
Architecture analysis of enterprise systems modifiability:
a metamodel for software change cost estimation

Robert Lagerström • Pontus Johnson • Mathias Ekstedt

Published online: 4 June 2010
� Springer Science+Business Media, LLC 2010

Abstract Enterprise architecture models can be used in order to increase the general

understanding of enterprise systems and specifically to perform various kinds of analysis.

The present paper proposes a metamodel for enterprise systems modifiability analysis, i.e.

assessing the cost of making changes to enterprise-wide systems. The enterprise archi-

tecture metamodel is formalized using probabilistic relational models, which enables the

combination of regular entity-relationship modeling aspects with means to perform

enterprise architecture analysis. The content of the presented metamodel is validated based

on survey and workshop data and its estimation capability is tested with data from 21

software change projects. To illustrate the applicability of the metamodel an instantiated

architectural model based on a software change project conducted at a large Nordic

transportation company is detailed.

Keywords Enterprise architecture � Software modifiability � Metamodel �
Probabilistic relational models

1 Introduction

Managing software systems today is a complex business (Ross et al. 2006). In order to

achieve effective and efficient management of the software system landscape, it is essential to

be able to assess the current status of system qualities such as availability, performance,

security, and modifiability, as well as estimate their values in different future scenarios (Bass

et al. 1998). Estimation of these qualities is however a great challenge that to a large extent

R. Lagerström (&) � P. Johnson � M. Ekstedt
Industrial Information and Control Systems, The Royal Institute of Technology,
Osquldas väg 12, 100 44 Stockholm, Sweden
e-mail: robertl@ics.kth.se

P. Johnson
e-mail: pj101@ics.kth.se

M. Ekstedt
e-mail: mek101@ics.kth.se

123

Software Qual J (2010) 18:437–468
DOI 10.1007/s11219-010-9100-0

can be addressed by introducing relevant models as a means of abstraction, which can be

achieved with enterprise architecture modeling (Johnson and Ekstedt 2007). This paper

presents an enterprise architecture metamodel that supports analysis of systems modifiability.

1.1 Enterprise architecture

In recent years, Enterprise Architecture (EA) has become an established discipline for

business and software system management (Ross et al. 2006). EA describes the funda-

mental artifacts of business and IT as well as their interrelationships (Zachman 1987;

Lankhorst 2005; Ross et al. 2006; Winter and Fischer 2007; The Open Group 2009).

Architecture models constitute the core of the approach and serve the purpose of making the

complexities of the real world understandable and manageable to humans (Winter and

Fischer 2007). A main concept in EA is the metamodel that acts as a pattern for the

instantiation of the architectural models. In other words, a metamodel is a description

language used when creating models (Lankhorst 2005; Johnson and Ekstedt 2007;

Kurpjuweit and Winter 2007; The Open Group 2009). EA ideally aids the stakeholders of the

enterprise to effectively plan, design, document, and communicate IT and business related

issues, i.e. they provide decision support for the stakeholders (Kurpjuweit and Winter 2007).

A related discipline is software architecture/IT-system architecture. Bass et al. (1998)

defines software (IT-system) architecture of a program or computing system as the

structure or structures of the system, which comprise software components, the externally

visible properties of those components, and the relationships among them. In the software

architecture discipline, the architecture concept is limited to include components, their

properties and the relations within a software system. However, large contemporary

enterprises do not have one or even a few software systems to manage. They have hundreds

or even thousands of systems. Also, there are only a few standalone applications in the

modern software system landscape. Many systems are tightly integrated with others.

Furthermore, the management of software systems is no longer an isolated task of one or

a few engineers. The complex changes being implemented involve business executives,

project managers, architects, developers, testers, etc. Therefore, when considering software

system management issues for large contemporary enterprises software architecture alone

will not be sufficient. However, enterprise architecture modeling is appropriate since it

considers the software system architecture with components and relations and the docu-

mentation, people, processes, etc.

In relation to providing decision-making support, a key underlying assumption of the

EA models is that they should provide some more aggregated knowledge than was put into

the model in the first place. Software application architecture, for instance, does not only

keep track of the set of systems in an enterprise and their internal relationships, it also

provides information about the dependencies between the systems. More broadly, the

dependencies between the business and the software systems are covered in an EA. So,

conclusions can for instance be drawn about the consequences in the enterprise if one

specific system became unavailable.

This type of analysis of EA can benefit stakeholders. Unfortunately, however, EA

frameworks rarely explicitly state either what kind of analyses can be performed given a

certain model or how the analysis should be performed in detail (Johnson et al. 2007;

Franke et al. 2009b). This paper uses a formalized approach to enable analysis of EA

models. The underlying fundamental formalism of the approach is called Probabilistic
Relational Models (PRMs) (Friedman et al. 1999), which in turn employs the statistical

mathematics of Bayesian networks (Neapolitan 2003; Jensen 2001).

438 Software Qual J (2010) 18:437–468

123

1.2 Enterprise system modifiability

As discussed in the previous subsection, enterprise architecture models can be used to

analyze different system qualities and provide information for the decision maker

regarding different scenarios. In this paper the focus will be on enterprise software system

modifiability, i.e. the cost of making changes to enterprise-wide software systems.

Business environments today progress and change rapidly to keep up with evolving

markets. Most business processes are supported by software systems and as the business

processes change, the systems need to be modified in order to continue supporting the

processes. Modifications include extending, deleting, adapting, and restructuring the

enterprise systems (Bass et al. 1998). The modification effort ranges from adding a

functional requirement in a single system to implementing a service-oriented architecture

for the whole enterprise.

An essential issue with today’s software systems is that many of them are intercon-

nected, thus a modification to one system may cause a ripple effect among other systems.

Also, numerous systems have been developed and modified over many years. Making

further changes to these systems might require a lot of effort from the organization, for

example due to a large number of previous modifications implemented ad hoc. Problems

like these raise questions for IT-decision makers such as: Is there enough documentation

describing the systems, and has the documentation been updated correctly after each

modification? Is the source code easy to understand? Which systems are interconnected?

Several studies show that the modification work is the phase of a system’s lifecycle that

consumes the greatest portion of resources; Harrison and Cook (1990) report that over 70%

of the software budget is spent on maintenance, Pigoski (1997) refers to studies stating that

the maintenance cost, relative to the total life cycle cost of a software system, has been

increasing from 40% in the early 1970s up to 90% in the early 1990s, and Jarzabek (2007)

states that ‘‘the cost of maintenance, rather than dropping, is on the increase’’.

The activities of modifying enterprise systems are typically executed in projects, and

IT-decision makers often find it difficult to estimate and plan their change projects. Thus, a

large proportion of the projects aiming to modify a software system environment fail. That

is, the projects tend to take longer time and cost more than expected. Laird and Brennan

(2006) state that 23% of software projects are cancelled before completion, whereas of

those completed only 28% were delivered on time, and the average software project

overran its budget by 45%. This can often occur due to lack of information about the

systems being changed. According to Laird and Brennan (2006), software engineers must

be able to understand and predict the activities, as well as manage the risks, through

estimation and measurement. Therefore, it would be useful for IT-decision makers to

gather more information in a structured manner and use this information to analyze how

much effort a certain modification to an enterprise software system would require.

