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Abstract Ensuring the availability of enterprise IT systems is a challenging task. The

factors that can bring systems down are numerous, and their impact on various system

architectures is difficult to predict. At the same time, maintaining high availability is

crucial in many applications, ranging from control systems in the electric power grid, over

electronic trading systems on the stock market to specialized command and control sys-

tems for military and civilian purposes. This paper describes a Bayesian decision support

model, designed to help enterprise IT system decision-makers evaluate the consequences

of their decisions by analyzing various scenarios. The model is based on expert elicitation

from 50 experts on IT systems availability, obtained through an electronic survey. The

Bayesian model uses a leaky Noisy-OR method to weigh together the expert opinions on

16 factors affecting systems availability. Using this model, the effect of changes to a

system can be estimated beforehand, providing decision support for improvement of

enterprise IT systems availability. The Bayesian model thus obtained is then integrated

within a standard, reliability block diagram-style, mathematical model for assessing

availability on the architecture level. In this model, the IT systems play the role of building

blocks. The overall assessment framework thus addresses measures to ensure high avail-

ability both on the level of individual systems and on the level of the entire enterprise

architecture. Examples are presented to illustrate how the framework can be used by

practitioners aiming to ensure high availability.
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1 Introduction

Maintaining high enterprise IT systems availability is a high priority throughout many

industries. In a frequently cited report, IBM Global Services (1998) report that unavailable

systems cost American businesses $4.54 billion in 1996, due to lost productivity and

revenues. The report goes on to list average costs per hour of downtime ranging from

airline reservations at $89.5 thousand to brokerage operations at $6.5 million (all in 1998

dollars). A vivid reminder of the financial sector’s sensitivity occurred when the Nordic

and Baltic stock markets were forced to close down for 5.5 h on June 4 2008 due to the

trading system Saxess being down. This outage prevented transactions worth approxi-

mately 20 billion SEK (ca €2 billion) (Askåker and Kulle 2008).

While useful in some contexts, cost estimates do not always accurately reflect the

criticality of systems availability. This is often the case for IT systems supporting emer-

gency response, police and military operations, operation of the power grid, etc. In a recent

Gartner report, it is therefore recommended that investments to ensure high availability in

such systems are justified using qualitative measures of the impact on the population

affected (Malik 2009). The same line of reasoning applies to information and control

systems serving critical infrastructure, such as the electric power grid, railway transpor-

tation, water supply, etc.

Citing the data on average downtime costs referred to above, Marcus and Stern (2003)

observe that not all losses are easy to quantify, in particular when they are partly composed

of opportunity costs, as in the case of brokerage services. However, this is not to

denigrate the importance of availability, as they go on to list some indirect costs that can be

brought about by system outages: (i) poor customer satisfaction, (ii) bad publicity, (iii)

plummeting stock price [while Campbell et al. (2003) suggest that this effect is actually

small], (iv) legal liabilities, (v) worsened employee morale, and (vi) an impact to external

reputation.

Yet another measure of the importance of systems availability is stakeholder polling. In

a recent survey, 178 enterprise IT system executives and practitioners from Sweden and the

German-speaking countries were asked to assess future prioritization of various system

qualities (in the sense of ISO-9126 (International Organization for Standardization 2003))

in their companies. On a five-point Likert scale, 48.9% of respondents gave availability the

highest mark, making it the most highly prioritized system quality in the survey (Franke

et al. 2010). A Gartner report, based on surveys conducted in 2007 and 2008, notes

consistent findings and concludes that ‘‘[t]he overall proportion of mission-critical IT

services continues to increase, along with the cost of business downtime’’ (Scott 2009).

1.1 Outline

The remainder of the paper is structured as follows: Section 2 contrasts the present con-

tribution with some related work. Section 3 introduces some basic concepts from avail-

ability theory and elaborates on the scope of the paper in that context. Section 4 introduces

Bayesian networks, survey methodology in general, and the particular methods employed

for building a Bayesian model from expert assessments. Section 5 is the locus of the main

contribution. Here, the results of the expert survey are described, and the resulting

Bayesian model for assessment of enterprise IT systems availability is built. An applied

example of the usage of the model is presented in Sect. 6. The example also considers

availability in the wider architectural context of an enterprise application landscape and
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explains how to reconcile the Bayesian model of Sect. 5 with more traditional mathe-

matical reliability analysis. A discussion of the strengths and weaknesses of the contri-

bution then ensues in Sect. 7, followed by some concluding remarks in Sect. 8.

2 Related work

A general and widely cited description of IT systems availability is found in Marcus and

Stern (2003), where the authors present an ’’availability index’’ describing the relationship

between various availability-increasing measures and their costs. The presented avail-

ability index gives guidance on improving systems availability, but it is not empirically

validated in a structured way. The present contribution partially aims to address

this by taking Marcus and Stern as the basis for the survey questions, as discussed in

Sect. 4.2.

In Malek et al. (2008), the authors present an approach for analytical service availability

assessment, mapping dependencies between low-level ICT infrastructure and high-level

services. The mapping, however, does not give a detailed description of the supporting ICT

infrastructural elements, nor any weighting of how each element impacts the service

availability. In Milanovic et al. (2008), a similar mapping is presented, but here the focus is

the impact of ICT infrastructure availability upon business processes, rather than upon

availability assessment as such.

An effort to identify factors impacting software reliability is presented in Zhang and

Pham (2000). The article includes the identification of 32 factors involved in the software

development process, all of which impact software reliability. A ranking based on

empirical research from 13 companies working with software development is presented,

highlighting the most important factors influencing the software reliability. However, only

the software development phase is addressed—how to ensure availability once systems

have been taken into service is not mentioned.

The application of Bayesian networks for information system quality analysis is pro-

posed and applied in Lagerström et al. (2009). In this paper, an enterprise architecture

evaluation framework for the analysis of information systems modifiability is presented.

An expert survey was conducted in order to create a Bayesian model, the details of which

are found in Lagerström et al. (2009). The present paper is similar in method, but focuses

on availability rather than modifiability.

An interesting application of Bayesian networks for IT service availability modeling is

found in Zhang et al. (2009), where system logs are used to build Bayesian networks for

availability prediction. This is an important complementary approach to the expert

assessments used in the present paper. The main drawback of the system logs approach is

the limited availability of such logs—indeed, the results of Zhang et al. are based on a case

study of a single enterprise system. A reasonable course for future work is to combine the

two approaches by validating the expert assessments of the present paper with case studies

in the spirit of Zhang et al.

3 Availability theory

This section starts by briefly outlining some basic concepts from availability theory.

