
Studying the relationship between source code quality
and mobile platform dependence

Mark D. Syer • Meiyappan Nagappan • Bram Adams •

Ahmed E. Hassan

Published online: 20 May 2014
� Springer Science+Business Media New York 2014

Abstract The recent meteoric rise in the use of smartphones and other mobile devices

has led to a new class of software applications (i.e., mobile apps). One reason for this

success is the extensive support available to mobile app developers through the APIs

provided by mobile platforms (e.g., Android). In our previous research, we found that

mobile apps tend to depend highly on these platform-specific APIs. High dependence on a

particular mobile platform may introduce instability and defects, as these mobile platforms

are rapidly evolving. Therefore, the extent of platform dependence may be an indicator of

software quality. In this paper, we examine the relationship between platform dependence

and defect proneness of the source code files of an Android app to determine whether

software metrics based on platform dependence can be used to prioritize software quality

assurance efforts. We find that (1) source code files that are defect prone have a higher

dependence on the platform than defect-free files and (2) increasing the platform depen-

dence increases the likelihood of a defect being present in a source code file. Thus,

platform dependence may be used to prioritize the most defect-prone source code files for

code reviews and unit testing by the software quality assurance team.

M. D. Syer (&) � M. Nagappan � A. E. Hassan
Software Analysis and Intelligence Lab (SAIL) School of Computing, Queen’s University, Kingston,
Canada
e-mail: mdsyer@cs.queensu.ca

M. Nagappan
e-mail: mei@cs.queensu.ca

A. E. Hassan
e-mail: ahmed@cs.queensu.ca

B. Adams
Lab on Maintenance, Construction and Intelligence of Software (MCIS), Département de Génie
Informatique et Génie Logiciel, École Polytechnique de Montréal, Montreal, Canada
e-mail: bram.adams@polymtl.ca

123

Software Qual J (2015) 23:485–508
DOI 10.1007/s11219-014-9238-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-014-9238-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-014-9238-2&domain=pdf

1 Introduction

Mobile apps are software applications that run on mobile devices (e.g., smartphones and

tablets). Although applications for mobile devices have existed for decades, the develop-

ment of mobile apps exploded in 2008 when Apple first opened its App Store. Since then,

mobile apps have rapidly grown into a multi-billion dollar market (Sharma 2010). The

revenues from mobile apps have risen from $4.1 billion in 2009 to $6.5 billion in 2010

(International Data Corp 2011) and are projected to reach $74 billion in 2016 (Sharma

2010).

Mobile devices (e.g., smartphones and tablets) have a diverse set of hardware specifi-

cations, such as touch screens, GPS, cameras and accelerometers in comparison with

laptops, desktops or servers. These hardware accessories are accessed through APIs pro-

vided by the platform (e.g., Android). The platform also provides APIs (1) to access

commonly required functionality and (2) interface to the operating system. Such APIs are

used by the developers to quickly build mobile apps that exploit the platform and device

features.

In our previous work, we found that developers depend heavily on platform APIs to

build their mobile apps (Syer et al. 2011). The reason is three-fold: One, similar to web

applications (Hassan and Holt 2002), mobile apps are rapidly developed by small teams

who may only have limited experience with software development (Butler 2011; Lohr

2010; Wen 2011; Gavalas and Economou 2011). Two, the rapid succession of mobile

technologies and fierce competition among developers forces them to release new features

at break-neck speed, without sacrificing quality. Platform APIs provide commonly required

functionality that developers may reuse. Three, the proliferation of mobile devices means

that developers cannot make any assumptions about the environment in which their mobile

apps will be operating, and hence prefer to use a standard environment that will also

provide a standard ‘‘look and feel’’ to their mobile apps. According to industry experts,

leveraging the functionality provided by underlying mobile platforms is the catalyst behind

the rapid development of many mobile apps (Black Duck Software Inc. 2011).

However, too much dependence on the APIs from the underlying mobile platform can

lock an app into that platform. This does not only have repercussions on the portability of

the app to other platforms (potentially requiring a complete rewrite), but also has a major

impact on the quality of the app. For example, the rapid evolution of mobile platforms

makes it hard for app developers to keep their app working on newer platform versions,

leading to defects and inconsistencies that impact the end user.

As dependency metrics have been shown to be highly correlated to defects in source

code files (Zimmermann and Nagappan 2008), we are interested in analyzing whether this

finding holds as well for mobile apps when dependencies are interpreted as ‘‘platform

dependencies’’. Linares-Vásquez et al. (2013) have shown that dependence on fault-prone

APIs is significantly lower in highly rated mobile apps (i.e., mobile apps with generally

positive customer feedback). However, app ratings are influenced by many factors, such as

software quality, cost and privacy concerns (Khalid 2013). Hence, we are interested in

determining the specific relationship between software quality (i.e., a software engineering

concern that influences app ratings), as measured by the number of source code defects,

and platform dependence.

In this paper, we conduct a case study on five Android mobile apps to address the

following three research questions:

486 Software Qual J (2015) 23:485–508

123

• RQ1: Are defect-prone source code files more dependant on the Android platform?

Yes. We find that defect-prone files in all five apps have a statistically significant higher

dependence on the Android platform compared to defect-free files.

• RQ2: Does the extent of platform dependence help explain why some source code files

are more defect prone than others? Yes. We find that the ratio of platform

dependencies to the total number of dependencies (i.e., the platform dependency ratio)

significantly increases our ability to statistically explain defects in source code files.

• RQ3: What is the impact of platform dependence on source code quality? We find that

in four out of the five mobile apps, increasing the platform dependency ratio increases

the statistical likelihood of defects in source code files.

The findings from this paper indicate that the platform dependency ratio may be used to

prioritize the most defect-prone source code files for code reviews and unit testing. This

does not necessarily imply that platform dependencies introduce defects, although

dependence on defect-prone platform APIs has been shown to reduce app quality (Linares-

Vásquez et al. 2013). However, the purpose of this paper is to empirically determine

whether the platform dependency ratio may be used to help prioritize software quality

assurance efforts.

This paper is organized as follows: Section 2 motivates our case study of the source

code quality implications of mobile platform dependence and presents related work in

mobile apps and dependency analysis. Section 3 describes the setup of our case study, and

Sect. 4 discusses the results of our case study. Section 5 outlines the threats to validity.

Finally, Sect. 6 concludes the paper.

2 Motivation and related work

The rise of mobile apps is a relatively recent trend in software engineering. However,

software engineering researchers are now beginning to explore the challenges and issues

surrounding mobile apps and platforms (Workshop on Mobile Software Engineering

2011). Researchers are also studying mobile apps from other perspectives, including app

ecosystems (Harman et al. 2012; Kim et al. 2011), cross platform development and

development tools (Wu et al. 2010; Xin 2009; Gasimov et al. 2010; Charland and LeRoux

2011; Tracy 2012) and security (Enck et al. 2009; Shabtai et al. 2010; Grace et al. 2012a,

b). However, there are only a few studies of mobile apps from a software engineering

perspective.

Mojica et al. studied code reuse in Android apps and found that, on average, 61 % of the

classes in a mobile app are reused by other apps in the same domain (Israel et al. 2012)

(e.g., social networking). The authors also found that 23 % of the classes in their case study

inherit from a class in the Android platform. Given this wide-spread dependence on the

Android platform, it is important to study the impact of this dependence on source code

defects.

Maji et al. (2010) studied defect reports in the Android and Symbian platforms to

understand where defects occur in these platforms and how defects are fixed. The authors

determine that development tools, web browsers and multimedia modules are the most

defect prone and that most defects require minor code changes. The authors also determine

that despite the high cyclomatic complexity of the Android and Symbian platforms, defect

densities are surprisingly low. In this paper, we study Android apps, not the platform itself.

