’’ ‘‘Researchers’’ are the only PhD candi-

dates among the participants of this empirical study, and none of the other participants hold

any PhD degrees.

Fig. 1 Two-dimensional illustration of the single derived metric CBi

Table 4 Characteristics of software development companies

Institution/company Project groups ISV versus in-house Company type Country

GSM-company GSM-CRM In-house Large-scale company Turkey

GSM-Billing

GSM-TDD

Bank-IT Banking In-house Large-scale company Turkey

Hi-Tech corporation DBMS-Group ISV Large-scale company Canada

University CMPE-Exp Various Various Turkey

Finance software vendor Finance ISV SME Turkey

ERP-Vendor ERP ISV Large-scale
company

Turkey

CRM-Vendor CRM ISV SME Turkey

Business solution provider Mobile ISV SME Turkey

706 Software Qual J (2015) 23:695–722

123

Finance Software Vendor is a Small/Medium Enterprize (SME) which develops soft-

ware for the finance sector such as portfolio, funds and asset management services by

employing agile development methodology.

ERP-Vendor is Turkey’s largest Independent Software Vendor (ISV) which provides

business solutions in the form of Enterprize Resource Planning (ERP) products by using

incremental development methodology.

CRM-Vendor and Business Solutions Provider are two medium-scale independent

software vendors. Project groups within both of these companies employ agile develop-

ment methodology.

In the development of DBMS at the High-Tech Corporation, theoretical knowledge about

the relational databasemodel is essential. On the other hand, the set of functionalities provided

by the rest of the software products can be represented in the form of rule-based systems.

Therefore, compared to the software products which are developed by other companies in the

dataset, high level of domain expertise is required in the development of DBMS.

Development language that is used for the implementation of DBMS is C??, while C#
is preferred by the project group Mobile. The remaining project groups use Java as the

development language.

4.2 Methodology for the empirical analysis

We performed a multi-way analysis of variance (ANOVA) test to analyze the effects of

multiple factors on the mean values of confirmation bias levels. For this purpose, we used

Statistics Toolbox of MATLAB.

In order to measure confirmation bias level of each software professional, we derived a

single metric by using Eq. 1. This single metric is derived from the confirmation bias

metrics that are listed in Tables 2 and 3, respectively. Confirmation bias level is the

dependent variable, while the independent variables are the factors which we classified

under the following three main categories.

4.2.1 Characteristics of the software engineers

In the multi-way ANOVA test, age, years of experience in development and years of

experience in testing are treated as continuous predictors, whereas gender, education and

Table 5 Characteristics of software projects

Project groups Development language Development methodology Domain expertise

GSM-CRM Java Incremental Medium

GSM-Billing Java Incremental Medium

GSM-TDD Java TDD Medium

Banking Java Agile Medium

DBMS C?? TDD High

CMPE-Exp Various Various High/medium

Finance Java Agile Medium

ERP Java Incremental Medium

CRM Java Agile Medium

Mobile C] Agile Medium

Software Qual J (2015) 23:695–722 707

123

job title, are treated as categorical predictors. Age and gender distributions are shown in

Table 6. We defined two factors related to education which are undergraduate degree and

graduate degree, respectively. The levels of the categorical factor undergraduate degree is

based on the categorization scheme that is shown in Table 7. In order to form these

categorization schemes, we examined curriculum of each field of study. We identified

seven subcategories four of which belong to the ‘‘computer related’’ category, while the

rest belongs to the ‘‘non-computer related’’ category. Categorical values for the factor

undergraduate degree consist of these seven subcategories (e.g., Computer Engineering/

Computer Science/Software Engineering, Engineering, Math/Math Related). In order to

analyze the effect of educational level on confirmation bias, we included the factor

graduate degree which can take one of the categorical values ‘‘grad degree’’ and ‘‘no grad

degree.’’

The factor job title can take one of the following categorical values: ‘‘researcher,’’

‘‘analyst,’’ ‘‘developer’’ and ‘‘tester.’’ Within each project group, the distribution of the

participants according to their job titles is given in Table 8.

4.2.2 Characteristics of the software product

The categorical factor software development methodology can be assigned one of the

following methodologies: incremental, TDD or agile. The development methodologies

employed in project groups are listed in Table 5 where the development methodology of

the group CMPE-Exp is defined as ‘‘various,’’ since among the members of this group, one

member used to develop software according to the incremental methodology, while the rest

of the members used to employ agile methodology. Development language and domain

expertise are confounding factors, and they can also be defined as categorical values. The

values these two factors can take are given in Table 5.

4.2.3 Characteristics of the software company

Company characteristics are all categorical factors. The value range for these factors is

given in Table 4. Country factor can take two values since data are collected from only two

Table 6 Gender distribution and minimum, maximum, average age values for each project group and for
the group CMPE-Exp

Project group Gender Age

Female (%) Male (%) Minimum Maximum Average

GSM-CRM 30.00 70.00 23.00 39.00 28.37

GSM-Billing 14.29 85.71 22.00 34.00 29.00

GSM-TDD 0.00 100.00 32.00 35.00 33.67

Banking 48.28 51.72 24.00 43.00 32.00

DBMS 4.55 95.45 23.00 44.00 32.00

CMPE-Exp 15.38 84.62 26.00 32.00 29.00

Finance 7.69 92.31 21.00 33.00 27.00

ERP 0.00 100.00 28.00 39.00 31.00

CRM 0.00 100.00 22.00 27.00 24.00

Mobile 12.50 87.50 27.00 33.00 30.00

708 Software Qual J (2015) 23:695–722

123

different countries, namely Turkey and Canada. These two countries were treated as if

they are randomly selected from a large set of countries. Therefore, different from other

factors, we applied random-effects ANOVA to country factor, instead of fixed-effects

ANOVA.