Against this background, the main contribution of the paper is then elaborated.
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3.1 Availability

The availability of an item, whether a single component or a larger system, is often defined

as

A ¼ MTTF

MTTFþMTTR
ð1Þ

where MTTF denotes ‘‘Mean Time To Failure’’ and MTTR ’’Mean Time To Repair’’,

respectively. The quotient is easy to interpret as the time that a system is available as a

fraction of all time (Rausand and Høyland 2004). A more cautious availability estimate is

found by instead using the ‘‘Maximum Time To Repair’’, corresponding to a worst-case

scenario (Marcus and Stern 2003).

The exponential distribution is central in most reliability work and is the distribution

most commonly used in applied reliability analysis. The reason for this is its mathematical

simplicity and the fact that it gives realistic lifetime models for certain types of items, at

least as a first approximation (Rausand and Høyland 2004).

If the time to failure T of an item is exponentially distributed, it has the following well-

known probability density function:

f ðtÞ ¼ k � e�kt for t [ 0; k[ 0

0 otherwise

�
ð2Þ

The corresponding MTTF is simply the reciprocal of the parameter k:

MTTF ¼ 1

k
ð3Þ

The assumption of exponentially distributed lifetime has two important implications

(Rausand and Høyland 2004):

1. A used item is stochastically as good as a new, i.e., there is no reason to replace a

working item.

2. When estimating MTTF etc., it is sufficient to collect data on the observed time in

operation, and the number of failures. There is no need to keep track of the age of

items.

Making the same assumptions about the MTTR, this distribution can similarly be

described by a parameter l:

MTTR ¼ 1

l
ð4Þ

The average availability Aavg of a component can now be computed from (1):

Aavg ¼
l

lþ k
ð5Þ

Systems rarely consist of a single component, and oftentimes, these components are

connected in parallel. The case where we have s subsystems, where each subsystem

i consists of ki parallel components, and where the subsystems are connected in series is

depicted in Fig. 1.

Assuming exponentially distributed MTTF and MTTR, the average availability for this

general case can be obtained as follows (Sallak et al. 2006),
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Aavg ¼
Ys

i¼1

1� ki

ki þ li

� �ki

 !
¼
Ys

i¼1

1� ð1� AiÞki

� �
ð6Þ

As seen in (6), this assumes that the failure and repair rates are the same (ki and li) for all

components in a subsystem i.
The assumption of exponential distributions is more thoroughly discussed in Sect. 7.

3.2 Inter- and intracomponent availability analysis

In Fig. 1, as in the whole theory section so far, the intrinsic availability of each component is

taken as a brute fact. In a sense, the components are regarded as black boxes, and all analyses

are conducted on a systems level. However, this is clearly a simplification. In reality, the

components are not black boxes, but do have internal characteristics—including character-

istics that can be affected so as to improve the resulting availability of the system as a whole.

The theory outlined above might be called intercomponent availability analysis—

calculations based on a number of components being interconnected in a certain fashion.

The main contribution of this paper, however, is in the field of what might be called

intracomponent availability analysis—an attempt to find the internal characteristics of a

single component needed to calculate its intrinsic availability. More specifically, the

‘‘components’’ under scrutiny are enterprise IT systems—large components, as it were, but

parts of even larger systems, viz., entire enterprise architectures.

Needless to say, a complete availability model for an enterprise architecture—the

architecture made up of all the IT systems in an enterprise—needs to account for both

inter- and intracomponent availability. Therefore, while the main contribution of the paper

is an expert-based Bayesian model for predicting the (intracomponent) availability of

enterprise IT systems, Sect. 6 also contains a detailed example of how this contribution can

be put to use in the larger context of architectural (intercomponent) availability.

4 Method

This section outlines the methods used in the article. First, a short introduction to Bayesian

networks is given, followed by a longer section on methods for eliciting expert knowledge.

The method section is then concluded with a synthesis, outlining how to build Bayesian

networks based upon expert elicitation.

4.1 Bayesian networks

Friedman et al. (2000) describe a Bayesian network, B = (G, P), as a representation of a

joint probability distribution. The first component G is a directed acyclic graph consisting

Fig. 1 A block diagram showing
the general case of parallel series
systems, from Sallak et al. (2006)
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of vertices, V, and edges, E, i.e., G = (V, E). The vertices denote a domain of random

variables X1; . . .;Xn, also called chance nodes. Each chance node, Xi, may assume a value

xi from the finite domain Val(Xi). The edges denote causal dependencies between the

nodes, i.e., the causal relations between the nodes. Whenever an edge goes from a node Xi

to a node Xj, Xi is said to be a causal parent of Xj. The second component P of the network

B describes a conditional probability distribution for each chance node, P(Xi), given the set

of its causal parents Pa(Xi) in G. It is now possible to write the joint probability distribution

of the domain X1; . . .;Xn using the chain rule of probability, in the product form:

PðX1; . . .;XnÞ ¼
Yn

i¼1

PðXijPaðXiÞÞ ð7Þ

In order to specify the joint distribution, the respective conditional probabilities that

appear in the product form must be defined. The component P describes the distribution for

each possible value xi of Xi, and pa(Xi) of Pa(Xi), where pa(Xi) is the set of values of Pa(xi).

These conditional probabilities are represented in matrices, henceforth called Conditional

Probability Distributions (CPDs). Using a Bayesian network, it is possible to answer

questions such as what is the probability of variable X being in state x1 given that Y = y2

and Z = z1.

In the general case, the relations between variables described by the conditional

probability matrices can be arbitrarily complicated conditional probabilities. The model

presented in this paper uses only a single rather simple relation, leaky Noisy-OR, described

in Sect. 4.3.

More comprehensive treatments on Bayesian networks can be found in, e.g., Neapolitan

(2003), Jensen (2001), Shachter (1988), and Pearl (1988).

4.2 Expert elicitation

Expert elicitation is the process where a person’s knowledge and beliefs about one or more

uncertain quantities are formulated into a joint probability distribution (Garthwaite et al.

2005), i.e., the act of parameter estimation through the use of domain experts. This

approach is generally used when available datasets are sparse in comparison with the

number of nodes that need to be parameterized (Johansson and Falkman 2006). Using a

well-structured process for expert elicitation is important in order to minimize the bias of

the domain expert. A rough outline of such an elicitation process is given by Renooij

(2001):

1. Select and motivate the expert

2. Train the expert

3. Structure the questions

4. Elicit and document the expert judgments

5. Verify the results

In the following, we detail how each of these steps was carried out in the present study.

