
A PSO-based model to increase the accuracy of software
development effort estimation

Vahid Khatibi Bardsiri • Dayang Norhayati Abang Jawawi •

Siti Zaiton Mohd Hashim • Elham Khatibi

Published online: 22 September 2012
� Springer Science+Business Media, LLC 2012

Abstract Development effort is one of the most important metrics that must be estimated

in order to design the plan of a project. The uncertainty and complexity of software

projects make the process of effort estimation difficult and ambiguous. Analogy-based

estimation (ABE) is the most common method in this area because it is quite straight-

forward and practical, relying on comparison between new projects and completed projects

to estimate the development effort. Despite many advantages, ABE is unable to produce

accurate estimates when the importance level of project features is not the same or the

relationship among features is difficult to determine. In such situations, efficient feature

weighting can be a solution to improve the performance of ABE. This paper proposes a

hybrid estimation model based on a combination of a particle swarm optimization (PSO)

algorithm and ABE to increase the accuracy of software development effort estimation.

This combination leads to accurate identification of projects that are similar, based on

optimizing the performance of the similarity function in ABE. A framework is presented in

which the appropriate weights are allocated to project features so that the most accurate

estimates are achieved. The suggested model is flexible enough to be used in different

datasets including categorical and non-categorical project features. Three real data sets are

employed to evaluate the proposed model, and the results are compared with other esti-

mation models. The promising results show that a combination of PSO and ABE could

significantly improve the performance of existing estimation models.

Keywords Development effort estimation � Analogy-based estimation �
Particle swarm optimization � Software project

V. Khatibi Bardsiri � D. N. A. Jawawi (&) � S. Z. M. Hashim
Department of Software Engineering, University of Technology Malaysia, Skudai,
81310 Johor Bahru, Malaysia
e-mail: dayang@utm.my

V. Khatibi Bardsiri
e-mail: khatibi78@yahoo.com

E. Khatibi
Department of Computer Engineering, Bardsir Branch, Islamic Azad University, Kerman, Iran

123

Software Qual J (2013) 21:501–526
DOI 10.1007/s11219-012-9183-x

1 Introduction

Time and cost are two important parameters in any type of project, but the importance of

these parameters in software projects is much greater than in other projects. There are two

main reasons why being on time and on budget are the primary focus in software projects.

The first reason is the rapid and dynamic advancements in hardware platforms, which

forces software developers to deliver consistent and adaptable software in a limited time

frame to fill the gap that exists between software and hardware progress. The second reason

is the constant change in customer demands. Nowadays, the diversity of software is very

high and the software market has become ever more competitive. Customer requests

change every day, and software developers must respond to this event by providing

software that is on time and on budget. Moreover, software projects are based on logical

and analytical work, while others are based on physical work. We cannot measure the

complexity of a software project until we actually begin working on it. Our final object is

an intangible product that is very difficult to estimate (Stepanek 2005). Due to the lack of

standards for determining the cost and effort of a project, managers and developers are

often forced to make decisions regarding these parameters based on prior experience.

The process of improvement in estimation methods has grown steadily; estimation

began with very simple assumptions and today it includes complicated equations and

techniques. A discussion of existing estimation methods requires dividing the methods into

two main groups: algorithmic and nonalgorithmic. The first idea for software development

effort estimation based on algorithmic methods was conceived in 1950 by presenting the

manual rule of thumb (Jones 2007). As the number of software projects and the need for

high-quality software on the part of users increased, new estimation models were presented

in 1965 that used linear equations and regression techniques (Boehm and Valerdi 2008).

Larry Putnam, Barry Boehm, and Joe Aron were notable pioneers in software estimation

methods (Jones 2007). Later, in 1973, IBM researchers presented the first automated tool,

Interactive Productivity and Quality (IPQ) (Jones 2007). Barry Boehm proposed a new

method called COCOMO that utilized experimental equations to estimate the software

development effort (Boehm 1981). In addition, Boehm (1981) explained several algorithms

in his book Software Engineering Economics that are still used today by researchers. Other

models such as Putnam Lifecycle Management (SLIM) and Software Evaluation and

Estimation of Resources-Software Estimating Model (SEER-SEM) continued the princi-

ples of COCOMO (Boehm and Valerdi 2008).

The introduction of the function point (FP) by Albrecht (Albrecht and Gaffney 1983)

was the other important event in that decade. FP was proposed to measure the size of a

project in its early stages. All previous estimation methods used Line Of Code (LOC) as

the main input parameter, but LOC was a subjective and inaccurate parameter, and most

methods suffered from its negative effect on accuracy of estimates. On the contrary, FP

was more accurate than LOC in determining the size of a software project based on

measuring the functionality of a system (Khatibi Bardsiri and Jawawi 2012). Changes in

software development methods and rapid progress in software methodologies led to the

development of a new version of COCOMO called COCOMO II in 2000 (Boehm 2000).

The new version covered the new features and requirements of software projects. This

version of COCOMO included additional details regarding system functionality and uti-

lized FP to determine the scope of projects.

On the other hand, nonalgorithmic estimation methods are constructed based on ana-

lyzing completed software projects. Since software projects naturally diff from other types

of projects, in many cases algorithmic methods are unable to deal with their dynamic

502 Software Qual J (2013) 21:501–526

123

behavior. Moreover, lack of information in the early stages of software projects makes

estimating very difficult when algorithmic methods are employed. Therefore, researchers

have proposed nonalgorithmic methods to overcome these barriers. Some researchers

believed that an estimating process should include expert consultation and opinion. Hence,

expert judgment methods were proposed in 1963 (Dalkey and Helmer 1963). In these

methods, experts share their ideas in prearranged sessions to achieve agreement on esti-

mation issues. Several studies have tried to analyze the principles of expert judgment

methods and to make it easier to use (Molokken and Jorgensen 2005; Jorgensen and

Halkjelsvik 2010).

The classification and regression tree (CART) (Breiman, Friedman et al. 1984) was

proposed in 1984 as another nonalgorithmic method in this field. Researchers used this

method to analyze prior software project data and construct a regression tree in which

leaves represented the amount of effort. In such trees, a path is traversed from root to leaf

based on the target project features (Briand et al. 1999; Mendes et al. 2003).

The most common non-algorithmic method, analogy-based estimation (ABE), was

proposed as a comparative method in 1997 (Shepperd and Schofield 1997). This method

predicts the software development effort by comparing the target project with past com-

pleted projects and finding projects that most resemble the target project. A comparison

process is performed based on project features. Each software project is described through

several features (e.g., FP, development type, and application type), which are used by ABE

to identify the similarity level of projects.

Due to variations in estimates, some researchers preferred to consider an interval instead

of a fixed value for the purpose of estimating (Bakır et al. 2011). Moreover, the effect of

data set quality has been investigated as a key point in this area (Bakır et al. 2010).

As neural networks have been widely used for estimation purposes in various sciences,

they have also been employed in software development effort estimation (Li et al. 2009a,

b; Bhatnagar et al. 2010).

Finally, fuzzy and neuro fuzzy systems have been used in this field to interpret the

behavior of software projects from the perspective of effort estimation. Most research

studies in this area have tried to model the size of a software project using fuzzy logic to

estimate the effort. The COCOMO model has been widely used as the basic model in

fuzzy-based research (Ahmed et al. 2005; Azzeh et al. 2010). This paper is organized in six

sections as follows. The ABE method and a particle swarm optimization (PSO) algorithm

are explained in Sects. 2 and 3, respectively, and the proposed hybrid model is presented in

Sect. 4. Section 5 includes the obtained results, and, finally, the conclusion is stated in

Sect. 6.

2 Analogy-based estimation (ABE)

The ABE method was proposed by Shepperd in 1997 (Shepperd and Schofield 1997) as a

substitute for algorithmic methods. In this method, the estimation of software project

metrics is performed by comparing the target project with previously completed projects

and finding the projects that are most similar to the target project. Due to its simplicity,

ABE has been widely used in software projects many similar predecessors. Basically, ABE

consists of four main parts (Khatibi Bardsiri and Jawawi 2011):

(i) Historical data set,

(ii) Similarity function,

Software Qual J (2013) 21:501–526 503

123

(iii) Associated retrieval rules,

(iv) Solution function.

