
ICPC 2009

Automatically identifying changes that impact
code-to-design traceability during evolution

Maen Hammad • Michael L. Collard •

Jonathan I. Maletic

Published online: 29 August 2010
� Springer Science+Business Media, LLC 2010

Abstract An approach is presented that automatically determines if a given source code

change impacts the design (i.e., UML class diagram) of the system. This allows code-to-

design traceability to be consistently maintained as the source code evolves. The approach

uses lightweight analysis and syntactic differencing of the source code changes to deter-

mine if the change alters the class diagram in the context of abstract design. The intent is to

support both the simultaneous updating of design documents with code changes and

bringing old design documents up to date with current code given the change history. An

efficient tool was developed to support the approach and is applied to an open source

system. The results are evaluated and compared against manual inspection by human

experts. The tool performs better than (error prone) manual inspection. The developed

approach and tool were used to empirically investigate and understand how changes to

source code (i.e., commits) break code-to-design traceability during evolution and the

benefits from such understanding. Commits are categorized as design impact or no impact.

The commits of four open source projects over 3-year time durations are extracted and

analyzed. The results of the study show that most of the code changes do not impact the

design and these commits have a smaller number of changed files and changed less lines

compared to commits with design impact. The results also show that most bug fixes do not

impact design.

Keywords Software evolution � Design change � Software traceability �
Commit analysis

M. Hammad (&) � J. I. Maletic
Department of Computer Science, Kent State University, Kent, OH 44242, USA
e-mail: mhammad@cs.kent.edu

J. I. Maletic
e-mail: jmaletic@kent.edu

M. L. Collard
Department of Computer Science, The University of Akron, Akron, OH 44325, USA
e-mail: collard@uakron.edu

123

Software Qual J (2011) 19:35–64
DOI 10.1007/s11219-010-9103-x

1 Introduction

During the initial stages of a software project, there is often a great deal of energy and

resources devoted to the creation of design documents. UML class diagrams are one of the

most popular means of documenting and describing the design. A major reason for the

popularity of UML is the clear mapping between design element and source code. As such,

initially the traceability between design-to-code and code-to-design is consistent and

accurate. That is, the class diagram expresses the current state of the source code.

Traceability links can be easily defined at this point in development, however, little tool

support exists for this task and rarely do traceability links exist explicitly in a useable

manner. Manually constructed design documents also include a wealth of vital information

such as meaningful diagram layout, annotations, and stereotypes. This type of meta-data

is very difficult to derive or reconstruct via reverse engineering of the design from the

source code.

During evolution, change occurs to the source code for many reasons (e.g., fixing a bug

or adding a feature). This creates the serious problem of keeping the design artifacts in-line

and current with the code. Additionally, developers lose the architecture knowledge of the

system during evolution (Feilkas et al. 2009). The consistency of the traceability links from

the code-to-design is regularly broken during evolution and the design documents soon

decay without expensive and time-consuming upkeep. To maintain consistency, each

change to the source code must be examined and comprehended to evaluate its impact on

the design. Of course, not all changes to the code impact the design. For instance, changing

the underlying implementation of a data structure or changing the condition of a loop

typically does not change the design, while changing the relationship between two classes

or adding new methods generally has a real impact on the design. So, given a set of code

changes, it is a non-trivial task to determine if there needs to be a corresponding change to

the design.

One could reverse engineer the entire class diagram after a set of changes, however, as

mentioned previously, a large amount of valuable meta-information is lost. We feel that

reverse engineering a complete design is unnecessary if some consistent design exists. An

incremental analysis of the changes, in step with system evolution, should produce a much

richer and more accurate design document.

The work presented here specifically addresses the following program comprehension

question. Does a set of code changes impact the design? By automatically answering

this question, we can then address how to ensure consistency of code-to-design trace-

ability during code evolution. It directly supports the comprehension of a code change.

In addition, by looking at the evolutionary history of a project, we can answer the

broader question: What can we learn from the evolution of design commits (i.e., code
changes with design impact)? This directly supports the comprehension of evolution of

code changes and the impact of successive small code changes on design. The broader

question is addressed by a detailed empirical study to show the benefits that can be

learned.

Our approach, of identifying design changes, does not rely on the existence of explicit

traceability links between code and design. Nor do we actually require the existence of a

design document (class diagram). That is, all we use to determine if there is a design

change is the source code (in this case C??) and details about the change (i.e., the diff).
However, for the question to be completely answered there should exist a version of the

source code and design document that were consistent at some point it time. The change

history of the source code is readily available from CVS or Subversion.

36 Software Qual J (2011) 19:35–64

123

Each change in the source code is analyzed to see if it meets a set of criteria we

developed that categorizes changes as design altering or not (in the context of UML). The

analysis and differencing are accomplished in a lightweight and efficient manner using our

srcML and srcDiff (Maletic and Collard 2004) tool sets. The results produced indicate if

the change impacts the design along with details about the specific design change.

The work presented here extends our previous investigation (Hammad et al. 2009) by

applying the developed approach to analyze how commits break code-design traceability

during the evolution (i.e., time duration) of a project. Knowing which commits impact the

design plays an important role for testing, updating documentation, and project manage-

ment in general. An empirical study is presented of four open source projects to study the

impact of the evolutionary commits on design during 3 years of development.

The paper is structured as follows. First, in Sect. 2, we detail what changes in code

results in a design change. This is followed in Sect. 3 by how we automatically identify

these design changes. Section 4 presents the validation of the approach. In Sect. 5, a

detailed empirical study is presented to investigate how commits impact design during

evolution. Threats to validity and limitations are discussed in Sect. 6. The related work is

presented in Sect. 7 and followed by our conclusions and future work in Sect. 8.

2 Mapping code change to design change

Here we are interested in code changes that have a clear affect on the UML class diagrams

representing the static design model of a software system. Examples of changes that impact

the design include such things as addition/removal of a class, changes to the relationships

between classes, and addition/removal of certain types of methods to a class. Specifically,

we define design change as the addition or deletion of a class, a method, or a relationship

(i.e., generalization, association, dependency) in the class diagram. These types of changes

impact the structure of the diagram in a clear and meaningful way with respect to the

abstract design.

Other types of changes are only related to implementation details and do not impact the

class diagram in any meaningful way in the context of the design. Let us now discuss both

types of changes in more detail.

2.1 Changes that impact design

Changes to source code that involve addition or removal of a class, method, or class

relationship can impact the class diagram. Adding or removing a class has obvious impacts

on the class diagram and most likely on the design. Adding a new class can relate to adding

new features or extending existing ones. Removing a class may signify a redesign or

refactoring of the system.

Likewise, adding or removing a method changes a class’s interface and (sometimes) the

design. These situations are both relatively easy to identify and map from the code to the

class diagram. Figure 1 gives an example of code changes that affect the design. The figure

is a snapshot from the diff output of two releases of the header file PyFitsController.h. In

the newer release (1.19.1), one method, named writeToFile, has been added. As a result,

this code change causes a corresponding design change, i.e., the addition of the new

method writeToFile to class PyFitsController. A name change (remove and add) also

impacts the design document to a degree. Minimally, the class or method should also be

renamed in the design document.

Software Qual J (2011) 19:35–64 37

123

The addition or deletion of a relationship between two or more classes can drastically

affect the design of a system. Generalization is a syntactic issue in C?? and simple to

identify. However, association and dependency can be realized in a number of ways in

C?? and as such more analysis is necessary to determine if a change occurs to such a

relationship.

The code change in Fig. 1 also shows a new class, QtCut, being used as a type for a

parameter in the method writeToFile. This indicates that a new dependency relationship

has been established between classes PyFitsController and QtCut.
Additionally, in Fig. 1, there is another user-defined type, DataSource, used in the

parameter list of the new method. This produces yet another potential new dependency

relationship between the classes PyFitsController and DataSource. But by analyzing the

complete source code of PyFitsController.h release 1.18.1, we find that this dependency

relationship already exists between these two classes. As a result, this specific code change

does not affect the design; it just strengthens the dependency relationship.

Figure 2 is an example of a code change that results in a new association relationship

between two classes. The code change is a part of the diff for the header file FitsNTuple.h
releases 1.18.1 and 1.19.1. The code change shows the declaration of a new vector that uses

the class DataColumn. To determine if this code change corresponds to addition of a new

association between classes FitsNTuple and DataColumn, two conditions are required. The

first condition is the absence of this relationship in the older release. The second condition

is the scope of the new variable. The declared variable must be a data member, i.e., this

declaration must be in class scope.

Analysis of the code change in Fig. 2 shows that the new vector is declared as a data

member in release 1.19.1. The analysis also shows that there is no data member of class

DataColumn in release 1.18.1. Based on these two observations, we can conclude that a

new association relationship between FitsNTuple and DataColumn has been added to the

design of HippoDraw release 1.19.1.