4.2.1 Select and motivate the expert

The selection of respondents in the present survey was based upon academic publications.

To identify respondents, searches were performed in major publishing databases (Springer

and Elsevier), in professional societies databases such as the IEEE, and in pure indexing
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databases such as SCOPUS. The search criteria involved combinations of topic words such

as ‘‘availability’’, ’’reliability’’ and ‘‘dependability’’ with research area delimitations such

as ‘‘information system’’, ‘‘IT system’’, and ‘‘corporate IT’’. The resulting selections of

articles were then manually screened, based on title and abstract (if sufficient) or full

content (if necessary) to determine whether the authors should be invited to participate or

not. Whenever several co-authors to a single paper were encountered, no distinction was

made between them (all or none were invited). The searches were limited in time to the

past decade, i.e., only publications from 1999 and onward were selected. In all, 154 authors

of journal articles, 298 authors of conference articles, and 11 authors of edited volumes

were invited to participate, i.e., a grand total of 463 experts.

As the experts consulted in this study were widely geographically spread, a mail survey

was used (Mangione 1995). Another reason to use a mail survey is that the nonrespond bias

of mail surveys tends to be directly related to the subject, i.e., chiefly respondents par-

ticularly interested in the subject return the questionnaire (Fowler 2002). This effect will be

further discussed in Sect. 5. The Internet-based application SurveyMonkey hosted the

survey, which was open for 2 weeks, from January 4 to January 15, 2010. As recom-

mended by Blaxter et al. (2006), a reminder was sent to non-responding participants in the

middle of the second week to increase the response rate.

As noted in Renooij (2001), it is important to convince the experts that there is no

straightforward way to tell a ‘‘right’’ from a ‘‘wrong’’ answer, but that their assessments

should rather represent their own knowledge and experience as faithfully as possible.

Indeed, the very rationale for selecting this particular research approach is that the subject

is difficult to investigate in other ways. In the introduction to the present survey, it was

therefore clearly stated that ‘‘your particular piece of experience and your corresponding

answers are very important to us as we try to build a general model’’. Furthermore, each

question in the present survey included a self-assessment on the credibility of the answer,

enabling anyone feeling uncertain to communicate this. As will be discussed in Sect. 3, this

self-assessment also plays an important role in the construction of the Bayesian model.

4.2.2 Train the expert

The validity of the study is highly dependent on the respondents’ comprehension of the

questions. Therefore, it is often advisable to spend part of the survey to train the expert

(Czaja and Blair, 2005), so that she will not only be a subject matter expert but also an

expert on giving probability estimates. In the present survey, this was accomplished by the

use of an initial tutorial question, where the scope and aim of the question was explained at

some length using text and figures. Only after reading this text was the respondent asked to

answer the first question, selected for being relatively uncomplicated.

During the training phase, feedback on answers with known correct answers can help

experts calibrate their responses (Baecher 1988). However, in the present study, this was

not feasible due to lack of indisputable data of sufficient generality.

4.2.3 Structure the questions

There are some different approaches to elicitation, direct elicitation being the most obvious

and straightforward one. Here, questions are asked along the lines of ‘‘What is the prob-

ability that variable A takes this state given these parent values?’’. However, these ques-

tions can be hard for domain experts to relate to (Garthwaite et al. 2005), forcing the use of

alternative approaches as described for example in Woodberry et al. (2005). In the present
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survey, a behaviorally anchored scale (Mangione 1995) was used. The experts were asked

to answer ‘‘How large a share of currently unavailable enterprise IT systems would you

guess would be available if a best practice factor X had been present?’’ (Mutatis mutandis,

depending on the appropriate grammar of each factor.) The factors themselves were

derived from the availability index presented in Marcus and Stern (2003). Their com-

pleteness is thoroughly discussed in Sect. 7.

Including subjective wordings such as ‘‘best practice’’ in a survey has both advantages

and disadvantages. On the one hand, the question can be interpreted in several ways,

making it more difficult to compare the answers with each other. On the other hand, the

answers are to a lower extent limited to assumptions specified in the question (Mangione

1995). In this particular case, the authors of this article do not claim to know the technical

details of ‘‘best practice’’ better than the respondents, which is the reason why a subjective

wording was used.

A separate question was written for each probability to be assessed. In those cases

where potentially ambiguous or unclear terms were used, a short explanatory note was

appended to the question to clarify the intended use. To provide the respondent with a

birds-eye-view of the survey, a figure illustrating all question categories in order of

appearance was continuously displayed throughout the survey.

As noted by Cooke (1991), experts dislike writing numbers for subjective probabilities

and prefer to check scales, place an ‘X’ in a box, etc. In the present survey, this was

accommodated by using predefined scales in drop-down lists for the alternatives.

To manage respondent uncertainty, each probability estimate was accompanied by the

question ‘‘What do you think is the probability that your guess is correct?’’. The respondent

was presented with four fixed alternatives: ‘‘12.5% (I have no idea. I just picked a random

interval.)’’, ‘‘50% (I think so.)’’, ‘‘90% (I am quite sure.)’’, and ‘‘99% (I am almost

completely certain.)’’. Wording the alternatives like this, presenting both a qualitative

description and a quantitative number to the respondents, minimizes the unwanted

implications of converting qualitative factors into quantitative ones ex post.

To make the survey questions as clear and lucid as possible, a few test surveys were

tried out iteratively, as recommended in Czaja and Blair (2005). The test respondents

included both non-domain experts (for general advice on structure and readability) and two

of the actual respondents (for more topic-related advice).

4.2.4 Elicit and document the expert judgments

Since elicitation is taxing for the expert, Cooke (1991) recommends that sessions should

not exceed 1 h. The present survey being web based, with the possibility for the respondent

to take a break or withdraw at his or her discretion, this problem can be considered of

marginal importance. However, if a survey is too long or too complex, the response rate of

the questionnaire decreases (Blaxter et al. 2006). The level of detail in this study was

therefore limited by the expected response rate considered acceptable. A survey of the

responses ex post indicates that a typical full response required about 20–30 min.

4.2.5 Verify the results

This aspect is addressed as part of the general validity discussion in Sect. 7 below.

Having thus outlined the expert elicitation method, the next section addresses how to

build the Bayesian model based upon these data.
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4.3 Building Bayesian networks

Bayesian networks are a powerful formalism, but their use requires the specification of

conditional probability distributions (CPDs). As the number of variables X1; . . .;Xn caus-

ally affecting a target variable Y grows, fully specifying these distributions becomes

increasingly cumbersome. As noted by Onisko et al. (2001), a binary variable with n causal

parents requires 2n independent parameters to exhaustively describe the conditional

probabilities. As n grows, 2n parameters quickly becomes a prohibitive number. Often,

however, canonical parameter-based distributions can be used to decrease the modeling

effort, yet still give a sufficiently good approximation of the true distribution (Onisko et al.