Software Qual J (2015) 23:485–508 487

123

Minelli and Lanza (2013) have developed SAMOA, a tool that can gather and visualize

basic source code metrics (e.g., size and complexity) from mobile apps. SAMOA is

intended to help developers better understand the development and evolution of their app,

whereas the purpose of our work is to empirically establish the relationship between static

source code metrics and source code quality.

Linares-Vásquez et al. studied app ratings (i.e., customer feedback) in Android apps and

found that highly rated mobile apps depend on significantly fewer fault-prone and change-

prone APIs than lower-rated apps. However, app ratings are influenced by many factors,

such as software quality, cost and privacy concerns (Khalid 2013). Therefore, we are

interested in determining the specific relationship between software quality (i.e., source

code defects) and platform dependence.

In our previous work, we performed a study of three pairs of functionally equivalent

mobile apps from two popular mobile platforms (i.e., the Android and BlackBerry plat-

forms), as a first step toward understanding the development and maintenance process of

mobile apps (Syer et al. 2011). We found that BlackBerry apps are much larger and rely

more on third-party libraries. However, they are less susceptible to platform changes since

they rely less on the underlying platform. On the other hand, Android apps tend to con-

centrate code into fewer large files and rely heavily on the Android platform. On both

platforms, we found code churn to be high. However, we are unaware of the implications

of our findings (e.g., high platform dependence) on source code quality.

Software engineering researchers have proposed and evaluated several models of how

high-quality, successful software is developed and maintained. These models aim to tie

aspects of software artifacts (e.g., size and complexity) (Zimmermann et al. 2007; Chid-

amber and Kemerer 1994; Shihab et al. 2010), their development (e.g., number of changes)

(Nagappan and Ball 2005; Shihab et al. 2010) and their developers (e.g., developer

experience) (Bird et al. 2011; Weyuker et al. 2008) to definitions of quality (e.g., post-

release defects). However, such models have primarily been evaluated against large-scale

projects (Robinson and Francis 2010).

One such model aims to use dependency metrics to enhance the prediction of defects in

software systems. Binkley and Schach (1998) proposed a new dependency metric (i.e., the

coupling dependency metric) and demonstrated that their metric outperforms existing

metrics (e.g., lines of code and complexity) at predicting run-time failures and maintenance

effort. Schröter et al. (2006) showed that import dependencies can predict software defects

(e.g., importing compiler packages is riskier than importing UI packages). Zimmermann

and Nagappan (2008) performed a study of Windows Server 2003 to determine how

models predicting software defects may be enhanced by using metrics based on Social

Network Analysis (SNA). The authors show that SNA metrics improved the prediction of

post-release failures by 10 %. This study was replicated by Nguyen et al. (2010) who found

similar results in the Eclipse project. Similarly, we are trying to improve the prediction of

defects; however, our focus is on mobile apps rather than large-scale software systems

[mobile apps have been shown to differ from such large-scale systems (Syer et al. 2013)].

3 Case study setup

This section outlines our approach to understanding the source code quality implications of

mobile platform dependence. First, we selected mobile apps for our case study. Second, we

extracted static source code metrics from the selected mobile apps. Finally, we calculated

whether each source code file was defect prone or defect free.

488 Software Qual J (2015) 23:485–508

123

3.1 Mobile app selection

In this paper, we studied mobile apps written for the Android platform. The Android

platform is the largest (by user base) and fastest growing mobile platform. In addition, the

Android platform itself is open-source and has more free and open-source mobile apps than

any other major mobile platform (Distimo 2011; Black Duck Software Inc. 2010, 2011,

2012).

Mobile apps for Android devices are primarily hosted in Google Play (formerly the

Android Market) (Android Market 2014). Google Play records details such as cost, user

ratings, reviews and the number of downloads in the previous 30 days for each mobile app.

However, Google Play does not publish two key metrics (1) the number of cumulative

downloads (only very broad ranges are displayed in the store) and (2) the development

status (i.e., open source or closed source) with links to the source code repositories.

Therefore, we supplement the information provided by Google Play with information from

two additional sources:

• FDroid A third-party mobile app store that exclusively contains free and open-source

(FOSS) Android apps that are also listed in Google Play. As of May 1, 2012, the

FDroid repository contained 236 FOSS Android apps.

• AppBrain A third-party interface to Google Play, to get the number of cumulative

downloads (App Brain 2014).

We used the data provided by these three sources and the following criteria to select our

case study subjects.

• Open-source Mobile apps must be open source in order to access their source code

repositories. This limits the number of potential case study subjects to 236 (i.e., the

number of mobile apps in the FDroid repository).

• Large user community ‘‘Successful’’ mobile apps have hundreds of thousands of

downloads every month (Android Market 2014). Therefore, in order to study what

successful mobile apps are doing ‘‘right,’’ we look at the mobile apps with at least

250,000 cumulative downloads (the highest download bracket) (Android Market 2014;

App Brain 2014). This limits the number of potential case study subjects to 56.

• Simplicity The code base for the mobile app must be easily identified (i.e., contained

within its own source code repository). For example, Firefox for Android was excluded

because, at the time of our data extraction in on May 1, 2012, we could not differentiate

the source code of the mobile version from the desktop version because they share the

same source code repository [after performing our analysis, the independent Frennec

mobile version of Firefox was released (MozillaWiki 2014)]. This limits the number of

potential case study subjects to 44.

• Significant code base Mobile apps must have at least 200 source code files. In

regression modeling, a general rule of thumb is that at least 10 cases are required per

independent variable (Harrell et al. 1984). In our experience, approximately 20 % of

the source code files in a mobile app are defect prone; therefore, we need mobile apps

with at least 50 source code files for each source code metric in our regression models

(i.e., 20%� 50 ¼ 10). As we are including four source code metrics in our regression

models (see Sect. 3.2), mobile apps must have at least 200 source code files. This limits

the number of potential case study subjects to 5.

Table 1 contains the final list of mobile apps that were included in our case study. Our case

study was performed on the source code repository as of May 1, 2012.

Software Qual J (2015) 23:485–508 489

123

Table 2 presents the minimum, target and/or maximum version of the Android SDK

(when specified) that is compatible with the app. This information is available in the

AndroidManifest.xml file that is required in the root directory of every Android app.

3.2 Source code metrics

We used the Understand tool by SciTools (2014) to extract static source code metrics from

each of the subject mobile apps. Understand is a static analysis toolset for measuring and

analyzing the source code of small- to large-scale software projects written in a number of

programming languages. We extracted the following metrics for each class in each of the

subject mobile apps:

• Lines of code The total number of lines of code (LOC).

• Coupling The number of coupled classes. Class A is said to be coupled to class B if

class A uses a type, data, or member from class B.

• Cohesion The average cohesion across each class data member. The cohesion of a class

data member is defined as the percentage of methods in the class that use that data

member. Class A is said to be cohesive if a high percentage of class A’s methods use

each of class A’s variables.

We also used the Understand tool to extract the class dependencies for each mobile app.

Class dependencies describe how each class in a mobile app depends on (1) other classes in

the mobile app and (2) external libraries (e.g., the Java library), the Android library and

(possibly) third-party libraries. Whereas coupling measures the total number of unique

coupled classes, class dependencies measures the intensity of the coupling for each coupled

class (e.g., is class A depending on class B for one method call, five method calls or five

methods calls and two data types?) Therefore, we are better able to measure the extent of

dependence between two classes.