This paper will address these issues of software change by employing enterprise

architecture modeling for systems modifiability analysis, thus providing a metamodel for

assessment of software change project cost.

1.3 Outline

The remainder of the paper is structured as follows: In Sect. 2, related work is presented.

Section 3 presents the probabilistic relational models which serve as the underlying for-

malism for the enterprise architecture metamodel proposed for analysis. The following

section goes through the enterprise architecture metamodel creation method used when

Software Qual J (2010) 18:437–468 439

123

designing the modifiability metamodel. Next, in Sect. 5 the modifiability metamodel is

thoroughly described. Section 6 contains data for validation of the proposed metamodel by

considering the correctness of the qualitative structure and the estimation capabilities of the

quantitative structure. In Sect. 7, the estimation capabilities of the metamodel are com-

pared with the estimation capabilities of other models and methods available. An instan-

tiated architectural model for a software change project is described in Sect. 8 in order to

illustrate the applicability of the presented metamodel. Section 9, discusses research and

future work. Finally, Sect. 10 summarizes the paper with conclusions.

2 Related work

When developing the metamodel for system modifiability analysis using enterprise

architecture models, two research disciplines were mainly covered: software system

modifiability and enterprise architecture. This section presents the related work within

these two disciplines.

2.1 Modifiability analysis

The issue of dealing with modifiability is not an enterprise architecture-specific problem.

Managing and assessing system change has been addressed in research for many years.

Some of the more well-known assessment approaches include the COnstructive COst

MOdel (COCOMO), the Software Architecture Analysis Method (SAAM), the Oman

taxonomy, and the ISO/IEC 9126 standard. These are briefly described below.

COCOMO, COnstructive COst MOdel, was in its first version released in the early

1980s. It became one of the most frequently used and most appreciated software cost

estimation models of that time. Since then, development and modifications of COCOMO

have been performed several times to keep the model up to date with the continuously

evolving software development trends. The latest version of COCOMO, called COCOMO

II, had its estimation capabilities calibrated in the year 2000 with the help of information

from 161 project data points and 8 experts. This latest calibrated version of COCOMO II

uses the probabilistic Bayesian approach for turning a priori obtainable data into estimates

of costs related to an a posteriori state of a software development or modification project

(Boehm 1981; Chulani et al. 1999; Boehm et al. 2000).

Bass et al. 1998 proposes the Software Architecture Analysis Method (SAAM) for

software quality evaluation. This method takes several quality attributes into consideration;

performance, security, availability, functionality, usability, portability, reusability, test-

ability, integrability, and modifiability. Bass et al. categorizes modifications as follows:

extending or changing capabilities, deleting unwanted capabilities, adapting to new oper-

ating environments, and restructuring. Based on the quality attributes presented, Bass et al.

propose different architectural styles which then are employed in the SAAM. SAAM is a

scenario-based approach which intends to make sure that stakeholder quality goals are met

(for instance high modifiability). According to Bass et al. (1998) SAAM can be used in two

contexts: as a validation step for an architecture being developed or as a step in the

acquisition of a software system. Besides SAAM there are several other methods supporting

analysis of software architecture quality attributes, such as Architecture Trade-off Analysis

Method (ATAM) (Kazman et al. 2000), Cost Benefit Analysis Method (CBAM) (Kazman

et al. 2001), Architecture Level Modifiability Analysis (ALMA) (Bengtsson 2002), and

Aspectual Software Architecture Analysis Method (ASAAM) (Tekinerdogan 2004).

440 Software Qual J (2010) 18:437–468

123

The Definition and Taxonomy for Software Maintainability presented in Oman et al.

(1992) provides a hierarchical definition of software maintainability in the form of a

taxonomy. Oman et al. (1992) found three broad categories of factors influencing the

maintainability of a software system; management, operational environment, and the target

software system. Each of these top-level categories is then further broken down into

measurable attributes. According to Oman et al. (1992) the taxonomy can be useful for

developers by defining characteristics affecting the software maintenance cost of the

software they are developing. Hence, the developers can write highly maintainable soft-

ware from the beginning by studying the taxonomy. Maintenance personnel can use the

taxonomy to evaluate the maintainability of the software they are working with in order to

pinpoint risks, etc. Project managers and architects can use the taxonomy in order to

prioritize projects and locate areas in need of re-design.

ISO/IEC 9126 (International Organization for Standardization 2001, 2003a, b) is an

international standard for software engineering focusing on software quality. The proposed

quality model contains six quality attributes: functionality, reliability, usability, efficiency,

maintainability, and portability. The aim with this quality model is to provide definitions of

the quality attributes and provide a set of sub-characteristics that influence these quality

attributes. ISO/IEC defines maintainability as: ‘‘the capability of the software product to be

modified. Modifications may include corrections, improvements, or adaptation of the

software to changes in environment, and in requirements and functional specifications’’.

Maintainability is divided into analyzability, changeability, stability, and testability. For

each of these sub-characteristics, ISO/IEC provides a set of metrics for evaluation.

According to ISO/IEC, the quality models can be used to validate the completeness of a

requirements definition, identify software requirements, identify software design objec-

tives, identify software testing objectives, identify quality assurance criteria, and identify

acceptance criteria for a completed software product.

The available methods for modifiability analysis are not focusing on change in an

enterprise architecture context. There are many problems that need to be addressed that the

available methods miss, such as the following: the increasing number of systems affected

by enterprise-wide changes, the tight integration between systems, the increasing

involvement of diverse people in a company e.g. business executives, project managers,

architects, developers, testers. Some methods do use models, other employ quality criteria,

some has a formal analysis engine, and there are methods using scenarios in decision-

making situations. There is however no method which brings it all together in an EA

context. The studied methods provided valuable input for the EA approach presented in

this paper and serve as the main references for the modifiability metamodel.

2.2 Enterprise architecture

As stated in Sect. 1.1, the exact procedure or algorithm for how to perform a certain

analysis given an architecture model is very seldom provided by EA frameworks. Most

frameworks do however recognize the need to provide special purpose models and provide

different viewpoints intended for different stakeholders. Unfortunately, however, most

viewpoints are designed from a model entity point of view, rather than a stakeholder

concern point of view. Thus, assessing a quality such as the modifiability of a system is not

something that is performed in a straightforward manner. The Department of Defense

Architecture Framework (DoDAF) (Department of Defense Architecture Framework

Working Group 2007) for instance, provides products (i.e. viewpoints) such as ’’systems

communications description’’, ’’systems data exchange matrix’’, and ’’operational activity

Software Qual J (2010) 18:437–468 441

123

model’’. These are all viewpoints based on a delimitation of elements of a complete

metamodel, and they are not explicitly connected to a certain stakeholder or purpose. The

Zachman framework presented in Zachman (1987, 2009) does connect model types

describing different aspects (Data, Function, Network, People, Time, and Motivation) with

very abstractly described stakeholders (Strategists, Executive Leaders, Architects, Engi-

neers, and Technicians), but does not provide any deeper insight into how different models

should be used. The Open Group Architecture Framework (TOGAF) (The Open Group

2009), explicitly states stakeholders and concerns for each viewpoint they are suggesting.

