
Using aspects for testing of embedded
software: experiences from two industrial case studies

Jani Metsä • Shahar Maoz • Mika Katara • Tommi Mikkonen

Published online: 23 January 2013
� Springer Science+Business Media New York 2013

Abstract Aspect-oriented software testing is emerging as an important alternative to

conventional procedural and object-oriented testing techniques. This paper reports expe-

riences from two case studies where aspects were used for the testing of embedded soft-

ware in the context of an industrial application. In the first study, we used code-level

aspects for testing non-functional properties. The methodology we used for deriving test

aspect code was based on translating high-level requirements into test objectives, which

were then implemented using test aspects in AspectC??. In the second study, we used

high-level visual scenario-based models for the test specification, test generation, and

aspect-based test execution. To specify scenario-based tests, we used a UML2-compliant

variant of live sequence charts. To automatically generate test code from the models, a

modified version of the S2A Compiler, outputting AspectC?? code, was used. Finally, to

examine the results of the tests, we used the Tracer, a prototype tool for model-based trace

visualization and exploration. The results of the two case studies show that aspects offer

benefits over conventional techniques in the context of testing embedded software; these

benefits are discussed in detail. Finally, towards the end of the paper, we also discuss the

lessons learned, including the technological and other barriers to the future successful use

of aspects in the testing of embedded software in industry.

J. Metsä
Elektrobit Inc., Bothell, WA, USA
e-mail: Jani.Metsa@elektrobit.com

S. Maoz
School of Computer Science, Tel Aviv University, Tel Aviv, Israel
e-mail: maoz@cs.tau.ac.il

M. Katara (&) � T. Mikkonen
Department of Pervasive Computing, Tampere University of Technology,
Tampere, Finland
e-mail: mika.katara@tut.fi

T. Mikkonen
e-mail: tommi.mikkonen@tut.fi

123

Software Qual J (2014) 22:185–213
DOI 10.1007/s11219-012-9193-8



Keywords Software testing � Aspect-oriented programming � Embedded software �
Case studies

1 Introduction

The raison d’être for software is the fulfillment of its requirements. Requirements and their

associated tests are tightly coupled together; in addition to finding defects, the main pur-

pose of testing is to check that the implementation satisfies the requirements.

In industrial practice, testing functional and non-functional requirements may involve

heavy instrumentation of the system under test (SUT). Furthermore, conventional modu-

larization techniques used for implementing the tests suffer from a scattering of the

implementations of testing concerns1 to various components, where they are tangled up

with other concerns. In the extreme, this leads to the inability to separate the additional

software that is used for testing purposes from the SUT code itself. Scattering and tangling

may suggest the emergence of problems concerning traceability, comprehensibility,

maintainability, low re-use, high impacts of changes, and reduced concurrency in devel-

opment (Clarke 1999). For the testing process, scattering and tangling problems imply

added expenses and quality issues.

Toward solving these issues, aspect-orientation provides programming-level mecha-

nisms that enable non-invasive changes to existing code (Filman et al. 2004). This pro-

vides separation of concerns by enabling the modularization of crosscutting concerns, in

the context of this paper test code, the implementation of which would otherwise be

scattered around different SUT components and tangled up with the SUT code. Such

separation between test code and SUT code, through the use of aspect-orientation, carries

several potential advantages. First, it facilitates maintenance tasks if (and when) the

requirements (and the corresponding tests) need to be changed after analyzing the design

trade-offs. Second, the correspondence between the requirements and test code becomes

more explicit, resulting in better traceability, which is required for instance by safety

standards. Third, it is trivial to remove the test aspects from the final product when

necessary, as they are explicitly injected into the system only when needed (at compile

time or run time). To take advantage of the above benefits, however, in a systematic, large-

scale use of such techniques, we need to reconsider the relation between aspects and the

requirements of the SUT.

In our previous work, we have studied the use of aspects for testing from the viewpoints

of implementation (Pesonen et al. 2006), integration (Pesonen 2006), and improved test-

ability (Metsä et al. 2008). This paper focuses on the viewpoints of non-functional testing

and model-based testing and is an extended and revised version of two earlier conference

papers, each introducing a case study (Metsä et al. 2007; Maoz et al. 2009).

The first case study described in this paper concentrates on non-functional testing using

manually coded aspects. In the second case study, we used a model-based approach to

automatically generate test aspects from visual models. Thus, although the two case studies

share the same SUT and the general technique of using aspects for testing, they are also

rather different. Toward the end of the paper, we discuss our conclusions from the two case

studies, including the challenges we have identified for the industrial deployment of

aspects in software testing.

1 For the purposes of this paper, a concern is defined to be any conceptual matter of interest, that is, testing
concerns are conceptual matters of interest related to testing, which are important to some stakeholder(s).

186 Software Qual J (2014) 22:185–213

123



2 Background and related work

Software testing is tightly integrated into the software development process (Craig et al.

2002). In the traditional V-model-based development (Rook 1986), testing is planned

during the waterfall phases from the requirements gathering to the implementation while

the actual test execution takes place in the later process phases including the unit, inte-

gration, system, and acceptance testing. In agile development, on the other hand, testing is

planned much less, but test design and execution take place much more frequently and

earlier on in the software life cycle than in the V-model due to the iterations. Methods and

techniques for agile testing include test-driven development at the unit level, continuous

integration at the integration testing level as well as acceptance test-driven development

and exploratory testing at the system level. Of these, the last one is a manual technique,

while the former ones are based on tools automating the test execution [see, for instance

(Kaner et al. 2002; Fewster et al. 1999)].

Regardless of the process used, important types of testing include so called positive and

negative testing. The former aims to show that the implementation satisfies the require-

ments and use cases important to the end-users. These same artifacts also drive the design

and coding, so positive testing is not sufficient for revealing defects. Hence, negative

testing tries to test the robustness of the implementation by testing areas that are not

specified or only vague addresses by the requirements and use cases in order to find

defects. Techniques for negative testing include boundary value analysis [see, for instance

(Pezzè et al. 2008)] used to derive test cases that check for ‘‘off by one’’ type of errors

often made by developers, which can even contribute to memory leaks or security holes in

the form of buffer overflows, for instance.

Aspect-oriented software development, on the other hand, provides means for capturing

crosscutting concerns and modularizing them as manageable units (Filman et al. 2004).

Approaches offering tool support at the code-level target in encapsulating implementation

issues in non-tangling manner. In programming-level aspect-oriented techniques, such as

AspectJ 2012, AspectC?? 2012, a pointcut is a collection of joinpoints and defines the

condition for aspect to take effect. Joinpoints define when the aspect surfaces and are of

type call or execution, for instance. The former is associated with the call to a certain code

element, for example, a function call, and latter to the execution of a referred element, for

example, the function, correspondingly. Consider for example the following simple aspect

code that introduces a simple test case:

Above, the pointcut is defined as a call joinpoint taking effect around the defined

function of our example class. The test case aspect takes effect as the function is called,

and the aspect code is executed both before and after actually executing the original

function.

Software Qual J (2014) 22:185–213 187

123



Using aspect-oriented techniques and tools to enhance requirements definition and

testing has been addressed in prior work. For example, aspect-orientation has been studied

in the context of system design by a number of researchers. Rashid et al. (2002) propose

the Aspect-Oriented Requirements Engineering model (AORE), where stakeholders’

requirements are used to identify crosscutting concerns at the early phases of development.

The authors proposed aspects to be used to resolve conflicts in requirements and to identify

the influence of crosscutting properties, thus improving the means to managing resulting

tangled representations. The method aims to improve requirements of engineering and

architecture analysis by advancing viewpoints with crosscutting issues, but does not

address testing concerns, which is the main target in our approach. In addition, AORE is

semi-formal and, to the best of our knowledge, has not been used to specify or generate

concrete running tests.

Another branch of research has been to use aspects to enhance software testing, but

almost only at the unit testing level. For example, studies by Stamey and Sounders (2005)

and by Kulesza et al. (2005) use aspects to extend unit tests in the Java environment.

Aspects have been used also as an assistant in monitoring unit testing (Coelho et al. 2006);

in this work by Coelho et al., aspects were not used in the actual test cases but only to

measure the test efficiency or coverage. In addition, only a limited set of possible uses of

aspects in testing was proposed.