2001).

The solution described by Onisko et al. is the use of a Noisy-OR gate. Using this

formalism, the number of parameters required from expert estimation becomes only n, a

significant gain. The underlying assumption is that instead of investigating every combi-

natorial interaction among the X1. . .Xn causal parent variables, their interactions are

modeled by a Noisy-OR gate. Furthermore, since Noisy-OR distributions approximate

CPDs using fewer parameters, the resulting distributions are in general more reliable, being

less susceptible to overfitting (Friedman and Goldszmidt 1999).

The Noisy-OR gate (Pearl 1988; Onisko et al. 2001) is typically used to describe the

interaction of n causes X1; . . .;Xn to an effect Y. In the present article, of course, this effect

Y is the unavailability of enterprise IT systems. Two assumptions are made, viz., (i) that

each of the causes has a probability pi of being sufficient for producing Y and (ii) that the

ability of each cause Xi, to bring about Y is independent. Mathematically, the following

holds:

pi ¼ Pðyj�x1; �x2; . . .; xi; . . .; �xnÞ ð8Þ

where xi denotes the presence of causal factor Xi and �xi its absence. It follows that the

probability of y given that a subset Xp � fX1; . . .;Xng of antecedent causes are present can

be expressed as:

PðyjXpÞ ¼ 1�
Y

i:Xi2Xp

ð1� piÞ ð9Þ

This is a compact specification of the CPD.

A natural extension proposed by Henrion (1989) is the so-called leaky Noisy-OR gate.

The rationale for the leakage is that models typically do not capture all causes of Y. If some

potential Xi have been left out, as is the case in ‘‘almost all situations encountered in

practice’’ (Onisko et al. 2001), this shortcoming can be reflected by adding an additional

parameter p0, the leak probability, such that

p0 ¼ Pðyj�x1; �x2; . . .; �xnÞ ð10Þ

In words, this reflects the probability that Y will occur spontaneously, in the absence of all

the explicitly modeled causes X1; . . .;Xn. In a leaky Noisy-OR gate, the CPD then becomes

PðyjXpÞ ¼ 1� ð1� p0Þ
Y

i:Xi2Xp

ð1� piÞ
ð1� p0Þ

ð11Þ

The aim of the expert elicitation survey can now be stated more explicitly. For each of

the factors X1; . . .;Xn identified in the survey, a probability pi of Xi being a cause of
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enterprise IT system unavailability can be estimated. Depending on the respondent com-

ments regarding causes not listed in the survey, an approximate value of p0 can also be

found, as discussed in Sect. 5

5 Results

5.1 The respondents

Figure 2 displays some data about the respondents who chose to start taking the survey,

viz., their affiliation, professional relation to enterprise IT systems availability, their

number of years of experience of enterprise IT systems availability, and the correlation

between this experience and the confidence expressed in their survey answers.

The data illustrated pertain to two groups: the 96 respondents who began the survey and

the 50 who completed it. For obvious reasons, no similar data exist for the grand total

group of the 463 experts invited. As seen in Fig. 2, there is no obvious change in the

proportion of affiliations from the group that began the survey to the group that completed

it. Academia is the most common line of work (67 who began, 33 who completed the

Fig. 2 Data on respondents’ affiliations, working experience with enterprise IT systems availability, years
of such experience, and the correlation between years of experience and the average confidence level
expressed in the survey answers
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survey) followed by private industry (20 who began, 12 who completed the survey) and

research institutes (8 who began, 5 who completed the survey). A single government

employee began but did not complete.

As for working with questions related to enterprise IT systems availability, the reas-

suring trend is that those not involved in the field to a large extent dropped out from the

survey. Thus, while 72% (18 out of 25) of those who identified themeselves as ‘‘to a large

extent’’ working with enterprise IT systems availability completed the whole survey and

53% (27 out of 51) of those who identified themeselves as ‘‘to some extent’’ working with

enterprise IT systems availability completed the whole survey, a mere 25% (5 out of 20) of

those ‘‘not at all’’ working with enterprise IT systems availability did so. Based on these

figures, it seems reasonable to assume that the quality of the responses collected was

improved by this self-selection. A similar trend can be seen when it comes to the number of

years of experience. While 80% (8 out of 10) of the repondents with more than 20 years of

experience completed the survey, only 20% (3 out of 15) of those with no experience did

so. Again, these are reassuring figures, indicating that the quality of the dataset was

improved by the self-selection mechanisms described in Fowler (2002).

Furthermore, as is to be expected, experience translates into somewhat greater confi-

dence. As seen in Fig. 2, the respondents with a greater number of years of experience tend

to express greater confidence in their answers, even though the variance is large. As

explained in the next section, respondent confidence is taken into account when building

the Bayesian model, meaning that the opinions of the most experienced respondents will be

weighted a bit higher, on average, than those of the less experienced.

5.2 The Bayesian model

The main results of the survey are presented in Table 1. As described in Sect. 4, the

respondents not only answered each question but also stated their certainty. In the table, the

N specified excludes respondents who ‘‘just picked a random interval’’ and retains only

those who were 50, 90, or 99% certain. This corresponds to the answers actually used in

building the Bayesian model.

As can be seen, the number of useful answers vary from 36 to 54 over the causal factors,

with a mean of 44. While Table 1 does give a good overview of the results, it does not

show the self-assessed uncertainties associated with each answer by the respondents.

These, however, play a vital role in determining the Noisy-OR probabilities p1; . . .; pn

associated with each of the causes X1; . . .;Xn listed in the table.

Table 2 illustrates the distribution of answers over the intervals with certainty gradings

for the first causal factor, physical environment. As before, respondents who ‘‘just picked a

random interval’’ are excluded. As can be seen, most feel comfortable with the 50% level,

‘‘I think so’’.

To weight these judgments into a single probability pi for use in the Noisy-OR model,

the number of respondents in an interval j has been multiplied with the certainty q 2
f0:5; 0:9; 0:99g of their responses (these figures were the alternatives used in the survey).

The weighted voting score wj of interval j is thus defined as

wj ¼
X
k2Kj

qk ¼ 0:5 � n0:5 þ 0:9 � n0:9 þ 0:99 � n0:99 ð12Þ

where Kj designates all the respondents who selected interval j, qk the certainty level of

respondent k, and n0.5, n0.9, and n0.99 are the number of respondents within Kj answering
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Table 1 Causal factors (based on Marcus and Stern 2003) and strengths as per the respondents’
answers

Causal factor X How large a share of currently unavailable enterprise IT systems would you

guess would be available if a best practice factor X had been present?