4.3 Checking the assumptions of multi-way ANOVA

In order to check the model (i.e., multi-way ANOVA) assumptions, we check the following

assumptions on the random errors (i.e., residuals):

Table 7 Categorization of the
undergraduate degree fields of
software engineers and CMPE-
Exp members

Computer related 133

Comp. Eng./Comp. Sci./SE 97

Computer engineering 76

Computer science 19

Software engineering 1

Information system engineering 1

Engineering 9

Electronics engineering 7

Telecommunication engineering 1

System engineering 1

Math and computing 11

Mathematical engineering 10

Statistics 1

Others 16

Computer programming 5

Computer education 3

Management information systems 1

Information systems and technology 7

Non-computer related 41

Math/math related 19

Mathematics/applied math 11

Mathematics education 1

Economics 7

Engineering and others 17

Industrial engineering 8

Mechanical engineering 2

Electrical engineering 2

Physics engineering 1

Engineering science 3

Environmental engineering 1

Business and arts 5

Business administration 4

Arts 1

Total 174

Software Qual J (2015) 23:695–722 709

123

4.3.1 Normal distribution of residuals

One of the model assumptions for multi-way ANOVA is that residuals are normally

distributed with zero mean (ei �Nð0; r2Þ). In other words, we use the normal density as the

working approximation for random errors. Figure 2 shows the Q-Q plots and histograms of

the residuals for the multi-way ANOVA model, which we constructed for this study. As it

can be seen from Fig. 2, residuals conform to the normal distribution (ei �Nð0; r2Þ).
Moreover, chi-square goodness-of-fit Test failed to reject the null hypothesis that residuals

are a random sample from a normal distribution at 0.05 significance level (p ¼ 0:4551).

4.3.2 Homoscedasticity

Since ANOVA assumes that variances are equal across groups, we need to check for

‘‘homoscedasticity.’’ The homoscedasticity hypothesis implies constant variance r2. In
other words, residuals must have a constant variance r2 for all settings of the independent
variables. In order to check whether within-group variances of residuals for all groups are

same, we applied Barlett’s Test. The results of the Barlett’s test for all factors are given in

Table 9. In Table 9, conditions for homoscedasticity are met for all categorical factors

except for ‘‘Gender’’ factor. When all other assumptions for multi-way ANOVA are met,

violation of homoscedasticity (i.e., heteroscedasticity) does not result in biased parameter

estimates. Heteroscedasticity has to be severe to cause bias in the estimates of standard

errors (Allison 1999). In our case, the problem of heteroscedasticity is not severe according

to the criteria of Allison (1999). Moreover, despite all of the simulation studies that have

been done, there does not seem to be a consensus about when heteroscedasticity is a big

enough problem that alternatives to ANOVA should be used (Bradley 1978; Glass et al.

1972). In order to check the validity of homoscedasticity for the continuous factors ‘‘Age,’’

‘‘Development Experience’’ and ‘‘Testing Experience,’’ we produced scatter plots of the

standardized residuals against the observed values of these independent variables for the

multi-way ANOVA model, as shown in Fig. 3. As it can be seen from these figures, there is

not a significant increase or decrease in the values of the residuals as the values of the

independent variables increase. In other words, variability in the measurement error stays

almost constant along the scale and there is not a severe homoscedasticity.

Table 8 Total number of ana-
lysts, developers and testers in
each project group

Project group Researcher Analyst Developer Tester

GSM-CRM – – 13 16

GSM-Billing – – 14 –

GSM-TDD – – 3 –

Banking – 29 27 –

DBMS – 1 11 10

CMPE-Exp 18 – – –

Finance – – 12 –

ERP – – 6 –

CRM – – 6 –

Mobile – – 8 –

Subtotals 18 30 100 26

Total 174

710 Software Qual J (2015) 23:695–722

123

4.3.3 Multicollinearity

Multi-way ANOVA requires that the independent variables are not correlated and are

independent from each other. Since the independent variables are all categorical (i.e.,

discrete) except for ‘‘Age,’’ ‘‘Development Experience’’ and ‘‘Testing Experience,’’ we

estimated the ‘‘mutual information’’ among independent variables. In information theory,

‘‘mutual information’’ random variables is a quantity that measures the mutual dependence

of the two random variables (MacKay 2003). When any given two variables X and Y are

discrete, ‘‘mutual information’’ is one of the measures of correlation between these two

variables.