Rajan and Sullivan (2005) used aspects to analyze concern coverage. The goal of this

work was to use aspects to express the adequacy criteria in a more declarative manner.

Although this profiling approach resembles our idea of capturing concerns and using them

in testing, their tool focuses on the code level to enhance white-box coverage analysis. In

our approach, aspects are used to expose new concerns for testing, when creating test

objectives together with other system requirements.

Feng et al. (2007) proposed generic non-functional unit test cases to be written using a

product line approach where aspects are used for the actual implementation. In their

approach, test cases are written using XML; joinpoint information is gathered manually

from specifications or using a tool from component source codes. The test cases are

formulated using generic core sections and variant sections defining component special-

ization. Furthermore, abstract test cases present a basis for all test cases, and final test cases

are manually written according to the target system. Our approach is somewhat similar in

the use of aspect inheritance and the specialization of the tests according to the SUT.

However, their approach is limited to unit testing level and, compared with our approach,

does not allow testing for system-wide concerns.

Xu et al. (2007) have proposed aspectual use cases for the generation of test require-

ments. In this approach, system test requirements are generated from the use cases by first

transforming the use case diagrams into Petri nets. The resulting formalized system model

is used to generate the related use case sequences. This technique relies on the formal-

ization of the base system and aspectual use cases.

Kartal and Schmidt (2007) evaluated aspect-oriented programming in the context of an

industrial real-time embedded system. Their evaluation concentrated on comparing an

object-oriented implementation with an aspect-oriented one implemented with

AspectC??. The evaluation was twofold: it was based on software quality (Chidam-

ber&Kemerer metrics suite) and embedded real-time performance (memory usage, CPU

usage, and worst-case execution time) metrics. The authors concluded that the aspect-

oriented approach was better than the object-oriented solution based on both types of

metrics. However, the case study described in the paper seems quite limited in size and

domain, and thus, the results may not be generalizable as such.

188 Software Qual J (2014) 22:185–213

123



To summarize the relation of this paper and related work, we have extended earlier

research to the direction of non-functional requirements and model-based testing in a

setting where several constraints regarding the testing context, environment, and infra-

structure were predefined, as usual to the embedded software domain. Furthermore, we

discuss the observations made during the case studies and recommend future steps that

make aspects more suitable for industrial use.

3 Case study I

The first case study focused on requirements that could be used as a basis for aspect-

oriented, non-functional testing. The aim was to identify requirements that propose

crosscutting concerns in design solutions, compositions, structures, or implementations; in

other words, requirements that manifest system-wide behaviors or characteristics. These

requirements together with the existing implementation were used to define test objectives.

The software system we studied (also referred to as SUT in the following) is used for the

quality verification of mobile phones: it is deployed in mobile phone manufacturing to

ensure the composed devices are flawlessly manufactured. The system is a relatively small-

sized industrial system with 200 k source code lines and about 100 kB of target binary. It is

a messaging-based diagnostics application that works inside the device and provides

certain verification-related functionalities, composed of a central core, proxies representing

procedure abstractions, and the actual procedure implementations. A schematic overview

of the system is provided in Fig. 1. It important to note that while the target of our study is

used for the quality verification of hardware, it will be referred to as SUT in this paper

because we applied aspect-oriented testing to it.

The basic framework for the software design was set by the context: a mobile phone

running Symbian OS (Nokia 2012). This dictated the basic design constraints: C?? as

programming language, Symbian OS coding conventions and design patterns to be followed,

strict memory footprint and limited system resources, and binary messaging to be used as the

communication method between the client and the application. From these system charac-

teristics, we formulated the initial set of requirements the system should fulfill. These

included performance considerations, robustness, modularity, and fault tolerance. Examples

of system characteristics and the derived requirements are listed in Table 1.

The test set up before the first case study was such that the software testing framework used

to test the SUT was based on test cases that provide the required test input. Moreover, test

control sets the preconditions for test cases, deploys test data, and observes the outputs from

the SUT. A simplified overview of the software test framework is illustrated in Fig. 2, where

Fig. 1 A schematic overview of the software system under test

Software Qual J (2014) 22:185–213 189

123



the test software is marked in the gray color. In the Figure, the upper part illustrates test

concepts at an abstract level and the lower part maps the concepts to the design of the SUT.

3.1 Analyzing requirements for testing

At a general level, the requirements present the expectations of stakeholders and are thus a

starting point for the architecture design. Hence, in order to refine the test objectives, we

analyzed the existing requirements so as to identify crosscutting issues and to find the

tangled representations they proposed. We started by gathering implicit non-functional

requirements set by the initial system requirements discussed above. These revealed that

the system characteristics had crosscutting effects on the implementation that would be

difficult or laborious to formulate and implement as test cases using conventional

techniques.

Table 1 Examples of system characteristics and derived requirements

System characteristic Derived requirement

Mobile phones are treated as embedded systems
and have limited amount of resources: Strict
memory footprint.

REQ1: The software must occupy maximum of X
bytes of ROM

REQ2: The software must consume maximum of Y
bytes of RAM

The manufacturing throughput must remain fast
enough

REQ3: The system is able to respond to service
requests after Z time units after power-up

REQ4: All service requests for procedures are
handled and completed in no more than the given
time limit

The system must be fault tolerant and able to report
on faulty hardware

REQ5: The system is able to recover from hung
device drivers

REQ6: Faulty hardware is identified and results as
failed procedures

REQ7: The system is able to identify correct and
incorrect hardware behavior

REQ8: Starvation and hang situations do not occur or
there is a method to recover from these situations

Procedures cover all hardware REQ9: The system is able to control all the hardware
in the device

REQ10: The system has interfaces to all peripherals
and their device drivers or the lowest possible
software layer toward hardware

Services can be requested outside the device using
common methods

REQ11: The system provides a messaging interface
for the client

The system can be utilized in all Symbian devices REQ12: The system adheres to software product-line
concept

REQ13: Implementation is written in
C??programming language

REQ14: The system runs in Symbian OS

REQ15: Symbian OS coding conventions and design
patterns are followed

REQ16: The system fulfills the Symbian OS platform
security criteria and guidelines

190 Software Qual J (2014) 22:185–213

123



We limited our analysis to non-functional requirements since in the context of this

particular SUT, existing conventional test methods provided sufficient tools for functional

testing. Hence, we ignored the functional requirements, which where reconsidered in the

second case study.

The non-tangling nature of aspects makes the technique an attractive choice for

implementing most of the identified new test objectives. However, it seems that the ability

to identify potential requirements and to derive the corresponding test aspects requires

insight into the actual system structure and is dependent on the experience of the test

designer. Although the requirements themselves are not explicitly tangled, we were able to

identify tangled concerns when evaluating the requirements together. From the initial

requirements, we were able to identify at least the following requirements tangled with

each other:

• REQ3 sets constraints regarding performance on REQ4 and REQ11: Messaging is

possible only after the system has been started up. No requests can be completed during

the start-up due to the power-up delay set in REQ3.

• REQ4 in turn sets constraints on the performance of REQ5 and REQ8: In order to serve

all service requests in the given period, all system lock states have to be resolved within

this time limit.

• REQ6 and REQ7 set constraints regarding robustness or reliability on each other:

Regardless of the correctness of the hardware assembly and the resulting system

behavior, the system must handle results properly.

• REQ16 sets security constraints on REQ10 and REQ11: Security considerations affect

the design and system composition by defining security rules that have to be followed

in the final implementation.

Following the analysis, the resulting test objectives are listed in Table 2. From the

initial requirements (Table 1), we identified seven test objectives (Table 2) that present

non-functional characteristics that potentially benefit from aspect-oriented testing tech-

niques. As the system design evolves and more details on the actual system design become

Fig. 2 Overview of the software test framework. The gray color denotes added test components

Software Qual J (2014) 22:185–213 191

123



available, the number of requirements, and in consequence also the number of test

objectives and related test cases, may increase significantly.

Our test objectives ignored most of the portability and variability issues represented by

requirements REQ12 to REQ16. We decided that these would be out of the scope of the

test code, since the testing was to be performed at the system testing phase by executing the

test cases.