Table 1 Mobile apps included in our case study

Project Description Homepage

ConnectBot SSH client https://github.com/kruton/connectbot/

FBReader E-book reader https://github.com/geometer/FBReaderJ

KeePassDroid Password vault https://github.com/bpellin/keepassdroid

Sipdroid VOIP client http://code.google.com/p/sipdroid/

XBMCRemote Remote control http://code.google.com/p/android-xbmcremote/

Table 2 Android SDK version
dependencies of the Mobile apps
included in our case study

NA indicates that the value has
not been specified
AndroidManifest.xml file

Project Minimum
version

Target
version

Maximum
version

ConnectBot 3 11 NA

FBReader 5 NA 10

KeePassDroid 3 10 NA

Sipdroid 3 4 NA

XBMCRemote 3 9 NA

490 Software Qual J (2015) 23:485–508

123

https://github.com/kruton/connectbot/
https://github.com/geometer/FBReaderJ
https://github.com/bpellin/keepassdroid
http://code.google.com/p/sipdroid/
http://code.google.com/p/android-xbmcremote/

In this paper, we studied source code defects in mobile apps that depend on an

underlying mobile platform (i.e., the Android platform). Therefore, for each class in a

mobile app, we calculated the total number of dependencies on classes in the Android

platform (Platform) in addition to the total number of dependencies. These values are used

to calculate the platform dependency ratio, i.e., the ratio of the number of platform

dependencies to the total number of dependencies (i.e., the number of platform depen-

dencies plus the number of other dependencies).

We calculated each metric at the file level. We calculated lines of code, coupling, the

number of platform dependencies and the total number of dependencies at the file level by

summing each metric over every class in a source code file (89 % of the source code files

contain only a single-named class.). We calculated cohesion at the file level by averaging

the cohesion of each class in the file, weighted by the number of lines of code in the class.

We have selected lines of code, coupling and cohesion for two reasons. First, these

metrics have been shown to be good predictors of source code defects (Zimmermann et al.

2007; Nagappan and Ball 2005; Chidamber and Kemerer 1994; Shihab et al. 2010).

Second, similar to the platform dependency ratio, these metrics are product metrics (i.e.,

static source code metrics). We do not include process metrics (e.g., code churn), as

process metrics have been shown to be better predictors of source code defects than

product metrics (Nagappan and Ball 2005; Shihab et al. 2010). Hence, comparing the

platform dependency ratio (a product metric) to process metrics would be an unfair

comparison.

Therefore, four metrics are associated with each source code file (i.e., lines of code,

coupling, cohesion and platform dependency ratio).

3.3 Source code quality

Source code quality can be defined and measured in a number of ways. One commonly

used technique is to use the number of defects in a file as a measure of quality. In practice,

this number is typically approximated by the number of defect fixing changes made to the

source code file. This technique assumes that each defect fixing change corresponds to a

defect in the source code file and ignores (1) reported, but not yet fixed, and (2) unreported

bugs.

We measure the total number of defects in a source code file by counting the number of

times the file is changed by a defect fixing change. To identify such changes, it is important

to realize that when developers contribute source code to a source code repository, they are

prompted to provide an explanation (i.e., commit log message) of what they changed and

why the change was made. Hence, we can find the number of defect fixing changes by

mining these commit log messages for a specific set of key words (Hassan 2008a; Mockus

and Votta 2000). These keywords are ‘‘fix(ed,es),’’ ‘‘bug(s),’’ ‘‘defect(s)’’ and ‘‘patch(s).’’

Although many mobile apps record a list of tasks (e.g., defects to be fixed and features

to be implemented) in an issue tracking system, we were unable to use these issues because

these tend not to include information regarding how the defect was fixed (e.g., the patch or

location of the defect). Further, very few commit log messages contain a reference to the

issue tracking system (e.g., a defect ID). Hence, heuristics based on the commit message

are the only way to identify defect fixing changes due to the lack of a connection between

the source code repository and issue tracking system.

Software Qual J (2015) 23:485–508 491

123

4 Case study results

This section presents the results of our case study on the mobile apps selected in Sect. 3.1.

4.1 Preliminary data analysis

Prior to answering our research questions, we perform a preliminary analysis of the data by

calculating descriptive statistics. Such a preliminary analysis helps us choose the right pre-

processing steps and statistical methods for the analysis in the research questions. Table 3

presents the mean, standard deviation (SD), minimum value (Min) and maximum value

(Max), skew and kurtosis for each metric extracted from each project. It is necessary to

study these descriptive statistics, skew and kurtosis in particular, in order to determine

whether transformations are required before the data can be modeled.

Skew is a measure of the amount of asymmetry in a distribution (i.e., the difference

between the left and right sides of the distribution). A positive skew indicates that most

values are concentrated to the left of the mean, with extreme values to the right. A negative

skew indicates that most values are concentrated to the right of the mean, with extreme

values to the left. -0.5 � skew � 0.5 indicates that the distribution is approximately

symmetric.

Kurtosis (excess kurtosis) is a measure of the ‘‘peakness’’ of a distribution with respect

to the normal distribution (i.e., the shape of the peak and tails of the distribution compared

to the normal distribution). A positive kurtosis indicates that the peak is higher and sharper

and the tails are longer and thicker than the normal distribution. A negative kurtosis

Table 3 Preliminary data analysis

Project Metric Mean SD Min Max Skew Kurtosis

ConnectBot LOC 152.10 223.34 4 1,300.00 2.54 6.98

Coupling 13.07 25.66 0 196.00 4.59 25.00

Cohesion 55.49 32.24 0 100.00 0.09 -1.44

Platform 10.11 23.16 0 93.33 2.20 3.42

FBReader LOC 85.00 126.51 2 1,199.00 3.37 17.39

Coupling 12.38 15.28 0 114.00 2.84 10.28

Cohesion 66.44 32.36 0 100.00 -0.31 -1.37

Platform 9.71 18.90 0 96.43 2.08 3.68

KeePassDroid LOC 80.61 104.73 3 799.00 3.56 17.34

Coupling 9.54 11.97 0 79.00 3.20 12.45

Cohesion 62.24 33.55 0 100.00 -0.22 -1.34

Platform 13.00 27.32 0 100.00 1.97 2.47

Sipdroid LOC 105.40 152.99 5 837.00 2.41 5.89

Coupling 11.02 16.79 0 111.00 3.22 11.87

Cohesion 60.10 36.60 0 100.00 -0.11 -1.63

Platform 13.17 26.57 0 94.44 1.75 1.53

XBMCRemote LOC 155.80 194.86 4 1,367.00 2.78 10.14

Coupling 23.68 29.46 0 208.00 2.52 8.23

Cohesion 49.11 31.53 0 100.00 0.39 -1.02

Platform 15.93 25.19 0 95.83 1.33 0.54

492 Software Qual J (2015) 23:485–508

123

indicates that the peak is lower and broader and the tails are shorter and thinner than the

normal distribution. -0.5 � kurtosis � 0.5 indicates that the shape of the distribution

does not differ considerably from the normal distribution.

From Table 3 we find that LOC, coupling and Platform have a high (C0.5) positive

skew (i.e., the metrics are concentrated to the left of the mean with extreme values to the

right) and high positive kurtosis (i.e., the peaks are higher and sharper and the tails are

longer and fatter than the normal distribution). This effect can be seen in Fig. 1. Figure 1

presents the distribution of LOC across the source code files of one of the studied mobile

apps (i.e., ConnectBot). From Fig. 1 and Table 3, we find that the source code files in the

ConnectBot project vary between 4 and 1300 LOC, but there is a peak at around 35 LOC

(the left side of Fig. 1). Similar distributions were found in all of our subject mobile apps.

Therefore, we log transform LOC, coupling and Platform (i.e., each value X is transformed

as logðX þ 1Þ).
From Table 3 we find that cohesion has high (B-0.5) negative kurtosis (i.e., peaks are

lower and broader and the tails are shorter and thinner than the normal distribution).

Similar distributions were found in all of our subject mobile apps. Therefore, we square-

root transform cohesion.

In the remainder of this paper, whenever we refer to LOC, coupling, cohesion or

Platform, we actually are referring to the transformed values.