N

\0.05% 0.05–0.1% 0.1–0.5% 0.5–1% 1–5% 5–10% 10–50% [50%

1. Physical environment 1 2 3 5 8 18 14 3 54

2. Requirements and

procurement

1 1 1 2 10 11 16 5 47

3. Operations 1 0 0 1 6 16 19 5 48

4. Change control 0 1 1 2 7 13 17 8 49

5. Technical solution of

backup

2 3 1 6 9 15 5 3 44

6. Process solution of

backup

0 2 4 6 12 10 9 0 43

7. Data redundancy 0 2 4 6 8 11 9 4 44

8. Storage architecture

redundancy

0 3 3 8 15 6 4 1 40

9. Infrastructure

redundancy

1 3 3 8 12 7 5 3 42

10. Avoidance of internal

application failures

0 4 3 2 7 12 15 2 45

11. Avoidance of external

services that fail

2 1 0 5 4 15 12 4 43

12. Network redundancy 0 4 1 4 11 13 9 2 44

13. Avoidance of network

failures

0 5 1 5 9 9 11 2 42

14. Physical location 2 0 7 7 11 8 3 2 40

15. Resilient client/server

solutions

1 1 2 5 9 9 6 3 36

16. Monitoring of the

relevant components

0 2 1 4 13 6 14 3 43

Table 2 The 54 useful respondent answers regarding the physical environment factor, displayed by
certainty

Physical
environment

50% (I think
so.)

90% (I am quite
sure.)

99% (I am almost completely
certain.)

Weighted vote
w

\0.05% 0 0 1 0.99

0.05–0.1% 2 0 0 1

0.1–0.5% 2 1 0 1.9

0.5–1% 4 0 1 2.99

1–5% 6 2 0 4.8

5–10% 16 2 0 9.8

10–50% 10 3 1 8.69

[50% 1 2 0 2.3
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with the different certainty levels. For example, the physical environment weighted

voting score for the interval 0.1–0.5% has been calculated simply as wj = 2�0.5 ?

1�0.9 ? 0�0.99 = 1.9. The weighted voting scores for physical environment are displayed

graphically in Fig. 3.

As a consequence of the distribution of the intervals, a linear plot is difficult to read. A

logarithmic version is therefore given in Fig. 3. To determine the probability pi of a less

than best practice physical environment factor to cause unavailability in enterprise IT

systems, the interval with the highest weighted voting score is selected. To determine the

exact location within the interval j, the weighted voting scores of the two adjacent intervals

j - 1 and j ? 1 are used, so that

pi ¼ jmin þ
wjþ1

wjþ1 þ wj�1

ðjmax � jminÞ ð13Þ

where jmin and jmax designate the start and end points of interval j. In this case, as illustrated

in Fig. 3, the interval with the highest weighted voting score is number 6, 5–10%, with

w6 = 9.8. The adjacent intervals have the weighted voting scores w5 = 4.8 and w7 = 8.69.

These relative scores indicate that the probability p1 should be located slightly above the

midpoint of the 5–10% interval. The calculation yields

p1 ¼ 0:05þ 8:69

8:69þ 4:8
ð0:1� 0:05Þ � 0:0822

The procedure is iterated for each and every causal factor, resulting in probabilities

p1; . . .; pn as illustrated in Table 3 (rounded to one decimal). Each pi reflects the share of

currently unavailable enterprise IT systems that would, in the experts’ opinion, be available

if the factorXi had been managed according to best practice. It might seem counterintuitive

that
P

pi [ 100%, but consider a system that went down because of an internal application

error, and then did not come up because proper backups did not exist. At an appropriate

time after the mishap, it is true that the system would have been available if the application

Fig. 3 Weighted voting scores
for physical environment,
logarithmic version. pi & 0.082
represents the share of currently
unavailable enterprise IT systems
that would, in the experts’
opinion, be available if the
physical environment had been
managed according to best
practice
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error had been avoided, and also true that the system would have been available if the

backups had been better. Thus, the factors need not be mutually exclusive.

As can be seen from Table 3, judging from the respondents’ answers, best practice

change control is the factor most prone to increase availability of enterprise IT systems,

closely followed by best practice component monitoring, and best practice requirements

and procurement.

One factor is still missing in order to obtain a complete leaky Noisy-OR model, viz., the

leakage p0. To obtain an estimate of the leakage, the experts consulted in this survey were

asked to comment whether they believed that any important factors contributing to

unavailability were left out in the survey. This is discussed in further detail in Sect. 7

Suffice to note here that since no single proposed missing factor was mentioned by more

than two experts (out of the 50 respondents) it seems safe to assume that the leakage should

be less important than the least important factor considered in the survey. As seen in

Table 3, the smallest pi belongs to storage architecture redundancy at 2.8%. A leakage

p0 = 1% therefore seems reasonable and will be used throughout the remainder of the

article.

5.3 Rescaling for case-based assessment

The questions answered by the respondents were explicitly concerned with increasing

availability of unavailable systems (‘‘How large a share of currently unavailable enterprise

IT systems would you guess would be available if a best practice factor X had been

present?’’). The leaky Noisy-OR model therefore explains enterprise IT systems

un-availability (Y), employing the parameters X1; . . .;Xn describing the lack of best

practices, and the model is built in the domain of unavailable enterprise IT systems.

However, a more practical typical concern is the availability of an entire park of systems,

with a known prior availability baseline. The Bayesian model therefore needs to be

Table 3 Causal factors with
probabilities for Noisy-OR model

Causal factor Xi

Lack of best practice …
pi (%)

1. … physical environment 8.2

2. … requirements and procurement 25.2

3. … operations 23.0

4. … change control 28.1

5. … technical solution of backup 7.0

6. … process solution of backup 3.6

7. … data redundancy 7.8

8. … storage architecture redundancy 2.8

9. … infrastructure redundancy 2.9

10. … avoidance of internal application failures 16.9

11. … avoidance of external services that fail 8.7

12. … network redundancy 7.6

13. … avoidance of network failures 18.3

14. … physical location 3.3

15. … resilient client/server solutions 3.6

16. … monitoring of the relevant components 26.1
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rescaled from the set of unavailable enterprise IT systems to the whole set—available and

unavailable alike—of enterprise IT systems. Figure 4 (slightly adapted from the survey)

illustrates the issue.