3.2 Derived test aspects

Based on the new test objectives, we identified testing concerns, which were then

implemented as test aspects (Table 3). The derived test aspects present testing concerns

that require long-term observation as well as the injection of complex tracking mecha-

nisms. Performance profiling and coverage aspects require the collection of information on

all functions, related execution times, and service requests, which could be laborious to

implement. However, profiling and coverage both depend on crosscutting behaviors that

are easy to capture as pointcuts and aspects.

Furthermore, since in C??, there is neither garbage collection nor built-in methods for

taking care of memory usage, a run-time memory monitoring mechanism could be labo-

rious to implement without aspects. Our memory aspect captures each call to memory

allocation and deallocation, and thus tracks the ownership and lifetime of every memory

element. Again, weaving the monitoring feature into the system is bound to memory

allocation and deallocation calls, making it simple to formulate the aspect itself. Although

defining the pointcut is non-trivial, it is reusable and portable.

Based on the analysis. we realized that a jamming mechanism was needed as a test

aspect to check that the system fulfills requirement REQ5. Furthermore, requirements

REQ3, REQ4 and REQ8 could be compromised by the services that get stuck at a hang

situation. Hence, the robustness aspect developed for test objective TO5 was also utilized

in the case of test objectives TO2, TO3, and TO4 in order to give proper insight into the

system performance in these situations too. As the subsystems providing services to this

particular system are identifiable already at the system design phase, we would be able to

formulate the test aspect already at the requirements analysis phase by identifying the

related interfaces. Thus, the test aspects can be defined already at the design phase without

Table 2 Test objectives for non-functional requirements

Requirement Test objective Requirement
category

REQ2 TO1: Supervise memory consumption Robustness

REQ3 TO2: Measure time from initial power on to the system being in
responsive state

Performance

REQ3, REQ4 TO3: Measure time consumed on serving requests Performance

REQ4 TO4: Track procedure executions and create execution time profiles Profiling

REQ5 TO5: Generate hang situation on device driver Robustness

REQ5, REQ6,
REQ7

TO6: Analyze system reliability Reliability
robustness

REQ9, REQ10 TO7: Calculate test coverage based on components and interfaces
during test execution

Coverage

REQ16 TO8: Test for security vulnerabilities Security

192 Software Qual J (2014) 22:185–213

123



the need for understanding the final implementation because the pointcuts defining the

possible hang points can be formulated.

A common characteristic of all these test aspects is the scattered nature of all the

concerns they represent. While the hang situations may manifest themselves in a wide

variety of system components, the monitoring, profiling, reliability, and coverage mea-

surement activities are all system-wide concerns. Considering the performance profiler

aspect as an example, it collects information on each function call and the execution time

of related services and records the call time and the original client information, the caller

and the target. Hence, it creates a system profile that can be used in evaluating the system

design, for example, optimization needs, bottlenecks, and critical points. As call and

execution joinpoints can be used to easily formulate the relevant criteria for the profiler

aspect to surface, the design of such an aspect is rather trivial (although the result may not

be efficient).

Coverage analysis typically requires the tracking of the system execution by means of

instrumented marking mechanisms and collecting the resulting data for further processing.

Commercial tools for dynamic test coverage analysis exist and provide the means for

measuring the test coverage on the SUT. The coverage aspect we have developed is woven

into the SUT similar to how traditional non-aspectual existing coverage analysis tools

instrument the SUT for its analysis. However, instead of measuring the SUT, the coverage

aspect collects data on the execution of other subsystem code and on the calls to other

components. Compared with commercial coverage measurement tools, we found that

aspects benefit from being integral to the SUT and allowing the use of custom coverage

criteria.

At the code level, we used AspectC?? (AspectC?? 2012; Spinczyk et al. 2002) to

write the aspect code. The advice code implementing the test objectives is composed of

three parts: pre-test activities, test execution, and post-test activities. Pre-test activities set

the environment as necessary for the test execution, including system state, parameters, and

similar. The test execution part implements the actual test according to the test plan.

Finally, post-test activities set the system state as specified after test execution. Created

aspects were relatively small in size and simple in terms of functionality. For example, the

robustness aspect of a major subsystem (around 20–25 % of the complete SUT in terms of

lines of code) was implemented with only 174 lines of code and increased the final binary

Table 3 Formulated test aspects

Test aspect Description Test
objective(s)

Memory
aspect

Supervises system memory consumption by tracking all memory allocations
and deallocations

TO1

Performance
Profiler

Captures function executions and creates an execution profile over the SUT
during the testing process

TO2, TO3,
TO4

Robustness
aspect

Generates service request jams to test whether SUT is able to recover from
hang situations

TO5, TO6

Reliability
aspect

Collects information on SUT states (resets, panic reasons, etc.), and failed
cases and causes of failures (if known)

TO6

Coverage
aspect

Monitors SUT execution by gathering data from all other subsystems,
components, and interfaces accessed during the test execution

TO7

Security
aspect

Performs security-related testing on the SUT and related components,
subsystems, and system services

TO8

Software Qual J (2014) 22:185–213 193

123



size by 2kB (8 %). As expected, this increase is directly proportional to the SUT function

calls to device drivers (in this case 6 calls). It should be noted that the control logic is not

included in these numbers (we only count the aspect code that is weaved in the injection

points). The code snippet of Fig. 3 gives an example of a part of a simple robustness aspect

used to create stuck situations by manipulating function arguments and return values.

A description of the example aspect implementation is as follows.

Line 3 First we define a pointcut for the test objective that specifies the rule for the

aspect to take effect. In this case for simulating a stuck situation, we define a call

joinpoint to take effect on each function call to class RDriver functions.

Lines 5–8 Pointcut definition is followed by a class function for creating the aspect

instance. This is only needed if one wants to override the default aspect of function.

Line 10 Test cases are defined by an advice that specifies the actions on joinpoint

execution. In this case, the around advice specifies that our test code is to be executed

around the original function.

Lines 12–16 The pre-test activities are used to set the system state corresponding to the

test plan. In this case, we decided to skip all calls to method Open in the driver, since we

want to allow this method to be called.

Lines 17–23 The actual test case implementation for a jamming situation replaces the

original function call with an infinite loop. If test control is set to 1, the call will get stuck

and start waiting forever in line 20. Hence, the code in line 21 should never be executed.

Lines 24–25 The post-test activities would normalize the system state after test

execution, but are here left empty since no actions are needed in this case.

Line 28 Inside one test aspect, we have implemented control logic for more than one test

objective since the robustness test aspect covers more than one objective. Specifically, in

this case, another test case examines the system behavior with various parameter values

and their impact on the SUT.

Line 30 Another advice implements test cases for exercising the set of functions with

certain parameter values.

Lines 31–37 The pre-test activities initialize the test harness for test execution.

Lines 38–48 The actual test code changes the parameter value corresponding to the test

plan and proceeds with the original function call. The original function is available for

us and since we have an around advice, we execute it here. The resulting return value is

passed to the test harness for evaluation and the test is executed a number of times

according to the test plan.

Lines 49–50 After the original function has returned, the aspect code is executed and we

have the return values available for manipulation. The SUT receives the return value

only after this advice code.

This example robustness aspect is not reusable and it is also very much implementation

dependent. To address these issues, we used aspect inheritance and the ability to combine

pointcut expressions. The pointcut expression testObjective6 (line 28) of this sample

robustness aspect was extended to include all synchronous and asynchronous service

requests outside the SUT. The test case designer had two possibilities: to investigate the

SUT design to find out service request joinpoints, or allow the aspect weaver to inject the

test code and examine the resulting project repository file for information about joinpoints.

The former approach can be used in the early development phases, and the latter approach

can be used when specializing the tests for the SUT. For example, a generic pointcut

matching asynchronous service requests can be formulated to capture all such segments in

the SUT code for robustness testing thus checking that the SUT is able to recover from

194 Software Qual J (2014) 22:185–213

123



Fig. 3 Example of robustness aspect implementation

Software Qual J (2014) 22:185–213 195

123



situations when such services get stuck. This can be done without reading the SUT code or

its design documents.