In addition to our analysis of the skew and kurtosis of each metric extracted from each

project, we also assess the multicollinearity. Multicollinearity may be caused by high

correlation between supposedly independent variables. As independent variables become

highly correlated, it becomes difficult to distinguish the effect of each independent variable

on the dependent variable. Therefore, we use the variance inflation factor (VIF) measure to

capture the multicollinearity of each metric extracted from each project. For each project,

we iteratively calculate the VIF measure for each metric and remove the metric with the

Fig. 1 Distribution of lines of code across the source code files of ConnectBot

Software Qual J (2015) 23:485–508 493

123

highest VIF measure, until no metric has a VIF measure higher than 5 (Fox 2008). Table 4

presents the VIF measure for each metric extracted from each project.

From Table 4, we find that the LOC variable in the ConnectBot project exhibits a VIF

measure greater than 5. Therefore, this LOC is excluded from our analysis of the Con-

nectBot project.

4.2 RQ1: Are defect-prone source code files more dependant on the Android platform?

4.2.1 Motivation

Mobile apps are known to be highly dependent on both the Android and Java platforms

(Syer et al. 2011). In our previous work, we defined the ‘‘platform dependency ratio’’ as the

ratio of dependencies on the platform to the total number of dependencies (Syer et al.

2011). A low platform dependency ratio indicates that developers do not rely significantly

on the platform APIs. For example, their mobile app may be simple or self-contained, or

the platform may be too difficult to use. Conversely, a high platform dependency ratio

indicates that mobile app developers rely heavily on the platform APIs. However, this

leads to platform ‘‘lock-in,’’ which may complicate porting to other platforms and

potentially introduce instability due to the rapid evolution of mobile platforms. For

example, the Android platform has undergone a major release every year. If such lock-in

does occur, we believe that developers should be aware of the consequences of depending

on these platforms.

4.2.2 Approach

We used three techniques to determine whether source code files that are tightly coupled to

the Android platform are more defect prone.

First, we split the source code files of each mobile app into two subsets: defect-free

source code files, which have never experienced a defect, and defect-prone source code

files, which have experienced at least one defect. We then visualized the distribution of

platform dependency ratios across source code files with and without defects using box

plots. Box plots graphically depict the smallest observation, lower quartile, median, upper

quartile and largest observation using a box. Circles correspond to outliers.

Second, we used a two-sided unpaired t test (parametric test) to determine whether the

difference between the platform dependency ratios across the defect-free and defect-prone

source code files is statistically significant. The two-sided unpaired t test is used to

compare the population means of two independent populations (e.g., defect-free and

defect-prone source code files). T tests are one of the most frequently performed statistical

Table 4 Multicollinearity analysis

Project LOC Coupling Cohesion Platform

ConnectBot 6.05 3.08 3.17 1.67

FBReader 2.50 2.55 1.38 1.41

KeePassDroid 4.37 3.87 1.24 1.40

Sipdroid 3.25 2.68 1.52 1.44

XBMCRemote 3.02 3.30 1.14 1.37

494 Software Qual J (2015) 23:485–508

123

tests (Elliott 2006). We also use a two-sided unpaired Wilcoxon signed-rank test (non-

parametric test) to determine whether the difference between the platform dependency

ratios across the defect-free and defect-prone source code files is statistically significant.

The unpaired Wilcoxon signed-rank test is resilient to strong departures from the t test

assumptions; therefore, the Wilcoxon test helps ensure that non-significant t test results are

not simply due to violations of the t test assumptions (Rice 1995).

Finally, we measured the Spearman correlation between the platform dependency ratio

and the number of defects.

4.2.3 Results

We visualize the distribution of platform dependency ratios across source code files with

and without defects for each mobile app using box plots. Figure 2a–e present these box

plots.

From Fig. 2a, c–e, we find that defect-prone source code files tend to rely on the

platform libraries more than defect-free source code files. The median platform depen-

dency ratio in defect-prone source code files across all mobile apps is 3.25 (26 %), whereas

the median platform dependency ratio in defect-free source code files across all mobile

apps is 0. Further, in all cases except FBReader, most defect-prone source code files have

at least some dependence on the platform (median � 0), whereas most source code files

that are defect-free also have no dependencies on the platform (the log transform of the

value 0 is logðzeroþ 1Þ and, hence, 0).
However, from Fig. 2b, we find that one project (i.e., FBReader) does not appear to

show a significant difference between the distribution of platform dependency ratios across

source code files with and without defects.

Table 5 presents the results of a two-sided unpaired t test and a two-sided unpaired

Wilcoxon signed-rank test performed to determine whether the difference between the

distribution of platform dependency ratios across source code files with and without

defects, seen in Fig. 2a–e, is statistically significant. The values in bold indicate that the

difference is statistically significant (p� 0:05). Again, the difference between the distri-

bution of platform dependency ratios across source code files with and without defects is

statistically significant in all mobile apps except FBReader.

Finally, Table 6 presents the Spearman correlation between (1) the platform depen-

dency ratio and the number of defects and (2) LOC and the number of defects. We have

selected LOC for comparison (i.e., a baseline) because it has been shown to be highly

correlated with defects and a good predictor of defects (Zimmermann et al. 2007; Na-

gappan and Ball 2005; Chidamber and Kemerer 1994; Shihab et al. 2010). Indeed, from

Table 6, we find that LOC of a source code file has a moderately positive correlation

(median of 0.38) with the number of defects in that source code file for all of our mobile

apps. This correlation is similar to the observed correlation in desktop applications. For

example, Zimmermann et al. (2007) found a correlation of 0.40 between LOC and defects

in the Eclipse project.

From Table 6, we find that the Spearman correlation between the platform dependency

ratio and the number of defects (Platform) is higher than the Spearman correlation between

LOC and defects in four of the five mobile apps. The median Platform correlation is 0.53,

which indicates a strong positive relationship and is greater than the median LOC

correlation.

Software Qual J (2015) 23:485–508 495

123

The results presented indicate that defect-prone source code files tend to be more

dependant on the Android platform than defect-free source code files.

Fig. 2 Distribution of platform dependency ratios across the defect-free and defect-prone source code files.
a ConnectBot, b FBReader, c KeePassDroid, d Sipdroid, e XBMCRemote

496 Software Qual J (2015) 23:485–508

123

4.2.4 Discussion

It is interesting to note that FBReader is an extreme project in the results above (i.e., unlike

ConnectBot, KeePassDroid, Sipdroid and XBMCRemote, the difference between the

platform dependency ratios across the defect-free and defect-prone source code files is not

statistically significant). In order to examine why this might be the case, we calculate the

percentage of source code files that are defect prone in each mobile app and presented in

Table 7. From Table 7, we find that FBReader has many more commits and source code

files than any other project. Further, we find that the source code files of FBReader are

generally more defect prone. Since more files have defects in them, it is likely that even

files with no (or low) platform dependency can have defects in them.

4.3 RQ2: Does the extent of platform dependence help explain why some source code

files are more defect prone than others?

4.3.1 Motivation

In our previous research question, we found that there is a more than moderate positive

relationship between the platform dependency ratio and defects. In this research question,

we study whether the platform dependency ratio contributes unique information to our

Table 5 T tests and Wilcoxon
tests

Project t test Wilcoxon test

ConnectBot 2:77� 10�12 3:41� 10�21

FBReader 9:68� 10�2 9:12� 10�2

KeePassDroid 1:93� 10�5 1.29 9 10�7

Sipdroid 8.87 9 10�9 1.44 9 10�12

XBMCRemote 2.59 9 10�35 2.50 9 10�33

Table 6 Correlation between
source code metrics and defects

Project LOC Platform

ConnectBot 0.38 0.67

FBReader 0.44 -0.06

KeePassDroid 0.16 0.33

Sipdroid 0.43 0.53

XBMCRemote 0.21 0.72

Median 0.38 0.53

Table 7 Percentage of defect-
prone source code files

Project # Commits # Source code % Defect prone
Files Source code files

ConnectBot 476 201 20

FBReader 4,685 405 54

KeePassDroid 492 257 19

Sipdroid 622 202 26

XBMCRemote 781 301 40

Software Qual J (2015) 23:485–508 497

123

understanding of defect proneness. In particular, we study whether combining platform

dependency ratio with the traditional source code metrics can enhance our ability to

explain the defect proneness of source code files, or whether the impact of the dependency

ratio can be explained by the other metrics.