IðX; YÞ ¼
X

y�Y

X

x�X

pðx; yÞ=log2ðpðx; yÞ=ðpðxÞ � pðyÞÞÞ ð5Þ

In Eq. 5, pðx; yÞ is the joint probability distribution function of X and Y , and pðxÞ and pðyÞ
are the marginal probability distribution functions of X and Y , respectively. In order to find

out the extent to which the continuous variables ‘‘Age,’’ ‘‘Development Experience’’ and

‘‘Testing Experience’’ are correlated with the rest of the variables, which are categorical,

we also discretized these three independent variables. The estimated ‘‘mutual information’’

values for the independent variables are given in Table 10. The information about which

independent variable IVi corresponds to which factor is given in Table 11. In Table 10,

since IðIVi; IVjÞ ¼ IðIVj; IViÞ we left the lower half of the resulting matrix blank. As it can

be seen in Table 10, the highest three ‘‘mutual information’’ values are 0:48, 0:38 and 0:36,
which stand for the extent of correlation between ‘‘IV9: Domain Expertise’’ and ‘‘IV8:

Development Language,’’ ‘‘IV13: Methodology’’ and ‘‘IV7: Country,’’ and ‘‘IV7: Country’’

and ‘‘IV8: Language,’’ respectively. The extent of correlation of any two independent

variables is within the range ½0:00; 0:51� and it is 0:11 on average.

In order to check for multicollinearity of independent variables, we also calculated

the variance inflation factor (VIF) for the design matrix in the regression model that is

Fig. 2 Q-Q plots and histograms for the residuals of the multi-way ANOVA

Software Qual J (2015) 23:695–722 711

123

complementary to the ANOVA model. Multiple regression is closely related to

ANOVA. In fact together with ANCOVA, ANOVA is an alternative but complemen-

tary way of presenting the same information. When ANOVA is carried out on the same

data, it gives exactly same inferences as multiple regression (Tarling 2009). Therefore,

we formed the design matrix for the regression model with independent variables that

are listed in Table 11 and with the dependent variable, which is confirmation bias level

CB in order to calculate VIF. Table 12 shows the VIF values for the independent

variables, which are all categorical except for Age, DevelopmentExperience and Test-

ingExperience. In Table 12, the ‘‘Category’’ column for the continuous variables is left

blank. In the design matrix of the regression model, we represented categorical vari-

ables in the form of dummy variables. For instance, we transformed the categorical

variable Company into three dummy variables: Large-Scale Company, Research/Aca-

demics, SME. We selected Large-Scale Company as the reference category and omitted

it. Then, we coded Large-Scale Company 0 on the variables Research/Academics and

SME each. Research/Academics was coded 1 on the variable Research/Academics and 0

Table 9 Bartlett’s test results for
the multi-way ANOVA model

Factor T (test statistics) d.f. p value

ISVVsInHouse 0.3614 1 0.0573

CompanyInstType 3.3912 2 0.1875

GradDegree 0.1955 1 0.6584

UnderGradDegree 11.7856 6 0.0669

Gender 4.7668 1 0.0290

Country 0.0259 1 0.8723

Language 0.3563 2 0.8368

DomainExpertise 0.0880 1 0.7668

JobTitle 0.2398 3 0.9709

Methodology 2.3754 2 0.3049

Fig. 3 Scatters plots of the standardized residuals against independent variables ‘‘Age,’’ ‘‘Development
Experience’’ and ‘‘Testing Experience’’ for the first multi-way ANOVA model

712 Software Qual J (2015) 23:695–722

123

on the variable SME. Finally, SME was coded 0 on the variable Research/Academics

and 1 on the variable SME. The resulting VIF values for all independent variables are

shown in Table 12.

The threshold value VIFTh ¼ 10 is exceeded for ‘‘Country’’ and ‘‘DomainExpertise’’

variables, and hence, multicolinearity is high for these two categorical variables (Kutner

et al. 2004). Based on these results, we can conclude that in general, multicollinearity is not

a threat to the validity of our empirical analysis results.

Table 10 Mutual information values for independent variables

IV1 IV2 IV3 IV4 IV5 IV6 IV7 IV8 IV9 IV10 IV11 IV12 IV13

IV1 1.00 0.02 0.09 0.06 0.18 0.02 0.04 0.06 0.05 0.11 0.38 0.05 0.07

IV2 – 1.00 0.36 0.00 0.08 0.10 0.20 0.23 0.09 0.09 0.01 0.02 0.15

IV3 – – 1.00 0.14 0.07 0.03 0.05 0.17 0.16 0.30 0.05 0.02 0.20

IV4 – – – 1.00 0.08 0.02 0.03 0.02 0.03 0.29 0.02 0.03 0.01

IV5 – – – – 1.00 0.02 0.05 0.11 0.07 0.29 0.13 0.11 0.12

IV6 – – – – – 1.00 0.05 0.09 0.04 0.09 0.06 0.03 0.07

IV7 – – – – – – 1.00 0.36 0.32 0.07 0.04 0.03 0.42

IV8 – – – – – – – 1.00 0.48 0.14 0.07 0.04 0.33

IV9 – – – – – – – – 1.00 0.17 0.01 0.01 0.31

IV10 – – – – – – – – – 1.00 0.12 0.09 0.27

IV11 – – – – – – – – – – 1.00 0.02 0.07

IV12 – – – – – – – – – – – 1.00 0.04

IV13 – – – – – – – – – – – – 1.00

Table 11 List of independent
variables (IVs)

IV# IV name

IV1 Age

IV2 ISVVsInHouse

IV3 Company

IV4 GradDegree

IV5 UnderGradDegree

IV6 Gender

IV7 Country

IV8 Language

IV9 DomainExpertise

IV10 JobTitle

IV11 DevelopmentExperience

IV12 TestingExperience

IV13 Methodology

Software Qual J (2015) 23:695–722 713

123

5 Results and discussions

According to the multi-way ANOVA test results, which are shown in Table 13, the con-

founding factors did not turn out to have any significant effect on confirmation bias.