Hence, to better support reuse in the aspectual test code, a simple and generic base

aspect is formulated for each non-functional concern to act as a foundation for a number of

specialized test aspects. Furthermore, base aspects’ advices use generic pointcut expres-

sions that are refined when specialized in order to fit the final implementation. The code

snippets of Fig. 4 illustrate an aspect for a security concern, which checks before the

execution of any of the guarded methods whether the method is called from a legal context

and with legal parameters. The test aspect inherits the abstract base test aspect test-
BaseAspect, which is responsible for setting up the test environment.

The abstract base aspect is realized by defining a specialized test aspect. This spe-

cialized test aspect is tailored to the SUT using proper pointcut expressions, as illustrated

in the code snippets from the relevant aspect header files shown in Fig. 5.

Fig. 4 Snippets from an aspect for a security concern and its super class

196 Software Qual J (2014) 22:185–213

123



3.3 Summary of case study I

Due to the imprecise nature of the most real-life software requirements, generally, test

aspects cannot be directly derived from them. Instead, more detailed goals need to be

targeted. Furthermore, especially non-functional requirements are often implicit and inti-

mately associated with one or more functional requirements, implying that some refine-

ment is needed before the actual implementation of the corresponding test aspects. We

therefore refined the requirements based on certain kinds of use case descriptions as well as

system characteristics that could help in gaining an improved insight into the non-func-

tional requirements. Based on these and the original requirements, non-functional concerns

had to be identified, which in turn could be used to derive test objectives. Test objectives

bind individual non-functional concerns to testing goals associated with use case

descriptions and system characteristics. In other words, a test objective defines qualities

that should be observable in order to fulfill the designated testing goals. The next step was

to write down test aspects that implemented the test objectives using a suitable aspect-

oriented language. Finally, a test case defined how the test procedure was to be carried out,

introducing the technical test steps, etc. With the above definitions, we essentially used the

test objectives as informal specifications for test aspects. We wrote the aspect definitions,

guided by the semantics of the aspect language and based on the descriptions of the

objectives.

Another important finding is the following process we suggest for creating aspects from

requirements:

1. Identify non-functional concerns by employing use-case descriptions and system

characteristics to help in breaking down the requirements (cf. Table 1).

2. Based on the findings, define the testing concerns and formulate the test objectives (cf.

Table 2).

3. Consider how the test objectives could be achieved at the design level and derive

specifications for the test aspects. This includes defining related test cases supporting

the objective by rigorously elaborating the behavior and mining for incorrect behaviors

to test (cf. Table 3).

4. Fine-tune the aspect definitions in order to be able to formulate the test aspect

implementations (cf. Fig. 3).

By giving descriptive names for the test aspects, we can define the connections between

the system characteristics, requirements, test objectives, and test aspects. It should be

Fig. 5 Pointcuts from the aspect header files

Software Qual J (2014) 22:185–213 197

123



noticed, however, that the test aspects represent more general testing concerns, and thus

their names do not always match the corresponding test objectives one-to-one. On the other

hand, for a more complex test objective, there may be several test aspects implementing

it—unless the objective is split into several more manageable objectives.

4 Case study II

The second case study was performed on the same SUT as the first one but concentrated on

a model-based solution for automatically generating test aspects. The motivation was to

lessen the need for expertise in writing the test aspect implementations. We used scenarios

for specifying tests at a high level of abstraction. For the visual specification of testing

scenarios, we used a UML2-compliant variant of live sequence charts (LSCs) (Damm and

Harel 2001; Harel and Maoz 2008), a formalism that extends the classical sequence dia-

gram’s partial-order semantics mainly by adding universal and existential hot/cold

modalities, allowing a visual and intuitive specification of scenario-based liveness and

safety properties. LSCs extend the classical partial-order semantics of sequence diagrams

mainly by adding universal and existential hot/cold modalities. It thus supports the visual

specification of scenario-based liveness and safety properties, allowing specifying sce-

narios that may happen, must happen, or should never happen. Vertical lines called life-

lines represent specific system objects. Time goes from top to bottom. Must (hot) events

and conditions are colored in red and use solid horizontal lines; may (cold) events and

conditions are colored in blue and use dashed horizontal lines. A specification typically

consists of many charts, which may be interdependent.

An important concept in LSC semantics is the cut, which is a mapping from each

lifeline to one of its locations—denoting event occurrences along the lifeline. The cut

represents the state of an active scenario during execution and induces a set of enabled

events—those immediately after it in the partial order defined by the diagram. A cut is hot

if any of its enabled events is hot (and is cold otherwise). When a chart’s minimal event

occurs—that is, an event that is minimal in the partial order defined by the chart occurs—a

new instance of the chart is activated.

The semantics of LSC depends on the temperatures of events and cuts. Roughly, a hot

enabled event must eventually occur, while a cold enabled event may or may not occur

eventually. Thus, an occurrence of an enabled event or a true evaluation of an enabled

condition just causes the cut to progress. However, the result of an occurrence of a non-

enabled event from the chart or a false evaluation of an enabled condition depends on

the current cut’s temperature: if it happens when the cut is cold, the scenario exits

gracefully with a completion; if the occurrence of the non-enabled event happens when the

cut is hot, this is considered a violation. Finally, note that a chart does not restrict events

not explicitly mentioned in it to occur or not to occur during a run (including in-between

events mentioned in the chart); a chart only restricts the order of events explicitly

appearing in it.

We use the UML2-compliant variant of LSCs, which was defined using the modal

profile in (Harel and Maoz 2008). Moreover, the LSC variant used in our work follows the

play-out execution mechanism of (Harel and Marelly 2003) and includes an execution

mode for each method. The execution mode can be either execute or monitor. When a

method designated with execute is enabled in one chart and is not violating in any other

chart, the play-out mechanism executes it. Finally, the LSC variant used in our work

supports a polymorphic interpretation of lifelines: lifelines represent classes, not objects,

198 Software Qual J (2014) 22:185–213

123



and so each lifeline may be applied to all objects directly or indirectly inheriting from the

class it represents.

To execute the tests, we automatically translated the diagrams into test scenario aspects

using a modified version of the S2A compiler (Maoz et al. 2011). After weaving with the

SUT code, the generated aspects followed the execution of the tests that were specified in

the diagrams and reported on their run-time progress and results using scenario-based

traces (Maoz 2009a). The traces were visualized and explored in a prototype tool called the

Tracer (Maoz and Harel 2011). An overview of the tool chain used in the second case

study is illustrated in Fig. 6. Next, we elaborate on each of the components in the tool

chain and on their use in the second case study.

4.1 Defining the scenarios

A specification was made of a number of LSCs, divided between several use cases. The

profile extension allows setting the temperature mode and the execution mode of each

method and condition, as required by LSCs: the temperature mode value can be ‘‘hot’’ or

‘‘cold’’, the execution mode value can be ‘‘execute’’ or ‘‘monitor’’.

Figure 7 shows an example of a simple test case, taken from our case study. This

scenario specifies that whenever any instance of class class_D1 calls method meth-
od_E1m1 of an instance of class class_E1, the test code should execute a loop. The

loop is executed five times, calling method method_G1m2 of class_G1, where the

caller is the instance of class_E1 bound earlier to the middle lifeline of the LSC.

Note that the modeled scenarios combine monitoring with execution. That is, not only

they listen for relevant events to monitor the progress of the tests, but also some methods

are designated with the execution mode. When such a method is enabled in one chart and

not violating in any other chart, the generated code, described next, executes this method

using generated inter-type declarations. Unfortunately, the distinction between monitoring

and execution is not visible in the diagram because of a limitation of sequence diagrams

editor of RSA (IBM Rational 2012).

4.2 Generating and executing testing scenarios

S2A is a compiler that translates LSCs into AspectJ code. S2A supports scenario-based

execution following the play-out operational semantics of LSC (Harel and Marelly 2003).

It provides full code generation of reactive behavior from visual inter-object scenario-

based specifications. Aspect code generation in S2A follows the compilation scheme first

Fig. 6 Overview of the tool chain used in the second case study

Software Qual J (2014) 22:185–213 199

123



presented in Maoz and Harel (2006). A detailed description of S2A and the compilation

scheme appears in Maoz et al. (2011).

Roughly, each sequence diagram is translated into a scenario aspect, which simulates an

automaton whose states correspond to the scenario cuts; enabled events are represented by

transitions that are triggered by pointcuts, and corresponding advice is responsible for

advancing the automaton to the next cut state. The compiler comes with a runtime com-

ponent (not generated), which includes code that is common to all scenario aspects such as

utility methods and super classes.