The estimation process of ABE consists of the following steps:

1. Gather data from previous projects and produce a basic data set.

2. Choose proper measurement parameters such as FP and LOC.

3. Retrieve previous projects and calculate the similarities between target project and

previous projects.

4. Estimate target project effort.

2.1 Similarity function

ABE uses a similarity function that compares the features of two projects and determines

the level of similarity between them. There are two popular similarity functions: Euclidean

similarity (ES) and Manhattan similarity (MS) (Shepperd and Schofield 1997). In math-

ematics, the Euclidean distance or Euclidean metric is the ordinary distance between two

points. It is frequently used in optimization problems in which distances only have to be

compared. Manhattan distance is a form of geometry in which the usual distance function

or metric of Euclidean geometry is replaced by a new metric in which the distance between

two points is the sum of the absolute differences of their coordinates.

Both of these functions have been widely used to measure the degree of similarity

between software projects. There is no basis for selecting Euclidean or Manhattan func-

tions for a particular data set as this selection is performed by trial and error. The nature of

the projects in the data set and the normality level can have a considerable effect on the

performance of similarity functions. Equation (1) shows the ES function:

Simðp; p0Þ ¼ 1
ffi

Pn
i¼1 wiDis fi; f

0
ið Þ

p

þ d
� � d ¼ 0:0001 ð1Þ

Dis fi; f
0
i

� �

¼
fi � f 0i
� �2

if fi and f 0i are numerical or ordinal

0 if fi and f 0i are nominal and fi ¼ f 0i
1 if fi and f 0i are nominal and fi 6¼ f 0i

8

<

:

9

=

;

where p and p0 are the projects, wi is the weight, ranging between 0 and 1, assigned to each

feature. fi and f 0i display the ith feature of each project, and n indicates the number of

features. d is used to obtain nonzero results. The MS formula is very similar to the ES one,

but it computes the absolute difference between features. Equation (2) shows the MS

function:

Simðp; p0Þ ¼ 1
Pn

i¼1 wiDis fi; f
0
ið Þ þ d

� � d ¼ 0:0001 ð2Þ

Dis fi; f
0
i

� �

¼
fi � f 0i
�

�

�

� if fi and f 0i are numerical or ordinal

0 if fi and f 0i are nominal and fi ¼ f 0i
1 if fi and f 0i are nominal and fi 6¼ f 0i

8

<

:

9

=

;

In addition, there are other similarity functions such as rank mean similarity (Walkerden

and Jeffery 1997), maximum distance similarity, and Minkowski similarity (Angelis and

Stamelos 2000). These three similarity functions have been widely used.

504 Software Qual J (2013) 21:501–526

123

In some previous works, several types of similarity function have been employed to

determine the optimum performance of ABE because there is no specific method to

indicate the best similarity function to be used in defined conditions (Shepperd and

Schofield 1997; Chiu and Huang 2007; Li et al. 2007a, b, 2009a, b; Li and Ruhe 2008a, b).

2.2 Solution function

A solution function is used to estimate the software development effort by considering

similar projects that were found to be based on the similarity function. Common solution

functions include the most similar project (known as closest analogy) (Walkerden and

Jeffery 1999), average of most similar projects (mean) (Shepperd and Schofield 1997),

median of most similar projects (median) (Angelis and Stamelos 2000), and inverse dis-

tance weighted mean (inverse) (Kadoda et al. 2000). The average describes the mean

amount of effort for K most similar projects, where K [1. The median describes the

median amount of effort for K most similar projects, where K [2. Finally, the inverse

adjusts the portion of each project in estimation using Eq. (3):

Cp ¼
X

K

k¼1

Simðp; pkÞ
PK

i¼1 Simðp; piÞ
Cpk

ð3Þ

where p is the new project, pk the kth most similar project, Cpk
the effort value of the kth

most similar project pk, Sim(p, pk) the similarity between projects pk and p, and K the total

number of most similar projects. Different types of solution functions have been tried;

some studies used just one solution function (Huang and Chiu 2006; Li and Ruhe 2008a,

b), while other studies considered several types of solution function (Angelis and Stamelos

2000; Li et al. 2009a, b).

2.3 K nearest neighborhood (KNN)

Finding the best value of K [in Eq. (3)] has been the subject of several studies in the last

decade because the value of K affects the level of accuracy in estimates and may vary in

different data sets. The research studies related to analogy methods can be divided based

on the method used to find the best number of analogs (K). In a number of studies, the

authors considered a fixed number for K (Walkerden and Jeffery 1999; Chiu and Huang

2007). On the other hand, a number of studies determined a range for K and then tried to

find the best number (Shepperd and Schofield 1997; Huang and Chiu 2006; Li et al.

2009a, b).

Recently, some researchers have proposed a dynamic search method to find the optimal

value of K so that this value may be different for different projects (Li et al. 2007a, b).

2.4 Previous attempts to improve the performance of ABE

Analyzing the correlation coefficient has been employed to improve the performance of

ABE. It can be used for feature weighting and feature selection in terms of software

development effort estimation. Features that have a weak correlation with effort are given a

low weight, and features with a strong correlation are given a high weight. Features with no

correlation are deleted. Some studies have demonstrated improvement in the performance

of ABE using this technique (Keung et al. 2008; Jianfeng et al. 2009).

Software Qual J (2013) 21:501–526 505

123

Rough set analysis (Pawlak 1991) is a weighting technique that suggests the proper

weights for independent features based on a series of predefined criteria. All features are

divided into condition features (independent) and decision features (dependent). In this

technique, analyzing dependencies between features leads to several reducts (classes),

which are subsets of features. Subset discovery is performed using decision rules. The

intersection of all classes is considered to comprise core features, which are treated as the

most important features. The weighting system in rough set technique is constructed based

on the frequency of features in reducts, the existence of features in the core set, and the

number of times a feature appears in decision rules. This technique has been used to

estimate software development effort (Li et al. 2007a, b; Li and Ruhe 2008a, b).

Gray theory was introduced in 1982 (Deng 1982). Gray indicates a return to the

fuzziness concept, black means incomplete and unknown information, and white denotes

completed and known information. Gray analysis is a statistical technique used to deter-

mine the similarity level between two observations based on a comparison of their features.

Use of this technique can improve the performance of the ABE method in terms of

comparison (Huang et al. 2008; Azzeh et al. 2010; Hsu and Huang 2011; Song and

Shepperd 2011).

One of the most important parts of the ABE method is the solution function because it

has a significant effect on the accuracy of predictions. Therefore, several studies have tried

to enhance the solution function by applying adjustment expressions (Jorgensen et al.

2003; Chiu and Huang 2007; Li et al. 2009a, b). An adjustment expression refines the

results of solution functions to produce more accurate estimations.

Search-based software engineering (SBSE) is a method to apply metaheuristic search

techniques like genetic algorithms (GAs), simulated annealing, and tabu search to software

engineering problems. Due to the complexity and uncertainty of these problems, common

optimization techniques in operations research like linear programming or dynamic pro-

gramming are mostly impractical for large-scale software engineering problems. This is

why researchers and practitioners have utilized metaheuristic search techniques in this area

(Harman and Jones 2001).

Despite the fact that the main application of SBSE is in software testing (McMinn

2004), it has been applied to other software engineering activities such as requirements

analysis (Greer and Ruhe 2004), software design (Clark and Jacob 2001), software

development (Alba and Chicano 2007), and software maintenance (Antoniol et al. 2005).

In this paper, SBSE is employed in the field of software development effort estimation by

combining ABE and PSO optimization algorithms. In the following sections, studies that

have used the SBSE method to increase the accuracy of effort estimation are reviewed.

Optimization techniques can be useful when adjusting the feature weights in the ABE

similarity function. GAs, as the most common optimization method, have been used to

determine the feature weights in the ABE method (Huang and Chiu 2006; Li et al. 2007a,

b, 2008, 2009a, b). Huang and Chiu (2006) defined several linear and nonlinear equations

in which the weights are determined for effort drivers. In this study, a GA was employed to

search for the best parameters that must be used in the mentioned equations. The results

showed that a GA could significantly improve the performance of ABE by adjusting the

parameters involved in the equations.

A combination of GA and other techniques has been commonly used to increase the

accuracy of effort estimates. Linear adjustment (Chiu and Huang 2007), a gray relational

similarity technique (Huang et al. 2008; Hsu and Huang 2011), and regression methods

(Oliveira et al. 2010) have been combined with GAs to obtain more accurate results.