Another way to express the issue is that the unscaled Noisy-OR model reflects the

potential for improvement, by addressing only unavailability.

The most straightforward way to rescale the model, in order to answer how a system’s

availability can be improved by applying best practice solutions, is to apply a rescaling

factor a to all pi, including the leakage p0. It could be argued that a single a should not be

applied to all factors alike, but in the absence of good reasons to treat them separately, this

is surely the simplest and best warranted solution. It follows from (11) that

AðXpÞ ¼ 1� PðyjXpÞ ¼ ð1� ap0Þ
Y

i:Xi2Xp

ð1� apiÞ
ð1� ap0Þ

ð14Þ

where AðXpÞ is the availability of a given system lacking the best practice factors listed in

the vector Xp.

5.4 Survey of research interests

The concluding part of the survey asked the respondents to select some research areas of

future interest. Figure 5 summarizes the results. It was possible to select several alterna-

tives and also to add additional areas. One respondent added a new area, viz., automatic

computing.

6 Availability analysis examples

This section is tripartite. First, an illustration is given of how the leaky Noisy-OR model

presented in the previous section can be used for actual assessment of an enterprise IT

Fig. 4 Venn diagrams schematically depicting the relation between the survey and an application case
illustrating the need for the rescaling factor a
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system, and how it can thus guide decision-making with an impact on availability. This

corresponds to availability analysis on the level of a single enterprise IT system, or the

intracomponent availability of enterprise IT systems, to use the phrase coined in Sect. 3

Second, this is contrasted with the traditional architecture level, intercomponent, analysis.

Third, a synthesis example is given, illustrating how to address the combination of intra-

and intercomponent measures to ensure high overall availability on the enterprise archi-

tecture level in a comprehensive manner.

6.1 Enterprise IT system level (intracomponent) availability analysis

To give an example, assuming that the fictitious system Saurischia has a current avail-

ability of 99.8% and that best practice was only applied in the cases of data redundancy

(X7), storage architecture redundancy (X8), and infrastructure redundancy (X9), (14)

becomes

99:8% ¼ ð1� ap0Þ
Y6

i¼1

ð1� apiÞ
ð1� ap0Þ

Y16

i¼10

ð1� apiÞ
ð1� ap0Þ

Solving for a (analytically this is cumbersome due to all the binomial coefficients, but

numerically it is easy) yields a rescaling factor a & 0.00117223.

Continuing the example of the fictitious Saurischia system, it is natural to ask how to

improve its availability. Here, the model can give precious guidance. Assuming that the

13 factors not currently reaching best practice are at the decision-maker’s disposal, their

respective impacts can easily be analyzed and compared to the prior baseline of 99.8%.

Fig. 5 Data on future research on enterprise IT systems availability
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Figure 6 illustrates the predicted impact of each of these 13 factors taken by themselves.

As can be seen, factor 4 (change control), factor 16 (monitoring of the relevant compo-

nents), and factor 2 (requirements and procurement) are the most promising candidates for

availability improvement of the Saurischia system. It might be objected that this could

have been read straight off Table 3—finding the most promising candidates requires only

an ordinal ranking. However, a key strength of the Bayesian method is the possibility to

investigate the impact of getting several factors up to best practice level at the same time

[as seen from (14)]. To evaluate these interactions of several factors, Table 3 is not

sufficient by itself, but the full leaky Noisy-OR model is needed. Another strength of the

full model is that the expected cost of unavailability (e.g., from IBM Global Services

(1998) or using a method like the one proposed by Scott (2009)) can be compared to the

estimated costs for getting the various factors up to best practice level.

Extending Bayesian networks in this way with costs and utilities amounts to creating an

influence diagram (Shachter 1988). A good graphical tool that can be employed to handle

influence diagrams, and standard Bayesian networks, is GeNIe (Druzdzel 1999).

6.2 Enterprise architecture level (intercomponent) availability analysis

In a general availability assurance situation, an obvious alternative to improving the factors

so far discussed is to simply duplicate systems, introducing redundancy on a system level

in the architecture. For example, in the case of the Saurischia system above, Fig. 6 should

be complemented with Table 4.

It might be objected that this is a naı̈ve interpretation of redundancy. Only if system

failures are independent will availability be increased—for software with identical failure

causes, availability might not be increased at all. In practice, though, redundancy is used to

increase the availability of enterprise information systems. One method to bring about the

required statistical independence of software failures upon each other is N-version pro-

gramming (Chen and Avizienis 1978), which mimics N-modular redundancy on the

hardware side. In the general case, both hardware and software (e.g., N-versioning)

Fig. 6 Prediction of how improvements of factors to the best practice-level would impact the availability of
the example Saurischia system
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redundancy is required to approach the upper bound on availability improvements through

redundancy illustrated in Table 4. The optimal use of N-version programming is a research

area of its own (Ashrafi et al, 2002), and outside the scope of the present paper. An

additional complication is the implicit assumption of perfect switching between redundant

systems. A more thorough discussion of models assuming perfect and imperfect switching,

respectively, can be found in Rausand and Høyland (2004).

Bearing these complications in mind, Table 4 nevertheless hints that running two

redundant Saurischia systems has the potential (in the upper bound-sense) to deliver better

availability than can be achieved by adjusting any single causal factor listed in Table 4.

Indeed, even if all the causal factors are set to best practice level, the 99.9988278%

availability thus predicted by the Bayesian expert model (corresponding to just above

6 min of annual downtime) is slightly below the upper bound for two redundant systems.

Of course, these are ballpark numbers with not so many significant figures.

This example, though simplified, illustrates a general trade-off situation when it comes

to ensuring availability. Given a fixed budget, it has to be divided between (i) the

intracomponent factors of Table 3 and (ii) the intercomponent (architectural) redundancy

measures that can be introduced when looking at the components as fixed, black box-like,

building blocks. The resulting availability for each choice can be approximated by first

assessing the impact of the intracomponent factors according to (14), then assessing the

overall architectural intercomponent impact according to (6).

6.3 Combined analysis of intra- and intercomponent factors

To explore the notion of a trade-off further, consider the simple case of a fictitious

enterprise architecture where three IT systems are connected in series. First, information is

processed in the Astrodon system, then in the Baryonyx system, and finally in the Car-
diodon system. Each of the systems has an initial availability (97, 99.5 and 98%,

respectively) leading to an overall systems availability of 94.585% in the basic, serially

connected, case. To increase this availability, a decision-maker can either improve the

intracomponent availability (as predicted by the leaky Noisy-OR model) or improve the

intercomponent, architectural availability [as predicted by (6)], or combine these two

approaches as she sees fit. Figure 7 conceptually illustrates this trade-off. The costs used in

the example have been arbitrarily picked to illustrate the general principle.