To use S2A with the SUT (the same system as in the first case study), we have designed

and implemented a version of S2A that outputs AspectC?? code rather than AspectJ code.

Snippets from the generated AspectC?? test scenario aspect code appear in Figs. 8

(continued in Fig. 9), and 10), divided between .cc and .ah files, respectively. In the .cc file,

note the changeActiveMSDCutState method, which is responsible for the automaton

logic, moving the scenario from one cut state to another. The generated pointcuts and

advice are declared in the corresponding .ah aspect header file. Note the pointcuts, listening

out for method calls referred to in the model, and advice, calling the changeCutState
method of the automaton logic.

4.3 Tracing and trace visualization and exploration

S2A’s runtime component supports the generation of textual model-based traces (Maoz

2009a; Maoz 2009b). The traces can be generated from programs that are instrumented

with S2A’s generated aspects. In our context, the generated model-based traces provide

information about the executed tests progress and completion states. These are viewed and

explored using Tracer (Maoz et al. 2011), a prototype tool for the visualization and

interactive exploration and analysis of scenario-based traces. The input to the Tracer is a

scenario-based model of a system given as a set of UML2-compliant LSCs, and a scenario-

based trace, generated from an execution of the system under investigation.

A screenshot from the Tracer’s main view, taken from the second case study, is shown

in Fig. 11. Roughly, the Tracer’s main view is based on an extended hierarchical Gantt

chart, where time goes from left to right and a two-level hierarchy is defined by the

containment relation of use cases and sequence diagrams in the model. Each leaf in the

hierarchy represents a sequence diagram, the horizontal rows represent specific active

instances of a diagram, and the blue and red bars show the duration of being in specific

Fig. 7 An example of a simple testing scenario: after method method_E1m1 of an instance of class
class_E1 is called by an instance of class_D1, the testware executes the method method_G1m2 from
class_D1 to class_G1 five times (in a loop)

200 Software Qual J (2014) 22:185–213

123



cold and hot relevant cuts. The horizontal axis of the view allows following the progress of

specific scenario instances over time, identifying events that caused progress, and locating

completions and violations. The vertical axis allows a clear view of the synchronic

characteristic of the trace, showing exactly what goes on, at any given point in time, at the

abstraction level of the scenarios used in the model. Additional screenshots from the

second case study can be found on the Tracer’s website (Maoz 2012).

4.4 Test setup

Figure 12 illustrates a simplified test setup used in the second case study. The basic test

setup is composed of test cases, test harness, and test results. The test cases specify the

tests to execute. Executing the test cases utilizes a test harness to control the SUT

accordingly. The test harness exercises the SUT based on the test cases and reports the

SUT outputs for further evaluation. In this setting, the generated test aspects implement

most of the test harness and the test cases that exercise the SUT, so there was no need to

create additional test cases or modify the test harness for this purpose.

We created test scenarios based on three goals: (1) generic monitoring, (2) monitoring

for regression testing, and (3) simple new test cases. The generic monitoring scenarios

check that the SUT actually behaves as designed, for example, that certain method calls are

indeed followed by certain behavior. For regression testing, we created scenarios that had

revealed certain problems in the older versions of the SUT but should be working with no

problems in the version under test. Finally, we created new test scenarios that after a

certain sequence of events exercise the target system with additional method calls. These

scenarios were rather simple since we wanted to be able to notice other problems related to

adopting the technique in the target platform. In total, we had 32 different test scenarios.

Fig. 8 A (pretty-printed) snippet from a generated test scenario aspect code .cc file (continued in Fig. 9)

Software Qual J (2014) 22:185–213 201

123



Fig. 9 Continued from Fig. 8, a (pretty-printed) snippet from a generated test scenario aspect .cc file. Cut
states are represented using tuples of locations, one for each of the LSC’s lifelines. Method
changeActiveMSDCutState implements the automaton logic, moving from one cut state to another

202 Software Qual J (2014) 22:185–213

123



We used existing test cases from the documentation of the system under test and created

monitoring and execution scenarios based on them. In the monitoring case, a trace event is

logged after the specified behavior realizes, whereas in the execution case, certain

Fig. 10 A snippet from a generated test scenario aspect code .ah file. Note the pointcuts, listening out for
method calls referred to in the model, and advice, calling the changeCutState method of the automaton
logic

Software Qual J (2014) 22:185–213 203

123



functionality is executed after the specified behavior. This allowed us both to observe that

the desired behavior actually happens and to advance and execute the related tests.

In the second case study, we wanted to utilize the existing test setup as much as

possible, to avoid inventing new test cases or implementing extra functionality in the test

harness. The available test cases described the testing objectives and we expected to be

able to model these as testing scenarios using the sequence charts. Since the generated

aspects do not generally execute the test cases, we needed explicit SUT control. Using the

existing test setup to control test execution, we avoided writing extra control for test

execution and the observation of the test results. The test setup is illustrated in Fig. 12,

where test cases executed in PC request services from the SUT. The corresponding test

aspects are executed by the automata according to the scenarios. Test results are collected

from the SUT as traces and are received back by the test PC.

4.5 Generating test scenario aspects

To generate executable tests from the LSCs, we used the modified version of the S2A

compiler described earlier. Rather than generating AspectJ code like the original version of

Fig. 11 A screenshot from the Tracer’s main view, showing one of the test execution traces and (part of a)
scenario instance, with its cut shown as a black dashed line. The scenario instance was opened after double-
clicking one of the bars in the trace. Note the

p
completion marks at the end of scenario instances’ bars

Fig. 12 Testing setup for exercising the testing LSCs in the second case study

204 Software Qual J (2014) 22:185–213

123



S2A, our modified version generates AspectC?? code, as required in order to apply to our

target SUT. Some differences between the languages had to be addressed in our modified

version of S2A:

• Instead of generating a single AspectJ file for each LSC (a .aj file), we had to separate

the generated aspect code into two files: aspect header (.ah) and aspect source (.cc).

• The original implementation of S2A relies on AspectJ aspects’ ability to have

joinpoints or pointcuts matching other aspect code. This is not possible in AspectC??

and so we had to implement a workaround to bypass the use of this feature.

• The pointers need to be addressed when compiling models to AspectC?? because

C?? heap allocated objects are accessed via pointers. This must be taken into

consideration when drawing and compiling sequence diagrams: if there is only class

name, it refers to the whole class. If it is a pointer, then it refers to an object. Instances

are accessed via pointers, which should be taken into consideration when drawing the

model. Furthermore, the private and protected visibilities of class methods and data

must be followed.

In addition to the above, we made changes to the code because of the non-standard

Symbian C?? used in the SUT. Thus, some of the features of the original S2A compiler

are missing in the modified version, for example, the method parameters are ignored.

All test scenarios were modeled with LSCs using IBM RSA, and then compiled using

the modified S2A compiler. After weaving, the instrumented SUT executed the tests. We

repeated the experiments a number of times, each time with some additional or modified

tests. The resulting test execution traces were copied back from the smartphone onto the

PC where they can be viewed using the Tracer (Fig. 11 above).

5 Evalution

In this section, we first present the evaluation of the two case studies. Then, we discuss the

implications and directions for future research on the topic.

5.1 Evaluation of case study I results

The approach used in the first case study was based on two fundamentals: identifying non-

functional concerns from requirements and binding the related testing objectives into code

to be formulated as aspects. The following evaluation first discusses the requirements

mining and related activities, and then the resulting test aspects.

In the first case study, the target was to formulate new hand-coded test aspects to gain

better test coverage related especially to the non-functional requirements. As a starting

point, we had existing requirements for the system with brief use-case descriptions. We

chose to analyze only the basic and initial requirements set for the whole product line,

which contained close to 150 requirements from which we identified 16 basic requirements

as the starting point. We excluded all product-specific requirements from the analysis to

focus on testing common system-wide issues.

The corner-stone was successful identification of the non-functional testing concerns

that can be formulated as test aspects. It is not only the requirements analysis that is

difficult, but also defining the test aspects in general. Although the connection between the

code segments to capture and the aspect to inject is often obvious, it is not straightforward

to identify the code elements that are meaningful to the non-functional concerns. Table 4

Software Qual J (2014) 22:185–213 205

123



summarizes the changes between the original testing approach and the aspect-oriented

approach used in the first case study.