506 Software Qual J (2013) 21:501–526

123

Due to the high level of uncertainty, fitness functions or optimization targets play a

significant role for effort estimation in software projects. Ferrucci et al. (2010) investigated

the efffect of different fitness function on the accuracy of estimates. The results showed

that an appropriate selection of performance metrics (which must be optimized) can sig-

nificantly increase the accuracy of estimates.

The use of a PSO algorithm has been limited to enhancing the performance of the

COCOMO model (Lin 2010; Sheta et al. 2010; Reddy 2011). A PSO has no overlapping

and mutation calculation. The search can be carried out by the speed of particles. Over

several generations, only the most optimistic particle can transmit information to other

particles, and the speed of search is very fast. After that the calculation in PSO is very

simple. Compared with other calculations under development, PSO offers enhanced

optimization and can be completed easily (Bai 2010). Therefore, PSO can be more com-

putationally efficient than GAs in some cases, and it is reasonable to employ this algorithm

in field of effort estimation.

3 Particle swarm optimization (PSO) algorithm

Particle swarm optimization (PSO), inspired by the social behavior of birds flocking or fish

in schools, is a population-based stochastic optimization technique developed by Kennedy

and Eberhart (1995). The main strength of PSO is its fast convergence, which compares

with many global optimization algorithms like GAs, simulated annealing, and other global

optimization algorithms.

PSO shares many similarities with evolutionary computation techniques such as GAs.

The system is initialized with a population of random solutions and searches for optima by

generational updating. However, unlike GAs, PSO has no evolution operators such as

crossover and mutation. In PSO, the potential solutions, called particles, fly through the

problem space by following the current optimum particles. Detailed information will be

given in the following sections.

3.1 Optimization process

PSO learns from a scenario and uses it to solve optimization problems. In PSO, each single

solution is a ‘‘bird’’ known as a particle in the search space. All particles have fitness

values that are evaluated by the fitness function to be optimized and have velocities that

direct the flight of the particles. The particles fly through the problem space by following

the current optimum particles.

PSO is initialized by a group of random particles (solutions) and then searches for

optima by updating generations. In any iteration, each particle is updated by following the

two ‘‘best’’ values. The first one is the best solution (fitness) it has achieved so far (the

fitness value is also stored). This value is called Pbest. Another ‘‘best’’ value that is tracked

by the particle swarm optimizer is the best value obtained so far by any particle in the

population. This best value is a global best and called Gbest. When a particle takes part of

the population as its topological neighbors, the best value is a local best and is called lbest.

After finding the two best values, the particle updates its velocity and position by following

Eqs. (4) and (5):

Software Qual J (2013) 21:501–526 507

123

v½i� ¼ w � v½i� þ c1 � randðÞ � ðPbest½i� � present½i�Þ þ c2 � randðÞ � Gbest� present½i�ð Þ
ð4Þ

present½i� ¼ present½i� þ v½i� ð5Þ

where v[] is the particle velocity and present[] is the current particle (solution). Pbest[] and

Gbest[] are defined as stated previously. rand() is a random number in the interval (0,1), c1

is a ‘‘cognitive parameter,’’ c2 is a ‘‘social parameter,’’ and w is the inertia weight. The

combination of these parameters determines the convergence properties of the algorithm.

3.2 Parameter value selection

For the initial version of the PSO, the values for c1, c2, and w must be selected. This

selection has an effect on the convergence speed and the ability of the algorithm to find the

optimum, but different values may be better for different problems. Much work has been

done to select a combination of values that works well in a wide range of problems.

The inertia weight determines how the previous velocity of a particle influences the

velocity in the next iteration:

• If w = 0, then the velocity of the particle is only determined by the parti and partg
positions; this means that the particle may change its velocity instantly if it is moving

far from the best positions recorded in its history. Thus, low inertia weights favor

exploitation (local search).

• If w is high, the rate at which a particle may change its velocity is lower (it has an

‘‘inertia’’ that makes it follow its original path) even when better fitness values are

known. Thus, high inertia weights favor exploration (global search).

In Shi and Eberhart (1998, 1999), a decaying inertia weight is proposed and tested, with

the aim of favoring global search at the start of the algorithm and local search subse-

quently. If the inertia weight is not reduced with time, the authors suggest selecting a value

of w [[0.8, 1.2]. The values of the cognitive and social factors are not critical for the

algorithm, but the selection of proper values may result in better performance, both in

terms of speed of convergence and alleviation of local minima. Their values must be taken

into account when choosing the inertia weight. Several studies propose different values for

these parameters that are considered adequate for some of the usual benchmark functions

(Table 1).

The pseudocode of the procedure is as follows:

508 Software Qual J (2013) 21:501–526

123

Particle velocities in each dimension are clamped to a maximum velocity Vmax. If the

sum of accelerations causes the velocity of that dimension to exceed Vmax, which is a

parameter specified by the user, then the velocity of that dimension is limited to Vmax.

4 PSO-based estimation model

Even though ABE is a simple, fast, and straightforward estimation method, the nonnor-

mality of software project data sets makes the process of estimation quite difficult. Indeed,

the nonnormality of software projects is the main problem that all comparison-based

methods like ABE suffer from. As a solution, accurate and efficient feature weighting can

considerably improve the performance of ABE. This paper aims to overcome this problem

by suggesting appropriate weights for project attributes. To explicitly determine the

research goal, three research questions are defined as follows:

1. How can the PSO algorithm be combined with ABE to design an efficient attribute-

weighting system?

2. How do the different structures of ABE affect the accuracy of the weighting system?

3. Can a combination of ABE and PSO algorithm increase the accuracy of estimates

achieved by other estimation methods?

Since the comparison of a new project with completed projects is the main feature of the

ABE method, the accuracy of estimations strongly depends on the integrity of compari-

sons. Determination of the similarity level that exists between two projects, without regard

to the importance of each feature, may have a negative impact on the integrity of com-

parisons. Due to the uncertain and complex nature of software projects, the process of

comparison requires more attention as compared to other projects. Comprehensive feature

analysis prior to project comparison can improve the performance of the ABE method. As

stated previously, the comparison step is performed through the similarity function in the

ABE method. Therefore, the proposed model emphasizes improving the performance of

the similarity function. In the proposed hybrid estimation model, the PSO algorithm is

combined with the ABE method to increase the accuracy of estimates. Flexibility and

adaptability are two valuable specifications of PSO that enable it to overcome the com-

plexity and vagueness of software project features. Indeed, the role of PSO is to find the

most appropriate feature weights for use in the similarity function. Weight allocation is

performed with regard to the optimization of ABE performance parameters described in

the following section. The process of model construction is displayed through a framework

including training and testing stages.

4.1 Performance metrics

The performance of estimation methods is evaluated using four main metrics: relative error

(RE), magnitude of relative error (MRE), mean magnitude of relative error (MMRE), and

Table 1 Suggested PSO
parameter values

c1 c2 w References

2 2 1 Kennedy et al. (2001)

2 2 0.9 Shi and Eberhart (1999)

1.4962 1.4962 0.7968 Trelea (2003)

Software Qual J (2013) 21:501–526 509

123

percentage of the prediction (PRED), which are computed as follows (Shepperd and

Schofield 1997):

RE ¼ ðEstimate� ActualÞ
Actual

ð6Þ

MRE ¼ jEstimated� Actualj
Actual

ð7Þ

MMRE ¼
PN

i¼1 MRE

N
ð8Þ

PREDðXÞ ¼ A

N
ð9Þ

where A is the number of projects with MRE less than or equal to X, and N is the number of

estimated projects. An acceptable level of X in software effort estimation methods is 0.25,

and the proposed methods are compared based on this level. MMRE as the total amount of

error must be minimized, whereas PRED(0.25) must be maximized.

4.2 Training stage

In the training stage, the proposed estimation model is constructed based on adjusting the

feature weights by means of the PSO algorithm to use in the ABE similarity function. The

dependent feature (target feature) is development effort; all others are considered inde-

pendent features. The training stage begins by dividing all available projects into three

main groups—basic, training, and testing projects. Projects in the first and second groups

are used to construct the estimation model, while testing projects are employed to evaluate

the performance of the proposed model. Indeed, the basic projects are the basis of com-

parison in the proposed model.