4.3.2 Approach

We built logistic regression models and used two techniques to determine whether the

platform dependency ratio can help in explaining defects. Logistic regression models allow

us to determine the relationship between the platform dependency ratio and defect

proneness while controlling for other metrics (i.e., lines of code, coupling and cohesion).

In order to build logistic regression models, we first characterized each source code file

as either defect prone (at least one defect) or defect free (no defects).

We then built two logistic regression models for each mobile app. The first model

(Traditional model) was built using traditional metrics [LOC, coupling and cohesion

(Nagappan and Ball 2005; Chidamber and Kemerer 1994)]. The second model (Full

model) was built using both traditional metrics and the platform dependency ratio.

Finally, we validated these models in two ways.

First, we analyzed the impact that each observation has on our model using dfbeta

residuals. The dfbeta residual approximates the influence of each observation by calcu-

lating, for each coefficient, the ratio of the change in the coefficient when an individual

observation is removed to the coefficient’s standard error. In small data sets, overly

influential observations will have dfbeta residuals with absolute values[1 (der Meera et al.

2010; Cohen et al. 2002). We removed overly influential observations and rebuilt our

models on the new data sets.

Second, we assessed the statistical significance of each coefficient in the new full model

(built after removing overly influential observations) to determine which metrics are sta-

tistically significant when modeling defects.

We compared the two models by calculating the change in explanatory power from the

traditional model to the full model. The explanatory power of a logistic regression model

varies between 0 and 100 % and quantifies the variability of the data set that is explained

by the model. An explanatory power of 100 % indicates that our model can perfectly

explain the dependent variable in the data set.

4.3.3 Results

We calculated dfbeta residuals for each coefficient in each model. Figure 3 presents these

dfbeta residuals for the coefficient modeling coupling in ConnectBot.

From Fig. 3, we find that there are no overly influential observations. Therefore, no

observations were removed from the ConnectBot data set. We repeated this procedure for

each coefficient in each project. ConnectBot was the only project where we identified any

overly influential observations. We then rebuilt our models when one or more observations

were removed (i.e., we rebuild on models using a data set with no overly influential

observations)

Table 8 presents the coefficients in the full model (i.e., the models built with both

traditional metrics and the platform dependency ratio) for each mobile app (recall that

these metrics were transformed in Sect. 4). The coefficients in bold are statistically sig-

nificant (p � 0.05).

498 Software Qual J (2015) 23:485–508

123

From Table 8, we find that Platform is significant in four mobile apps and coupling is

significant in three mobile apps. This is strong evidence that dependency metrics can be

used to explain defects in source code files (i.e., these metrics tend to be statistically

significantly correlated with the presence of defects in mobile apps). Further, LOC is

statistically significant in only two mobile apps.

Despite being related measures, coupling and Platform appear to complement each

other (i.e., in some projects coupling, but not platform, is statistically significant and vice

versa). Coupling is statistically significant in KeePassDroid, whereas the platform

dependency ratio is not, and the platform dependency ratio is statistically significant in

FBReader and XBMCRemote, whereas coupling is not.

It is interesting to note that KeePassDroid was ported from another platform, whereas

ConnectBot, FBReader, Sipdroid and XBMCRemote were developed as Android apps.

This may explain why traditional metrics (i.e., LOC, coupling and cohesion) are statisti-

cally significant in KeePassDroid but Platform is not.

From Table 8, we found that the platform dependency ratio is statistically significant and

appears to enhance traditional source codemetrics. To verify this, we compare the explanatory

power of a logistic regressionmodel (traditional) built using traditionalmetrics (LOC, coupling

and cohesion) and a logistic regression model (full) built using both traditional metrics and the

Fig. 3 DFBeta residuals for the coefficient modeling coupling in ConnectBot

Table 8 Coefficients in the full model of each mobile app

Project (Intercept) LOC Coupling Cohesion Platform

ConnectBot -2.874 NA 1.074 -0.449 1.026

FBReader -3.017 0.718 0.247 0.0330 -0.241

KeePassDroid -1.120 -0.897 1.902 -0.173 0.212

Sipdroid -2.972 0.170 0.897 -0.186 0.483

XBMCRemote -1.875 0.288 -0.287 -0.0714 1.084

Software Qual J (2015) 23:485–508 499

123

platform dependency ratio. We perform an ANOVA analysis to determine whether the dif-

ference between the traditional and the full model is statistically significant. The values in bold

indicate that the increase in explanatory power is statistically significant. Table 9 presents this

data, as well as the median explanatory power across all five traditional models (one for each

mobile app) and all five full models (one for each mobile app).

From Table 9, we find that adding the platform dependency ratio to our models

increases the explanatory power. The median explanatory power using traditional source

code metrics is 21.89, and the median explanatory power using traditional source code

metrics combined with Platform is 35.79 (a 63 % increase with respect to the median

values). The median increase in the full model over the traditional model is 19 %.

The smallest increase in deviance explained (7 %) is in KeePassDroid, where the dif-

ference between the full model and the traditional model is not statistically significant. As

previously mentioned, KeePassDroid was ported from another platform and the platform

dependency ratio is not a statistically significant predictor. Conversely, the largest increase

in deviance explained (641 %) is in XBMCRemote. This may be because XBMCRemote

has a greater portion of its source code files depending on the Android platform. Table 10

presents the percentage of source code files that depend on the Android platform.

From Table 10, we find that a greater portion of the source code files in XBMCRemote

depend on the Android platform compared to any other mobile apps.

The results presented indicate that the platform dependency ratio can help in sta-

tistically explaining defects in source code files. Hence, the platform dependency

ratio could be used to help prioritize software quality efforts (e.g., code reviews and

unit testing).

4.3.4 Discussion

This results of this research question indicate that that the platform dependency ratio can

help in statistically explaining defects in source code files. However, the underlying rea-

sons for this relationship remain unclear.

Table 9 Deviance explained by
traditional and full models

Project Traditional Full Difference (%)

ConnectBot 36.45 59.84 ?64

FBReader 11.58 13.09 ?13

KeePassDroid 21.89 23.31 ?7

Sipdroid 29.98 35.79 ?19

XBMCRemote 5.45 40.42 ?641

Median 21.89 35.79 ?19

Table 10 Percentage of source
code files depending on the
Android platform

Project % Source code files

ConnectBot 21

FBReader 30

KeePassDroid 24

Sipdroid 24

XBMCRemote 36

Median 24

500 Software Qual J (2015) 23:485–508

123

Platform dependencies may cause defects when the underlying platform is defect prone or

the APIs are difficult to use (i.e., the APIs are prone to be called incorrectly). For example, one

defect in ConnectBot was caused by a defect in the Android android.widget.View-
FlipperAPI. In a defect fix with the commit log message ‘‘Workaround for ViewAnimator

bug,’’ (ViewFlipper inherits from ViewAnimator) the developer implemented his own

ViewFlipper with the comment ‘‘REMOVE THIS CLASS WHEN ViewAnimator IN

ANDROID IS FIXED.’’

It is also possible that platform dependence is higher in parts of the code base that contain

more complex application logic. However, our multicollinearity analysis in Sect. 4 did not

identify a high correlation between the platform dependency ratio and coupling, cohesion or

lines of code, metrics shown to be highly correlated to the complexity of a software application

(Lind and Vairavan 1989; Herraiz et al. 2007).

Regardless of the underlying cause, the platform dependency ratio can help in

explaining defects in source code files. Hence, the platform dependency ratio could be used

to prioritize software quality efforts (e.g., code reviews and unit testing).