2.2 Changes that do not impact design

Many code changes pertain to implementation details and do not impact the design. In fact,

most code changes should not impact the design; rather those changes should realize the

design. This is particularly true during initial development or fault (bug) fixing. To correct

Fig. 1 Example of code change that impacts design by adding the method writeToFile and a dependency
relationship between classes PyFitsController and QtCut

38 Software Qual J (2011) 19:35–64

123

a bug (i.e., not a design fault) source code is modified. This code change implements the

design correctly and as such does not impact the class diagram.

Many bug fixes involve the modification of a loop or if-statement condition (Raghavan

et al. 2004). Changing a conditional impacts the implementation but not the design. Even

some changes to class or method definitions do not necessarily lead to a design change. For

instance, adding a new constructor function to a class does little to impact the design.

Figure 3 presents code changes that are generated by the diff utility of two revisions of

the source file domparser.cpp, which is part of the KDE library. It is clear that these

changes have no effect on the design of the software. No class has been added or deleted,

the code changes do not show any addition or deletion of a method, and there is no code

change that would affect the addition or deletion of any relationship. These changes do not

require any updates to the corresponding class diagrams.

Figure 4 has three different examples of code changes between releases 1.18.1 and

1.19.1 of HippoDraw (www.slac.stanford.edu/grp/ek/hippodraw/index.html). In the first

Fig. 2 A code change that impacts the design due to the addition of a new association relationship between
classes FitsNTuple and DataColumn

Fig. 3 Code changes from two revisions of domparser.cpp (KDE) that do not impact the design

Software Qual J (2011) 19:35–64 39

123

http://www.slac.stanford.edu/grp/ek/hippodraw/index.html

example Fig. 4 Part A, the function getRank is no longer declared virtual. The parameter of

the function fillFromTableColumn has been renamed from vec to v in the second example

(B). In the third example (C), the macro MDL_QTHIPPOPLOT_API has been added to the

class declaration. Even though these are changes to classes and methods they do not impact

the design of the software.

3 Automatically identifying design changes

We implemented a tool, srcTracer (Source Tracer), to realize our approach to automati-

cally identify design changes from code changes. The tool discovers when a particular code

change may have broken the traceability to the design and gives details about what

changed in the design. From these results, the design document can be updated manually or

by some future tool. Output identifying design changes to a file appears as:

NEW METHOD FitsNTuple::replaceColumn
NEW DEPENDENCY FROM FitsNTuple TO DataColumn

The process begins with a code change that results in two versions of the source code.

First, the source code of the two versions is represented in srcML (Collard et al. 2003), an

XML format that supports the (static) analysis required. Second, the code change(s) are

represented with additional XML markup in srcDiff (Maletic and Collard 2004) that

supports analysis on the differences. Lastly, the changes that impact the design are iden-

tified from the code changes via a number of XPath queries. We now briefly describe

srcML and srcDiff for continuity and focus in detail on identification of the design changes.

The srcML format is used to represent the source code of the two versions of the file.

srcML is an XML representation of source code where the source code text is marked with

elements indicating the location of syntactic elements. The elements marked in srcML

include class, function (method), type, etc. Once in the srcML format, queries can be

performed on source code using XPath, the XML addressing language. For example, the

XPath expression ‘‘/unit/function’’ finds all function definitions at the top-level of

the document. Another example is the XPath query ‘‘//function[name=‘convert’]’’ finds the

function definition with a name of ‘convert’. Figure 5 shows an example of source code

and its corresponding srcML representation. Note that each element is marked with its

syntactic information.

While the diff utility can easily collect source code changes, the output produced is

purely textual information. It is very difficult to automatically recover the syntactic infor-

mation of the code changes. To overcome this problem, srcDiff (Maletic and Collard 2004)

(A)

(B)

(C)

Fig. 4 Three examples of code changes to method signatures that do not impact the design

40 Software Qual J (2011) 19:35–64

123

is used. srcDiff is an intentional format for representing differences in XML. That is, it

contains both versions of the source code and their differences along with the syntactic

information from srcML. The srcDiff format is a direct extension of srcML. The srcML of

two versions of a file (i.e., old and new) are stored. The difference elements diff:common,

diff:old, and diff:new represent sections that are common to both versions, deleted from the

old version, and added to the new version, respectively. Once in this format, the source code

and differences can be queried using XPath with a combination of the difference elements

(diff:*) and the srcML elements. Examples of the srcDiff format are given in the following

sections as the change identification process is detailed.

3.1 Design change identification

Since the approach supports traceability from source code-to-design, the design change

identification process depends on the syntactic information of the code change. This

information can be extracted from the srcDiff representation of the code change. Once the

code change has been identified as a design change, this design change is reported to keep

it consistent with the code.

Design changes are identified in a series of steps, first added/removed classes, next

added/removed methods, and lastly changes in relationships (added/removed generaliza-

tions, associations, and dependencies, respectively). The information about a design

change from a previous step is used to help identify the design change of the next step. For

example, the code change in Fig. 1 shows two types of design change, the addition of

(B)

(A)

Fig. 5 Source code of swapping two numbers (A) and its srcML representation (B). Syntatic elements are
marked as tags around the original (escaped) source code text

Software Qual J (2011) 19:35–64 41

123

method writeToFile and the addition of dependency between classes PyFitsController and

QtCut. The new method is identified first and is reported. Then, in the next step, the

parameters of this new method are used to determine a new dependency relationship.

The process of identifying changes in code-design traceability is summarized in the

following procedure:

1. Generate the srcML for each of the two file versions

2. Generate the srcDiff from the two srcML files

3. Query srcDiff to identify design changes

a. Added/Deleted classes

b. Added/Deleted methods

c. Added/Deleted relationships

4. Report the design change

We now discuss each of the identification steps in detail in the order that they occur. Also

some detail on the XPath queries used to find the appropriate changes is provided. More

examples and details about querying srcDiff are discussed in Maletic and Collard (2004).

3.2 Classes and methods

To identify if a code change contains an added/deleted class or method, the srcDiff of the

differences is queried to find all methods and classes that are included in added or deleted

code. In srcDiff, these are the elements that are contained in the difference elements

diff:old or diff:new. Figure 6 shows a partial srcDiff of the file ColorBoxPointsRep.h. For

clarity, only pertinent srcML elements are shown. The class ColorBoxPointRep exists in

both versions, as indicated by being directly inside the difference element diff:common.

This class has a new method, setBoxEdge, indicated by being directly inside a difference

element diff:new.

The general form of the XPath query to find new methods added to existing classes is:

//class[diff:iscommon()]//function_decl[diff:isadded()]/name

This query first finds all class definitions anywhere in the source code file. The predicate

[diff:iscommon()] checks that the discovered classes exist in both versions of the docu-

ment. The srcDiff XPath extension function diff:iscommon() is used here for clarity. Then

within these existing classes, it looks for method declarations (function_decl) that are new

(checked with the predicate [diff:isadded()]). The final result of this query is the name of

Fig. 6 The partial srcDiff of
ColorBoxPointRep.h. A new
method setBoxEdge was added

42 Software Qual J (2011) 19:35–64

123

all methods added to existing classes. To find the names of all deleted methods, a similar

XPath query is used, except instead of using the predicate [diff:isadded()] to find the added

methods, we use the predicate [diff:isdeleted()] to find the deleted methods.

The resulting queries find the names of these added/deleted methods, not the complete

method signature, i.e., parameter number and types. We do not consider function over-

loading a design change. We are mainly concerned about the unique names of the methods.

The new method is reported as a design change if the same name of that method does not

exist in the old version of the source code. This means the name of the new function is

unique.

3.3 Relationships

To identify changes in relationships, we designed queries to locate any change in the usage

of non-primitive types (i.e., classes). For example, a declaration using class A is added to

class B. This indicates a potential new relationship between the classes A and B. Alterna-

tively, this may indicate a change to an existing relationship between the classes. The

impact on the relationship of the usage of this type depends on where the type change

occurs. If the type change is in a super type then this indicates a change of a generalization

relationship. If the type change is in a declaration within the scope of a method, then this

code change is identified as a new dependency relationship. And finally, if it is the dec-

laration of a new data member (class scope), then it is an association relationship. The

process of identifying changes in relationships is summarized as follows:

1. Query srcDiff to locate any added/deleted type (class) in the code.

2. If the added/deleted type has been used as a super type, then this is added/deleted

generalization

3. If the added/deleted type has been used to declare a data member (class scope), then

this is added/deleted association

4. If the added/deleted type has been used to declare a local member (method scope),

then this is added/deleted dependency

To identify added/removed generalizations, srcDiff is queried to check any change in

the super types of the existing classes. Figure 7 shows how this change appears in srcDiff.

The figure is the partial srcDiff from the file RootController.h. A new supertype, Observer,

has been added to the existing class RootController.