However, neither the exact metamodel nor the mechanism for analyzing the stated con-

cerns are described. In relation to modifiability, the most appropriate viewpoints provided

would, according to TOGAF, arguably be the Software Engineering View, the Systems
Engineering View, the Communications Engineering View, and the Enterprise Manage-
ability View. In the descriptions of these views, one can find statements such as ‘‘the use of

standard and self-describing languages, e.g. XML, is good in order to achieve easy to

maintain interface descriptions’’. However, the exact interpretation of such statements

when it comes to architectural models or how it relates to the modifiability of a system as a

whole, is left out. Moreover, these kinds of ‘‘micro theories’’ are only exemplary and do

not claim to provide a complete theory for modifiability or similar concerns.

Other, more formalized analysis mechanisms for enterprise architecture models may be

found in e.g. Lankhorst (2005) for performance and availability, and for software archi-

tecture languages in Allen (1997) where for instance deadlock and interoperability anal-

yses are provided. Architecture Analysis and Design Language (AADL) (Society of

Automotive Engineers 2009) provides availability, security, and timeliness analyses, and

UMLsec (Jürjens 2005) provides security analysis. None, however, offer architecture

models for software system modifiability analysis.

Another permeating problem in EA modeling is the uncertainty that is related to the

model. For instance, whether a model is the result of a very thorough and recent inves-

tigation or a quick read-through of old documents will impact the quality of the decision

support the model constitutes for its various stakeholders. Johansson (2005) propose a

method to handle this kind of modeling uncertainty.

Besides the data collection uncertainties, there are also uncertainties related to the

elements in the models. For instance, are all the software systems in the model still in use,

is the data flow still as depicted and is the process structure really illustrating what is really

happening? This kind of uncertainty is not addressed by today’s EA frameworks. The users

of a model are simply left to their best knowledge or gut feeling when estimating to what

extent the EA model, and the analyses it is subjected to, can and should be trusted. Aier

et al. (2009) address these issues by ‘‘demonstrating the feasibility of applying the life

table method to assess life spans of EA artifacts via calculating the probability of particular

applications to survive a certain number of years’’, i.e. they show that there is an uncer-

tainty related to EA artifacts. Since, in an enterprise, these artifacts change over time so

must the models. However, Aier et al. (2009) do not explain how this is taken care of

explicitly in EA models.

Other EA initiatives using the probabilistic relational models formalism, or similar, for

analysis are available. In Närman et al. (2007) a metamodel for system quality analysis

called PERDAF is presented. The PERDAF metamodel was developed in order to support

analysis of a set of system quality attributes, viz. security, reliability, usability, efficiency,

interoperability, suitability, and accuracy. Ullberg et al. (2008) presents a metamodel that

supports the creation of enterprise architecture models amenable to analysis of enterprise

service interoperability. Dependency analysis with fault trees is another application of

442 Software Qual J (2010) 18:437–468

123

enterprise architecture metamodels. Franke et al. (2009a) describes a method that can be

used to tailor the DoDAF enterprise architecture framework so that is supports probabilistic

dependency analysis. König and Nordström (2009) presents a metamodel for impact

analysis of system quality on the operation of active distribution grids. In this paper, the

work is focused on runtime ICT-qualities such as accuracy, performance, availability, and

security. In Höök et al. (2009) an enterprise architecture metamodel for ICT system impact

on maintenance management is presented. The metamodel supports the maintenance

management for electric power utilities. Gustafsson et al. (2009) presents a metamodel for

business value analysis. The metamodel focuses on analyzing a number of business values,

viz. flexibility, efficiency, integration, coordination, decision-making, control and follow

up, and organizational structure.

Since there are no EA frameworks or metamodels focusing on modifiability analysis

available, the present paper aims at filling this gap in enterprise architecture. The approach

also copes with uncertainties by not considering the information in EA models as fixed

constants but rather as probabilities. As stated in the introduction, this paper uses a for-

malized approach to enable analysis of EA models under uncertainty through probabilistic

relational models (PRMs).

3 Probabilistic relational models

As stated in the introduction, Probabilistic Relational Models (PRMs) serve as the

underlying formalism for the enterprise architecture metamodel proposed for modifiability

analysis. Previously proposed formalisms are presented in Johnson et al. (2007), Lagers-

tröm (2007).

A PRM (Friedman et al. 1999) specifies a template for a probability distribution over an

architecture model. The template describes the metamodel for the architecture model, and

the probabilistic dependencies between attributes of the architecture objects. A PRM,

together with an instantiated architecture model of specific objects and relations, defines a

probability distribution over the attributes of the objects. The probability distribution can

be used to infer the values of unknown attributes, given evidence of the values of a set of

known attributes.

An architecture metamodel M describes a set of classes, X ¼ X1; . . .;Xn: Each class is

associated with a set of descriptive attributes and a set of reference slots. The set of

descriptive attributes of a class X is denoted AðXÞ: Attribute A of class X is denoted X.A
and its domain of values is denoted V(X.A). For example, a class System might have the

descriptive attribute Size, with domain {large, medium, small}. The set of reference slots of

a class X is denoted RðXÞ: We use X.q to denote the reference slot q of X. Each reference

slot q is typed with the domain type Dom[q] = X and the range type Range[q] = Y, where

X; Y 2 X: A slot q denotes a relation from X to Y in a similar way as entity-relationship

diagrams. For example, we might have a class Documentation with the reference slot

Describes whose range is the class System.

An architecture instantiation I (or an architecture model) specifies the set of objects in

each class X, the values for the attributes, and the reference slots of the objects. For

example, Fig. 8 presents an instantiation of the change project metamodel of Fig. 7. It

specifies a particular set of changes, systems, documents, etc., along with values for each of

their attributes and references. For future use, we also define a relational skeleton rr as a

partial instantiation which specifies the set of objects in all classes as well as all the

reference slot values, but not the attribute values.

Software Qual J (2010) 18:437–468 443

123

A probabilistic relational model P specifies a probability distribution over all instan-

tiations I of the metamodel M: This probability distribution is specified as a Bayesian

network (Jensen 2001), which consists of a qualitative dependency structure and associated

quantitative parameters.