4.4 RQ3: Which source code metrics have the largest impact on source code quality?

4.4.1 Motivation

In our previous research question, we found that the platform dependency ratio can help in

explaining defects in source code files. In this research question, we study which source

code metrics have the largest impact on source code quality. In particular, we study the

effects of a proportional increase in each source code metric. For example, relative to a

baseline, are source code files with twice as many lines of code than expected more defect

prone than source code files with twice the number of coupled classes than expected?

4.4.2 Approach

In the previous research question, we built a logistic regression model for each mobile app

using both traditional metrics (LOC, coupling and cohesion) and the Platform metric. Here,

we calculate the change in defect proneness due to a proportional increase of each source code

metric to determine which source code metric has the largest impact on source code quality.

We first calculate the average value of each source code metric (i.e., LOC, coupling,

cohesion and Platform). Similar to Shihab et al. (2011), a baseline hypothetical source code

file is built using the average value for each source code metric. Four hypothetical files are

constructed by increasing each source code metric in the baseline by 10 %, one at a time

(keeping the other metrics constant at their average value). Table 11 shows the hypo-

thetical source code files for FBReader.

Table 11 Hypothetical source code files for FBReader

File LOC Coupling Cohesion Platform

Baseline 85.00 12.38 66.44 9.71

File1 93.49 12.38 66.44 9.71

File2 85.00 13.61 66.44 9.71

File3 85.00 12.38 73.09 9.71

File4 85.00 12.38 66.44 10.68

Software Qual J (2015) 23:485–508 501

123

We use the logistic models built in the previous question to predict the defect proneness

for each hypothetical source code file. The defect proneness is the probability that a source

code file is defect prone. Finally, we calculate the change in defect proneness of each

hypothetical source code file compared to the baseline.

4.4.3 Results

Table 12 presents the change in defect proneness from a 10 % increase in each metric over

the baseline (average) values for each mobile app. For example, the second value in the

first row, 23.22 %, indicates that increasing coupling by 10 % increases the probability that

a source code file is defect prone by 23.22 %. The values in bold in Table 12 correspond to

a 10 % increase in a metric that was found to be statistically significant in Table 8.

From Table 12, we find that coupling and cohesion have the greatest impact on defects.

‘‘High cohesion and low coupling lead to high quality’’ is a classic software engineering

concept (Chidamber and Kemerer 1994).

Although the platform dependency ratio does not have the greatest effect on defect

proneness, it is the most consistent. The range (i.e., the difference between the maximum

and minimum values) for LOC, coupling and cohesion are 38.34, 41.84 and 18.75 %

respectively, whereas the range for Platform is only 9.55 %.

From Table 12, we see that the platform dependency ratio has the smallest impact on

source code quality, despite its ability to significantly increase the explanatory power of

our models. This may be because the average platform dependency ratio is low and only a

subset of the source code files (20–36 %) actually depend on the platform. This can be seen

in Tables 3, 10 and 11. Therefore, knowing that a source code file has any dependence on

the platform may be enough to identify defect-prone source code files.

The results presented indicate that the Platform metric has the most consistent impact

on source code quality.

5 Threats to validity

5.1 Threats to construct validity

Threats to construct validity describe concerns regarding the measurement of our metrics.

We have performed our analysis on metrics collected at the file level as opposed to the

class level. However, in practice, each source code files contains a single-named class. For

Table 12 Impact of an increase in each source code metric on defect proneness

Project LOC (%) Coupling (%) Cohesion (%) Platform (%)

ConnectBot NA 23.22 217.61 6.141

FBReader 11.71 2.33 % 1.14 21.04

KeePassDroid 226.63 37.36 210.78 1.69

Sipdroid 5.44 15.01 210.49 3.66

XBMCRemote 7.80 -4.48 -2.79 8.51

Median 6.62 15.01 -10.49 3.66

502 Software Qual J (2015) 23:485–508

123

example, 89 % of the source code files across the five mobile apps in our case study

contain a single-named class.

The number of defects in each source code file was measured by identifying the source

code files that were changed in a defect fixing change. Although this technique has been

found to be effective (Hassan 2008a; Mockus and Votta 2000), it is not without flaws. We

identified defect fixing changes by mining the commit logs for a set of keywords.

Therefore, we are unable to identify defect fixing changes (and therefore defects) if we

failed to find a specific keyword, if the committer misspelled the keyword or if the

committer failed to include any commit message. We are also unable to determine which

source code files have defects when defect fixing modifications and non-defect fixing

modifications are made in the same commit. However, this is a common problem when

mining software repositories (Hassan 2008b).

5.2 Threats to internal validity

Threats to interval validity describe concerns regarding alternate explanations for our

results.

Our results indicate that (1) defect-prone source code files tend to be more dependant on

the Android platform than defect-free source code files and (2) increasing the platform

dependence increases the likelihood of finding a defect in a source code file. However, the

underlying reasons remain unclear because this correlation does not necessarily imply

causation. Regardless of the underlying reason, the platform dependency ratio may be used

to prioritize the most defect-prone source code files for code reviews and unit testing by the

software quality assurance team.

5.3 Threats to external validity

Threats to external validity describe concerns regarding the generalizability our results.

We have limited our study to a very small subset of open-source mobile apps. In

addition, we have only studied the mobile apps of a single mobile platform (i.e., the

Android platform). Finally, we did not consider mobile app games, which are the most

commonly downloaded mobile apps, because we were unable to find mobile app games

that met our requirements (Nielsen Co. 2010a, b). Therefore, it is unclear how our results

will generalize to (1) other mobile apps, (2) close-source mobile apps and (3) other mobile

platforms.

In addition to the aforementioned threats to validity, our selection of mobile apps

excluded, by necessity, mobile apps with small code bases, few source code commits and

poor documentation. Several open-source mobile apps were excluded based on our

selection criteria. For example, Firefox for Android was excluded because we could not

differentiate the source code of the mobile version from the desktop version because they

share the same source code repository [Frennec did not yet exist (MozillaWiki 2014)], and

WordPress for Android was excluded because it did not have 200 source code files (we

were unable to build a model with any statistically significant coefficients). Therefore, it is

unclear how our results will generalize to these types of mobile apps.

The dependency metrics used in this study are very simple. For example, we do not

consider the functionality provided by the dependency, the complexity of setting up the

dependency or the source code quality of the source or target of the dependency. Therefore,

our results may not apply to other types of dependency metrics.

Software Qual J (2015) 23:485–508 503

123

6 Conclusions and future work

This paper presented a study of the relationship between platform dependence and defect

proneness of the source code files of an Android app. Our study was performed to

determine whether software metrics based on platform dependence can be used to prior-

itize software quality assurance efforts. In particular, we studied (1) whether defect-prone

source code files are more dependant on the Android platform than defect-free source code

files, (2) whether the platform dependency ratio can help in statistically explaining defects

and (3) which source code metrics have the largest impact on source code defects. We

addressed these questions by studying five open-source mobile apps written for the

Android platform.

We found that (1) defect-prone source code files tend to be more dependant on the

Android platform than defect-free source code files and (2) increasing the platform

dependence increases the likelihood of finding a defect in a source code file. However, the

underlying reasons remain unclear. Are Android APIs hard to use? Are they more buggy?

Do developers avoid relying on a rapidly evolving platform? Is platform dependence

coincidentally greater in more complex files? We intend to address these questions in

future studies. In the mean time, developers looking to prioritize their software quality

assurance efforts should first examine source code files with the highest platform depen-

dency ratios.

We also found that mobile apps do exhibit some of the classical relationships between

source code metrics and quality [e.g., ‘‘high cohesion and low coupling lead to high

quality’’ (Chidamber and Kemerer 1994)], but not necessarily others. For example, ‘‘larger

source code files are more defect prone’’ was found to hold in only three of our five mobile

apps. Hence, focusing on reducing coupling and increasing cohesion seems to be more

important from the perspective of software quality of mobile apps than reducing the size.