As shown in Table 13, confirmation bias levels of the participants are not affected by

their educational background or the degree of education. Therefore, we failed to reject the

following hypotheses:

H1
0

Confirmation bias levels of software engineers are not affected by their educational

background (undergraduate level).

H2
0

Confirmation bias levels of software engineers are not affected by their level of

education (Bachelor’s vs. Master’s degree).

In a previous empirical study (Calikli et al. 2010), we also investigated the effect of

educational background on the confirmation biases of participants who belong to groups

GSM-CRM, DBMS and CMPE-Exp. As an outcome of the said study, we could not find

any supporting evidence either. In cognitive psychology literature, there are some studies

which investigate how the field and degree of education affect the performance on variants

of the Wason’s Selection Task (Hoch and Tschirgi 1985; Jackson and Griggs 1988; Griggs

and Ransdell 1986). Hoch and Tschirgi (1985) compared the performance of groups with

Table 12 VIF values for the independent variables

Variable Category VIF

Age – 2.8787

ISVVsInHouse In-House 6.4778

CompanyType Research/Academics 5.7228

CompanyType SME 4.5112

GradDegree GradDegree 1.8650

UnderGradDegree Business&Arts 1.3866

UnderGradDegree Computer related (engineering) 1.2321

UnderGradDegree Computer related (others) 1.3867

UnderGradDegree Math/math related 1.4627

UnderGradDegree Math&Computing 1.6292

UnderGradDegree NonComputer related (engineering) 1.3942

Gender Male 1.4580

Country Canada 17.0653

Language C# 1.6392

Language Cþþ 6.9667

DomainExpertise High 12.4388

JobTitle Developer 5.5580

JobTitle Researcher 7.1231

JobTitle Tester 3.3166

expDev – 2.4151

expTest – 2.0353

Methodology Incremental 2.3673

Methodology TDD 6.2105

714 Software Qual J (2015) 23:695–722

123

three different levels of education attainment: high school, bachelor’s degrees and masters

degrees. The authors found a significant association with the degree of education and

correct selections as well as having observed correct selection rates of 48 % among groups

of subjects with master’s degree. Unlike the results obtained by Hoch and Tschirgi (1985),

Griggs and Ransdell (1986) found correct selection rates on the standard abstract selection

task of under 10 % by doctoral scientists. In order to resolve this conflict, Jackson and

Griggs (1988) compared four areas of specialism which are social science, technical

engineering, computer science and mathematics, respectively. The authors also compared

two levels of education (bachelor’s and masters degree). The findings of Jackson and

Griggs showed no effect of educational level, however, a significant effect of area of

expertise was observed: subjects with technical areas of specialism such as mathematics

and engineering performed much better. In this research, our findings about the degree of

education are in line with the findings of Jackson and Griggs. However, we did not observe

any significant effect of the educational field, since areas of specialism of 97 % of the

participants who took part in our research are all technical (Table 7).

Factor JobTitle affects confirmation bias, significantly (a ¼ 0:05), according to multi-

way ANOVA results, which are presented in Table 13. Since the effect is dispersed among

many non-significant factors, we also built a simpler model with only JobTitle factor. The

results of one-way ANOVA are shown in Table 14, and the box plot for confirmation bias

levels of ‘‘researchers,’’ ‘‘developers,’’ ‘‘testers’’ and ‘‘analysts’’ is presented in Fig. 4.

There is a significant difference between ‘‘researchers’’ and others (i.e., ‘‘developers,’’

‘‘testers’’ and ‘‘analysts’’) as it can be seen from the box plot in Fig. 6 and from one-way

ANOVA results in Table 15. However, according to the ANOVA results presented in

Table 16, difference between confirmation bias levels of ‘‘developers,’’ ‘‘testers’’ and

‘‘analysts’’ is not statistically significant (p ¼ 0:1588). Figure 5 shows the box plot of the

confirmation bias levels of software engineers with respect to their roles as ‘‘developers,’’

‘‘testers’’ and ‘‘analysts.’’ Therefore, we failed to reject hypothesis H4
0 , which states that