The XPath query to identify all new generalizations is:

//super//name[diff:isadded()]

This query finds the names of all added super types (classes) to the existing class. If

there is a new generalization relationship between classes A and B, the XPath query is

applied to the srcDiff representation of class A to identify B as an added super type.

Fig. 7 The partial srcDiff of RootController.h. The supertype Observer forms a new generalization

Software Qual J (2011) 19:35–64 43

123

Figure 8 shows a potential new dependency. The figure is the partial srcDiff from the

file DataView.cxx. The method prepareMarginRect of class DataView contains a new

declaration for the variable plotter. The class PlotterBase is used in the type. The general

form of the XPath query to identify the added dependencies is:

//function//type//name[diff:isadded()]

This query first finds all types used in methods, including the return type of the method.

Then the names used in these types are found. The XPath predicate [diff:isadded()] ensures

that these names were added. The resulting names are the destination (depends on) of the

dependency relationships.

The XPath query to identify potential added associations is:

//type//name[diff:isdeleted()][src:isdatamember()]

This query first finds all names used in a type that has been deleted, [diff:isdeleted()].
Then it checks to make sure that is in a class, i.e., that this declaration is a data member.

The srcML XPath extension function src:isdatamember() checks the context of the type to

make sure that it is in class scope. Figure 9 shows a potential new association. The data

member m_columns, which is a vector of type DataColumn, has been added to the class

FitsNTuples in the new release of the code. This results in a potential association rela-

tionship between classes FitsNTuple and DataColumn.

The potential design change may not necessarily break the code-to-design traceability

links. There could be more than one method in class A that uses local objects of type B. In

this case, the dependency relationship between A and B already exists. While this potential

design change does not impact the dependency relationships, it does increase the strength

of the dependency relationship between classes A and B.

The check for uniqueness of the dependency and the association relationship is

accomplished by further querying of srcDiff. For example, suppose that an added

dependency on class B was found in class A. This added dependency is a potential design

change, but we first need to determine if this dependency is new or not. To check if this

relationship does not exist in the older version of the code, the following query is used:

//function//type//name[not(diff:isadded())][.=‘B’]

The query looks at methods to find all names used in types that are part of the old

document, [not(diff:isadded)], and which are using class B. If this query returns with any

results, then we know that the potential design change increases the number of occurrences

of this dependency, but does not lead to a design change. If the result of this query is empty

Fig. 8 Partial srcDiff of DataView.cxx. The method has a new declaration that uses PlotterBase, producing
a potential new dependency

44 Software Qual J (2011) 19:35–64

123

(i.e., no usage of class B was found), then it is a design change and requires an update of

the design document.

4 Evaluation

To validate the approach, we compare the results obtained automatically by our tool to the

results of manual inspection by human experts. That is, the same problems are given to

both the tool and the human experts. The objective is to see if the results obtained by the

tool are as good (or better) than the results obtained by the experts. Ideally, one should not

be able to discern the tool from the expert by a blind examination of the results.

We ran our tool over two complete releases of HippoDraw for this study. A subset of the

changes was chosen and a set of problems was constructed so they could be presented to

human experts. The details of the study and results are now presented.

4.1 Design changes in HippoDraw

We used srcTracer to analyze code changes between releases 1.18.1 and 1.19.1 of

HippoDraw. HippoDraw is an open source, object-oriented, system written in C?? used to

build data-analysis applications. HippoDraw was selected because it is an OO system, well

documented, and is of medium size. The two releases were selected because they included

significant code changes over a large number of files. The srcTracer tool used libxml2 to

execute the XPath queries. The tool took under a minute to run for the analysis, including

the generation of the srcDiff format.

There are a total of 586 source and header files in release 1.18.1 of HippoDraw. When

the system evolved from release 1.18.1 to release 1.19.1, there were 5,389 new lines added

and 1,417 lines deleted (according to the unified diff format). These lines are distributed

over 175 files of which 160 files have changes. The remaining 15 files include 13 files

added to release 1.19.1 and 2 files deleted from release 1.18.1.

The identified design changes, from our tool’s results, are given in Table 1. Design

changes are categorized according to the type of the change (class, method, relationship)

and the context of the code change (in a new, deleted, or changed file). New files did not

exist in release 1.18.1, while deleted files did not exist in release 1.19.1. There were 118

added methods of which 44 methods were added to new files and the remaining 74

methods were added to existing files.

Fig. 9 Partial srcDiff of FitsNTuple.h. The class exists in both versions. The new data member uses type
DataColumn forming a potential new association

Software Qual J (2011) 19:35–64 45

123

4.2 The study

The study compares the results of the tool to that of manual inspection by human experts.

Not only will this allow us to determine the accuracy of the tool, we also are able to

determine the amount of time spent by experts. This gives us a relative feel for the time

savings of using such a tool.

We were able to secure three developers who have expertise in both C?? and UML to

act as subjects for the study. All are graduate students and all have experience working in

industry. All three are also very familiar with the design of the studied system. For the

purposes of this type of evaluative comparison, a minimum of two human experts is

required. That is, if the results of the tool are indistinguishable from two human experts,

then we can conclude that the tool performs equal to an expert. If the two experts con-

sistently answer a question differently from the tool, we can conclude that the tool does not

perform as well.

Of the 175 files changes, we selected a subset based on the following factors:

1. Variation of the changes—we attempted to cover most types of codes changes

2. Type of the change—we did not include files that contained non-code changes (e.g.,

comment changes)

3. File types—we selected situations where only one of the header or the source file were

changed

We considered these factors to ensure that we evaluated the tool’s performance on all

variations of code/design changes, while at the same time only requiring a reasonable

amount of time from the experts. If the file selection process was completely random and

the number of files that an expert could consider was limited, we may end up with code

changes that represent very few variations of design changes (e.g., all files may have only

changes in methods), and hence not get complete coverage of the types of design changes.

Given these criteria, we selected 24 files from the 175 files for our study (randomly

selecting as much as possible). For each of the 24 sets of changes (one set per file), we

developed a problem to pose to the experts. We selected 24 file because it was over 10% of

the changed files and 24 problems seemed a reasonable task to give to experts. Our

estimate of the time required to read and answer this number of problems manually was

2 h.

Table 1 Design changes auto-
matically identified in Hippo-
Draw 1.19.1 by srcTracer tool

Design change New files Deleted
files

Changed
files

Total

Classes ? 6 0 0 6

- 0 2 0 2

Methods ? 44 0 74 118

- 0 1 8 9

Generalizations ? 4 0 2 6

- 0 0 0 0

Dependencies ? 19 0 17 36

- 0 1 22 23

Associations ? 0 0 4 4

- 0 0 0 0

Total design changes 73 4 127 204

46 Software Qual J (2011) 19:35–64

123

For each of the 24 files, the standard unified diff format of the two versions was generated.

Beside the code differences for each file, the design of the older release (1.18.1) for the code

was provided as UML class diagrams of the source code under investigation. The design

model for each file was reconstructed manually. A small description was given to each subject

about the study and how they should go about answering the questions. The preparation of the

study questions (reconstruction and drawing class diagrams) took approximately 40 h.1

Figure 10 shows one of the problems used in the study. In this problem, the code

differences of the two versions of the source file PlotterBase.cxx are given in the standard

unified diff format. The first version belongs to release 1.18.1 while the second version

belongs to release 1.19.1. The file PlotterBase.cxx is the source file (implementation) of the

class PlotterBase that is declared in the header file PlotterBase.h. The design of the related

parts of HippoDraw release 1.18.1 is represented as a UML diagram shown in the figure.

We ask two questions for each problem (given at the bottom of Fig. 10). We first ask if the

code changes impact the given UML diagram. The second question asks the user to write

down any changes they perceive. By showing the code changes and the design model of the

source code together, we directly examine the traceability between code evolution and

design. For the example in Fig. 10, we can see that these code changes do impact the

design and the corresponding design document should be updated. Six new methods were

added to class PlotterBase that are not part of the given UML class diagram. A new

dependency relationship between class PlotterBase and class FontBase is also added that

did not exist in the original design model as can be seen in the UML diagram.

5 Results

The results obtained by the tool and the three experts for the 24 problems are given in

Table 2. Each row represents the type of design change (e.g., class removed or added). The

numbers in the table represent how many changes have been identified for each category.

The column Tool shows the results of the tool. Columns S1, S2, and S3 represent the

results obtained by the three subjects. For example, the tool identified 33 added methods,

while each of the three human experts (S1, S2, and S3) identified 32 added methods. To

compare the human experts with the tool, the intersections of the results of each expert

with the results of the tool are shown. For example, there are 33 added methods identified

by the tool. The first expert (S1) identified 32 new methods. The intersection of these two

sets shows that the tool also identifies the same 32 methods identified by that subject. The

intersection column shows how closely the result of a subject is with that of the tool.

When the intersection is less than what the tool found, there are two possibilities. Either the

tool misidentified a change as impacting the design or the expert overlooked a design change.