The qualitative dependency structure is defined by associating with each attribute X.A a

set of parents Pa(X.A). Each parent of X.A has the form X.s.B where B 2AðX:sÞ and s is

either empty, a single slot q or a sequence of slots q1; . . .; qk such that for all i,
Range[qi] = Dom[qi?1]. For example, the attribute Cost of class Change Project may have

Change Organization.Developer.Expertise as parent, thus indicating that the cost of a

prospective software modification project depends on the expertise of the developers

employed in the organization. Note that X.s.B may reference a set of attributes rather than a

single one. In these cases, we let x.A depend probabilistically on some aggregate property

over those attributes, such as the logical operations AND, OR, and NOR. In this paper, we

use the arithmetic operations SUM and MEAN as aggregate functions. For instance, if there

are several developers engaged in a modification project, we might aggregate the indi-

vidual developers’ expertise into a mean expertise of the whole development team.

Considering the quantitative part of the PRM, given a set of parents for an attribute, we

can define a local probability model by associating a conditional probability distribution
(CPD) with the attribute, P(X.A|Pa(X.A)). For instance, P(Change Project.Cost =

high|Change Organization.Developer.Expertise = low) = 90% specifies the probability

that the project cost will be high, given the expertise of the developers involved.

We can now define a PRM P for a metamodel M as follows. For each class X 2 X and

each descriptive attribute A 2AðXÞ; we have a set of parents Pa(X.A), and a CPD that

represents PPðX:AjPaðX:AÞÞ:
Given a relational skeleton rr (i.e. a metamodel instantiated to all but the attribute

values), a PRM P specifies a probability distribution over a set of instantiations I con-

sistent with rr:

PðIjrr;PÞ ¼
Y

x2rrðXÞ

Y

A2AðxÞ
Pðx:AjPaðx:AÞÞ

where rr(X) are the objects of each class as specified by the relational skeleton rr.

A PRM thus constitutes a formal machinery for calculating the probabilities of various

architecture instantiations. This allows us to infer the probability that a certain attribute

assumes a specific value, given some (possibly incomplete) evidence of the rest of the

architecture instantiation. In addition to be able to express and infer uncertainty about

attribute values as specified above, PRMs also provide support for specifying uncertainty

about the structure of the instantiations. A more detailed description of this topic is,

however, beyond the scope of the paper.

4 Creating the modifiability metamodel

Creating a good metamodel (probabilistic relational model) is not trivial. Obviously, it is

important that the metamodel is tailored for the management tasks it should support, i.e.

the kind of analysis the metamodel is intended to perform. For instance, if one seeks to

employ an enterprise architecture model for evaluating business process efficiency, the

information required from the model differs radically from the case when the model is used

to evaluate the modifiability of an enterprise software system. This section aims at

444 Software Qual J (2010) 18:437–468

123

presenting the method employed when the modifiability metamodel was designed. For the

interested reader, a more detailed description of the method is presented in Lagerström

et al. (2009a).

4.1 Method for creating the qualitative part of the metamodel

This subsection presents the method for creating the qualitative part of the modifiability

metamodel, i.e. the classes, reference slots, attributes and their parents.

The method for creating decision support metamodels focus on finding a set of

appropriate a priori measures for a chosen goal, i.e. finding measures with high correlation

and causal influence on the selected goal. This can be done in several ways, for instance by

studying research literature, doing experiments and case studies, or using expert opinions.

The first step in the method is to select the goal that the metamodel under design is

supposed to support. In this case, the goal considered is modifiability, i.e. change cost.

Then, variables causally affecting the goal and the variables found in previous iterations

are identified. This iterative process continues until all paths of variables, and causal

relations between them, have been broken down into variables that are directly controllable

by the decision maker, see part 1 and 2 of Fig. 1. The iterative process of finding variables

affecting modifiability is supported by knowledge elicitation guidelines and control steps.

These have been described in Lagerström et al. (2009a, 2007), Johnson et al. (2007),

Lagerström et al. (2009d). The result of the iterative process is a set of goal break-down

fragments. Each fragment is based on scientific knowledge and exhibits variables that are

all causally linked to a well-defined goal, controllable by the decision maker, e.g. as in part

3 of Fig. 1. The next step is to translate these into metamodel classes, attributes, and

reference slots. The attributes of the metamodel classes correspond to the variables found

in the goal break-down part of the method. The goal break-down fragment presented in

part 3 of Fig. 1 corresponds to the metamodel fragment presented in part 4 of the same

figure.

The method steps described so far result in a number of metamodel fragments, all based

on a selected source or set of sources. However, depending on the granularity of the

sources, these fragments are usually very small and local models, i.e. models describing the

relations between a few found elements in great detail, but without a sense of a bigger

picture. Furthermore, the fragments are sometimes completely disjoint, sometimes com-

pletely overlapping, and usually somewhere in between—all depending on the scope of the

original sources. To make full use of the knowledge elicited, a merge of the fragments into

Fig. 1 The iterative goal break-down process, a resulting goal break-down fragment example, and the
metamodel fragment related to it

Software Qual J (2010) 18:437–468 445

123

one metamodel is needed. The challenge is to make sure that the metamodel remains

coherent and non-ambiguous, despite its diverse origins. This integration challenge is

addressed in Lagerström et al. (2009a, 2008), which provides some guidelines for merging.

Using the guidelines for metamodel fragment merge, a metamodel was finally obtained

for modifiability analysis. Figure 2 depicts the classes and reference slots. Figures 3–6

present different views of the modifiability metamodel including the aggregating functions

and classes. Figure 7 contains the classes, attributes, and causal structure of the meta-

model, excluding the aggregating classes.

4.2 Method for creating the quantitative part of the metamodel

The preceding subsection presented the method for creating the qualitative part of the

modifiability metamodel. This subsection presents the second part of the method, creating

the quantitative part of such a metamodel. That is, to define the conditional probability

distributions (CPDs) related to each attribute.

The proposed metamodel creation method employs a knowledge elicitation approach

previously published in Lagerström et al. (2009a, c). This approach takes expert opinions

into consideration when defining the conditional probability distributions without the need

to introduce the experts to the concepts of conditional probabilities and PRMs. The

algorithms used for defining the CPDs in the metamodel are based on the effect one

attribute x has on a related attribute y. In the modifiability case, the effect was found by

using a questionnaire among experts and is measured on an ordinal scale with three states

High effect, Low effect, and No effect.

P yjjxi;n

� �
¼

z1;n þ 2
3

z2;n þ 1
3

z3;n

� �
1

z1;nþz2;nþz3;n
if i ¼ j

1
6

z2;n þ 1
3

z3;n

� �
1

z1;nþz2;nþz3;n
if i 6¼ j

(

i 2 f1; 2; 3g 3 j

Here, n is an identification number of each causal dependency in the metamodel (cf.

Fig. 7); i and j identify the states, on an ordinal scale with three states, of the attributes x
and y, respectively. Finally, z is the number of answers from the survey. In this case, the

representation is as following:

z1,n = number of High effect answers on question n
z2,n = number of Low effect answers on question n
z3,n = number of No effect answers on question n

When there is more than one attribute affecting the outcome, then there will be a joint

probability relation. A representation of the joint probability between attributes 1; . . .;m is

represented as PðY jX1; . . .;XmÞ: For each alternative i with a corresponding output cor-

relation j, the joint probability is calculated as

Pðyjjxi;1; . . .;Xi;mÞ ¼
Xm

n¼1

P yjjxi;n

� �

m

In the modifiability case, data for the CPDs was collected in workshops and surveys.