Table 13 Results of the multi-way ANOVA test with all factors taken into account

Effects Sum Sq. d.f. Mean Sq. F Prob [F g2 g2P

Age 0.0061 1 0.0061 0.76 0.3854 0.0039 0.0051

ISVsInHouse 0.0287 1 0.0287 3.55 0.0616 0.0183 0.0237

CompanyInstType 0.0226 2 0.0113 1.38 0.2558 0.0144 0.0188

GradDegree 0.0176 1 0.0176 2.17 0.1427 0.0110 0.0147

UnderGradDegree 0.0180 6 0.0030 0.37 0.8964 0.0115 0.0150

Gender 0.0029 1 0.0029 0.36 0.5507 0.0019 0.0024

Country 0.0169 1 0.0169 2.09 0.1503 0.0108 0.0141

Language 0.0093 2 0.0047 0.58 0.5634 0.0059 0.0078

DomainExpertise 0.0082 1 0.0082 1.02 0.3151 0.0052 0.0069

JobTitle 0.1099 3 0.0367 4.53 0.0045 0.0701 0.0851

DevelopmentExp 0.0035 1 0.0035 0.43 0.5114 0.0022 0.0030

TestingExp 0.0020 1 0.0020 0.25 0.6196 0.0013 0.0017

Methodology 0.0328 2 0.0164 2.03 0.1354 0.0209 0.0270

Error 1.1810 146 0.0081

Total 1.5670 169

Software Qual J (2015) 23:695–722 715

123

confirmation bias levels of a software engineer is not related to his/her role (e.g., analysts,

developer, tester) in the software development process.

As mentioned in the previous paragraph, we found that confirmation bias levels of

‘‘researchers’’ are much lower compared to those of ‘‘developers,’’ ‘‘testers’’ and ‘‘ana-

lysts,’’ as shown in Figs. 4 and 6. Researchers consist of Computer Engineering PhD

candidates. It is highly probable that theoretical computer science courses have strength-

ened their reasoning skills and helped them to acquire an analytical and critical point of

view. Moreover, researchers take part in research projects, which require strategic

hypothesis testing skills. Therefore, we can conclude that confirmation bias is most

probably affected by continuous usage of abstract reasoning and hypothesis testing skills.

This result is in line with our previous findings (Calikli et al. 2010a, b; Calikli and Bener

2010). Therefore, we rejected hypothesis H3
0 , which states that logical reasoning and

strategic hypothesis testing skills are not differentiating factors in low confirmation bias

levels.

Regarding the effect of experience in development and testing on confirmation bias,

results of the ANOVA test are in line with our previous findings (Calikli et al. 2010a, b;

Calikli and Bener 2010). Since no significant effect of experience in development or

testing was detected, we failed to reject the following hypotheses:

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Developer Tester Analyst Researcher

C
on

fir
m

at
io

n
B

ia
s

Le
ve

l

Fig. 4 Boxplot for the confirmation bias levels with respect to job titles

Table 14 Results of the one-
way ANOVA test with only the
significant factor JobTitle

Effects Sum Sq. d.f. Mean Sq. F Prob [F g2

JobTitle 0.1632 3 0.0544 6.43 0.0004 0.1041

Error 1.4038 166 0.0085

Total 1.5670 169

716 Software Qual J (2015) 23:695–722

123

H5
0

Confirmation bias level of a software engineer is not affected by his/her industrial

software development experience (in years).

H6
0

Confirmation bias level of a software engineer is not affected by his/her industrial

software testing experience (in years).

We could not detect any significant effect of development methodologies on confir-

mation bias levels. Therefore, we failed to reject hypothesis H7
0 , which states that software

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Developer Tester Analyst

C
on

fir
m

at
io

n
B

ia
s

Le
ve

l

Fig. 5 Boxplot for the confirmation bias levels of software engineers with respect to their roles as
‘‘developer,’’ ‘‘tester’’ and ‘‘analyst’’

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

ResearcherOther

C
on

fir
m

at
io

n
B

ia
s

Le
ve

l

Fig. 6 Boxplot for the confirmation bias levels of ‘‘researchers’’ and ‘‘software engineers’’

Software Qual J (2015) 23:695–722 717

123

development methodology (e.g., incremental, agile and TDD) does not affect confirmation

bias levels of the software engineers.

Moreover, we did not observe any significant effect of company size on confirmation

bias levels. This result is in line with our previous empirical findings (Calikli et al. 2010).

In a previous study (Calikli et al. 2010), we compared confirmation bias levels of software

engineers working for the large-scale company GSM-Company with confirmation bias

levels of software engineers who work for the following SMEs: finance software vendor,

CRM-Vendor and business solution provider. In this research, having extended the dataset,

we were able to find results supporting our previous findings. As a result, we failed to reject

hypothesis H8
0 , which states that there is no significant difference between confirmation

bias levels of software engineers who work for large-scale software development com-

panies and confirmation bias levels of those who work for SMEs.

6 Threats to validity

In order to avoid mono-method bias, which is one of the threats to construct validity, we

defined a set of confirmation bias metrics. It was the second step to derive a single metric to

quantify confirmation bias levels by using these metrics. In order to form our confirmation

bias metrics set, we made an extensive survey in cognitive psychology literature covering

significant studies that have been conducted since the first introduction of the term

‘‘confirmation bias’’ by Wason (1960). Since our metric definition and extraction meth-

odology is iterative, we were able to improve the content of our metrics set through a pilot

study as well as datasets collected during our related previous research (Calikli and Bener

2010; Calikli et al. 2010a, b). Thus, we were able to demonstrate that multiple measures of

key constructs behave as we theoretically expected them to.