In other words, training projects are compared with basic projects to find the most

appropriate weights, and testing projects are also compared with the basic projects to

examine the accuracy of estimation model. A project is removed from the training group

and applied to the similarity function as a new project that needs to be estimated (esti-

mation of project development effort). The PSO algorithm assigns weights (in the range of

[0,1]) to the independent features considered in the similarity function (in the first iteration,

suggested weights are generated randomly). The removed project is compared with the

basic projects by applying PSO suggested weights to Eq. (1). The similarity function

discriminates the most similar projects (from basic projects) to the removed project and

sends them to the solution function. Eventually, the effort is estimated in a solution

function, and the MRE performance metric is computed. This process is repeated until all

training projects are estimated.

In the next step, MMRE and PRED(0.25) are computed for a training group based on

the obtained amounts of MRE, and these values are passed to the PSO algorithm. Since

increasing PRED(0.25) and decreasing MMRE are the main goals of any estimation

models in this field, the PSO algorithm is adjusted to minimize the value of (MMRE

- PRED(0.25)) as the target parameter. The most efficient weights are found using the

PSO algorithm if both MMRE and PRED(0.25) are considered in the optimization process.

A low value of MMRE regardless of PRED(0.25) or high value of PRED(0.25) regardless

of MMRE cannot be interpreted as an accurate result because there may be biased esti-

mates that change a performance metric to an unreal value. If termination criteria (number

510 Software Qual J (2013) 21:501–526

123

of iterations or level of error) are satisfied, the weights are recorded (as optimized weights)

to use in the testing stage; otherwise, the PSO algorithm modifies the weights with con-

sideration of the obtained performance parameters. New weights are applied to the simi-

larity function, and all computations are again repeated for the training projects.

This process is continued until termination criteria are satisfied (maximum number of

iterations or desired rate of error are achieved). Figure 1 depicts the training stage of the

proposed estimation model. As seen in the figure, there are two cycles in the training stage

where the first is related to the computation of MMRE for training projects and the second

for adjustment of weights by means of the PSO algorithm.

4.3 Testing stage

The main goal of the testing stage is to evaluate the accuracy of the constructed estimation

model by applying unseen projects. In this stage, for the purpose of exploring the per-

formance of the proposed model, basic and testing projects are employed as similarity

Suggested Weights

Available Software Projects

Basic Projects Training Projects Testing Projects

Similarity Function

Solution Function

PSO Algorithm

Minimize (MMRE-PRED(0.25))

Estimated

Effort

Compute MRE

Any other

projects?

Take a project

Compute

MMRE & PRED(0.25)
Optimized

Weights

Y N

Termination criteria

are satisfied

Fig. 1 Training stage of proposed model

Software Qual J (2013) 21:501–526 511

123

function inputs. In addition, optimized weights, obtained from the training stage, are

applied to the similarity function.

Similar to what was done in the training stage, a project is removed from testing projects

and then compared with basic projects using the similarity function. Projects that are most

similar to the removed project are determined and sent to the solution function. The effort

is estimated, and then the amount of MRE is computed. This process is repeated for all

testing projects and, finally, performance metrics of MMRE and PRED(0.25) are com-

puted. The testing stage is shown in Fig. 2. As stated in Sect. 4.2, the weights proposed (by

PSO) for project features are produced so that the ABE can estimate the training projects as

accurately as possible. In this case, basic projects are utilized by ABE for the purpose of

comparison. Therefore, two-thirds of the existing projects in the data set (including basic

and training sets) are used to reach the best possible weights, and the remaining projects

Basic Projects Testing Projects

Similarity Function

Solution Function

Estimated

Effort

Compute MRE

Any other

projects?

Take a project

Compute

MMRE & PRED(0.25)

Optimized

Weights

Y N

Fig. 2 Testing stage of proposed model

512 Software Qual J (2013) 21:501–526

123

are considered as the test set. PSO randomly generates the weights and adjusts them during

the iterations to reach the desired accuracy.

In the proposed model feature weighting is performed so that the combination of

weights helps ABE to produce the most accurate results. The value assigned to a feature is

a number in the range [0, 1], which is meaningless by itself. PSO is a stochastic algorithm

that produces different weights at each iteration, and the best combination of feature

weights can be different from one execution to another (different combinations may lead to

the same accuracy level). Therefore, the weight assigned to a feature cannot be interpreted

as the importance of that feature but as a part of the combination that must be utilized by

ABE.

4.4 Evaluation process

If the accuracy of the effort estimation model is computed by applying projects that have

been used in the construction of the model, the performance evaluation may be too opti-

mistic. The estimation error may be artificially low and may not reflect the real perfor-

mance of the model on unseen projects (Hayes 1994). A cross-validation approach gives a

more realistic accuracy assessment. It involves dividing the whole data set into multiple

training and test sets.

The estimation results in the training stages present the estimation accuracies from the

model construction data sets. The testing stages evaluate the estimation accuracies of the

models using the other unseen data sets. In the training stage, a cross-validation approach

calculates the accuracy for each training data set and then combines the accuracies across

all training sets for the training result. In the testing stage, the approach calculates the

accuracy for each test set and then combines the accuracies across all test sets for the test

result. In this paper, the proposed model is evaluated using threefold cross validation as

stated in the following section.

4.4.1 Cross validation

Basic, training, and testing are the three main groups that must be involved in a cross-

validation process. Because these three groups are randomly selected from available

projects, they can be employed in a k-fold cross validation. Since there are three separate

groups of projects, it may seem that threefold cross validation should be considered for the

purpose of evaluating, but something is different in this case. In threefold cross validation,

all samples are randomly divided into three sets where two are combined to form the

training set, and the other is considered as the test set. This classification is performed three

times to include all possible situations. Similar to the threefold technique, there are three

separate sets in the proposed model but the order of the first two sets (basic and training)

considerably affects the model construction process. Therefore, a modification must be

applied to the validation process in this case.

Six different sequences can be considered for the proposed model, as seen in Table 2,

where S is a set including all projects. S1, S2, and S3 are three subsets selected randomly

from S as basic, training, and test sets respectively. These sets include the same number of

projects (or approximately the same). At each stage, performance metrics are computed for

two separate sequences, and the average is considered as the result of that stage. Final

results are determined based on the average of results obtained from all three stages.

Software Qual J (2013) 21:501–526 513

123

4.4.2 Data set description

To explore the real performance, the evaluation of the estimation model must be carried

out by applying real data sets. In this study, three data sets are employed to investigate the

accuracy of the proposed model. The first data set comes from the IBM data processing

services (DPS) organization (Matson et al. 1994) including 24 projects developed by third-

generation languages. Five numerical features that may affect the project effort are input

count (IC), output count (OC), query count (QC), file count (FC), and adjustment factor

(AF). In this data set, there is a project whose effort is more than twice as small as the

second smallest project. In practice, this project is not suitable as an analog for other

projects. Therefore, it is excluded as an outlier in order to compare the results with

previous findings (Chiu and Huang 2007). Table 3 shows the statistical information about

this data set.

The second data set, which includes 21 projects, is related to a major Canadian financial

(CF) organization (Abran 1996). The collected projects are within the same application

domain and developed using a standard development process model. Most of the collected

projects developed on the IBM mainframe are included in the data set (Chiu and Huang

2007). IC, OC, inquiry count (IQC), internal logical file (ILF) count, external interface file

(EIF), and AF are the main features considered in model construction. Statistical infor-

mation related to this data set is presented in Table 4.