The data collection is described in Sect. 6.2, and the data presented in Table 3 serves as

input for the causal structure CPDs of the metamodel.

A joint probability example between four attributes and their joint effect on compo-

nents’ change difficulty is presented in Table 1. This corresponds to causal dependencies

446 Software Qual J (2010) 18:437–468

123

affecting the Change difficulty attribute of the class Technical changes to components in

Fig. 7.

As described in Sect. 3, there are some attributes that are related as aggregates rather

than by causality. In these cases, the probabilistic dependency is on some aggregate

property over those attributes, such as the arithmetic operations SUM and MEAN. In the

metamodel, cf. Figs. 2–7, there are numerous classes having underlying classes that serve

as Is-a-part-of classes. E.g. the change project class in the metamodel has a number of

architectural and component change activity classes where the cost attribute aggregates by

the SUM operation, cf. Fig. 3. While, in the documentational view, cf. Fig. 5, the archi-

tectural documentation consists of a number of documents, here the quality attribute of

each document aggregates by the MEAN operation to the quality attribute of the archi-

tectural documentation. Since the aggregate functions are not based on causality but rather

on aggregates of attributes, these CPDs are not defined based on data and cannot be found

with experiments. These aggregate functions are definitions decided by the modeler and in

the modifiability metamodel case are intuitively set as SUM or MEAN.

5 The modifiability metamodel

This section presents the enterprise architecture metamodel for modifiability analysis. In

Sect. 5.1, the classes and reference slots of the metamodel are presented, and in Sect. 5.2

the focus is on describing the attributes and how these are related.

5.1 Classes and reference slots

The proposed metamodel for modifiability analysis, cf. Fig. 2, focuses on the software

systems and the surrounding environment involved in or affected by the modifications

implemented in a change project, thus aiming at analyzing modifiability defined as change

project cost (high modifiability leads to low change costs). The main metamodel element is

therefore the Change project class. Modifications carried through in change projects may

include extending, deleting, adapting, and restructuring the enterprise systems (Bass et al.

1998). This could for instance be increasing a non-functional requirement, adding a new

function in a system, or integrating two systems.

Change projects are divided into Architectural change activities and Component change
activities. Architectural change activities are the activities concerning modifications on an

architecture level, i.e. involving several systems or components, while component change

activities concern modifications to a single component of an application.

Table 1 The resulting conditional probability distribution for the attribute Change difficulty of the class
Technical changes to components

… Low

… … Low

Medium … … Large

Easy Norm. Diff. Easy … … Diff.

Easy 0,84 0,61 0,61 0,69 … … 0,08

Normal 0,08 0,31 0,08 0,23 … … 0,08

Difficult 0,08 0,08 0,31 0,08 … … 0,84

Small

High

High

Tech. change to
comp. change diff.

Comp. change env. tool quality (24)

Comp. change env. infra. quality (25)

Tech. change to comp. change size (23)

Components understandability (22)

Software Qual J (2010) 18:437–468 447

123

The change activities perform Technical changes to the architecture and Technical
changes to the components, thus the metamodel is supposed to be used for modeling the

actual changes for each activity.

Modifications are implemented in either Systems or Components. A system is a collection

of components organized to accomplish a specific function or a set of functions (IEEE

Standards Board 1990). IEEE Standards Board (1990) defines a component as: ‘‘One of the

parts that make up a system. A component may be hardware or software and may be

subdivided into other components. The terms module, component, and unit are often used

interchangeably or defined to be sub-elements of one another in different ways depending

on the context. The relationship of these terms is not yet standardized.’’ The presented

metamodel does not differentiate these concepts either and will use the term component.

According to The IT Governance Institute (2007), all modifications related to software

systems need to be formally managed in a controlled manner, this includes changes to be

logged, assessed and authorized prior to implementation. For change projects the Change
management process intends to support this. There are four important parts of this process; the

activities that define the process, the roles assigned to these activities, the documents that

serve as input and output in the process, and the metrics used to assess and control the process.

The Change organization refers to the organizations designing and implementing the

software system modifications, i.e., the parties involved in the architectural and component

changes, such as consultants, application vendors, in-house resources, etc.

The change organization contains Architects and Developers. Architects are the people

in the change project who design and modify the architecture of the enterprise systems.

Developers, on the other hand, are the ones writing and modifying the source code of the

different components in the enterprise architecture.

Architectural and Component documentation is one way for architects and developers to

understand the systems, the components, and the environment. Because high turnover of

staff is rather common and a lot of work is done by consultants, the supporting docu-

mentation is often the only source of information except the actual source code.

Fig. 2 The modifiability metamodel presenting the main classes and reference slots

448 Software Qual J (2010) 18:437–468

123

Documents that should be present are as follows: (1) system rationale which describes the

objective of the entire system, (2) requirements specification which provides information

on the exact requirements for the system as agreed between the user and the maintainer, (3)

design document which provides descriptions of how the system requirements are

implemented, of how the system is decomposed into a set of interacting program units, and

the function of each program unit, (4) implementation document which provides

descriptions of how detailed system design is expressed in a formal programming lan-

guage, program actions in the form of intra-program comments, (5) system test plan which

provides descriptions of how program units are tested individually and how the whole

system is tested after integration, (6) acceptance test plan which describes the tests that the

system must pass before users accept it, and (7) data dictionaries which contain descrip-

tions of all terms that relate to the software system in action (Grubb and Takang 2003).

The System change environment and the Component change environment contain tools.

The available tools have the intention of making all parts of the modification work easier.

There are many tools available to aid software development, i.e. supporting activities like

code production, testing, and document generation. For the architect, there are numerous

modeling tools available for instance System Architect (Telelogic-IBM 2009), Troux 8

(Troux technologies 2009), and Aris (IDS Scheer 2009). The system and component

environment also includes infrastructure such as platforms. Platforms could for instance

be; operating system platforms such as Linux and Windows XP or software platforms such

as Java JDK or the .NET framework.

5.2 Attributes and their parents

In the previous subsection, the classes and reference slots of the metamodel were pre-

sented, cf. Fig. 2. This subsection will focus on describing the attributes of these classes.

This will be done by using so called metamodel views. The aim of these views is to present

the metamodel in smaller segments that work together. Each view contains classes, ref-

erence slots, attributes, the causal dependencies, and the aggregating functions (introduced

in Sect. 3 and further explained in Sect. 4.2). Together, the views constitute the whole

metamodel. The metamodel is however too large to fit into one single figure and still be

readable, thus the focus on different views.

It was stated in the previous subsection that the main class is the change project class

and as presented in the introduction the aim of the metamodel is to analyze modifiability.