Our metric extraction methodology consists of administration of a confirmation bias test

that we prepared inheriting existing theories in cognitive psychology literature. In order to

avoid the interaction of different treatments, we ensured that none of the participants were

Table 15 Results of the one-
way ANOVA test to compare
confirmation bias levels of
‘‘Researchers’’ with ‘‘Others’’
(i.e., developers, testers and
analysts)

Effects Sum
Sq.

d.f. Mean
Sq.

F Prob
[F

g2

Researchers-
vs-

1

Others 0.1322 0.1322 15.47 0.0001 0.8437

Error 1.4348 168 0.0085

Total 1.5670 169

Table 16 Results of the one-
way ANOVA test for software
engineers with respect to their
roles as ‘‘developers,’’ ‘‘testers’’
and ‘‘analysts’’ in the software
development process

Effects Sum
Sq.

d.f. Mean
Sq.

F Prob
[F

g2

Developer-vs- 0.0310 2 0.0155 1.86 0.1588 0.0250

Tester-vs-
analyst

Error 0.2407 149 0.0083

Total 1.2717 152

718 Software Qual J (2015) 23:695–722

123

involved simultaneously in several other experiments designed to have similar effects,

before the administration of confirmation bias tests to participant groups.

Evaluation apprehension is a social threat to construct validity. Many people are anx-

ious about being evaluated. Moreover, some people are even phobic about testing and

measurement situations. Participants may perform poorly due to their apprehension, and

they may feel psychologically pressured. In order to avoid such problems, we informed the

participants before the confirmation bias tests started that the questions they are about to

solve do not aim to measure IQ or any related capability. Participants were also told that

the results would not be used in their performance evaluations and their identity would be

kept anonymous. Moreover, participants were told that there was no time constraint for

completing the questions.

Regarding administration of confirmation bias test, another social threat to construct

validity is the expectancies of the researcher. There are many ways a researcher may bias

the results of a study. Hence, the outcomes of test were independently evaluated by two

researchers, one of whom was not actively involved in the study. The said researcher was

given a tutorial about how to evaluate the confirmation bias metrics from the outcomes of

the confirmation bias test. However, in order not to induce a bias, she was not told about

what the desired answers to the questions were. The inter-rater reliability was found to be

high for the evaluation of each confirmation bias metric. The average value for Cohen’s

kappa was 0.92. During the administration of the confirmation bias test, explanations given

to the participants before they started solving the questions did not include any clue about

the ideal responses.

To avoid external threats to validity, we collected data from seven different companies

specialized in different software development domains. We also selected different projects

within the GSM-company. However, our empirical study still has a limited sample com-

prising one company from Canada and all others from Turkey. Therefore, we cannot

generalize the results to be necessarily representative of software companies worldwide.

In order to address statistical validity, we used multi-way ANOVA test taking con-

founding factors into account as well as the factors of interest. Moreover, before con-

ducting the multi-way ANOVA test, we checked for the following assumptions that are

required for multi-way ANOVA: normal distribution of the residuals, homoscedasticity,

and multicolinearity. In order to check whether residuals of multi-way ANOVA model are

normally distributed with zero mean, we plotted histogram of the residuals and Q-Q plot as

well as performing chi-square goodness-of-fit Test. We applied Barlett’s test and produced

scattered plots of standardized residuals against independent continuous variables Age,

Development Experience and Testing Experience in order to check homoscedasticity. We

estimated mutual information values for the factors of the multi-way ANOVA model, in

addition to calculating variance inflation factor (VIF) values for the corresponding

regression model. In the multi-way ANOVA model, the actual effect of the significant

factor JobTitle is dispersed among many non-significant factors. Therefore, we also build

one-way ANOVA model with just the significant factor JobTitle in order to brain the actual

effect of the significant factor.

Finally, for the credibility of our research, we got the ethics approvals for this research

study from both the Ethics Board in Bogazici University in Istanbul, Turkey and the

Research Ethics Board of Ryerson University in Toronto, Canada. We also took the

guidance of an expert in cognitive psychology throughout the course of our study in order

to have the credibility of other disciplines besides empirical software engineering.

Software Qual J (2015) 23:695–722 719

123

7 Conclusions and future work

The overall aim of this research is to explore factors which affect confirmation biases of

software engineers. Empirical investigation of factors affecting confirmation bias requires

quantification/measurement of confirmation bias levels. For this purpose, we defined a

methodology to define and extract confirmation bias metrics. During our previous studies

(Calikli and Bener 2010a, b; Calikli et al. 2010a, b), we conducted the initial form of the

methodology to measure/quantify confirmation bias and the content of confirmation bias

metric set was at an immature level. Hence, we were unable to define a single derived

metric to measure confirmation bias levels of software engineers. In this paper, in addition

to performing our empirical investigation by using a more extensive dataset, we were able

to perform multi-way ANOVA test where we managed to represent the dependent variable

‘‘confirmation bias level’’ as a single value. As a result of our empirical analyses, we were

able to strengthen the following claims which originate from our previous studies:

– Confirmation bias levels of individuals who have been trained in logical reasoning and

mathematical proof techniques are significantly lower. In other words, given a

statement, such individuals show tendency to refute that statement rather than

immediately accepting its correctness.