The third data set is that of the International Software Benchmarking Standards Group

(ISBSG 2011), which has been developed and refined by data collection over a 10-year

period based on metrics. The latest release of this data set is the ISBSG R11 data repository

(ISBSG), which includes a total of 5,052 projects from 24 countries. Statistical information

regarding the selected features [Input count (Inpcont), Output count (Outcont), Enquiry

count (EnqCont), File count (FileCont), Interface Count (Intcont), Adjusted function point

Table 2 Applying threefold
cross validation to proposed
model

S

S1 S2 S3

Possible sequences

Basic Training Testing

Fold 1 S1 S2 S3

S1 S3 S2

Fold 2 S2 S1 S3

S2 S3 S1

Fold 3 S3 S2 S1

S3 S1 S2

Table 3 Description of DPS
data set

Feature Minimum Maximum Mean Median SD

IC 7 193 41.3 34 37.3

OC 12 150 48.7 40 35.3

QC 0 75 17.3 14 19.6

FC 5 60 18 12 15.6

AF 0.75 1.2 1 1 0.1

EFFORT 2.9 105.2 22.8 11.8 28.7

514 Software Qual J (2013) 21:501–526

123

(AFP), and Normalized effort in hours (NorEffort)] is displayed in Table 5. Projects with

missing values in any of the selected feature are excluded from the subset. In the ISBSG

data set, project data quality is rated and only projects with an A or B rating are used in

published research papers. Therefore, projects with ratings other than A and B are excluded

from the subset.

Moreover, since normalized effort (NorEffort) is used as the target for estimation, the

risk from using normalized effort should be noted. For projects covering less than a full

development life cycle, normalized effort is an estimate of the full development effort, and

this may introduce bias. Hence the normalized ratio (normalized effort/summary effort) is

used to refine the project subset. As suggested by ISBSG (2011), a ratio of up to 1.2 is

acceptable. Projects with a normalized ratio larger than 1.2 are excluded. Finally, the

subset is further reduced to the projects with ‘‘Insurance’’ as ‘‘OrgType.’’ In the end,

the foregoing procedures generated a subset with 134 projects, which are used to evaluate

the proposed method.

4.5 Primary adjustments

Data preprocessing is an important part of estimation problems because it can significantly

affect quality of training. In this study, all independent features are normalized in a range

of [0, 1] to ensure that they have the same effect on the dependent feature (effort). It

expedites the process of training in the PSO algorithm. In all data sets, the population size

and the number of iterations of the PSO algorithm are adjusted to 100. In addition, to c1, c2,

and w are assigned 2, 2, and 1, respectively. The mentioned parameters were initialized

based on comprehensive trial and error using the PSO algorithm on the training data.

MMRE and PRED(0.25) are employed to construct and evaluate the performance of the

model because numerous recent studies have used these metrics to compare the accuracy

of models (Li et al. 2009a, b; Attarzadeh and Ow 2011; Hsu and Huang 2011;

Table 4 Description of CF
data set

Variable Minimum Maximum Mean Median SD

EIF 2 67 29.9 30 16.2

ILF 0 45 16.6 16 11.3

IC 0 46 17.2 16 11.5

OC 0 69 27.4 25 15.0

IQC 0 33 9.0 8 9.1

AF 66 90 79.8 80 6.2

EFFORT 52 544 331.8 369 151.0

Table 5 Description
of ISBSG data set

Variable Minimum Maximum Mean Median SD

InpCont 6 1,240 107.7 49.2 172.2

OutCont 4 2,455 165.4 82.5 303.8

EnqCont 3 1,306 98.8 63 137.3

FileCont 7 1,732 114.7 54.5 188.7

IntCont 5 1,572 99.42 36 215.88

AFP 57 7,633 599.1 334.5 864

NorEffort 426 36,225 5,898.9 3,873 6,257.1

Software Qual J (2013) 21:501–526 515

123

Khatibi Bardsiri et al. 2011). For the purpose of exploring the role of KNN (described in Sect.

2.3) in terms of the accuracy of the proposed model, five values, {1, 2, 3, 4, 5}, are applied to

the solution function [value of K in Eq. (3) varies from 1 to 5] separately, and the obtained

results from each amount of KNN are recorded. Moreover, Euclidean and Manhattan are used

as similarity functions to assess whether or not a change in similarity function has any effect

on the accuracy of estimates. Three main solution functions, including inverse, mean, and

median (Sect. 2.2) are investigated as well. In total, the investigation scope comprises 24

different structures for the proposed model based on a combination of KNN, similarity

function, and solution function. The results presented in Tables 6, 7, and 8 were obtained

from an iterative execution of PSO (average of 30 executions).

5 Experimental results

5.1 Results on DPS data set

Table 6 shows the results obtained from applying the proposed model to the DPS data set

based on the variation of ABE parameters. According to the table, different combinations

of model parameters (KNN, similarity function, and solution function) slightly change the

Table 6 Results on DPS data set
KNN Testing stage

SimFunction SolFunction MMRE PRED(0.25)

k = 1 Euclidean Closest 0.28 0.59

k = 1 Manhattan Closest 0.30 0.56

k = 2 Euclidean Inverse 0.26 0.62

Mean 0.26 0.61

k = 2 Manhattan Inverse 0.26 0.61

Mean 0.26 0.60

k = 3 Euclidean Inverse 0.26 0.61

Mean 0.27 0.60

Median 0.29 0.55

k = 3 Manhattan Inverse 0.28 0.57

Mean 0.28 0.58

Median 0.28 0.54

k = 4 Euclidean Inverse 0.27 0.62

Mean 0.30 0.57

Median 0.28 0.58

k = 4 Manhattan Inverse 0.28 0.58

Mean 0.29 0.56

Median 0.29 0.56

k = 5 Euclidean Inverse 0.28 0.59

Mean 0.33 0.55

Median 0.32 0.55

k = 5 Manhattan Inverse 0.29 0.58

Mean 0.32 0.56

Median 0.31 0.54

516 Software Qual J (2013) 21:501–526

123

accuracy of the model. Regarding the similarity function, since the diversity of results is

quite high, it is not possible to determine which similarity function is the best one.

Concerning the solution function, inverse presents more accurate estimations as com-

pared to the others. Moreover, among all values of KNN, k = 5 and k = 2 produce the

worst and best estimates, respectively. In the case of k = 1, there is no choice for

the solution function and the closest project is selected to estimate the target project. In the

case of k = 2, mean and median solution functions produce the same results, which is why

the median solution function is not shown in the table for this case.

The most accurate estimation (MMRE = 0.26, PRED(0.25) = 0.62) is achieved when

KNN, the similarity function, and the solution function are 2, Euclidean, and inverse,

respectively. This structure is utilized to compare the proposed model with other estima-

tion models.

5.2 Results on CF data set

The results obtained from applying the proposed estimation model to the CF data set are

presented in Table 7. Similar to the DPS data set, there is no significant difference between

Euclidean and Manhattan similarity functions in the CF data set. Additionally, the mean

Table 7 Results on CF
data set

KNN Testing stage

SimFunction SolFunction MMRE PRED(0.25)

k = 1 Euclidean Closest 0.47 0.53

k = 1 Manhattan Closest 0.47 0.53

k = 2 Euclidean Inverse 0.43 0.61

Mean 0.41 0.62

k = 2 Manhattan Inverse 0.42 0.60

Mean 0.41 0.60

k = 3 Euclidean Inverse 0.41 0.63

Mean 0.41 0.65

Median 0.43 0.58

k = 3 Manhattan Inverse 0.42 0.63

Mean 0.40 0.66

Median 0.43 0.59

k = 4 Euclidean Inverse 0.40 0.65

Mean 0.39 0.69

Median 0.41 0.65

k = 4 Manhattan Inverse 0.40 0.65

Mean 0.39 0.68

Median 0.41 0.63

k = 5 Euclidean Inverse 0.40 0.68

Mean 0.40 0.67

Median 0.41 0.59

k = 5 Manhattan Inverse 0.39 0.68

Mean 0.38 0.69

Median 0.40 0.60

Software Qual J (2013) 21:501–526 517

123

solution function produces the best performance metrics in all combinations, whereas

median produces the worst results.

Regarding the value of KNN, k = 1 presents the worst results, and k = 4 and k = 5

produce slightly more accurate estimates as compared to the other k values. In general, the

best performance of the model [MMRE = 0.38, PRED(0.25) = 0.69] is achieved by a

structure of k = 5, SimFunction = Manhattan, SolFuntion = mean, which is considered

for the purpose of comparing the proposed model with other estimation models.