In the approach proposed in this paper, modifiability is defined as change cost, thus the

change project class contains the attribute Cost. The cost of a change project is measured as

the number of man-hours needed to implement the modifications, f0; . . .;1g.
Change projects are divided into architectural change activities and component change

activities (cf. Fig. 3). Both types of activities have the attribute Cost, measured as number

of man-hours, f0; . . .;1g. The sum of the costs of these activities define the total change

project cost. The second attribute of the activities is the Synchronization need attribute. The

more systems, components, people involved, and the higher the coupling between them,

the higher the need of synchronization among the different activities will be. Synchroni-

zation need is defined as the percentage of time spent on synchronization between different

activities compared to each total activity cost, f0; . . .; 100g (Boehm (1981), Grubb and

Takang (2003), Bass et al. (1998)).

The change activities are divided into technical changes that have two attributes,

Change difficulty and Change size. Change difficulty is measured subjectively as {Diffi-

cult, Normal, Easy}. Change size for architecture changes is measured as the number of

Software Qual J (2010) 18:437–468 449

123

components involved in the change, f0; . . .;1g. Change size for components is measured

as the number of lines of code involved in the modification, f0; . . .;1g (International

Organization for Standardization (2001), Chan et al. (1996), Grubb and Takang (2003),

Pigoski (1997), April and Abran (2008)).

The change organization (cf. Fig. 4) contains architects and developers. In order to

estimate change cost an important attribute to measure in the change organization is the

size, i.e. the Number of architects and Number of developers, f0; . . .;1g , involved in the

modification work (Oman et al. (1992), Chan et al. (1996), Grubb and Takang (2003),

Pigoski (1997), Fenton and Pfleger (1997), Putnam and Myers (2003) April and Abran

(2008)).

The architects and developers both have the attributes Expertise and Time on project
related to them. Expertise is measured in terms of Change project experience, Source code
/ design language experience, and System experience, where the three experience attributes

are measured in number of years of experience, f0; . . .;1g. Time on project refers to the

amount of time, in percentage, a person spent on the project compared to other parallel

work, f0; . . .; 100g (Oman et al. (1992), Chan et al. (1996), Boehm (1981), Grubb and

Takang (2003), Pigoski (1997), Fenton and Pfleger (1997), April and Abran (2008), Smith

(1999)).

The change management process needs to be mature in order to provide the proper

support for a project (cf. Fig. 5). Thus, the attribute important for this process is the

Maturity attribute, which is measured by assessing Activities maturity, Number of assigned
responsibilities, Number of documents, and Number of metrics (Simonsson 2008; The IT

Fig. 3 The project view of the metamodel

Fig. 4 The organizational view of the metamodel

450 Software Qual J (2010) 18:437–468

123

Governance Institute 2007; Oman et al. 1992; Boehm 1981; Grubb and Takang 2003;

Pigoski 1997; April and Abran 2008; Kan 2003; Smith 1999). According to COBIT there

are five activities in the change management process. The five activities are as follows: (a)

develop and implement a process to consistently record, assess and prioritize change

requests, (b) assess impact and prioritize changes based on business needs, (c) assure that

any emergency and critical change follows the approved process, (d) authorize changes,

and (e) manage and disseminate relevant information regarding changes. The activity

maturity is measured using the maturity scale defined in COBIT. The scale has six steps;

{0—non existent, 1—initial/ad hoc, 2—repeatable but intuitive, 3—defined process,

4—managed and measurable, and 5—optimized}. Furthermore, each of the five activities

needs to have an assigned responsibility, f0; . . .; 5g. COBIT proposes 12 documents,

f0; . . .; 12g , that should be available in the change management process, e.g. project

management guidelines and detailed project plan, change process description, and change

authorization. COBIT proposes 13 metrics, f0; . . .; 13g , that should be used during the

modification work, e.g. reduced time and effort required to make changes, number of

backlogged change requests, and number and type of emergency changes to the infra-

structure components (The IT Governance Institute (2007)).

Documentation is crucial when it comes to understanding the systems, the components,

and the environment involved in the change project. Therefore, the architecture docu-

mentation and the component documentation must be of high Quality. Documentation

quality is defined by Availability, Completeness, Accuracy, Traceability, and Consistency
(Oman et al. (1992), Aggarwal et al. (2002), Grubb and Takang (2003), Pigoski (1997),

April and Abran (2008), Smith (1999)). A document can either be available or not

available for the people involved in a project, thus the availability is measured digitally as

{Available, Not available}. Document completeness is the percentage of a document

without missing information, f0; . . .; 100g. Accuracy refers to the percentage of a docu-

ment being accurate, f0; . . .; 100g. Traceability is the percentage of a document with good

traceability to the actual objects in the architecture or the components, f0; . . .; 100g.
Document consistency is defined as the percentage of a document being uniform, stan-

dardized, and free from contradictions, f0; . . .; 100g.
Technical changes are implemented in either a system or a component and there are five

attributes related to these, Understandability, Internal coupling, Size, Complexity, and

External coupling (cf. Fig. 6). Understandability of a system or a component is measured

as the percentage of time spent on trying to understand the system or component in

Fig. 5 The documentational view of the metamodel

Software Qual J (2010) 18:437–468 451

123

question (in relation to the total time spent on each system/component), f0; . . .; 100g.
Component size is measured in number of lines of code, and system size is defined as

number of components, f0; . . .;1g. Complexity is measured subjectively as {Complex,

Medium, Not complex}. The system external coupling attribute is defined as the number of

actual relations between the systems divided by the number of possible relations between

the systems, f0; . . .; 100g. System internal and component external coupling are measured

as the number of actual relations between the components in the system divided by the

number of possible relations between the components, f0; . . .; 100g. Component internal

coupling is defined as the number of actual relations within the component divided with the

number of possible relations, f0; . . .; 100g (Oman et al. (1992), Matinlassi and Niemel

(2003), Granja-Alvarez and Barranco-Garcia (1997), Chan et al. (1996), Aggarwal et al.

(2002), Boehm (1981), Grubb and Takang (2003), Pigoski (1997), Bass et al. (1998),

Fenton and Pfleger (1997), Putnam and Myers (2003), April and Abran (2008), Laird and

Brennan (2006), Kan (2003), Smith (1999), Zuse (1997)).

In order for the tools to support modification work and make it easier, the tools have to

be of high Quality, i.e. standardized, easy to use, and provide the right functionality.

Standardization level is measured subjectively as {Low, Medium, High}, Usability is

measured subjectively on a {Low, Medium, High} scale, and Functional fit is measured as

the percentage of number of needed functions provided compared to total number of

functions needed, f0; . . .; 100g. The system and component environment also includes

infrastructure such as platforms. If the infrastructure Quality is poor, the modification work

is likely to be impeded. Infrastructure quality is measured in terms of Standardization level
subjectively defined as {Low, Medium, High} and Availability defined in percentage,

f0; . . .; 100g (Oman et al. (1992), Boehm (1981), Grubb and Takang (2003), Pigoski

(1997), Fenton and Pfleger (1997), April and Abran (2008), Smith (1999)).