To verify these two possibilities, we need to check the results of the other experts. The second

expert also identified 32 methods of the 33 (as the intersection shows). Did both subjects

ignore the same method? If the answer is yes this means the tool may have misidentified a

change. On the other hand if the answer is no, this means each expert overlooked a different

method. The same thing can be said about the 32 methods identified by the third expert.

The rightmost column in the table gives the union of the subjects intersected with the

tool. As can be seen, the subjects each missed an added method but not the same one. In

this particular case, each of the three subjects missed a different method addition. Over-

looking a design change in the code is not surprising as some changes are large and not

1 Complete study is at www.sdml.info/downloads/designstudy.pdf.

Software Qual J (2011) 19:35–64 47

123

http://www.sdml.info/downloads/designstudy.pdf

easily followed. Tool support for this task will improve the quality of traceability and

identifying design changes.

By comparing the experts’ results with the tool, we found that the cumulative results for

the experts were identical with the results from our tool. For each subject, the design

changes identified were a subset of the design changes identified by the tool. The tool

identified 47 design changes. The first subject identified 45 design changes (match =

96%), the second subject identified 46 design changes (match = 98%), and the third

subject identified 43 design changes (match = 91%). Collectively, the three subjects

identified 47 design changes (match = 100%). Therefore, all changes identified by the

subjects were also identified by the tool and vice versa.

As such the tool performed better than each individual human expert and performed as

good as the three subjects together.

Fig. 10 One of the 24 test problems given to human experts. The line differences are the relevant output of
the diff utility. The UML class diagram is the pertinent parts of the system before the design change. Based
on this information, the expert answered the questions at the bottom regarding changes to the design

48 Software Qual J (2011) 19:35–64

123

With regards to effort spent, the three subjects required 80 min on average to complete

the 24 problems. It should also be considered that the problems were presented in a very

clear and straightforward manner with all the associated information (UML and code). This

is a best-case scenario for manually evaluating changes and in practice there would be a

large amount of time spent putting all this information together to assess the change. Our

tool took less than 1 min to run against the entire system.

The approach was only applied to C?? and not tested on other object-oriented pro-

gramming languages. However, the srcML and srcDiff formats do support Java and we

expect our work will map to other languages.

6 Code-to-design traceability during evolution

The approach and the supporting tool (srcTracer) have been used to conduct a detailed

empirical investigation to understand how changes to source code (i.e., commits) impact the

design of a software system during the evolution of the system. From single changes to

design for a single version, we are now examining how multiple changes (commits) impact

the design of a system over a duration of the version history (i.e., breaking code-design

traceability).

The goal is to systematically understand what percentage of commits actually impacts

the design. This automated approach of examining the source code change is very different

from investigations of commit messages. Commit messages are often incomplete with

regard to design implications and are, in general, problematic to analyze automatically.

The tool srcTracer is used to determine what syntactic elements changed due to a commit.

From this analysis, the commits are categorized as impacting the design or not. Figure 11

shows an example of code change that impacts design by adding/deleting three generaliza-

tions. This is part of the code changes committed on the file kateprinter.h in revision 723866

on Kate. So, this revision (commit) is considered as a design impact commit.

We are interested in investigating how often the design is impacted or changed.

Changes that simply modify a condition typically do not impact the design of a system and

are more likely to be bug fixes. The percentage of commits that impact design and their

distribution over time are presented and discussed.

Table 2 The comparisons of the results between tool and the three human subjects

Tool S1 S1 \
tool

S2 S2 \
tool

S3 S3 \
tool

(S1 [S2 [S3)
\ tool

Classes ? 1 1 1 1 1 1 1 1

- 0 0 0 0 0 0 0 0

Methods ? 33 32 32 32 32 32 32 33

- 2 2 2 2 2 0 0 2

Generalizations ? 2 2 2 2 2 2 2 2

- 0 0 0 0 0 0 0 0

Dependencies ? 7 6 6 7 7 6 6 7

- 1 1 1 1 1 1 1 1

Associations ? 1 1 1 1 1 1 1 1

- 0 0 0 0 0 0 0 0

Software Qual J (2011) 19:35–64 49

123

6.1 Data collection

The commits of four C?? open source projects over specific time durations are extracted and

analyzed. The four projects are the following: the KDE editor Kate (http://kate-editor.org),

the KOffice spreadsheet KSpread (www.koffice.org/kspread), the quantitative finance library

QuantLib (www.quantlib.org), and the cross-platform GUI library wxWidgets (www.

wxwidgets.org). These projects have been chosen because they are C?? (object oriented),

well documented, have large evolutionary history, and vary in their purposes.

The basic unit of data under investigation is the commit and its related information. For

each commit, we are interested in the code changes, the date the commit was made, and the

number of changed files. For each project, we extracted all commits between two specific

dates to cover a period from the evolutionary history of the project. Commits were

extracted from a specific part (i.e., target directory) in each project. We carefully selected

these directories which contain the most source and header C?? files. For example, in the

wxWidgets project, we extracted the commits from the Subversion directory (http://

svn.wxwidgets.org/svn/wx/wxWidgets/trunk). Start and end dates were selected to cover

three consecutive years time durations. The starting dates were chosen so that all the

projects were well-established and were undergoing active development and maintenance.

From the set of overall commits in that time duration, we selected a subset for analysis.

Since the analysis was on design changes caused by C?? code changes, commits with no

C?? code changes were excluded. Within each commit, we also excluded non C??

source or header files. Test files were not included since they are not part of the overall

design. Table 3 shows the total number of studied commits (after filtering), total number of

added/deleted lines of code in the studied commits, time duration, directory in the

repository, and the number of C?? header and source files in that directory at the

beginning of each time duration for the four projects. For example, for the KSpread

project, we extracted the commits from the directory koffice/kspread/over a period of

3 years starting on the first day of 2006. At the first revision, there were 207 C?? header

and source files. The total number of extracted commits that were included in the study for

the KSpread project is 2,389.

6.2 Categorization of commits

The tool srcTracer and the approach presented in Sect. 3 were used to analyze the code

changes of all the extracted commits (Table 3). The code change of each commit was

Fig. 11 Part of code changes in
revision 723866 on Kate. The
change impact impacts design of
Kate by adding/deleting three
generalizations

50 Software Qual J (2011) 19:35–64

123

http://kate-editor.org
http://www.koffice.org/kspread
http://www.quantlib.org
http://www.wxwidgets.org
http://www.wxwidgets.org
http://svn.wxwidgets.org/svn/wx/wxWidgets/trunk
http://svn.wxwidgets.org/svn/wx/wxWidgets/trunk

analyzed individually (i.e., independently from other commits). Based on this analysis, the

commits are categorized as either impacting the design or not. The percentages of commits

with design impact for the four projects are presented in Table 4. The srcTracer took about

90 min to analyze all the extracted 18,120 commits. During the selected time window,

most of the commits to these four projects did not impact the design. Among the 2,701

extracted commits of QuantLib, there are 924 commits (34%) that changed the design in

some way. On wxWidgets project, only 20% of the commits changed the design. For both

Kate and KSpread, the percentage is also low (27 and 29%, respectively).

The distribution of commits over the 36 months for the four projects is given in Fig. 12.

Each column in the chart represents the total number of commits during a specific month.

The lower part of each column represents the number of commits that impacted the design

during that month. The upper part of the column represents the number of commits that did

not change any design element. For example, in February 2006 (Month 2), there were 63

commits to KSpread. Out of those commits, the design of KSpread was changed in 12 of

them. It is clear from Fig. 12 that in almost all the studied months, the number of design

changes is less than other changes. More specifically, in all 144 months (36 months for

each project), there were only 6 months in which design changes were more prevalent.

This leads us to conclude that most of code changes do not impact the design.

From these charts, we can identify periods of time where major design changes occurred

and periods of time where design was stable. Design stability can be defined as periods of

time where UML class diagram of the system was not (or minimally) changed or impacted

by code changes.

For example, most of the design changes (70%) to QuantLib occurred during the first

half of the three-year period. This may mean that the system was undergoing major

development activities. Then in the second half of the three years, the design was more

stable with small maintenance activities occurring. There were 1,798 new classes added

Table 3 For each studied project, the directory the files came from, the time duration over a 3-year period,
the total number of source files at the beginning of the time period, the total studied commits (after filtering),
and the total investigated code changes

Open source
project

Directory Time period #Source files Total
commits

Total code
changes

Kate KDE/kdelibs/kate/ 3 years
(1/1/2006–12/31/2008)

111 1,592 124,772

KSpread koffice/kspread/ 3 years
(1/1/2006–12/31/2008)

207 2,389 181,432

QuantLib trunk/QuantLib/ql/ 3 years
(1/1/2006–12/31/2008)

671 2,701 782,055

wxWidgets wxWidgets/trunk/ 3 years
(1/1/2005–12/31/2007)

3,451 11,438 3,367,630

Table 4 Percentages of commits
with design impact and with no
design impact for the four pro-
jects during the 3-year time
period

Project % Commits-design
impact

% Commits-no
design impact

Kate 424/1,592 (27%) 1,168/1,592 (73%)

KSpread 681/2,389 (29%) 1,708/2,389 (71%)

QuantLib 924/2,701 (34%) 1,777/2,701 (66%)

wxWidgets 2,269/11,438 (20%) 9,169/11,438 (80%)

Software Qual J (2011) 19:35–64 51

123

during the first half of the three years comparing with 759 classes in the second half.