In the future, we intend to extend our analysis to additional mobile apps and mobile

platforms. We intend to divide the dependencies into finer categories. For example, instead

of treating the entire Android platform as one category, it could be split into User Interface

APIs, Networking APIs, Persistent Data APIs, etc. We also intend to divide the depen-

dencies based on the type of dependency. For example, inheriting from the API, imple-

menting an API interface or instantiating an API object. Our future studies should help

shed light on the nature of the relationship between a mobile app’s dependence on the

Android platform and the defect proneness of the mobile app’s source code files.

References

Android Market. (2014). Android Market. https://play.google.com/store. Last viewed March 14, 2014.
App Brain. (2014). App brain. http://www.appbrain.com/. Last viewed March 14, 2014.
Binkley, A. B., & Schach, S. R. (1998). Validation of the coupling dependency metric as a predictor of run-

time failures and maintenance measures. In Proceedings of the international conference on software
engineering (pp. 452–455).

Bird, C., Nagappan, N., Murphy, B., Gall, H., & Devanbu, P. (2011). Don’t touch my code! examining the
effects of ownership on software quality. In Proceedings of the ACM SIGSOFT symposium and the
European conference on foundations of software engineering (pp. 4–14).

Black Duck Software Inc. (2010). Android wins over open source mobile developers, growing 3x faster than
iphone. http://blackducksoftware.com/news/releases/2010-03-16. Last viewed March 14, 2014.

Black Duck Software Inc. (2011). Mobile innovation, growth driven by open source. http://
blackducksoftware.com/news/releases/2011-03-02. Last viewed March 14, 2014.

504 Software Qual J (2015) 23:485–508

123

https://play.google.com/store
http://www.appbrain.com/
http://blackducksoftware.com/news/releases/2010-03-16
http://blackducksoftware.com/news/releases/2011-03-02
http://blackducksoftware.com/news/releases/2011-03-02

Black Duck Software Inc. (2012). Android and enterprise benefit from mobile open source development.
http://blackducksoftware.com/news/releases/2012-05-15. Last viewed March 14, 2014.

Butler, M. (2011). Android: Changing the mobile landscape. IEEE Pervasive Computing, 10(1), 4–7.
Charland, A., & LeRoux, B. (2011). Mobile application development: Web vs. native. Queue, 9(4), 20–28.
Chidamber, S., & Kemerer, C. (1994). A metrics suite for object oriented design. Transactions on Software

Engineering, 20(6), 476–493.
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2002). Applied multiple regression/correlation analysis

for the behavioral sciences, 3rd edn. Routledge Academic.
Distimo (2011). Comparisons and contrasts: Windows phone 7 marketplace and google android market.

http://www.distimo.com/publications. Last viewed March 14, 2014.
Elliott, A. C. (2006). Statistical analysis quick reference guidebook (1st ed.). Thousand Oaks, CA: Sage.
Enck, W., Ongtang, M., & McDaniel, P. (2009). Understanding Android Security. Security and Privacy

Magazine, 7(1), 50–57.
Fox, J. (2008). Applied regression analysis and generalized linear models (2nd ed.). Thousand Oaks, CA:

Sage.
Gasimov, A., Tan, C. H., Phang, C. W., & Sutanto, J. (2010). Visiting mobile application development:

What, how, and where. In Proceedings of the international conference on mobile business and global
mobility roundtable (pp. 74–81).

Gavalas, D., & Economou, D. (2011). Development platforms for mobile applications: Status and trends.
IEEE Software, 28(1), 77–86.

Grace, M. C., Zhou, W., Jiang, X., & Sadeghi, A. R. (2012a). Unsafe exposure analysis of mobile in-app
advertisements. In Proceedings of the conference on security and privacy in wireless and mobile
networks (pp. 101–112).

Grace, M. C., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X. (2012b). Riskranker: scalable and accurate zero-day
android malware detection. In Proceedings of the international conference on mobile systems,
applications, and services (pp. 281–294).

Harman, M., Jia, Y., & Test, Y. Z. (2012). App store mining and analysis: MSR for App stores. In
Proceedings of the international working conference on mining software repositories.

Harrell, F. E., Lee, K. L., Califf, R. M., Pryor, D. B., & Rosati, R. A. (1984). Regression modelling strategies
for improved prognostic prediction. Statistics in Medicine, 3(2), 143–152.

Hassan, A. E. (2008a). Automated classification of change messages in open source projects. In Proceedings
of the symposium on applied computing (pp. 837–841).

Hassan, A. E. (2008b). The road ahead for mining software repositories. In Frontiers of Software Main-
tenance (pp. 48–57).

Hassan, A.E., & Holt, R. C. (2002). Architecture recovery of web applications. In Proceedings of the
international conference on software engineering (pp. 349–359).

Herraiz, I., Gonzalez-Barahona, J. M., & Robles, G. (2007). Towards a theoretical model for software
growth. In Proceedings of the international workshop on mining software repositories (pp. 21–28).

International Data Corp. (2011). Idc forecasts nearly 183 billion annual mobile app downloads by 2015:
Monetization challenges driving business model evolution. http://www.idc.com/getdoc.jsp?container
Id=prUS22917111. Last viewed March 14, 2014.

Israel, M. R. J., Nagappan, M., Adams, B., & Hassan, A. E. (2012). Understanding reuse in the android
market. In Proceedings of the international conference on program comprehension (pp. 113–122).

Khalid, H. (2013). On identifying user complaints of ios apps. In: Proceedings of the international con-
ference on software engineering (pp. 1474–1476).

Kim, H. W., Lee, H. L., & Son, J. E. (2011). An exploratory study on the determinants of smartphone app
purchase. In: Proceedings of the international DSI and the APDSI joint meeting.

Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Penta, M. D., Oliveto, R., & Poshyvanyk, D. (2013).
API change and fault proneness: A threat to the success of Android apps. In Proceedings of the joint
meeting on foundations of software engineering (pp. 477–487).

Lind, R., & Vairavan, K. (1989). An experimental investigation of software metrics and their relationship to
software development effort. Transactions on Software Engineering, 15(5), 649–653.

Lohr, S. (2010). Google’s do-it-yourself app creation software. http://www.nytimes.com/2010/07/12/
technology/12google.html. Last viewed March 14, 2014.

Maji, A. K., Hao, K., Sultana, S., Bagchi, S. (2010). Characterizing failures in mobile oses: A case study
with android and symbian. In Proceedings of the international symposium on software reliability
engineering (pp. 249–258).

der Meera, T. V., Grotenhuisb, M. T., & Pelzerb, B. (2010). Influential cases in multilevel modeling: A
methodological comment. American Sociological Review, 75(1), 173–178.

Software Qual J (2015) 23:485–508 505

123

http://blackducksoftware.com/news/releases/2012-05-15
http://www.distimo.com/publications
http://www.idc.com/getdoc.jsp?containerId=prUS22917111
http://www.idc.com/getdoc.jsp?containerId=prUS22917111
http://www.nytimes.com/2010/07/12/technology/12google.html
http://www.nytimes.com/2010/07/12/technology/12google.html

Minelli, R., & Lanza, M. (2013). Software analytics for mobile applications—Insights & lessons learned. In
Proceedings of the European conference on software maintenance and reengineering (pp. 144–153).

Mockus, A., & Votta, L.G. (2000). Identifying reasons for software changes using historic databases. In
Proceedings of the international conference on software maintenance (pp. 120–130).

MozillaWiki. (2014). Mobile/fennec/android. http://wiki.mozilla.org/Mobile/Fennec/Android. Last viewed
March 14, 2014.

Nagappan, N., & Ball, T. (2005). Use of relative code churn measures to predict system defect density. In
Proceedings of the international conference on software engineering (pp. 284–292).

Nguyen, T. N. D., Adams, B., & Hassan, A. E. (2010). Studying the impact of dependency network
measures on software quality. In Proceedings of the international conference on software maintenance
(pp. 1–10).