Most attributes in the metamodel are measured objectively. There are however some

attributes which have been chosen to be measured subjectively, for example system and

component complexity. This is mainly a result of time restrictions but also due to the fact

that in many cases the source code is not available for the modeler. In the best of worlds,

complexity would be measured objectively with for instance the Halstead complexity

(Halstead 1975) or cyclomatic complexity (Grubb and Takang 2003), this is however often

too expensive when you model and analyze many attributes. A discussion regarding costs

and benefits of the different measures is thoroughly addressed in Lagerström et al. (2009a).

Fig. 6 The system view of the metamodel

452 Software Qual J (2010) 18:437–468

123

To conclude, the metamodel classes, attributes and their relations are mainly based on

academic literature. The conditional probability distributions related to the attributes are

based on data collected in expert surveys and workshops. The estimation capabilities of the

metamodel are tested in Sect. 6.3 with data from 21 software change projects gathered in

four multiple case studies conducted at large Nordic companies.

The metamodel depicted in Fig. 2 focuses on presenting the main classes and their

reference slot names. Throughout Sect. 5.2, different views of the metamodel have been

used to explain the aggregating classes and attributes. To summarize this section, the

metamodel in Fig. 7 presents the main classes and the causal dependency structure of their

attributes. Thus, this figure neither includes reference slot naming and multiplicity nor does

it include aggregating functions. However, it does contain additional information regarding

the causal dependencies. These dependencies are numbered in order to relate them to the

CPDs explained in Sect. 4.2 and the data collection presented in Sect. 6.2.

For the interested reader Lagerström (2007) presents an early version of the modifi-

ability metamodel.

6 Validation

The elements and structure of the modifiability metamodel as well as its estimation

capabilities need to be evaluated and validated.

While the use of academic papers reflecting research serves as a good foundation for the

metamodel creation, it is not completely trustworthy. There are several reasons for this.

First, the scientific literature is not complete, so when creating a metamodel, it might be

necessary to fill in some blanks with hypotheses unsupported by the literature. Second, the

scientific literature is not always coherent, so when creating a metamodel it might be

unavoidable to make controversial choices. Third, the metamodeler might be biased and

Fig. 7 The modifiability metamodel containing classes and attributes, including numbering of the causal
dependencies between attributes

Software Qual J (2010) 18:437–468 453

123

thus involuntarily introduce distortions. Expert validation of the metamodel attributes

serves a good function in minimizing these uncertainties.

Since the presented metamodel (PRM) is defined based on expert knowledge mapped to

a three point scale, there is a risk that the estimations are less accurate than wanted. Data

based on 21 software change projects is used for testing the estimation capabilities of the

metamodel.

The three most important questions are as follows: (1) Are there attributes missing in

the metamodel that should be added? (2) Are there superfluous attributes in the metamodel

that could be removed? Together, these two questions determine whether the metamodel

contains the appropriate elements, and they will be addressed in Sects. 6.1 and 6.2,

respectively. (3) Does the metamodel provide good estimation capabilities? The third

question concerns the whole metamodel, both the qualitative and quantitative structure, i.e.

the classes, reference slots, attributes, and causal dependencies, as well as the conditional

probability distributions and aggregate functions. The estimation capability is validated by

studying a number of change projects and by comparing the estimated cost with the actual

cost outcome of the projects. This is addressed in Sect. 6.3.

Finally, Sect. 6.4 discusses the industrial feasibility of the modifiability metamodel.

6.1 Are there attributes missing in the metamodel?

The first question, ‘‘are there attributes missing in the metamodel?’’, was posed to a

number of experts, both academic experts in an online survey and industrial experts during

workshops. Two workshops with industrial experts, with 6 and 27 experts, respectively,

were carried out. Of the 33 workshop experts 17 provided suggestions on attributes that

could be missing in the metamodel. One online survey was sent out to academics in the

field of software maintainability, this survey had 40 experts. Of the 40 survey experts 13

provided suggestions on missing attributes. Thus, the total number of experts were 73 and

the total number of experts with suggestions on missing attributes were 30. The answers

have been compiled into the list presented in Table 2.

Table 2 The workshop and survey results for the question ’’Which attributes are missing in the
metamodel?’’

Class Attribute No of answers

Management Degree of support 3

Testing process Test coverage 2

System Level of quality goals restrictions 2

Platform independence 2

Requirements specification Number of authors 3

Number of changes during project 2

Architecture goals Prioritized and communicated 3

Business organization Stability 2

Change organization Geographic distance (culture & language diff.) 3

Understandability of business objects 2

Use of a common information model 3

Change activities Tim e restrictions (deadline) 2

454 Software Qual J (2010) 18:437–468

123

Since there is no strong agreement among the 30 experts on which attributes are

missing, the metamodel is considered to contain an appropriate set of attributes. The only

attributes that two or more experts were missing are presented in Table 2. The attributes

with the most votes in our workshops and survey had 3 persons out of the total 73 missing

them, which is only 4.1%. If we consider the possibility that the 43 persons not missing any

attributes at all are just agreeing when answering the questionnaire, i.e. they skipped open-

ended questions due to time restrictions, and instead restrict attention to the group that did

at all suggest new attributes, we have 3 votes out of a total 30 (10%). Still, this is a rather

small amount of agreement on which attributes are missing in the metamodel. Thus, the

answer to question one is: no, the proposed metamodel does not seem to be missing any

attributes. Nevertheless, the attributes suggested are interesting and should be explored in

future case studies and surveys.

6.2 Does the metamodel contain attributes that can be removed?

The second question, ‘‘are there superfluous attributes in the metamodel that could be

removed?’’, was addressed by analyzing the strength of the causal dependencies between

the metamodel attributes, as elicited from the experts. That is, if experts find that there is a

strong causal connection between two attributes, than these attributes should be present in

the metamodel. Conversely, if experts find that there is no causal connection between two

attributes, than the parent attribute could be removed from the metamodel. Table 3 sum-

marizes the causal dependencies found between the attributes of the metamodel.

There were in total 83 experts answering the questionnaire. Eleven were industrial

experts providing answers at two workshops, and 72 were academic experts providing their

answers via two online surveys.

The question posed to the experts both in the workshops and surveys was: ‘‘How large is

the effect presented in the following statements?’’ Then the experts were provided with

statements each corresponding to a causal dependency in the metamodel. See Fig. 7 for all

corresponding causal relationships. The statements were all arranged as the following

examples; ‘‘Change management process maturity affecting architectural change activities

cost’’, which corresponds to the relationship labeled as number 1 in the metamodel.

‘‘Number of architects affecting the architectural change activities cost’’, corresponding to

the causal dependency labeled as number 2. The answers provided by the experts were

given on the following scale; High effect, Low effect, No effect, and I don’t know.

In the workshops and surveys, the respondents were also provided with questions

regarding their qualification as experts. In the workshops, two persons were excluded due

to lack of expertise; both respondents stated that they had not enough experience in the

field. Fourteen persons were excluded from the surveys. These either had too little expe-

rience (less than three years), they themselves said that they did not feel certain at all about

their answers, or the answer I don’t know was given to more than 50% of the questions

asked.