Another example is the number of new features added to the system. By examining the

history of the releases notes, we found that during the first half (January 2006–June 2007),

there were 6 releases with 70 new features compared to 4 releases with 51 new features for

the second half. From the release notes, we observed that the second half had more fixes

(11 fixes) than the first half (2 fixes).

One application of categorizing commits based on design impact is for an indicator of

the stability of code-to-design traceability during maintenance/development activity. This

indicates how much of this activity was focused on the design (i.e., potentially breaking

traceability links). For example, in February 2006 (Fig. 12b), the percentage of commits

that impacted the design of KSpread is 19% (12/63). The code-to-design traceability links

were very stable during these commit activities. By using such measures, we can determine

periods of design stability in the evolution history of the project.

The distribution of design impact commits with respect to the type of the impact is

given in Tables 5 and 6 for the four projects. Renamed classes were excluded using a

simple check to see if the added and deleted classes in the commit have the same methods.

This can also be identified directly from the srcDiff format by checking if the name of the

class is the only syntax change.

The first column of each table is the type of design impact. The second two columns

(? and -) are the number of added or deleted elements for each design change.

Fig. 12 Histograms of commits to a Kate, b KSpread, c QuantLib and d wxWidgets over 3-year time
period. For each month, commits are categorized based on impact to design. In almost all months, the
number of commits with design changes is much less than the number of commits with no impact to design

52 Software Qual J (2011) 19:35–64

123

The (# Commits) column is the total number of commits for each design type (or design

element). For example, during the studied time window, 525 commits impacted the design

of KSpread by adding or deleting a method. These 525 commits added 2,673 methods and

deleted 2,533 methods from the design of KSpread. Many commits have multiple design

impacts. For example, the commit of revision 727209 in Kate caused changes to five files

and had the following impact on the design (as reported by the tool):

NEW GENERALIZATION KateLayoutCache QObject
NEW DEPENDENCY FROM KateLayoutCache TO KateEditInfo
NEW METHOD KateLayoutCache::slotEditDone
OLD METHOD KateLayoutCache::slotTextInserted
OLD METHOD KateLayoutCache::slotTextRemoved
OLD METHOD KateLayoutCache::slotTextChanged
OLD METHOD KateEditHistory::editUndone

It is important to point out that the totals in Tables 5 and 6 are based on the changes for

each commit individually. For example, one design element could be added by one commit

and removed by another. So, the total number of methods added to Kate is not 1,654. This

number indicates the total number of methods added by each commit independently from

other commits. The distribution of commits, based on the design impact type, shows that

API changes have the highest number of commits for the four projects.

More specifically, we can identify months (periods) where specific design changes

occurred in large number, for example, the month that has the largest number of added

classes during the last 3 years. This may indicate that the structure of the design is

changing (major design change) and more new features are being added. On the other

hand, periods of time with more API changes (methods) and very few added/deleted

classes would mean that the functionality of the system is growing (or changing) but the

Table 5 Distribution of commits based on their design impact category on Kate and KSpread

Design impact Kate KSpread

? - #Commits ? - #Commits

Classes 94 70 73 269 198 172

Methods 1,654 727 332 2,673 2,533 525

Generalizations 89 81 73 321 275 174

Dependencies 311 266 177 1,070 697 384

Associations 143 130 104 239 230 157

Table 6 Distribution of commits based on their design impact category on QuantLib and wxWidgets

Design impact QuantLib wxWidgets

? - #Commits ? - #Commits

Classes 2,557 422 403 999 310 482

Methods 7,197 1,352 665 8,109 3,691 1,545

Generalizations 1,662 671 329 918 329 430

Dependencies 3,650 766 566 4,289 1,528 1,269

Associations 2,778 769 458 1,422 598 580

Software Qual J (2011) 19:35–64 53

123

features are stable. Other useful historical information is periods of time where the degree

of coupling/cohesion is increased or decreased. The number of added/deleted relationships

could be used as an indicator (or measure) of changes in the degree of coupling/cohesion.

6.3 Characteristics of commits

After categorizing commits according to their impact on design, we are interested in

studying the characteristics of each category. The two properties under investigation are

the original size of the commit (number of changed files) and the number of changed

(added and deleted) lines in the header and source files. The number of changed lines was

calculated by using the unified format of the diff utility. The averages of these two

properties for the four projects during the 3 years are shown in Table 7. The goal of this

table is to show that commits with design impact include larger code changes, in terms of

both number of changed files and number of changed lines of code, than commits with no

design impact.

For the four projects, the average of the number of changed lines by the design impact

commits is much higher than the commits with no design impact. For example, in

KSpread, the average number of lines changed (added and deleted) is 197 per commit with

design impact and 28 lines per commit with no impact. The average number of changed

files per commit is also higher in commits with a design impact, except for KSpread where

it is slightly lower (from 10 down to 9).

The distribution of commits, based on the number of changed lines and files, is shown in

Fig. 13. The numbers of lines and files for all commits are used to create four quartiles for

each project, with the value on the x-axis indicating the high end of the quartile. The

distribution of commits across these quartiles is shown. In each quartile, the commits are

categorized based on impact to design. The percentage of each category (design impact vs.

no design impact) is calculated from the total number of commits for that category, i.e., all

design commits from all four quartiles add up to 100%. For example, in Kate, 42% of the

commits have one to four lines of code changed (first quartile). These commits are dis-

tributed as 2% with design impact and 40% with no impact.

Also in Kate, only a single C?? source code file was changed in 60% of the commits

with no design impact. On the other hand, only 6% of the design commits changed only a

single file. Also in Kate, 63% of the design commits changed between 49 and 9,787 lines of

code. But only 11% of the commits with no impact are in the same range. For files, an

average of 65% of design impact commits occurred in the third and fourth quartiles (larger

Table 7 For each project, the average size of the commit (number of files) and the average number of lines
changed (i.e., added and deleted)

Project Commits

Impact on design No impact on design

Avg. #Files Avg. #Lines Avg. #Files Avg. #Lines

Kate 13 217 11 31

KSpread 9 197 10 28

QuantLib 16 510 4 174

wxWidgets 7 1,148 4 83

Avg. 11 518 7 79

54 Software Qual J (2011) 19:35–64

123

Fig. 13 The distribution of commits into quartiles (x-axis values) based on the number of files and number
of lines changed for the four projects. The percentages of commits with design impact and with no impact
are shown. In general, commits with a design impact have a larger number of files and consist of more
changed lines

Software Qual J (2011) 19:35–64 55

123

number of files) compared to 27% for the other commits. For lines, an average of 87% of

design impact commits occurred in the third and fourth quartiles (larger number of lines)

compared to 35% for commits with no impact. In summary, commits with design impact

contain a larger number of files and more lines of changed code.

6.4 Bug fix versus design change

The investigation of the analyzed commits leads to a key research question. If the code

change does not impact the design, then what is it? Or more specifically, if a code change

does not impact the design, then is it a bug fix? To address the latter of these questions, we

need to figure out which commits are bug fixes. In order to determine this, we applied a

simple analysis of the commit messages following the same technique used by Mockus and

Votta (2000) and Pan et al. (2009). Using this technique, certain key words in the commit

message determine the type of the code change. The approach used in Pan et al. (2009)

checks if the log change contains ‘‘bug’’, ‘‘fix’’, or ‘‘patch’’ to determine if the revision is a

bug fix. This technique is useful for Kate and KSpread due to the commit rules of KDE

where any bug fix should be marked in the commit message by the key word ‘‘BUG’’

combined with the bug number.

In our study, the same extracted commits are grouped into two categories based on if the

commit message contains the words ‘‘bug’’, ‘‘fix’’ or their derivations (e.g., fixed, fixing,

bugs…etc.). Then, we looked at how many commits in each group impacted the design.

The result of this analysis is given in Table 8.

Among the 1,592 commits extracted from Kate, there are 515 (32%) commits cate-

gorized as bug fixes. Based on our previous analysis, 424 commits out of the 1,592 are

design changes. There are only 97 commits among these 424 (23%) commits that are also

bug fixes. A quick look to the percentages of commits that are design change and bug fix

(fourth column) leads to the conclusion that most of design changes are not bug fixes (less

than 20% in average). These results are supportive of Raghavan et al. (2004) where they

found that most bug fixes involve the modification of a loop or changes to the condition of

an if-statement. Another study (Hindle et al. 2008) found that small commits are more

corrective. Our results also support these findings. As we discussed before, commits with

design changes are larger and most of them are not bug fixes (i.e., not small).