5.3 Results on ISBSG data set

Table 8 displays the estimates obtained by applying the proposed model to the ISBSG data

set. As seen in the table, the similarity function cannot significantly change the accuracy of

estimates. The variation in similarity function leads to quite negligible changes in the

accuracy of estimates. The level of nonnormality and the diversity of projects in this data

set are much greater than in the DPS and CF data sets. Therefore, the range of performance

metrics for this data set is quite different from the other ones. Excluding the case of k = 1,

the inverse solution function produces the most accurate estimates for all other values of

KNN. The best performance of the proposed method is achieved by a structure of

KNN = 4, SimFunction = Euclidean, SolFunction = inverse, where the value of MMRE

Table 8 Results on ISBSG
data set

KNN Testing stage

SimFunction SolFunction MMRE PRED(0.25)

k = 1 Euclidean Closest 0.88 0.31

k = 1 Manhattan Closest 0.85 0.27

k = 2 Euclidean Inverse 0.75 0.46

Mean 0.79 0.43

k = 2 Manhattan Inverse 0.77 0.45

Mean 0.78 0.42

k = 3 Euclidean Inverse 0.70 0.46

Mean 0.76 0.41

Median 0.79 0.39

k = 3 Manhattan Inverse 0.72 0.45

Mean 0.74 0.40

Median 0.80 0.39

k = 4 Euclidean Inverse 0.64 0.51

Mean 0.69 0.49

Median 0.72 0.44

k = 4 Manhattan Inverse 0.68 0.49

Mean 0.70 0.46

Median 0.71 0.40

k = 5 Euclidean Inverse 0.74 0.45

Mean 0.77 0.40

Median 0.82 0.37

k = 5 Manhattan Inverse 0.75 0.43

Mean 0.77 0.40

Median 0.80 0.38

518 Software Qual J (2013) 21:501–526

123

is 0.64 and that of PRED(0.25) is 0.51. This structure is considered for the purpose of

comparing the proposed method with other estimation methods.

5.4 Proposed model versus other estimation models

The performance of the proposed model is compared with eight well-known estimation

models. Since the primary goal of this paper is to enhance the accuracy of the ABE

method, performance metrics obtained from the proposed model must be compared with

ABE. Therefore, all possible structures of ABE (similar to structures considered for the

proposed model) are applied to all data sets and the best performance metrics are recorded

for comparison purposes. Moreover, regression-based estimation methods including

CART, stepwise regression (SWR), and multiple regression (MLR) are involved in the

comparison process because they have been widely used in other research studies (Li et al.

2009a, b; Mittas and Angelis 2010; Hsu and Huang 2011). Finally, artificial neural network

(ANN) and three adjusted ABEs (Chiu and Huang 2007)—AAE, AAMH, and AAMK—

are compared with the proposed method. All results presented in the following sections are

computed using a threefold cross-validation technique.

Table 9 summarizes the results obtained from applying the selected estimation models to

the DPS data set (testing data) based on MMRE and PRED(0.25). It can be seen that the

proposed model produces the most accurate estimates (MMRE = 0.26, PRED(0.25) =

0.62) in the testing stage as compared to the other methods, followed by AAE

[MMRE = 0.38, PRED(0.25) = 0.57]. The worst estimates come from SWR

[MMRE = 0.93, PRED(0.25) = 0.16].

The results of applying different estimation models to the CF data set in the testing stage

are shown in Table 10. As seen in the table, the proposed model achieves the best per-

formance metrics [MMRE = 0.38, PRED(0.25) = 0.69], among all other estimation

models, followed by AAE [MMRE = 0.52, PRED(0.25) = 0.43]. In addition, SWR pro-

duces the worst estimates [MMRE = 0.97, PRED(0.25) = 0.02].

Table 11 shows the performance metrics obtained from applying the proposed method

to the ISBSG data set. The range of performance metrics for this data set shows its

complexity and high nonnormality. As seen in the table, the most accurate estimates are

achieved by the proposed estimation model [MMRE = 0.64, PRED(0.25) = 0.51]. The

method closest to the proposed model is AAMK [MMRE = 0.89, PRED(0.25) = 0.27].

Moreover, MLR presents the worst estimates on this data set [MMRE = 1.32,

PRED(0.25) = 0.16].

Table 9 Comparison of estima-
tion models on DPS data set

Method MMRE PRED(0.25)

SWR 0.93 0.16

ANN 0.90 0.22

MLR 0.73 0.30

CART 0.62 0.26

ABE 0.51 0.42

AAMK 0.43 0.61

AAE 0.38 0.57

AAMH 0.36 0.52

PROPOSED 0.26 0.62

Software Qual J (2013) 21:501–526 519

123

5.5 Improvement analysis

Since improving the accuracy of ABE was the main idea behind this paper, analysis of

obtained results must be performed comprehensively to clarify how the proposed model

improves the performance of ABE. In this section, percentage of improvement in terms of

ABE, AAE, AAMH, and AAMK is investigated (Figs. 3, 4).

Figure 3 depicts the percentage of improvement achieved by applying the proposed

model to the DPS data set. It is observed that the proposed model improves the accuracy of

ABE in both performance metrics of MMRE and PRED(0.25) by 49 and 48 %, respec-

tively. Since both performance metrics were improved in the same range, it is confirmed

that the improvement domain involves a wide range of testing projects. Increasing the

accuracy by almost 50 % implies that applying PSO can considerably enhance the per-

formance of ABE on the DPS data set.

The performance of AAE, AAMH, and AAMK was improved as well, but the percentage

of improvement is not as good as that of ABE. In terms of AAE and AAMK, improvement of

MMRE is quite a bit more than PRED(0.25). As seen in Fig. 3, in these models, PRED(0.25)

was improved by less than 10 %. This shows that the range of improvement is limited to a few

projects but the percentage of improvement in these few projects is convincing (32 and 40 %).

Regarding AAMH, MMRE and PRED(0.25) were improved by almost the same per-

centage. Compared to AAE and AAMK, the estimation model of AAMH has a lower

improvement percentage of MMRE (28 %) and a higher improvement percentage of

PRED(0.25) (19 %). In other words, the percentage of accuracy improvement in AAMH is

less than the other two models, but the number of projects affected by this improvement is

Table 10 Comparison of
estimation models on CF
data set

Method MMRE PRED(0.25)

SWR 0.97 0.02

CART 0.99 0.24

MLR 0.98 0.27

ABE 0.84 0.29

ANN 0.70 0.10

AAE 0.52 0.43

AAMH 0.49 0.38

AAMK 0.49 0.38

PROPOSED 0.38 0.69

Table 11 Comparison of
estimation models on ISBSG
data set

Method MMRE PRED(0.25)

MLR 1.32 0.16

ABE 1.21 0.19

SWR 1.13 0.13

ANN 0.96 0.22

CART 0.99 0.18

AAE 0.95 0.28

AAMH 0.91 0.18

AAMK 0.89 0.27

PROPOSED 0.64 0.51

520 Software Qual J (2013) 21:501–526

123

more than the number of improved projects in the other two models. It can be concluded

that the enhancement of MMRE is greater than PRED(0.25) in all of the mentioned

estimation models. The percentage of improvement obtained from using the proposed

model in CF data set is shown in Fig. 4. Since the performance metric values for AAMH

and AAMK are the same (Table 10), these models are combined in Fig. 4. According to

the figure, the greatest enhancement is achieved for ABE where MMRE and PRED(0.25)

are improved by 55 and 138 %, respectively, which indicates that estimation accuracy was

increased in a wide range of projects by a convincing percentage. Therefore, PSO can

significantly improve the performance of ABE in the CF data set.

MMRE and PRED(0.25) were improved by almost the same percentage as for AAE. Although

the improvement of PRED(0.25) in this case is a bit less than that observed in ABE, performance

enhancement is still more than 50 %, which certifies the superiority of the proposed model.

In terms of the last two models (AAMH and AAMK), PRED(0.25) is improved by a

promising percentage of 82 %, which indicates that a high number of estimates are

improved but the percentage of improvement in total accuracy (MMRE = 27 %) is less

than in the other two models. The improvement percentage of PRED(0.25) is higher than

MMRE in the CF data set. In addition, the proposed model presents a greater improvement

percentage in the CF data set compared with the DPS data set.

Figure 5 depicts the percentage of improvement achieved by applying the proposed

model to the ISBSG data set. It is observed that the value of PRED(0.25) is increased

Fig. 3 Percentage of improvement obtained by proposed method on DPS

Fig. 4 Percentage of improvement obtained by proposed method on CF

Software Qual J (2013) 21:501–526 521

123

significantly for all types of ABE (improvement of 168, 82, 183, 89 %). The largest

improvement of MMRE, 47 %, occurred for ABE and the lowest percentage of

improvement, 28 %, is related to AAMK. Compared to the other data sets, the improve-

ment percentage of PRED(0.25) is higher than the others, whereas the improvement per-

centage of MMRE is lower. This indicates that the number of outliers and nonnormal

projects in ISBSG are more than in the other data sets.