– A significant effect of experience in software development/testing has not been

observed. This implies that training in organizations is focused on tasks rather than

personal skills. Considering that the percentage of people with low confirmation bias is

very low in the population (Wason 1960, 1968; Evans et al. 1993), an organization

should find ways to improve basic logical reasoning and strategic hypothesis testing

skills of their software engineers.

As future work, our field studies will also include observational techniques (e.g., think-

aloud protocols, participant observation and observation synchronized shadowing). In this

way, we aim to strengthen our hypothesis regarding the connection between confirmation

bias and defect rates through unit testing. We also aim to conduct laboratory experiments,

where we can obtain detailed information about developers’ unit testing activities in a

controlled environment. Finally, we intend to investigate the relationship between levels of

motivation and confirmation bias as well as the relationship between personality and

confirmation bias.

References

Allison, P. D. (1999). Multiple regression: A primer. Thousand Oaks, CA: Pine Forge Press.
Borkowski, J., Carr, M., & Pressley, M. (1987). Spontaneous strategy use: Perspectives from metacognitive

theory. Intelligence, 11(1), 6175.
Bradley, J. V. (1978). Robustness. British Journal of Mathematical and Statistical Psychology, 31, 144–155.
Calikli, G. & Bener, A. (2010a). Empirical analyses factors affecting confirmation bias and the effects of

confirmation bias on software developer/tester performance. In Proceedings of 5th international
workshop on predictor models in software engineering.

Calikli, G. & Bener, A. (2010b). Preliminary analysis of the effects of confirmation bias on software defect
density. In Proceedings of the 4th international symposium on empirical software engineering and
measurement.

Calikli, G., Arslan, B. & Bener, A. (2010a). Confirmation bias in software development and testing: An
analysis of the effects of company size, experience and reasoning skills. In Proceedings of the 22nd
annual psychology of programming interest group workshop.

720 Software Qual J (2015) 23:695–722

123

Calikli, G., Bener, A., & Arslan, B. (2010b). An analysis of the effects of company culture, education and
experience on confirmation bias levels of software developers and testers. In Proceedings of 32nd
international conference on software engineering.

Calikli, G., Bener, A., Aytac, T. & Bozcan, O. (2013). Towards a metric suite proposal to quantify
confirmation biases of developers. In Proceedings of the 7th international symposium on empirical
software engineering and measurement, industry track.

Calikli, G., & Bener, A. (2013). Influence of confirmation biases of developers on software quality: An
empirical study. Software Quality Journal, 21, 377–416.

Cheng, P. W., & Holyoak, K. J. (1985). Pragmatic reasoning schemas. Cognitive Psychology, 17, 391–416.
Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design and analysis issues for field settings.

Boston: Houghton-Mifflin Company.
Cosmides, L. (1989). The logic of social exchange: Has natural selection shaped how humans reason?

Studies with Wason’s selection task, Cognition, 31, 187–276.
Cox, J. R., & Griggs, R. A. (1982). The effects of experience on performance in Wason’s selection task.

Memory and Cognition, 10, 496–502.
Dawson, N. V. (1993). Physician judgement in clinical settings: Methodological and cognitive performance.

Clinical Chemistry, 39(7), 1468–1478.
Einhorn, H. J., & Hogarth, R. M. (1978). Confidence in judgment: Persistence of the illusion of validity.

Psychological Review, 85, 395416.
Erdogmus, H., Morisio, M., & Torchiano, M. (2005). On the effectiveness of test-first approach to pro-

gramming. IEEE Transactions on Software Engineering, 31, 1–14.
Evans, J. S. B. T., Newstead, S. E., & Byrne, R. M. (1993). Human reasoning: The psychology of deduction.

East Sussex: Lawrence Erlbaum Associates Ltd.
Garavan, H., Doherty, M. E., & Mynatt, C. R. (1997). When falsification fails. The Irish Journal of

Psychology, 18, 267–292.
Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet assumptions

underlying the fixed effects analyses of variance and covariance. Review of Educational Research, 42,
237–288.

Griggs, R. A., & Cox, J. R. (1982). The elusive thematic materials effect in Wason’s selection task. British
Journal of Psychology, 73, 407–420.

Griggs, R. A. (1983). The role of problem content in the selection task and in the THOG problem, thinking
and reasoning: Psychological approaches. London: Routledge and Kegan Pauli.

Griggs, R. A., & Ransdell, S. E. (1986). Scientists and the selection task. Social Studies of Science, 16,
319–330.

Hirschi, N. W., & Frey, D. D. (2002). Cognition and complexity: An experiment on the effect of coupling in
parameter design. Research in Engineering Design, 13, 123–131.

Hoch, S. J., & Tschirgi, J. E. (1985). Logical reasoning and cue redundancy in deductive reasoning.Memory
and Cognition, 13, 453–462.

Inglis, M., & Simpson, A. (2004). Mathematicians and the selection task. Proceedings of the international
group for the psychology of mathematics education, Cape Town.

Jackson, S. L., & Griggs, R. A. (1988). Education and the selection task. Bulletin of the Psychometric
Society, 26, 327–330.

Johnson-Laird, P. N., & Tridgell, J. M. (1972). When negation is easier than affirmation. Quarterly Journal
of Experimental Psychology, 24, 87–91.