Of course not all bug fixes are completely free of design changes. In some cases, adding

a design element (e.g., new method) could be a result of fixing a bug caused by the absence

of certain functionality, more along the lines of a new feature. For example, the revision

875563 on Kate is a bug fix. The commit message is ‘‘Make incremental search bar care
about the user’s manual cursor position changes BUG: 173284’’. This commit also

impacted the design by adding the method KateSearchBar::onCursorPositionChanged.

Table 8 Grouping of commits based on design impact, bug fixes, and both

#Bug fix commits #Design commits Design \ bug fix Not design \ bug fix

Kate 515/1,592 (32%) 424/1,592 (27%) 97/424 (23%) 418/515 (81%)

KSpread 649/2,389 (27%) 681/2,389 (29%) 138/681 (21%) 511/649 (79%)

quantLib 549/2,701 (20%) 924/2,701 (34%) 112/549 (12%) 434/549 (80%)

wxWidgets 3,404/11,438 (30%) 2,269/11,438 (20%) 414/3,404 (18%) 2,990/3,404 (88%)

Avg. 27% 28% 19% 82%

56 Software Qual J (2011) 19:35–64

123

The last column of the table can be used to address the following research question. Can

we use a categorization of commits based on impact to design to determine if the commit is

a bug fix? In other words, can we say that if the commit does not impact the design then it

is a bug fix? In Kate, there are 418 commits that are bug fixes and have no design impact.

So, 81% of the bug fixes are reported among the commits with no design impact. In the

average of the four projects, 82% of the bug fixes commits are reported (covered) within

the commits that have no design impact. This shows us that a majority of the commits with

no design impact are bug fixes.

6.5 Commit labeling

Another application addresses the fact that a commit message tells why the code is changed

but often does not tell what exactly changed in the API. An example taken from the Kate

repository (revision 724732) includes the (with the exact spelling) commit message

‘‘remove wrong signal declaration, obviously i’m STUPID and shouldn’t be writing codde
at all’’. Unfortunately, this commit only tells us what file was changed, and the commit

message does not tell us what was removed. In actuality, the developer removed the

method KateView::cursorPositionChanged from the header file KDE/kdelibs/kate/view/
kateview.h. Using our approach, we can automatically label commits with design changes

and hence provide more useful design-level information about the change. Table 9 shows a

sample of such labels. The first column is the revision number. The second column rep-

resents the type of the design change (Labels). So, in revision 728467 a new dependency

relationship was added between classes KateView and KAction, and this revision is labeled

with the appropriate design change.

This labeling can be extracted from an existing revision system from the revision

number and the files that were part of the commit.

7 Threats to validity and limitations

The evaluation of the approach as to the accuracy of the tool (i.e., user study) covers only

one system. However, it is unclear if different systems would impact the results greatly. It

is possible software addressing different domains would display different evolutionary

trends and more complex changes. In this case, results could be affected and further studies

are warranted. But HippoDraw is in a fairly general domain and the types of changes

incremental. We see no serious reason that the accuracy of our results presented here will

not scale to other like systems and changes. The manual construction of the case study may

have some possible threats. Design recovery from source code was done by a single author.

Some source code elements might be incorrectly reverse engineered. Our selection of the

files was not done completely randomly, however, we did assure for a diversity of prob-

lems. We could have had an expert check every change but this would have involved a

Table 9 An example of labeling
commits that have design impact
on Kate

Revision Labels

513128 OLD CLASS DOMFunction

OLD METHOD DOMFunction::InternalFunctionImp

728467 NEW DEPENDENCY FROM KateView TO KAction

727168 OLD METHOD KateModeManager::reverse

Software Qual J (2011) 19:35–64 57

123

large amount of effort and we do not feel that any additional information would have been

gained.

Although the evaluation study was between two releases of the system, the granularity

of the changes was not very large. It still remains to validate the approach on large code

variations. However, these changes may be very difficult for subjects to comprehend. The

amount of time and information for subjects to comprehend and accurately assess the

changes are most likely to increase.

The approach was implemented using the srcML and srcDiff translators. The srcML

translator is based on an unprocessed view of the software (i.e., before the preprocessor is

run) and does not take into account expansion of preprocessing directives. However, this

was not an issue for HippoDraw as few changes involved complicated preprocessor

directives or macros. If the software system under review did incur many changes to

preprocessor directives and macros, the tool can be applied to both the unprocessed and

preprocessed code.

For the empirical study, there are some possible threats to the results. One major threat

is refactorings. The tool does not deal with all variations for renames (only class rename).

The selected durations for the four projects are relatively short and the evolutionary pat-

terns may change for larger durations. Another threat is that we used a lightweight analysis

for the commit message to identify bug fixes. There are some bug fixes that cannot be

identified using this approach and some developers do not follow the committing

guidelines.

8 Related work

Since the paper deals with the traceability issue between code evolution and design

changes, the related work is grouped into three categories; software traceability, design

changes/evolution, and commit analysis.

8.1 Software traceability

The results of a recent industrial case study (Feilkas et al. 2009) showed that the informal

documentation and the source code are not kept consistent with each other during evolution

and none of them completely reflects the intended architecture. Developers also are not

completely aware of the intended architecture. Antoniol et al. (2000c) presented an

approach to trace OO design to implementation. The goal was to check the compliance of

OO design with source code. Design elements are matched with the corresponding code.

The matching process works on design artifacts expressed in the OMT (Object Modeling

Technique) notation and accepts C?? source code. Their approach does support direct

comparison between code and design. To be compared, both design and code are trans-

formed into intermediate formats (AST). In Antoniol et al. (2001), a tool is developed to

establish and maintain traceability links between subsequent releases of an object-oriented

software system. The method was used to analyze multiple releases of two C?? projects.

The focus of the study is the number of added, deleted, and modified LOC, augmented with

the LOC of added/deleted classes and methods.

Antoniol et al. (2004) proposed an automatic approach, based on IR techniques, to trace,

identify, and document evolution discontinuities at class level. The approach has been used

to identify cases of possible refactorings. The work is limited to refactorings of classes (not

methods or relationships).

58 Software Qual J (2011) 19:35–64

123

IR techniques are used in many approaches to recover traceability links between code

and documentation. Antoniol et al. (2000a, 2002) proposed methods based on IR tech-

niques to recover traceability between source code and its corresponding free text docu-

mentation. In Antoniol et al. (2000b), they traced classes to functional requirements of java

source code. An advanced IR technique using Latent Semantic Indexing (LSI) has been

developed by Marcus and Maletic (2003) to automatically identify traceability links from

system documentation to program source code. De Lucia et al. (2008) used LSI techniques

to develop a traceability recovery tool for software artifacts. Zhou and Yu (2007) con-

sidered the traceability relationship between software requirement and OO design. Zhao

et al. (2003) used IR combined with static analysis of source code structures to find the

implementation of each requirement. All IR techniques are statistical and the correctness of

the results depends on the performance of the matching algorithm. They also require

considerable effort to retrieve information from code and documents. These methods do

not provide traceability between code and UML design specifications. Hayes et al. (2006)

studied and evaluated different requirements tracing methods for verification and valida-

tion purposes.

Reiss (2002, 2005) built a prototype supported by a tool called CLIME to ensure the

consistency of the different artifacts, including UML diagrams and source code, of software

development. Information about the artifacts is extracted and stored in a relational database.

The tool builds a complete set of constraint rules for the software system. Then, the validity

of these constraints is verified by mapping to a database query. The approach does require a

predefined set of design constraints while our approach does not. Our approach also supports

incremental small code changes. We directly analyze the specific code change instead of the

changes at the file level (Riess’s approach). A more specific rule–based approach to support

traceability and completeness checking of design models and code specification of agent-

oriented systems is presented in Cysneiros and Zisman (2008).

Murphy et al. (2001) presented the software reflexion model technique to summarize a

source model of a software system from the viewpoint of a particular high-level model.

The technique compares artifacts by summarizing where one artifact is consistent/incon-

sistent with another artifact. The approach mainly supports the high-level (architectural)

model of the system (not UML class diagram). Mappings between a high-level structural

model and the source model have to be provided by the user.

8.2 Design evolution

In the area of identifying design changes, Kim et al. (2007) presented an automated

approach to infer high-level structural changes of the software. They represent the struc-

tural changes as a set of change rules. The approach infers the high-level changes from the

changes in method headers across program versions. Weißgerber and Diehl (2006) pre-

sented a technique to identify refactorings. Their identification process is also based on

comparing method signatures and the full name of fields and classes. Both of these

approaches do not support changes to relationships.