The limiting factor is the budget available. In Fig. 7, the budget is set to the unity cost c,

and the constraint is illustrated as the straight line defined by x ? y = c. Any feasible

solution must be placed below this budget line. The basic case is illustrated by the a dot in

the figure. It is situated on the y-axis since no money have been spent on intracomponent

improvements (i.e., the component cost on the x-axis is 0). The vertical location on the

y-axis reflects the intercomponent costs of the bare-bones, three component basic archi-

tecture, nothing else.

Table 4 Availability improvements from multiple redundant Saurischia systems with perfect switching

Redundant systems 1 2 3

Availability 99.8% 99.9996% 99.9999992%

Average annual downtime 17.52 h 2.1024 min 0.252288 s
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An improved case is illustrated by the b dot in the figure. Here, intracomponent

spending is nonzero, as system A has been improved with regard to requirements and

procurement and system C has been improved with regard to change control and com-

ponent monitoring. (For simplicity, these are the only three component factors considered

in the example. In the figure, a three three-place code is used to denote whether these

factors reach best practice level (?) or not (0). Hence, system A is labeled ?00.) As a

result, the systems availability has increased to 95.546%.

The b case can be contrasted with c, where intracomponent spending is still zero, but

significant resources have been spent on the intercomponent axis to achieve redundancy

(e.g., through N-version programming). As a result of three redundant B systems, avail-

ability is 95.060%—up from the basic case, but not as good as b.

d is the first case where both intra- and intercomponent improvements have been

introduced. Here, systems B and C both run with two redundant systems, whereas A has

been improved to reach the requirements and procurement best practice level. As a result,

availability is 97.363%.

The e case is another example of using both intra- and intercomponent improvements.

This solution leaves system A as-is, improves the change control and component moni-

toring of system B, and introduces two redundant C systems with improved component

monitoring. While this solution manages to spend exactly the alloted c amount of money

(the solution is situated on the budget line), it achieves no more than 96.630% availabil-

ity—up from the basic case, but not as good as d.

To summarize, Fig. 7 illustrates (i) that the combination of intracomponent and inter-

component (architecture level) measures to ensure high availability is not a trivial matter

and (ii) how this matter can be addressed in a comprehensive manner. Together, these two

Fig. 7 The trade-off between spending on intra- and intercomponent measures for high availability, with
cases labeled a–e illustrated
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aspects of enterprise architecture availability—epitomized by the leaky Noisy-OR model

and (6)—constitute a complete framework, albeit approximate, for enterprise architecture

level availability assessment.

7 Discussion

This section aims to critically discuss some strengths and weaknesses of the contribution.

First, some underlying assumptions are scrutinized, followed by a more general discussion

on validity.

7.1 The Noisy-OR assumptions

As noted in Sect. 4, proper use of the Noisy-OR gate makes two assumptions regarding the

structure of the interaction of causes (X1; . . .;Xn) and effect (Y) (Onisko et al. 2001; Pearl,

1988). These are (i) that each of the causes has a probability pi of being sufficient for

producing Y and (ii) that the ability of each cause X1; . . .;Xn to bring about Y is inde-

pendent. In the present study, Y is unavailability of enterprise IT systems, and X1; . . .;Xn

are causes of such unavailability.

Arguing for (i) in this case is straightforward. Indeed, it is almost always assumed that

failing non-redundant components of complex systems can cause malfunctions by them-

selves. However, these faults are not always deterministic—e.g., a non-best practice

requirements and procurement process will not infallibly lead to unavailability, but will do

so with a certain probability p. Arguing for (ii) is harder. In many cases, it is reasonable to

assume that factors are independent, but this is not always the case. Backup systems, for

example, only come into play when a system has failed and it is time to restore it.

Therefore, the impact of factors such as technical solution of backup and the process
solution of backup depends to some extent on other factors. In general terms, the dis-

tinction between proactive and reactive factors indicates that (ii) is an approximation that

does not hold in all circumstances. In the full model, such dependencies could be modeled

by rescaling different factors pi with different factors ai accounting for interactions.

However, to accurately reflect these phenomena, more empirical data are needed. To

conclude, while the assumptions required for the Noisy-OR model are reasonable as a first

approximation, the model should certainly be open to further refinement. By and large,

such refinement is a matter of empirical investigation, where availability data from

enterprise IT systems can be analyzed and statistically checked for independence. It should

be noted, however, that there is no need to refashion the entire Bayesian model should

some cause variables X1; . . .;Xn turn out to be dependent. The bulk of the causes can

remain modeled in a Noisy-OR relation to each other, while a select few can be modeled

using different CPDs.

7.2 The assumption of exponential distributions

The architectural part of the analysis framework, described in Sect. 2, depends on the

assumption of exponentially distributed mean times to failure (MTTF) and repair (MTTR).

Two arguments speak in favor of these assumptions:

First, the exponential distribution is central in most reliability work and is the most

commonly used distribution in applied reliability analysis (Rausand and Høyland 2004).

Many works on software reliability take the exponential distribution as a starting point or a
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first approximation, before describing more elaborate models such as the Jelinski-Moranda,

Musa, or Littlewood models (Pham 2000; Fenton and Pfleeger 1997; Musa 1999; Laird and

Brennan 2006).

Second, the exponential distribution is mathematically simple. This is not only an

argument from convenience. The fact that the exponential distribution has only a single

parameter (that can be estimated by collecting data on the observed time in operation, and

the number of failures) makes it suitable for ballpark calculations about largely unknown

systems. As illustrated in Sect. 6, the method presented in the present paper is intended to

be used at an early planning stage to evaluate different to-be architecture scenarios. If used

for this purpose and at this stage, the simple single-parameter exponential distribution is

surely more warranted than any distribution that requires additional assumptions (param-

eters). In this sense, the use of the exponential distribution is an instance of Occam’s razor.

(An analogy to significant figures is illuminating. It is not meaningful to perform calcu-

lations with a greater accuracy than that of the original data. Similarly, it is not meaningful

to perform—or prescribe as part of a method—calculations that require multiparameter

distributions that cannot be reliably parametrized in practice.)

We conclude that while the assumption of exponential distributions cannot a priori be

proven correct, no other assumption is better justified. In the absence of such justification,

the assumption of exponential distributions is the least controversial modeling choice.