To generalize the test code, abstract base level aspects and aspect inheritance can be

used to formulate generic aspects and reusable advice code for testing non-functional

concerns. In the first case study, the requirements were mostly functional but they obvi-

ously implied implicit non-functional requirements. However, we propose defining generic

non-functional requirements for the system and fine-tuning the related test objectives based

on the SUT characteristics. A security concern, for instance, is used to set initial security

requirements for the system—a security policy and related restrictions—and the related

test objectives aim at verifying that these security requirements are met. The test objectives

and resulting test code can be relatively generic, since the actual test aspects specialize test

code based on the SUT implementation. Hence, the same security concern can be

addressed in testing other SUT implementations as well, thus promoting reuse.

A generic problem related to aspect-oriented techniques is clearly related to code

instrumentation. In order to have joinpoints harnessed for testing, the aspects have to be

woven into the system, which often requires instrumenting the final code. This complicates

the testing process by introducing extra steps to build processes and requires specific test

versions to be built. However, managing the test aspects is relatively easy when compared

with the corresponding conventional implementation-level techniques. The easy weaving

and non-invasive nature of test aspects makes them an attractive solution for non-func-

tional testing; based on the first case study and previous experiences (Pesonen 2006), the

non-invasive nature of aspect-orientation is a clear benefit in software testing compared

with the conventional techniques.

Another problem related to the industrial adoption of aspect-oriented testing is tool

support. The lack of proper, complete testing tools or interfaces for existing tools to be

extended with aspect-oriented extensions complicates the adoption of the proposed testing

methods in existing processes and tool chains. Such a variety of different testing tools

Table 4 Comparing changes when moving to aspect-oriented testing

Activity Original approach Aspect-oriented approach

Functional
testing

Using test cases and production version of
SUT

Using test cases and test aspects
instrumented in SUT

Non-
functional
tests

No non-functional testing Additional test cases for non-functional tests.
Increased the number of test cases

Profiling External tool using trace data. Required
instrumenting the whole SUT. Significant
performance overhead

External tool using trace data produced by
profiling aspect. Requires selecting the
code segments to profile and weaving the
profiling aspect to SUT. Small
performance overhead when using for
targeted profiling

Test
coverage

Specific test coverage tool used for
measuring test coverage. Requires
instrumenting the SUT prior to testing

Test coverage aspect used to measure test
coverage. Requires weaving the coverage
aspect to the SUT. Provides customized
coverage data

Test build Re-compilation with testing option required Tests instrumented using aspect weaver, no
changes to the SUT

SUT source
size

Test code embedded in SUT codes, bigger Test code separated in aspect files, smaller

206 Software Qual J (2014) 22:185–213

123



creates problems in the project, error, and test management and unnecessarily complicates

them. However, from the software management perspective, the aspect code can be

managed using the same development tools and environments as the original code and does

not add overhead in this respect. Aspects add a more powerful means to develop test

control over SUT, as the semantics provide additional tools for formulating the test case

and implementing it.

5.2 Evaluation of case study II results

A clear strength of the model-based approach taken in the second case study is that test

case definition is done at a rather high-level of abstraction; while it takes advantage of

aspects’ ability to access the SUT internals, it does so without requiring the engineer to

know the syntax of the aspects language and its complex semantics. This seems a

potentially positive adaption factor, since a good command of aspect-oriented program-

ming is not common in testing organizations (and in the industry in general). Moreover, the

fact that the aspect code is automatically generated from the models guarantees certain

quality in the code that executes the tests. Another positive adaption factor is the end-to-

end visual nature of our model-based testing tool chain. Visualization is known as a way to

address complexity and to make tasks more accessible to engineers. Again, test developers

need neither write nor even understand the generated (aspect) code.

Based on the second case study, it is easy to create monitoring scenarios using LSCs. In

case the class names and methods are known, it is easy to draw a scenario describing a

sequence of method calls that should happen. However, it is mandatory to have a proper

model of the SUT available, for example, a class diagram, and to understand the model

elements and their relationships to the scenario. Since test designers often tend to be

unaware of the system internals, the true potential of the aspects may remain unused. Good

knowledge of the SUT model, in terms of the classes and their relationships, is thus a

necessary requirement for test developers. If such model is partly available, some tests

could be developed simply by copying sequence diagrams from the model’s documentation

and extend them with hot/cold modes. If this is not available or is not up-to-date, it is

difficult to draw useful LSCs.

Good knowledge of the modeling language itself is another necessary requirement for

test developers. While sequence diagrams in general and LSCs in particular are quite

intuitive to draw and to understand when combined with additional features such as

symbolic instances, and when put against a real system with a complex structure, intuition

alone does not suffice. When the test developer knows the SUT well but is not an expert in

the modeling language, as in our case, some tests simply do not happen or result in

unexpected behavior, as the generated aspects code does not match the developer’s

intention. One way to address this is to divide the work between a modeler and a test

engineer; the modeler would develop scenario templates, while the test engineer would

instantiate these with classes and methods specific to the SUT.

We used LSCs’ semantics of symbolic lifelines, with a polymorphic interpretation.

Thus, lifelines are labeled with class names and any instance of the class may advance the

related automaton. Although this allows defining powerful scenarios, it does not allow

capturing issues related to a certain specific instance of the class (when exploring the

produced traces, it is possible to identify the instances; we can consider this issue as partly

resolved). In addition, not all original test cases could be modeled using scenarios; some

required more complex support for data and control. A different, considerable disadvantage

is the inability to create scenarios that explicitly cover behavior across separate threads or

Software Qual J (2014) 22:185–213 207

123



processes. The current semantics and implementation generate aspect code that can only be

thread-specific. This is a true limiting factor in many settings.

We did not have a single integrated development environment (IDE) that could be used

throughout the tool chain. Modeling was done in IBM RSA; S2A is written in Java but its

AspectC?? output is weaved to and compiled with the SUT; resulting execution traces are

viewed with the Tracer, outside the SUT. The lack of a single IDE resulted in technical

problems and process overhead; for example, if the generated code does not compile with

the SUT, it is difficult to know where to look for the problem. Thus, a solution needs to be

developed to combine the different pieces into an IDE.

Moreover, tool support for AspectC??, for example, a static analysis tool or a

debugger running on the target system, was not available. As a result, it was too easy to

create models that S2A fails to compile, or models whose generated aspects fail to compile

on the SUT or, when executed, result in SUT crashes (requiring reboot of the smartphone).

These interoperability issues, bugs, and limitations of tool support (e.g., for debugging),

resulted in a slow, sometime frustrating process, far from what one would hope to achieve

when introducing a model-based testing solution to an industrial setting.

5.3 Discussion

If we compare the status of aspect-oriented software development in coding and testing, it

seems that the relatively low success in the former can be attributed to the dominance of

object-oriented techniques; while aspects provide added-value, they also introduce com-

plexities in understanding what happens at run time. However, in testing, the situation is

somewhat different as object-oriented test design is not as dominating and test aspects are

trivial to remove from the production code, which is not always possible with other

techniques.

From the industrial point of view, tooling is extremely important since commercial

organizations need tools that they can rely on. Both commercial and open-source testing

tools are used widely; such tools are backed up by either commercial support or support by

an open-source community. Our experiments in the case studies were conducted on a real

industrial system with commercial value. Unfortunately, the results of the experiments and

derived test aspects were not included in the product line assets nor taken into everyday

use. First, the organization had a number of powerful tools that are dedicated to certain

specific testing tasks, and our limited study did not produce attractive enough results to

compete with them using our prototype tools that lack commercial as well as community

support. Nevertheless, as we did only very small efforts marketing our approach inside the

company, there might be future chances provided the tools become more mature. Second,

before the first case study, the non-functional testing was performed in a very ad hoc

manner, with no specific tool support. Hence, our experiments aimed at defining the

foundations for including non-functional testing in a generic testing approach using

aspects. The first case study did not include creating a tailored test tool, but we were able to

identify issues related to implementing testing using aspects, some of which were

addressed in the second case study. Nevertheless, we believe that the experiences from our

case studies can help in targeting future research efforts to enhance the industrial usage of

aspect-oriented technologies. Below, some of the lessons we learned are discussed in more

detail.