Xing and Stroulia (2005) presented an algorithm (UMLDiff) that automatically detected

structural changes between the designs of subsequent versions of OO software. The

algorithm basically compares the two directed graphs that represent the design model.

UMLDiff was used in Xing and Stroulia (2004a) to study class evolution in OO programs.

In Xing and Stroulia (2004b), UMLDiff was used to analyze the design-level structural

changes between two subsequent software versions to understand the phases and the styles

of the evolution of OO systems. In Xing and Stroulia (2007), UMLDiff was also used to

Software Qual J (2011) 19:35–64 59

123

study and analyze the evolution of API. Another example of graph comparison approaches

is presented in Apiwattanapong et al. (2004) and Nguyen (2006). Fluri and Gall (2006)

identified and classified source code changes based on tree edit operations on the AST. We

do not compare two design models. These comparisons primarily use graph comparison,

which is not efficient. Additional matching techniques are discussed in Kim and Notkin

(2006).

Sefika et al. (1992) proposed a hybrid approach that integrates logic-based static analysis

with dynamic visualization for checking design-implementation conformance at various

levels of abstraction. The approach does not specifically support UML class diagrams.

ArchEvol (Nistor et al. 2005) is proposed as an integrated environment for maintaining and

versioning architectural-implementation relationships throughout the development process.

Another domain-specific versioning system is Molhado (Nguyen et al. 2005). Molhado

supports configuration management for hypermedia and provides version control for indi-

vidual hyperlinks and document nodes. Aversano et al. (2007) studied evolution of design

patterns in multiple releases of three Java projects. The focus of our study is studying

incremental design changes from commits not releases.

8.3 Commit analysis

Fluri and Gall (2006) developed an approach for analyzing and classifying change types

based on code revisions. Their taxonomy of source code changes reflects the significance

level of a change. They define significance as the impact of the change on other source

code entities. Our work differs in the method of identifying code changes and in the level

of granularity. They focused on the class and methods internal code changes while we

focused on higher level code changes that impact design, mainly relationships. Alali et al.

(2008) examined the version histories of nine open source software systems to uncover

trends and characteristics of how developers commit source code. They found that

approximately 75% of commits are quite small. A similar work is also done by Hattori and

Lanza (2008). Hindle et al. (2008) analyzed and provided a taxonomy for large commits.

The goal is to understand what prompts a large commit. They showed that large commits

are more perfective while small commits are more corrective. Beyer and Noack (2005)

introduced a clustering method, using co-change graphs, to identify clusters of artifacts that

are frequently changed together. Xing and Sroulia (2004b) provided a taxonomy of class-

evolution profiles. They categorized classes into eight types according to their evolutionary

activities.

Purushothaman and Perry (2005) studied the properties and the impact of small code

changes. They found that there is less than 4 percent probability that a one-line change will

introduce a fault in the code. Ratzinger et al. (2007) used data from versioning systems to

predict refactorings in software projects. Their mining technique does not include source

code changes. The approach has been used in Ratzinger et al. (2008) to analyze the

influence of evolution activities, mainly refactoring, on software defects. Fluri et al. (2007)

described an approach to map source code entities to comments in the code. They also

provided a technique to extract comment changes over the history of a software project. A

comprehensive literature survey on approaches for mining software repositories in the

context of software evolution is presented by Kagdi et al. (2007).

Our approach is distinguished from this related work in multiple ways. The techniques

used are lightweight and not IR or logic programming. Only the code changes are ana-

lyzed. There is no comparison between the code and a design document/artifact. Unlike

60 Software Qual J (2011) 19:35–64

123

most of the others, we discover changes in the relationships, from just code, between

classes in the design. The empirical study is distinguished by the categorizing and ana-

lyzing commits based on their impact on the design and the benefits that can be inferred

from such categorization.

9 Conclusions and future work

Our approach is able to accurately determine design changes based only on the code

changes. In comparison with human experts, the tool, based on our approach, performs as

well or better than the three subjects. That is, one cannot tell the difference in the quality of

the results between human experts and the tool for the studied two releases of the system.

Additionally, the tool is very useable with respect to run time while manual inspection is

quite time consuming. The tool will greatly reduce the time it takes to determine if a source

change impacts the design and thus support continued consistent traceability.

Most design differencing tools depends on graph comparison. The two design models,

or design artifacts, are represented in some form of graphs, e.g., AST. However, graph

comparison is not an easy task. Furthermore, many of these tools depend on statistical

calculations and thresholds. By using our approach, the design differences can be found

without comparing the two designs or two ASTs. Instead the code changes are generated,

the design changes are identified, and then changes can be applied to the original design

model to get the new design. Note that this approach works even if the initial design and

source code are not consistent.

A detailed empirical study that used the approach for automatically identifying commits

that impact design to understand the evolution of four software systems was presented. It

was observed that only a small number of changes impact the design and most of these

changes are API changes (methods). Additionally, it was found that commits with design

changes contain more files and significantly more changed lines.

The observations also indicate that most bug fix commits do not impact the design (i.e.,

most bug fix commits do not add/delete classes, methods, or relationships to design).

A related task is that of prioritizing code changes. From the viewpoint of a maintainer, a

code change that results in a design change requires closer examination.

The approach can be embedded in a complete reverse engineering suite to maintain

design documents during evolution. After each revision or phase, a quick check can be

performed on the code changes to determine if the design documents need to be updated

(as done by our tool). For any parts of the design impacted, appropriate updates are

made to the design documents. Our approach also produces what changes are needed to

the design document (however, automatically updating the document is not done here).

So, there would be no need to periodically reconstruct or regenerate the design docu-

ments. In this way, the consistency of the design documents with code is maintained at

less cost.

We are currently working on linking the commits with bug tracking repositories to

enhance the accuracy of identifying bug fixing commits. Another direction of the study is

to consider developers’ contribution on the design. We are investigating the design quality

per developer.

Acknowledgments This research is funded in part by the U.S. National Science Foundation under NSF
grant CCF 08-11140.

Software Qual J (2011) 19:35–64 61

123

References

Alali, A., Kagdi, H., & Maletic, J. I. (2008). What’s a typical commit? A characterization of open source
software repositories. In Proceedings of 16th IEEE international conference on program compre-
hension (ICPC’08) (pp. 182–191).

Antoniol, G., Canfora, G., Casazza, G., & De Lucia, A. (2000a). Information retrieval models for recovering
traceability links between code and documentation. In Proceedings of IEEE international conference
on software maintenance (ICSM’00), San Jose, CA (pp. 40–51).

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., & Merlo, E. (2002). Recovering traceability links
between code and documentation. IEEE Transactions on Software Engineering, 28(10), 970–983.

Antoniol, G., Canfora, G., Casazza, G., & Lucia, A. D. (2001). Maintaining traceability links during object-
oriented software evolution. Software-Practice and Experience, 31(4), 331–355.

Antoniol, G., Canfora, G., Casazza, G., Lucia, A. D., & Merlo, E. (2000b). Tracing object-oriented code into
functional requirements. In Proceedings of 8th international workshop on program comprehension
(IWPC’00), Limerick Ireland (pp. 227–230).

Antoniol, G., Caprile, B., Potrich, A., & Tonella, P. (2000c). Design-code traceability for object-oriented
systems. Annals of Software Engineering, 9(1–4), 35–58.

Antoniol, G., Di Penta, M., & Merlo, E. (2004). An automatic approach to identify class evolution dis-
continuities. In Proceedings of 7th international workshop on principles of software evolution
(IWPSE’04), Japan (pp. 31–40).

Apiwattanapong, T., Orso, A., & Harrold, M. J. (2004). A differencing algorithm for object-oriented
programs. In Proceedings of 19th international conference on automated software engineering
(ASE’04) (pp. 2–13).

Aversano, L., Canfora, G., Cerulo, L., Grosso, C. D., & Penta, M. D. (2007). An empirical study on the
evolution of design patterns. In Proceedings of 6th joint meeting of the european software engineering
conference and the ACM SIGSOFT symposium on the foundations of software engineering, Dubrovnik,
Croatia (pp. 385–394).

Beyer, D., & Noack, A. (2005). clustering software artifacts based on frequent common changes. In Pro-
ceedings of 13th international workshop on program comprehension (IWPC’05) (pp. 259–268).

Collard, M. L., Kagdi, H. H., & Maletic, J. I. (2003). An XML-based lightweight C?? fact extractor. In
Proceedings of 11th IEEE international workshop on program comprehension (IWPC’03), Portland,
OR, IEEE-CS (pp. 134–143).

Cysneiros, G., & Zisman, A. (2008). Traceability and completeness checking for agent-oriented systems. In
Proceedings of 2008 ACM symposium on applied computing, Brazil (pp. 71–77).

De Lucia, A., Oliveto, R., & Tortora, G. (2008). ADAMS re-trace: A traceability link recovery via latent
semantic indexing. In Proceedings of 30th international conference on software engineering
(ICSE’08), Leipzig, Germany (pp. 839–842).