7.3 Contrasting academia and private industry

Even though all the respondents were selected based upon academic publications as

described in Sect. 5, it is interesting to see whether there are differences between the

academics (respondents affiliated with academia and research institutes) and practitioners

(respondents affiliated with private industry). Table 5 extends Table 3 by also listing the

Table 5 Causal factors with probabilities for Noisy-OR model for different groups of respondents

Causal factor Xi

Lack of best practice …
pi

All (%)
pi

Academics (%)
pi

Practitioners (%)

1. … physical environment 8.2 7.9 10.0

2. … requirements and procurement 25.2 24.1 30.0

3. … operations 23.0 20.7 33.3

4. … change control 28.1 26.5 32.4

5. … technical solution of backup 7.0 7.2 5.0

6. … process solution of backup 3.6 3.5 10.0

7. … data redundancy 7.8 7.5 30.0

8. … storage architecture redundancy 2.8 3.5 0.9

9. … infrastructure redundancy 2.9 3.0 0.8

10. … avoidance of internal application failures 16.9 15.9 20.0

11. … avoidance of external services that fail 8.7 8.6 8.8

12. … network redundancy 7.6 7.8 1.0

13. … avoidance of network failures 18.3 19.6 3.7

14. … physical location 3.3 3.7 0.8

15. … resilient client/server solutions 3.6 3.8 10.0

16. … monitoring of the relevant components 26.1 25.3 30.0
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causal factor probabilities as calculated based exclusively upon academic and practitioner

responses, respectively.

Overall, the results from the different respondent groups are rather similar. A few

exceptions can be seen, most notably the factors Operations and Data redundancy that are

given more importance by practitioners and Avoidance of network failures that is given less.

While these discrepancies might be taken as clues for further investigation, they are not in

themselves substantial enough to warrant modification of the Bayesian model developed in

Sect. 5 As illustrated in Fig. 2, the number of practitioners is small (20 who started, 12 who

finished the survey) compared to the number of academics. This alone is an important source

of variability—such a small dataset is much more prone to exhibit outliers.

7.4 Validity of the model

So far, the validity discussion has mainly focused on the numbers. As discussed in Sect. 2,

the respondents were carefully selected based on scientific merit, the uncertainty of their

answers was taken into account, and self-selection ensured that the 50 final respondents

were among the most qualified. However, the discussion of leakage also leads to a dis-

cussion of the completeness of the model. First and foremost, a strong argument for the

completeness of the model is that it is based on the widely cited work by Marcus and Stern

(2003). However, converting the qualitative theory of Marcus and Stern into questions

suitable for building a quantitative Bayesian model unavoidably introduces distortions.

Two questions thus need to be addressed: (i) are there causes missing that should be added?

and (ii) are there superfluous causes that should be removed? Together, these questions

determine whether the model contains all relevant causal factors.

(i) was explicitly addressed in the survey. The question ‘‘Do you believe that important

aspects of enterprise IT systems availability have been left out in the survey? If so, please

describe the areas missing.’’ received 18 answers, i.e., 32 of the respondents did not find

any aspects missing important enough to warrant an answer. Out of these 18 answers, two

were in the negative, i.e., confirming the completeness of the model. Another two

addressed methodology issues that will be discussed below, but did not constitute

Table 6 Missing factors identi-
fied by 14 respondents

Some respondents identified
more than one missing factor

Causal factor N

Security attacks 1

Automatic computing 1

Software quality 1

Disaster management 1

Human factors 2

Methodologies such as ISO-standards 1

Evolution/maintenance 1

Data availability and data model 1

Performance monitoring 1

Cost/benefit issues 2

Virtualization 1

Load management 1

Infrastructure should be more specific 1

Enterprise organization 1

Relationship between SLA and desired uptime 1
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suggestions for additional causal factors relevant to enterprise IT systems availability. The

remaining 14 replies are summarized in Table 6.

The two methodology questions raised were (a) that subjective perception of availability

may differ from objective measures and (b) that practitioners rather than academics should

have been selected as respondents. These are both relevant points, but they are also

complementary in an interesting way. Asking practitioners to give estimates would run a

higher risk of being influenced by subjective perceptions (since a user or administrator

dealing with systems on an everyday basis has the opportunity to develop a subjective

perception, as opposed to a scientist collecting data or building models in a fashion more

disconnected from daily system usage). Conversely, asking published scientists limits the

risk of subjective perceptions based only on ones own systems (since scientific publication

requires a certain generality, and a careful discussion of validity), but at the same time runs

the risk of missing valuable ‘‘down-to-earth’’ insights from the practitioner community.

There seems, thus, to exist an inherent methodological trade-off between (a) and (b), and in

light of this, receiving one comment on each is not a bad result. The details on the selection

of survey participants were more thoroughly discussed in Sect. 2.

As seen in Table 6, no single potentially missing causal factor was identified by more

than 4% of survey respondents (2 out of 50). Most were identified by just a single

respondent. Since there is no strong agreement among the 50 experts on which causal

factors are missing, we conclude that the model contains an appropriate set of causal

factors causing enterprise IT system unavailability.

As for concern (ii)—superfluous causes of unavailability in the model that should be

removed—it was not explicitly addressed in the survey in the sense that any particular

question was devoted to it. However, every question on causes implicitly addresses the

issue, as the respondents could always say that a very minute fraction (\0.05%) of cur-

rently unavailable enterprise IT systems would be available if a best practice factor X had

been present. It should be noted, of course, that this is not an unambiguous measure of the

superfluousness of a cause. A causal factor that is both very important to availability and

very well managed in the real world does not offer the kind of potential for improvement

that the question looks for. However, as discussed in Sect. 5, it does offer a measure of the

practical relevance of the causal factor. A causal factor with a large potential for

improvement is, ceteris paribus, more relevant to a practitioner than a causal factor with a

small potential for improvement.

We conclude that the model, by its very nature, appropriately deals with very weak and

potentially superfluous causal factors.

8 Conclusions

The contribution of the present paper is threefold. First, the results from an academic

expert survey on the causes of unavailability of enterprise IT systems are presented.

Second, these results are used to build a Bayesian decision support model for assessment of

enterprise IT systems availability. Third, this model is integrated with a standard model for

assessing availability on an architecture level, thus forming an assessment framework

addressing both component and architecture level measures to ensure high availability.

Examples are presented to illustrate how the framework can be used by practitioners

aiming to ensure systems availability.

A natural continuation of the present line of research is to validate the results with case

studies of actual enterprise IT systems. Empirical data from such investigations could be
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used both quantitatively to calibrate the numbers in the Bayesian model and qualitatively

to restructure the Bayesian network if the leaky Noisy-OR assumptions prove unsuitable

for some variables.
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