Regarding the research questions, the first question was addressed by the explanation of

the hybrid model in Sects. 4.2 and 4.3. The training and testing stages showed how the PSO

algorithm could be combined with ABE. In addition, the comparison between the proposed

hybrid model and ABE (Sect. 5.4) certified the efficiency of the weighting system, as

mentioned in the first research question. The second question was investigated in Sects.

5.1–5.3, where the different structures of ABE were employed in the proposed hybrid

model. The results proved that the proposed weighting system is flexible enough to be used

by different structures of ABE. Finally, the third research question was addressed in Sect.

5.4, where the performance of the proposed model was evaluated against the other esti-

mation models. This evaluation certified that the proposed model outperformed the other

models on all three data sets. Therefore, it can be concluded that the combination of ABE

and the PSO algorithm can improve the performance of other estimation models.

6 Conclusions

It is undeniable that development effort estimation plays a vital role in software project

management. Due to the complexity and inconsistency of software projects, inaccurate

estimates have become a common challenging issue, which bothers the developers and

managers throughout the development phases. The comparison between new projects and

previously completed projects is the main idea behind much research in this field. Although

ABE is the best-known comparison-based estimation model and has been widely used in

software development effort estimation, it is still unable to produce accurate estimates in

many situations. PSO as a low computational cost and fast optimization algorithm was

combined with ABE using the framework proposed in this paper. The proposed framework

consists of training and testing stages in which an estimation model is constructed and

evaluated. PSO explores the possible weights and selects those that will lead to the most

Fig. 5 Percentage of improvement obtained by proposed method on ISBSG

522 Software Qual J (2013) 21:501–526

123

accurate estimates. Indeed, the quality of the comparison process in the ABE method was

improved by assigning the most appropriate weights to project features. To evaluate the

performance of the proposed model, three real data sets were employed, and the perfor-

mance metrics of MMRE and PRED(0.25) were computed using a cross-validation tech-

nique. The encouraging results showed that the proposed model can significantly increase

the accuracy of estimates based on MMRE and PRED(0.25). The obtained results were

compared with eight common estimation models, which showed the superiority of the

proposed model in all data sets. According to the results obtained from three real data sets,

it can be concluded that the combination of PSO and ABE leads to a high-performance

model in terms of software development effort estimation. Besides achieving promising

estimates, the proposed model can be used in a wide range of software project data sets by

modifying a few parameters (primary adjustments). There is no prior assumption or pre-

requisite to use the proposed model. This means that it is a consistent, flexible, and

adaptable estimation model that is suitable for use in various types of software projects. As

future work, we will use other new optimization algorithms to increase the accuracy of

development effort estimation in the ABE method.

Acknowledgments We would like to thank the International Software Benchmarking Standards Group
(ISBSG) to approve for accessing the ISBSG data set for our research.

References

Abran, A. (1996). Function points analysis: An empirical study of its measurement processes. IEEE
Transactions on Software Engineering, 22(12), 895–910.

Ahmed, M. A., Omolade Saliu, M., et al. (2005). Adaptive fuzzy logic-based framework for software
development effort prediction. Information and Software Technology, 47(1), 31–48.

Alba, E., & Chicano, J. F. (2007). Software project management with GAs. Information Science, 177(11),
2380–2401.

Albrecht, A. J., & Gaffney, J. A. (1983). Software function, source lines of codes, and development effort
prediction: a software science validation. IEEE Transactions on Software Engineering, 9(6), 639–648.

Angelis, L., & Stamelos, I. (2000). A simulation tool for efficient analogy based cost estimation. Empirical
Software Engineering, 5(1), 35–68.

Antoniol, G., Penta, M. D., et al. (2005). Search-based techniques applied to optimization of project
planning for a massive maintenance project. In Proceedings of the 21st IEEE international conference
on software maintenance (pp. 240–249). IEEE Computer Society.

Attarzadeh, I., & Ow, S. H. (2011). Software development cost and time forecasting using a high perfor-
mance artificial neural network model. Intelligent Computing and Information Science, 134, 18–26.

Azzeh, M., Neagu, D., et al. (2010). Fuzzy grey relational analysis for software effort estimation. Empirical
Software Engineering, 15(1), 60–90.

Bai, Q. (2010). Analysis of particle swarm optimization algorithm. Computer and Information Science, 3(1),
180–184.

Bakır, A., Turhan, B., et al. (2010). A new perspective on data homogeneity in software cost estimation: A
study in embedded systems domain. Software Quality Journal, 18(1), 57–80.

Bakır, A., Turhan, B., et al. (2011). A comparative study for estimating software development effort
intervals. Software Quality Journal, 19(3), 537–552.

Bhatnagar, R., Bhattacharjee, V., et al. (2010). Software development effort estimation neural network vs.
regression modeling approach. International Journal of Engineering Science and Technology, 2(7),
2950–2956.

Boehm, B. W. (1981). Software engineering economics. Englewood Cliffs, NJ: Prentice Hall.
Boehm, B. (2000). Software cost estimation with COCOMO II. Englewood Cliffs, NJ: Prentice Hall.
Boehm, B. W., & Valerdi, R. (2008). Achievements and challenges in cocomo-based software resource

estimation. IEEE Software, 25(5), 74–83.
Breiman, L., Friedman, J. H., et al. (1984). Classification and regression trees. Pacific Grove, CA:

Wadsworth.

Software Qual J (2013) 21:501–526 523

123

Briand, L. C., El-Emam, K., et al. (1999). An assessment and comparison of common cost software project
estimation methods. In Proceedings of 21st international conference software engineering (pp. 313–322).

Chiu, N. H., & Huang, S. J. (2007). The adjusted analogy-based software effort estimation based on
similarity distances. Journal of Systems and Software, 80, 628–640.

Clark, J. A., & Jacob, J. L. (2001). Protocols are programs too: The meta-heuristic search for security
protocols. Information and Software Technology, 43(14), 891–904.

Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts.
Management Science, 9(3), 458–467.

Deng, J. L. (1982). Control problems of grey systems. Systems and Control Letters, 1(5), 288–294.
Ferrucci, F., Gravino, C., et al. (2010). Genetic programming for effort estimation: An analysis of the impact

of different fitness functions. In Proceedings of the 2nd international symposium on search based
software engineering (SSBSE’10), Benevento, Italy (pp. 89–98). IEEE.

Greer, D., & Ruhe, G. (2004). Software release planning: an evolutionary and iterative approach. Infor-
mation and Software Technology, 46(4), 243–253.

Harman, M., & Jones, B. F. (2001). Search-based software engineering. Information and Software Tech-
nology, 43(14), 833–839.

Hayes, W. (1994). Statistics (5th ed.). Chicago: Harcourt Brace.
Hsu, C.-J., & Huang, C.-Y. (2011). Comparison of weighted grey relational analysis for software effort

estimation. Software Quality Journal, 19(1), 165–200.
Huang, S.-J., & Chiu, N.-H. (2006). Optimization of analogy weights by genetic algorithm for software

effort estimation. Information and Software Technology, 48, 1034–1045.
Huang, S.-J., Chiu, N.-H., et al. (2008). Integration of the grey relational analysis with genetic algorithm for

software effort estimation. European Journal of Operational Research, 188(3), 898–909.
ISBSG. (2011). International Software Benchmarking standard Group from www.isbsg.org.
Jianfeng, W., Shixian, L., et al. (2009). Improve analogy-based software effort estimation using principal

components analysis and correlation weighting. In International conference on software engineering.
Jones, C. (2007). Estimating software costs: Bringing realism to estimating. New York: McGraw-Hill.
Jorgensen, M., & Halkjelsvik, T. (2010). The effects of request formats on judgment-based effort estimation.