Testing of some types of non-functional requirements can be facilitated by improved

control and monitoring of the SUT. The former is needed, for example, for covering error

cases that might be difficult to encounter during normal operations, like failing to open a

208 Software Qual J (2014) 22:185–213

123



file or hardware access operations, and the latter is needed for collecting data on the

internal behavior of the system, like response times for certain performance-critical

operations. Preferably, such facilities should be non-invasive in their nature in order to

keep the original implementation intact. For implementing such testware, we propose using

aspect-oriented technologies, provided the tool support is adequate.

However, we do not generally propose using aspects for generic profiling purposes,

since a number of commercially available profiling tools are in most cases better in terms

of setup effort and cost. However, if an organization is implementing in-house profiling

tools, aspects provide additional means for writing specific profiling and monitoring code,

which could be otherwise difficult to implement. For example, a profiling aspect can be

very effective when there is no need for a complete execution profile but instead only a

certain behavior is of interest. In the first case study, for example, profiling the whole

software of the smartphone would have produced huge amounts of profiling data, most of

which may be not of interest, whereas using aspects we were able to use a customized,

lightweight profiling tool for measuring only the SUT characteristics we were interested in.

From the manually formulated test aspects, also, the coverage and robustness aspects

faced strong competition from existing commercial test coverage and unit testing tools.

Although writing a coverage analysis aspect implementing a test coverage tool is easy,

there are a number of commercial test coverage tools that are more effective and richer in

features thus providing better results.

Aspects provide a useful technique for controlling performance overhead in testing,

because of being modularized outside the SUT code. For example, when compared with

the profiling tools that instrument SUT with code to produce profiling data, for example,

via tracing data, we found aspects to produce a more realistic overview of the system

performance: the overhead caused by executing the aspect code could be simply excluded

from the execution time profile of the original code. However, the performance overhead

of executing aspect code could make the timing analysis difficult in case the aspect

designer is not able to identify all related pointcuts affected by the added delay. In our

experiments, this was not a problem, since we were able to identify the relevant timers and

time-outs and increase them correspondingly using the aspects, thus mitigating the pro-

filing impact on timing.

The use of test aspects can also lead to increased overall test coverage. By simply

analyzing the basic requirements, we were able to identify new test objectives that

increased the overall test coverage by some percentage points in the first case study,

although the software was already at the production phase. While the system we studied

was not a perfect textbook example in the sense of good test cases and test coverage, we

believe it represents a typical industrial system and typical software testing effort, which

increases the value of the case studies. We assume that the ability to define test objectives

and to formulate related test cases based on requirements tends to enable testing that

captures more generic and crosscutting concerns. Furthermore, the ability to identify

crosscutting issues already at the requirements analysis phase predicts a better under-

standing of the system-level design issues that, in addition to being difficult to verify at the

testing phase, would present reliability risks in the final product. Moreover, based on the

results with our object-oriented system already in production, we believe the approach is

applicable also to legacy systems.

The benefits of the model-based testing approach we used in the second case study

include access to SUT internals without knowledge in aspect programming, and the end-to-

end visual characteristics, which makes it accessible to test developers. Challenges include

test developers’ need to have deep knowledge of the modeling language and its semantics,

Software Qual J (2014) 22:185–213 209

123



some limitations in the expressive power of the modeling language used, and technical

issues related to interoperability, immature implementations, and partial tool support when

considered in an industrial setting.

Based on our two case studies, we believe that the greatest power of aspect technology

lies in its ability to modularize testing concerns that would otherwise be scattered around the

system and difficult to expose otherwise. Whether this should be done using manual coding

or visual specification tools that are combined with code generation mechanisms depends on

the availability of high-quality tooling and the skills available in the organization in using

the languages and the associated tools. Moreover, generic aspects and template models have

the potential of improving the applicability of using aspects for testing.

In order to fully utilize the benefits of test aspects, however, it seems that systems

should be designed in a way that supports separating crosscutting concerns and specifying

them using aspect-oriented methodology. While this contradicts the basic principle of non-

invasiveness, we see that an optimal design process would recognize aspects from the

beginning. In practice, defining the crosscutting structures as modularized items can be a

cumbersome task, since identifying the crosscutting properties is not trivial and requires

domain knowledge and a profound understanding of the application context and disci-

plines. In order to utilize the wide range of conventional testing techniques, traditions, and

tools with test aspects, a possibility to manage the aspects properly as architectural ele-

ments is required. Considering the testing concerns as architectural elements in a system

would allow testability characteristics to be taken into consideration already at the

architecture design phase. However, methods for mapping the requirements to the system

architecture, further to the design, and finally to the implementation are needed in order to

understand the effects of these concerns in a systematic way. Furthermore, this would

require the ability to formulate test objectives directly based on the early test aspects

derived from requirements and to map them as components in the test harnesses.

6 Conclusions

The development of associated test code has become an important part of many software

development projects. However, numerous approaches are problematic in two respects.

Firstly, they address only properties that are tightly coupled and tangled with the func-

tionalities of the system, and secondly, once introduced to the system, the separation

between features and code associated with tests can be difficult.

In this paper, we have assessed the applicability of aspect-orientation in supporting the

testing of embedded software. In the first case study, we aimed at identifying the system

characteristics that lend themselves to be tested with aspects and to consider how to derive

test objectives from the non-functional requirements. Common to all these requirements

were the nature of expressing scattered concerns either to be tested or as system charac-

teristics. With our approach, it was possible to create tests addressing quality properties, as

well as to maintain the separation between the tested system and test software at the level

of code files. In the second case study, we studied the use of model-based techniques to

automatically generate the test aspects from visual specification models. While this

requires new skills from the test designers who use the modeling tools, it seems a realistic

goal when a good enough tool chain becomes available and is integrated with the IDEs.

Threats to the validity of our arguments are obvious: we have studied an industrial system

that is proprietary and confidential, which makes it impossible for others to repeat our

experiments. Despite these shortcomings, we think that experiences from studies such as ours

210 Software Qual J (2014) 22:185–213

123



are needed in order the pave the way for the wider industrial deployment of aspect-oriented

technologies in the embedded software domain. In a recent survey (Janicki et al. 2012), in the

context of model-based smartphone application testing, it was concluded that pilot studies are

the most important way to convince practitioners of the benefits of the proposed technology.

Such pilot studies are often narrow and limited to specific domains and tools, but this is

exactly what makes them relevant for the potential users the pilot is trying to address.

Acknowledgments The first and the third listed authors acknowledge partial funding from the Academy of
Finland (grant number 121012). Part of the second listed author’s work was done while he was with the
Weizmann Institute of Science, Rehovot, Israel. In addition, the second listed author acknowledges partial
funding from an Advanced Research Grant awarded to David Harel of the Weizmann Institute from
the European Research Council (ERC) under the European Community’s 7th Framework Programme
(FP7/2007-2013).

References

AspectC??. (2012). AspectC?? website. At URL http://www.aspectc.org/. Cited March 2012.
AspectJ. (2012). AspectJ WWW site. At URL http://www.eclipse.org/aspectj/. Cited March 2012.
Clarke, S., Harrison, W., Ossher, H., & Tarr, P. (1999). Subject-oriented design: Towards improved

alignment of requirements, design, and code. ACM SIGPLAN Notices, 34(10), 325–339.
Coelho, R., Kulesza, U., von Staa, A., & Lucena, C. (2006). Unit testing in multi-agent systems using mock

agents and aspects. In SELMAS ’06: Proceedings of the 2006 international workshop on software
engineering for large-scale multi-agent systems, (pp. 83–90). ACM Press.

Craig, R. D., & Jaskiel, S. P. (2002). Systematic software testing. London: Artech House.
Damm, W., & Harel, D. (2001). LSCs: Breathing life into message sequence charts. Journal on Formal

Methods in System Design, 19(1), 45–80.
Feng, Y., Liu, X., & Kerridge, J. (2007). A product line based aspect-oriented generative unit testing

approach to building quality components. In Computer Software and Applications Conference, (Vol. 2,
pp. 403–408). IEEE Computer Society.