Feilkas, M., Ratiu, D., & Jurgens, E. (2009). The loss of architectural knowledge during system evolution:
An industrial case study. In Proceedings of 17th IEEE international conference on program com-
prehension (ICPC’09), Vancouver, Canada (pp. 188–197).

Fluri, B., & Gall, H. (2006). Classifying change types for qualifying change couplings. In Proceedings of
14th IEEE international conference on program comprehension (ICPC’06), Athens, Greece (pp.
35–45).

Fluri, B., Wursch, M., & Gall, H. C. (2007). Do code and comments co-evolve? On the relation between
source code and comment changes. In Proceedings of 14th working conference on reverse engineering
(WCRE’07) (pp. 70–79).

Hammad, M., Collard, M. L., & Maletic, J. I. (2009). Automatically identifying changes that impact code-
to-design traceability. In Proceedings of 17th IEEE international conference on program compre-
hension (ICPC’09), Vancouver, Canada (pp. 20–29).

Hattori, L. P., & Lanza, M. (2008). On the nature of commits. In Proceedings of 23rd IEEE/ACM inter-
national conference on automated software engineering—workshops (ASE’08) (pp. 63–71).

Hayes, J. H., Dekhtyar, A., & Sundaram, S. K. (2006). Advancing candidate link generation for require-
ments tracing: The study of methods. IEEE Transactions on Software Engineering, 32(1), 4–19.

Hindle, A., German, D. M., & Holt, R. (2008). What do large commits tell us? A taxonomical study of large
commits. In Proceedings of 2008 international working conference on mining software repositories
(MSR’08) (pp. 99–108).

Kagdi, H., Collard, M. L., & Maletic, J. I. (2007). A survey and taxonomy of approaches for mining
software repositories in the context of software evolution. Journal of Software Maintenance and
Evolution Research and Practice (JSME), 19(2), 77–131.

62 Software Qual J (2011) 19:35–64

123

Kim, M., & Notkin, D. (2006). Program element matching for multiversion program analyses. In Pro-
ceedings of 2006 international workshop on mining software repositories (MSR’06), Shanghai, China
(pp. 58–64).

Kim, M., Notkin, D., & Grossman, D. (2007). Automatic inference of structural changes for matching across
program versions. In Proceedings of 29th international conference on software engineering (ICSE’07),
Minneapolis, MN (pp. 333–343).

Maletic, J. I., & Collard, M. L. (2004). Supporting source code difference analysis. In Proceedings of IEEE
international conference on software maintenance (ICSM’04) (pp. 210–219). Chicago, Illinois: IEEE
Computer Society Press.

Marcus, A., & Maletic, J. I. (2003). Recovering documentation-to-source-code traceability links using latent
semantic indexing. In Proceedings of 25th IEEE/ACM international conference on software engi-
neering (ICSE 2003), Portland, OR (pp. 124–135).

Mockus, A., & Votta, L. G. (2000). Identifying reasons for software changes using historic databases. In
Proceedings of 16th IEEE international conference on software maintenance (ICSM’00) (p. 120).

Murphy, G. C., Notkin, D., & Sullivan, K. J. (2001). Software reflexion models: Bridging the gap between
design and implementation. IEEE Transactions on Software Engineering, 27(4), 364–380.

Nguyen, T. N. (2006). A novel structure-oriented difference approach for software artifacts. In Proceedings
of 30th annual international computer software and applications conference (COMPSAC’06)
(pp. 197–204).

Nguyen, T. N., Thao, C., & Munson, E. V. (2005). On product versioning for hypertexts. In Proceedings of
12th international workshop on software configuration management (SCM’05), Lisbon, Portugal
(pp. 113–132).

Nistor, E. C., Erenkrantz, J. R., Hendrickson, S. A., & Hoek, A. v. d. (2005). ArchEvol: Versioning
architectural-implementation relationships. In Proceedings of 12th international workshop on software
configuration management (SCM’05), Lisbon, Portugal (pp. 99–111).

Pan, K., Kim, S., & James Whitehead, J. E. (2009). Toward an understanding of bug fix patterns. Empirical
Software Engineering, 14(3), 286–315.

Purushothaman, R., & Perry, D. E. (2005). Toward understanding the rhetoric of small source code changes.
IEEE Transactions on Software Engineering, 31(6), 511–526.

Raghavan, S., Rohana, R., Leon, D., Podgurski, A., & Augustine, V. (2004). Dex: A semantic-graph
differencing tool for studying changes in large code bases. In Proceedings of 20th IEEE international
conference on software maintenance (ICSM’04), Chicago, Illinois (pp. 188–197).

Ratzinger, J., Sigmund, T., & Gall, H. C. (2008). On the relation of refactoring and software defects. In
Proceedings of 2008 international working conference on mining software repositories (pp. 35–38).

Ratzinger, J., Sigmund, T., Vorburger, P., & Gall, H. (2007). Mining software evolution to predict refac-
toring. In Proceedings of first international symposium on empirical software engineering and mea-
surement (ESEM’07) (pp. 354–363).

Reiss, S. (2002). Constraining software evolution. In Proceedings of 18th IEEE international conference on
software maintenance (ICSM’02), Montréal, Canada (pp. 162–171).

Reiss, S. (2005). Incremental maintenance of software artifacts. In Proceedings of 21st IEEE international
conference on software maintenance (ICSM’05), Hungary (pp. 113–122).

Sefika, M., Sane, A., & Campbell, R. H. (1992). Monitoring compliance of a software system with its high-
level design models. In Proceedings of 18th international conference on software engineering
(ICSE’92), Berlin, Germany (pp. 387–396).

Weißgerber, P., & Diehl, S. (2006). Identifying refactorings from source-code changes. In Proceedings of
21st IEEE/ACM international conference onautomated software engineering (ASE’06), Japan
(pp. 231–240).

Xing, Z., & Stroulia, E. (2004a). Understanding class evolution in object-oriented software. In Proceedings
of 12th international workshop on program comprehension (ICPC’04), Bari, Italy (pp. 34–43).

Xing, Z., & Stroulia, E. (2004b). Understanding class evolution in object-oriented software. In Proceedings
of 12th IEEE international workshop on program comprehension (IWPC’04) (pp. 34–43).

Xing, Z., & Stroulia, E. (2005). UMLDiff: An algorithm for object-oriented design differencing. In Pro-
ceedings of 20th IEEE/ACM international conference on automated software engineering (ASE’05),
Long Beach, CA, USA (pp. 54–65).

Xing, Z., & Stroulia, E. (2007). API-evolution support with diff-catchup. IEEE Transactions on Software
Engineering, 33(12), 818–836.

Zhao, W., Zhang, L., Liu, Y., Luo, J., & Sun, J. (2003). Understanding how the requirements are imple-
mented in source code. In Proceedings of 10th Asia-Pacific software engineering conference
(APSEC’03) (pp. 68–77).

Software Qual J (2011) 19:35–64 63

123

Zhou, X., & Yu, H. (2007). A clustering-based approach for tracing object-oriented design to requirement.
In Proceedings of 10th international conference on fundamental approaches to software engineering
(FASE’07), Portugal (pp. 412–422).

Author Biographies

Maen Hammad completed his Ph.D. at Kent State University in the
Department of Computer Science in May 2009 and is now Assistant
Professor at Hashemite University, Jordan. He received his Master in
computer science from Al-Yarmouk University—Jordan and his B.S.
in computer science from the Hashemite University—Jordan. His
research interest is Software Engineering with focus on software
evolution and program comprehension.

Michael L. Collard is a Visiting Assistant Professor in the Department
of Computer Science at The University of Akron in Ohio, USA. His
research interests are in source code and source model representation,
source code analysis, transformation/refactoring, and differencing for
software evolution. He received the Ph.D., M.S., and B.S. in Computer
Science from Kent State University.

Jonathan I. Maletic is a Professor in the Department of Computer
Science at Kent State University in Ohio, U.S.A. His research interests
are centered on software evolution and he has authored over 90 ref-
ereed publications in the areas of analysis, transformation, compre-
hension, traceability, and visualization of software. He received the
Ph.D. and M.S. in Computer Science from Wayne State University and
the B.S. in Computer Science from The University of Michigan—Flint.

64 Software Qual J (2011) 19:35–64

123

	Automatically identifying changes that impact code-to-design traceability during evolution
	Abstract
	Introduction
	Mapping code change to design change
	Changes that impact design
	Changes that do not impact design

	Automatically identifying design changes
	Design change identification
	Classes and methods
	Relationships

	Evaluation
	Design changes in HippoDraw
	The study

	Results
	Code-to-design traceability during evolution
	Data collection
	Categorization of commits
	Characteristics of commits
	Bug fix versus design change
	Commit labeling

	Threats to validity and limitations
	Related work
	Software traceability
	Design evolution
	Commit analysis

	Conclusions and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