Journal of Systems and Software, 83(1), 29–36.
Jorgensen, M., Indahl, U., et al. (2003). Software effort estimation by analogy and regression toward the

mean. Journal of Systems and Software, 68, 253–262.
Kadoda, G., Cartwright, M., et al. (2000). Experiences using case-based reasoning to predict software

project effort international conference on empirical assessment and evaluation in software engi-
neering. KEELE University.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In IEEE international conference on
neural networks, Piscataway, NJ.

Kennedy, J., Eberhart, R. C., et al. (2001). Swarm intelligence. San Francisco: Morgan Kaufmann.
Keung, J. W., Kitchenham, B. A., et al. (2008). Analogy-X: Providing statistical inference to analogy-based

software cost estimation. IEEE Transactions on Software Engineering, 34(4), 471–484.
Khatibi Bardsiri, V., & Jawawi, D. N. A. (2011). Software cost estimation methods: A review. Journal of

Emerging Trends in Computing and Information Sciences, 2(1), 21–29.
Khatibi Bardsiri, V., & Jawawi, D. N. A. (2012). Software development effort estimation. Germany: Lambert

Academic Publishing.
Khatibi Bardsiri, V., Jawawi, D. N. A., et al. (2011). A new fuzzy clustering based method to increase the

accuracy of software development effort estimation. World Applied Sciences Journal, 14(9),
1265–1275.

Li, J., & Ruhe, G. (2008a). Analysis of attribute weighting heuristics for analogy-based software effort
estimation method AQUA?. Empirical Software Engineering, 13(1), 63–96.

Li, J. Z., & Ruhe, G. (2008b). Software effort estimation by analogy using attribute selection based on rough
set analysis. International Journal of Software Engineering and Knowledge Engineering, 18(1), 1–23.

Li, J., Ruhe, G., et al. (2007). A flexible method for software effort estimation by analogy. Empirical
Software Engineering, 12(1), 65–106.

Li, Y. F., Xie, M., et al. (2007). A study of genetic algorithm for project selection for analogy based software cost
estimation. In International conference on industrial engineering and engineering management, Singapore.

Li, Y. F., Xie, M., et al. (2008). A study of analogy based sampling for interval based cost estimation for
software project management. In 4th IEEE international conference on management of innovation and
technology, Singapore.

Li, Y. F., Xie, M., et al. (2009a). A study of project selection and feature weighting for analogy based
software cost estimation. Journal of Systems and Software, 82(2), 241–252.

524 Software Qual J (2013) 21:501–526

123

http://www.isbsg.org

Li, Y. F., Xie, M., et al. (2009b). A study of the non-linear adjustment for analogy based software cost
estimation. Empirical Software Engineering, 14, 603–643.

Lin, J.-C. (2010). Applying particle swarm optimization to estimate software effort by multiple factors
software project clustering. In International computer symposium (ICS), Taiwan.

Matson, J. E., Barrett, B. E., et al. (1994). Software development cost estimation using function points. IEEE
Transactions on Software Engineering, 20(4), 275–287.

McMinn, P. (2004). Search-based software test data generation: A survey: Research articles. Software
Testing, Verification, and Reliability, 14(2), 105–156.

Mendes, E., Watson, I., et al. (2003). A comparative study of cost estimation models for web hypermedia
applications. Empirical Software Engineering, 8, 163–196.

Mittas, N., & Angelis, L. (2010). LSEbA: Least squares regression and estimation by analogy in a semi-
parametric model for software cost estimation. Empirical Software Engineering, 15(5), 523–555.

Molokken, K., & Jorgensen, M. (2005). Expert estimation of Web-development projects: Are software
professionals in technical roles more optimistic than those in non-technical roles? Empirical Software
Engineering, 10(1), 7–30.

Oliveira, A. L. I., Braga, P. L., et al. (2010). GA-based method for feature selection and parameters
optimization for machine learning regression applied to software effort estimation. Information and
Software Technology, 52(11), 1155–1166.

Pawlak, Z. (1991). Rough set: Theoretical aspects of reasoning about data. Dordrecht: Kluwer.
Reddy, P. (2011). Particle swarm optimization in the fine-tuning of fuzzy software cost estimation models.

International Journal of Software Engineering and Knowledge Engineering, 1(2), 12–23.
Shepperd, M., & Schofield, C. (1997). Estimating software project effort using analogies. IEEE Transac-

tions on Software Engineering, 23(11), 736–743.
Sheta, A. F., Ayesh, A., et al. (2010). Evaluating software cost estimation models using particle swarm

optimisation and fuzzy logic for NASA projects; a comparative study. International Journal of Bio-
Inspired Computation, 2(6), 365–373.

Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In The 7th annual
conference on evolutionary programming.

Shi, Y., & Eberhart, R. C. (1999). Empirical study of particle swarm optimization. In IEEE congress on
evolutionary computation.

Song, Q., & Shepperd, M. (2011). Predicting software project effort: A grey relational analysis based
method. Expert Systems with Applications, 38(6), 7302–7316.

Stepanek, G. (2005). Software project secrets: Why software projects fail. Berkeley, CA: Apress.
Trelea, I. C. (2003). The particle swarm optimization algorithm: Convergence analysis and parameter

selection. Information Processing Letters, 85(6), 317–323.
Walkerden, F., & Jeffery, R. (1997). Software cost estimation: A review of models, process, and practice.

Advances in Computers, 44, 59–125.
Walkerden, F., & Jeffery, R. (1999). An empirical study of analogy-based software effort estimation.

Empirical Software Engineering, 4(2), 135–158.

Author Biographies

Vahid Khatibi Bardsiri is a lecturer at Islamic Azad University,
Bardsir Branch, Iran. He holds B.Sc. and M.Sc. degrees in software
engineering from Ferdowsi University of Mashhad (2002) and Science
and Research Branch of Islamic Azad University (2004). Currently, he
is working on his Ph.D. in Software Metrics Estimation at Universiti
Teknologi Malaysia (UTM). His research interests include agile soft-
ware development methods, artificial intelligence, and software
measurement.

Software Qual J (2013) 21:501–526 525

123

Dayang Norhayati Abang Jawawi is a lecturer in the Department of
Software Engineering, Faculty of Computer Science and Information
Systems, Universiti Teknologi Malaysia (UTM). She received her
B.Sc. in Software Engineering from Sheffield Hallam University, UK,
and conducted her M.Sc. and Ph.D. research in Software Engineering
from Universiti Teknologi Malaysia. Her research interests are in
software reuse, software quality, and software testing. Currently she is
Head of the Software Engineering Department, Faculty of Computer
Science and Information Systems, UTM, and a member of the Soft-
ware Engineering Research Group (SERG), K-Economy, UTM. Most
of her research projects focus on rehabilitation and mobile robotics,
real-time embedded systems, and precision farming applications.

Siti Zaiton Mohd Hashim is an Associate Professor at the Department
of Software Engineering, Faculty of Computer Science and Informa-
tion Systems, Universiti Teknologi Malaysia (UTM). She received her
B.Sc. Degree in Computer Science from Univ of Harford, USA, M.Sc.
in Computing from University of Bradford, UK and Ph.D. research in
Soft Computing from University of Sheffield, UK. Her research
interests are Soft Computing techniques and applications System
Development and Intelligent System. Currently she is Deputy Dean,
Office of Postgraduate, Faculty of Computer Science and Information
Systems, UTM and a member of Soft Computing Research Group
(SCRG), K-Economy, UTM.

Elham Khatibi received her B.Sc. Degree in Mathematics from
Islamic Azad University, Kerman, Iran (2007). Currently, she is
undertaking her M.Sc. in Information Technology Management at
Universiti Teknologi Malaysia (UTM). Her research interests are
software project management and software development
methodologies.

526 Software Qual J (2013) 21:501–526

123

	A PSO-based model to increase the accuracy of software development effort estimation
	Abstract
	Introduction
	Analogy-based estimation (ABE)
	Similarity function
	Solution function
	K nearest neighborhood (KNN)
	Previous attempts to improve the performance of ABE

	Particle swarm optimization (PSO) algorithm
	Optimization process
	Parameter value selection

	PSO-based estimation model
	Performance metrics
	Training stage
	Testing stage
	Evaluation process
	Cross validation
	Data set description

	Primary adjustments

	Experimental results
	Results on DPS data set
	Results on CF data set
	Results on ISBSG data set
	Proposed model versus other estimation models
	Improvement analysis

	Conclusions
	Acknowledgments
	References