Fewster, M., & Graham, D. (1999). Software test automation: Effective use of test execution tools. New
York: Addison–Wesley.

Filman, R. E., Elrad, T., Clarke, S., & Akşit, M. (2004). Aspect-oriented software development. New York:
Addison–Wesley.

Harel, D., & Maoz, S. (2008). Assert and negate revisited: Modal semantics for UML sequence diagrams.
Software and Systems Modeling (SoSyM), 7(2), 237–252.

Harel, D., & Marelly, R. (2003). Come, let’s play: Scenario-based programming using LSCs and the play-
engine. Berlin Springer.

IBM Rational. (2012). IBM Rational Software Architect homepage. Available at http://www-01.ibm.com/
software/awdtools/swarchitect/websphere. Cited March 2012.

Janicki, M., Katara, M., & Pääkkönen, T. (2012). Obstacles and opportunities in deploying model-based
GUI testing of mobile software: A survey. Software Testing, Verification & Reliability, 22(5), 313–341.

Kaner, C., Bach, J., & Pettichord, B. (2002). Lessons learned in software testing: A context-driven
approach. New York: Wiley.

Kartal Y. B., & Schmidt E. G. (2007). An evaluation of aspect oriented programming for embedded real-
time systems. In Proceedings of the 22nd international symposium on computer and information
sciences (ISCIS 2007), (pp. 1–6). IEEE, November 2007.

Kulesza, U., Sant’Anna, C., & Lucena, C. (2005). Refactoring the JUnit framework using aspect-oriented
programming. In OOPSLA ’05: Companion to the 20th annual ACM SIGPLAN conference on object-
oriented programming, systems, languages, and applications, (pp. 136–137). ACM Press.

Maoz, S. (2012). Tracer website. http://www.wisdom.weizmann.ac.il/maozs/tracer/. Cited March 2012.
Maoz, S. (2009a). Model-based traces. In M. R. V. Chaudron, (ed.), Workshops and symposia at MODELS

2008, vol. 5421 of Lecture Notes in Computer Science, (pp. 109–119). Berlin: Springer.
Maoz, S. (2009b). Using model-based traces as runtime models. IEEE Computer, 42(10), 28–36.
Maoz, S., & Harel, D. (2006). From multi-modal scenarios to code: Compiling LSCs into AspectJ. In Young

M., Devanbu, P. T. (eds.), Proceedings of the 14th international ACM/SIGSOFT symposium on
foundations of software engineering (FSE’06), (pp. 219–230). ACM.

Software Qual J (2014) 22:185–213 211

123

http://www.aspectc.org/
http://www.eclipse.org/aspectj/
http://www-01.ibm.com/software/awdtools/swarchitect/websphere
http://www-01.ibm.com/software/awdtools/swarchitect/websphere
http://www.wisdom.weizmann.ac.il/maozs/tracer/


Maoz, S., & Harel, D. (2011). On tracing reactive systems. Software and Systems Modeling (SoSyM), 10(4),
447–468.

Maoz, S., Harel, D., & Kleinbort, A. (2011). A compiler for multi-modal scenarios: Transforming LSCs into
AspectJ. ACM Transactions on Software Engineering and Methodology (TOSEM), 20(4), 18.

Maoz, S., Metsä, J., & Katara, M. (2009). Model-based testing using LSCs and S2A. In Schürr A., & Selic
B. (eds.), Proceedings of the 12th international conference on model driven engineering languages and
systems (MoDELS’09), vol. 5795 of Lecture Notes in Computer Science, (pp. 301–306) (short paper).
Berlin: Springer.

Metsä, J., Katara, M., & Mikkonen, T. (2007). Testing non-functional requirements with aspects: An
industrial case study. In Proceedings of the 7th international conference on quality software (QSIC
2007), (pp. 5–14). Washington, DC: IEEE Computer Society.

Metsä, J., Katara, M., & Mikkonen, T. (2008). Comparing aspects with conventional techniques for
increasing testability. In Proceedings of the 1st international conference on software testing, verifi-
cation, and validation (ICST 2008), (pp. 387–395). Washington, DC: IEEE Computer Society.

Nokia. (2012). Symbian operating system website. At URL http://symbian.nokia.com/. Cited March 2012.
Pesonen, J. (2006). Extending software integration testing using aspects in symbian OS. In McMinn, P. (ed.),

TAIC PART 2006, (pp. 147–151). Washington, DC: IEEE Computer Society.
Pesonen, J., Katara, M., & Mikkonen, T. (2006). Production-testing of embedded systems with aspects. In

Ur, S., Bin, E., & Wolfsthal, Y. (eds.), Revised selected papers from the 1st international conference
on hardware and software verification and testing, haifa verification conference (HVC’05), vol. 3875
of Lecture Notes in Computer Science, (pp. 90–102). Berlin: Springer.

Pezzè, M., & Young, M. (2008). Software testing and analysis: Process, principles, and techniques. New
York: Wiley.

Rajan, H., & Sullivan, K. (2005). Aspect language features for concern coverage profiling. In Mezini, M., &
Tarr, P. L. (eds.), AOSD ’05: Proceedings of the 4th international conference on aspect-oriented
software development, (pp. 181–191). New York: ACM Press.

Rashid, A., Sawyer, P., Moreira, A., & Araujo, J. (2002). Early aspects: A model for aspect-oriented
requirements engineering. In RE ’02: Proceedings of the 10th anniversary IEEE joint international
conference on requirements engineering, (pp. 199–202). Washington, DC: IEEE Computer Society.

Rook, P. (1986). Controlling software projects. Software Engineering Journal, 1(1), 7–16.
Spinczyk, O., Gal, A., & Schröder-Preikschat, W. (2002). AspectC??: An aspect-oriented extension to the

C?? programming language. In J. Nobles & J. Potter, (eds.), Proceedings of the 40th international
conference on technology of object oriented languages and systems (TOOLS PACIFIC ’02), vol. 10 of
Conferences in Research and Practice in Information Technology, (pp. 53–60). Sydney, NSW: Aus-
tralian Computer Society.

Stamey, J., & Saunders, B. (2005). Unit testing and debugging with aspects. Journal of Computing Sciences
in Colleges, 20(5), 47–55.

Xu, D., & He, X. (2007). Generation of test requirements from aspectual use cases. In Proceedings of the
3rd workshop on testing aspect-oriented programs (WTAOP’07), (pp. 17–22). New York, NY: ACM.

Author Biographies

Jani Metsä is a program manager of wireless systems at Elektrobit
Inc, USA. His research interests include aspect-oriented and non-
functional testing, and mobile software. Metsä received a Doctor of
Technology degree from Tampere University of Technology, Finland,
in 2010. Contact him at jani.metsa@elektrobit.com.

212 Software Qual J (2014) 22:185–213

123

http://symbian.nokia.com/


Shahar Maoz is a faculty member at the School of Computer Science,
Tel Aviv University, Israel. His research interests include the use of
formal methods in software and systems modeling, static and dynamic
analysis, and software visualization. Maoz received a PhD in Com-
puter Science from the Weizmann Institute of Science, Israel, in 2009.
Contact him at maoz@cs.tau.ac.il.

Mika Katara is currently a part-time associate professor at Tampere
University of Technology, where he was in charge of software testing
research and training before moving to Intel in April 2012. He earned
his doctorate from the same institution in 2001. Contact him at
mika.katara@tut.fi.

Tommi Mikkonen is a professor of distributed systems software at
Tampere University of Technology. His current research interests
include software architectures, distributed systems, aspect-oriented
development methodologies, and web and mobile software. Mikkonen
received a Doctor of Technology degree from Tampere University of
Technology in 1999. Contact him at Tommi.Mikkonen@tut.fi.

Software Qual J (2014) 22:185–213 213

123


	Using aspects for testing of embedded software: experiences from two industrial case studies
	Abstract
	Introduction
	Background and related work
	Case study I
	Analyzing requirements for testing
	Derived test aspects
	Summary of case study I

	Case study II
	Defining the scenarios
	Generating and executing testing scenarios
	Tracing and trace visualization and exploration
	Test setup
	Generating test scenario aspects

	Evalution
	Evaluation of case study I results
	Evaluation of case study II results
	Discussion

	Conclusions
	Acknowledgments
	References