Nielsen Co. (2010a). Games dominate America’s growing appetite for mobile apps. http://blog.nielsen.com/
nielsenwire/online/_%20mobile/games-dominate-americas-growing-appetite-for-mobile-apps. Last
viewed March 14, 2014.

Nielsen Co. (2010b). The state of mobile apps. http://blog.nielsen.com/nielsenwire/online/_mobile/the-state-
of-mobile-apps. Last viewed March 14, 2014.

Rice, J. A. (1995). Mathematical statistics and data analysis (2nd ed.). North Scituate: Duxbury Press.
Robinson, B., & Francis, P. (2010). Improving industrial adoption of software engineering research: A

comparison of open and closed source software. In Proceedings of the international symposium on
empirical software engineering and measurement (pp. 197–206).

Schröter, A., Zimmermann, T., & Zeller, A. (2006). Predicting component failures at design time. In
Proceedings of the international symposium on empirical software engineering (pp. 18–27).

Scitools. (2014). Understand your code. http://scitools.com/. Last viewed March 14, 2014.
Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., & Glezer, C. (2010). Google Android: A

comprehensive security assessment. Security and Privacy Magazine, 8(2), 35–44.
Sharma, C. (2010). Sizing up the global apps market. http://chetansharma.com/mobileappseconomy.htm.

Last viewed March 14, 2014.
Shihab, E., Jiang, Z. M., Ibrahim, W. M., Adams, B., & Hassan, A. E. (2010). Understanding the impact of

code and process metrics on post-release defects: A case study on the eclipse project. In Proceedings of
the international symposium on empirical software engineering and measurement (pp. 29–39).

Shihab, E., Mockus, A., Kamei, Y., Adams, B., & Hassan, A. E. (2011). High-impact defects: A study of
breakage and surprise defects. In Proceedings of the ACM SIGSOFT symposium and the European
conference on foundations of software engineering (pp. 300–310).

Syer, M. D., Adams, B., Hassan, A. E., & Zou, Y. (2011). Exploring the development of micro-apps: A case
study on the blackberry and android platforms. In Proceedings of the international working conference
on source code analysis and manipulation (pp. 55–64).

Syer, M. D., Nagappan, M., Hassan, A. E., & Adams, B. (2013). Revisiting prior empirical findings for
mobile apps: An empirical case study on the 15 most popular open-source android apps. In Pro-
ceedings of the conference of the center for advanced studies on collaborative research (pp. 283–297).

Tracy, K. W. (2012). Mobile application development experiences on Apple’s iOS and Android OS.
Potentials, 31(4), 30–34.

Wen, H. (2011). http://radar.oreilly.com/2011/06/google-app-inventor-programmers-mobile-apps.html. Last
viewed March 14, 2014.

Weyuker, E., Ostrand, T., & Bell, R. (2008). Do too many cooks spoil the broth? Using the number of
developers to enhance defect prediction models. Empirical Software Engineering, 13, 539–559.

Workshop on Mobile Software Engineering. (2011). Workshop on mobile software engineering. http://
mobileseworkshop.org/. Last viewed March 14, 2014.

Wu, Y., Luo, J., & Luo, L. (2010). Porting mobile web application engine to the android platform. In
Proceedings of the international conference on computer and information technology (pp. 2157–2161).

Xin, C. (2009). Cross-platform mobile phone game development environment. In Proceedings of the
international conference on industrial and information systems (pp. 182–184).

Zimmermann, T, & Nagappan, N. (2008). Predicting defects using network analysis on dependency graphs.
In International conference on software engineering (pp. 531–540).

Zimmermann, T., Premraj, R., & Zeller, A. (2007). Predicting defects for eclipse. In International workshop
on predictor models in software engineering (p. 9).

506 Software Qual J (2015) 23:485–508

123

http://wiki.mozilla.org/Mobile/Fennec/Android
http://blog.nielsen.com/nielsenwire/online/_%20mobile/games-dominate-americas-growing-appetite-for-mobile-apps
http://blog.nielsen.com/nielsenwire/online/_%20mobile/games-dominate-americas-growing-appetite-for-mobile-apps
http://blog.nielsen.com/nielsenwire/online/_mobile/the-state-of-mobile-apps
http://blog.nielsen.com/nielsenwire/online/_mobile/the-state-of-mobile-apps
http://scitools.com/
http://chetansharma.com/mobileappseconomy.htm
http://radar.oreilly.com/2011/06/google-app-inventor-programmers-mobile-apps.html
http://mobileseworkshop.org/
http://mobileseworkshop.org/

Mark D. Syer is a PhD student at Queen’s University in Canada. He
received both his BSc (Engineering Physics) and MSc (Computing)
degrees from Queen’s University. His research interests include soft-
ware performance engineering, mobile app development and mainte-
nance, defect prediction and mining software repositories (MSR).

Meiyappan Nagappan received his PhD from NCSU in 2011. He is
currently a Post Doctoral Fellow at the SAIL lab in Queen’s Univer-
sity. He believes that as SE researchers we should look at deriving
solutions that encompass the various stakeholders of software systems,
and not only software developers. Hence, for the past 7 years he has
been working on SE research that goes beyond just impacting S/W
developers and testers. He has worked on using SE research to also
address the concerns of S/W operators, build engineers, and project
managers.

Bram Adams is an assistant professor at the École Polytechnique de
Montréal, Canada, where he heads the MCIS lab on Maintenance, Con-
struction and Intelligence of Software. He obtained his PhD at Ghent
University (Belgium), andwas a postdoctoral fellowatQueensUniversity
(Canada) from October 2008 to December 2011. His research interests
include software release engineering in general, and software integration,
software build systems, softwaremodularity and softwaremaintenance in
particular.Hisworkhas beenpublished at premier venues like ICSE, FSE,
ASE, ESEM, MSR and ICSM, as well as in major journals like EMSE,
JSS and SCP. Bram has coorganized four international workshops, has
been tool demo and workshop chair at ICSM and WCRE, and was pro-
gram chair for the 3rd International Workshop on Empirical Software
Engineering in Practice (IWE- SEP 2011) in Nara, Japan. He currently is
program co-chair of the ERA-track at the 2013 IEEE International Con-
ference on Software Maintenance (ICSM), as well as of the 2013 Inter-
nationalWorkingConference on SourceCodeAnalysis andManipulation

(SCAM), both taking place in Eindhoven, The Netherlands.

Software Qual J (2015) 23:485–508 507

123

Ahmed E. Hassan is the NSERC/RIM Industrial Research Chair in
Software Engineering for Ultra Large Scale systems at the School of
Computing, Queens University. Dr. Hassan spearheaded the organi-
zation and creation of the Mining Software Repositories (MSR) con-
ference and its research community. He co-edited special issues of the
IEEE Transactions on Software Engineering and the Journal of
Empirical Software Engineering on the MSR topic. Early tools and
techniques developed by Dr. Hassans team are already integrated into
products used by millions of users worldwide. Dr. Hassan industrial
experience includes helping architect the Blackberry wireless platform
at RIM, and working for IBM Research at the Almaden Research Lab
and the Computer Research Lab at Nortel Networks. Dr. Hassan is the
named inventor of patents at several jurisdictions around the world
including the United States, Europe, India, Canada and Japan.

508 Software Qual J (2015) 23:485–508

123

	Studying the relationship between source code quality and mobile platform dependence
	Abstract
	Introduction
	Motivation and related work
	Case study setup
	Mobile app selection
	Source code metrics
	Source code quality

	Case study results
	Preliminary data analysis
	RQ1: Are defect-prone source code files more dependant on the Android platform?
	Motivation
	Approach
	Results
	Discussion

	RQ2: Does the extent of platform dependence help explain why some source code files are more defect prone than others?
	Motivation
	Approach
	Results
	Discussion

	RQ3: Which source code metrics have the largest impact on source code quality?
	Motivation
	Approach
	Results

	Threats to validity
	Threats to construct validity
	Threats to internal validity
	Threats to external validity

	Conclusions and future work
	References