Kahneman, D. (2011). Thinking, fast and slow. Toronto: Doubleday Canada.
Knauff, M., Budeck, C., Wolf, A. G., & Hamburger, K. (2010). The illogicality of stock-brokers: Psy-

chological experiments on the effects of prior knowledge and belief biases on logical reasoning in
stock trading. PLoS One Journal, 5(10), e13483. doi:10.1371/journal.pone.0013483.

Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). Applied linear regression models (4th ed.). New York:
McGraw-Hill Irwin.

MacKay, D. J. C. (2003). Inference and learning algorithms. Cambridge, UK: Cambridge University Press.
Mahoney, M. J., & DeMonbreun, B. G. (1977). Psychology of the scientist: An analysis of problem solving

bias. Cognitive Therapy and Research, 1(3), 229–238.
Mair, C., & Shepperd, M. (2011). Human judgement and software metrics: Vision for the future. In 33rd

International conference on software engineering, ICSE 11, May 21–28, 2011. Waikiki, Honolulu, HI.
Manktelow, K. I., & Over, D. E. (1990). Inference and understanding: A philosophical and psychological

perspective. London, UK: Routledge.
Manktelow, K. I., & Evans, J. S. B. T. (1979). Facilitation of reasoning by realism: Effect or non-effect?

British Journal of Psychology, 70, 477–488.

Software Qual J (2015) 23:695–722 721

123

http://dx.doi.org/10.1371/journal.pone.0013483

Merkhofer, M. W. (1998). Assessment, refinement, and narrowing of options, Chapter 8. In V. H. Dale &
M. R. English (Eds.), Tools to aid environmental decision making. New York: Springer.

Murray, J., & Thompson, M. E. (2010). Applying decision making theory to clinical judgement in violence
risk assessments. Europes Journal of Psychology, 2, 150–171.

Stacy, W., & MacMillan, J. (1995). Cognitive bias in software engineering. Communication of the ACM,
38(6), 57–63.

Tarling, R. (2009). Statistical modelling for social researchers: Principles and practice. New York, NY:
Routledge.

Teasley, B., Leventhal, L. M., & Rohlman, S. (1993). Positive test bias in software engineering profes-
sionals: What is right and what’s wrong. In Proceedings of the 5th workshop on empirical studies of
programmers.

Teasley, B. E., Leventhal, L. M., Mynatt, C. R., & Rohlman, D. S. (1994). Why software testing is
sometimes ineffective: Two applied studies of positive test strategy. Journal of Applied Psychology,
79(1), 142–155.

Wason, P. C. (1960). On the failure to eliminate hypotheses in a conceptual task. Quarterly Journal of
Experimental Psychology, 12, 129–140.

Wason, P. C. (1968). Reasoning about a rule. Quarterly Journal of Experimental Psychology, 20, 273281.
Wason, P. C., & Shapiro, D. (1971). Natural and contrived experience in a reasoning problem. Quarterly

Journal of Experimental Psychology, 23, 63–71.

Gul Calikli holds a PhD and an MSc in Computer Engineering, and a
BS in Mechanical Engineering from Bogazici University. She is cur-
rently a Research Associate in the Department of Computing at the
Open University. Previously, she was a post doctorate research fellow
at Ryerson University. Her research interests are empirical software
engineering, human cognitive aspects in software engineering, mining
software repositories and machine learning. Prior to these positions,
she worked as a Research and Development Engineer at Alarko-
CARRIER San. & Tic. A. S. She is a member of ACM.

Ayse Bener is a professor at the Department of Mechanical and
Industrial Engineering at Ryerson University. Previously, she was the
director of Ted Rogers School of Information Technology Manage-
ment at Ryerson University. Prior to joining Ryerson, Dr. Basar was a
faculty member in the Department of Computer Engineering at Bo-
gazici University. Dr. Basar’s main research area is empirical software
engineering: software measurement, software economics and software
quality. Prior to joining academia, Dr. Basar held various senior
executive positions in banking industry for more than 15 years in
Turkey and in the UK. She was the deputy CEO of Citibank in Turkey,
COO, CIO and Financial Controller of JP Morgan in Turkey, and the
Regional Director of Advanced Technologies in Citibank UK for
Europe, Asia and Africa regions. She is a member of IEEE, IEEE
Computer Society, ACM and AAAI.

722 Software Qual J (2015) 23:695–722

123

	Empirical analysis of factors affecting confirmation bias levels of software engineers
	Abstract
	Introduction
	Goals and hypotheses
	Characteristics of the software engineers
	Characteristics of the software product
	Characteristics of the software company

	Measurement/quantification of confirmation bias
	Preparation of the confirmation bias test
	Administration of the confirmation bias test
	Definition and extraction of the confirmation bias metrics
	Deriving a single metric to quantify confirmation bias levels of software engineers

	Empirical analysis
	Data
	Methodology for the empirical analysis
	Characteristics of the software engineers
	Characteristics of the software product
	Characteristics of the software company

	Checking the assumptions of multi-way ANOVA
	Normal distribution of residuals
	Homoscedasticity
	Multicollinearity

	Results and discussions
	Threats to validity
	Conclusions and future work
	References