Since the attributes in general have either high effect or high/low effect in relation to

their parents, whereas very few had no effect, the attributes in the metamodel all seem

useful for modifiability analysis. As can be seen in Table 3, no causal dependency has

more than 17.1% of qualified respondent answers on No effect. We interpret these low

percentages to indicate that there are no attributes in the metamodel with no effect on its

causally related attributes and by that the cost of making changes. Thus, the answer to

question two is: no, the proposed metamodel does not seem to have any superfluous

attributes that could be removed. However, some causal dependencies in the metamodel do

Software Qual J (2010) 18:437–468 455

123

have some answers on Low effect. These dependencies will be further validated in future

change projects and surveys. Possibly, one or two attributes can be removed or replaced,

but this requires more research.

6.3 Does the metamodel provide good estimation capabilities?

The third question, ‘‘does the metamodel provide good estimation capabilities?’’, was

addressed by studying four different multiple case studies. In the first case, two projects

within a Nordic consultancy firm were studied (projects A and B). The second case

Table 3 Survey and workshop data regarding the strength of influence between causally related attributes
in the metamodel

Relation High effect Low effect No effect I don’t know No of answers No eff. percentage (%)

1 25 19 2 6 52 4.5

2 15 26 7 4 52 17.1

3 44 7 0 1 52 0.0

4 22 24 2 4 52 4.3

5 44 7 1 0 52 2.0

6 28 19 0 5 52 0.0

7 29 17 1 5 52 2.2

8 27 18 2 5 52 4.4

9 43 8 1 0 52 2.0

10 37 13 1 1 52 2.0

11 33 14 3 2 52 6.4

12 41 9 1 1 52 2.0

13 44 6 0 2 52 0.0

14 28 20 1 3 52 2.1

15 36 14 1 1 52 2.0

16 27 18 3 4 52 6.7

17 23 13 2 4 42 5.6

18 14 21 1 6 42 2.9

19 38 4 0 0 42 0.0

20 18 8 2 14 42 7.7

21 35 5 0 2 42 0.0

22 36 5 1 0 42 2.4

23 10 25 4 3 42 11.4

24 23 16 1 2 42 2.6

25 23 15 1 3 42 2.6

26 29 12 1 0 42 2.4

27 30 11 1 0 42 2.4

28 27 12 1 2 42 2.6

29 39 2 0 1 42 0.0

30 29 10 1 2 42 2.6

31 31 8 0 3 42 0.0

32 18 15 3 6 42 9.1

The data is also used for defining the CPDs as explained in Sect. 4.2

456 Software Qual J (2010) 18:437–468

123

considered eight projects conducted within a large Nordic manufacturing company (pro-

jects C to J). Case three contained two projects at a large Nordic software and hardware

vendor (projects K and L). In the fourth case, nine change projects were studied at a large

Nordic transportation company (projects M to U). In this paper, one project, project M,

from the case study at the Nordic transportation company is presented more thoroughly in

order to illustrate the approach, cf. Sect. 8.

Since all the studied projects are completed, data concerning their actual costs is

obtainable. The estimated costs for the 21 projects are listed and compared to the actual

costs of the projects, cf. Table 4. Along with this, the accuracy of each estimation is

presented. The accuracy is calculated using the magnitude of the relative error (MRE), as

defined by Conte et al. (1985). Suppose E is the estimate of a value and A is the actual

value, then the magnitude of the relative error for the estimate is

MRE ¼ j A� E j
A

:

Accuracy is then calculated as 1 - MRE. This can be seen as the primary measure for

the quality of the estimations the proposed metamodel is capable of. For instance, in our

study of project M, we can see that the actual cost turned out to be 5,810 man-hours. The

estimated cost in turn, given the empirical data presented in Fig. 8, turned out to be 5,510

man-hours. Thus, the accuracy of the estimation can be calculated to be 95%. Studying the

Table 4 Studied projects with the actual costs, estimated costs, and accuracy of all conducted estimations

Project size segment Project Actual cost
(man-hours)

Estimated cost
(man-hours)

Accuracy

Large A 20,000 19,860 0.99

F 20,000 15,230 0.76

B 14,000 14,940 0.93

D 9,100 9,580 0.95

Medium J 6,266 5,920 0.94

H 6,228 5,840 0.94

M 5,810 5,510 0.95

P 4,458 6,380 0.57

U 3,595 4,110 0.86

Small L 3,200 3,085 0.96

K 3,200 2,195 0.69

E 3,000 2,480 0.83

I 2,440 2,170 0.89

C 2,300 2,240 0.97

R 2,054 1,915 0.93

Small (1,200 man-hours or less) G 1,200 2,095 0.25

T 1,082 1,680 0.45

O 952 2,040 \0

N 894 2,295 \0

Q 454 2,005 \0

S 262 1,805 \0

Software Qual J (2010) 18:437–468 457

123

other projects with respect to their actual and estimated costs we can see that 13 out of the

21 projects have an estimated cost within ranges of 75% from the actual cost.

One issue with the metamodel estimation concerns the project size: at what size does the

metamodel no longer provide an acceptable estimation accuracy? The data from the 21

studied change projects provides an indication that the metamodel is to be employed in

change projects over 2,000 man-hours. If the smallest projects, the ones under 2,000 man-

hours are ruled out, then the accuracy measure spans from 57 to 99% with 13 out of 15

projects being estimated within a 75% accuracy.

Thus, the answer to question three is as follows: yes, the proposed metamodel does

seem to provide good estimation capabilities (at least for software change projects over

2,000 man-hours). However, since the smallest projects (the ones under 1,200 man-hours

in size) seem to be more difficult for the proposed metamodel to estimate, this will be

addressed separately in future research.

For the interested reader, a more elaborative validation is presented in Lagerström et al.

(2009b).

6.4 Industrial feasibility

The four case study companies were more than satisfied with the metamodel and the

method it is a part of. At most companies, the feasibility was evaluated internally at the

companies in workshops and with presentations. One company has started an implemen-

tation of the approach in their change management process. Another company has asked

for a project creating a tool for the modifiability metamodel. A third company is about to

start a new case study testing the approach further.

Fig. 8 The main view of the instantiated architectural model containing data for project M of the multiple
case study at the Nordic transportation company. The model actually contains many sub-views including the
aggregating objects, as the one presented in Fig. 9

458 Software Qual J (2010) 18:437–468

123

7 Comparison with other models and methods

Since enterprise architecture is a discipline on the rise, there are no alternatives within this

modeling field that can be used for comparison. There are however other disciplines that

have addressed the cost estimation problem. This section compares the estimation capa-

bilities of three alternative models and methods with the modifiability metamodel.

According to Conte et al. (1985) an acceptable accuracy level for an estimation method

is something higher than or equal to 75%. This notion is used to define a measure of

prediction quality (PRED). In a set of n projects, let k be the number of projects where the

accuracy is higher than or equal to q. Then

PREDðqÞ ¼ k=n:

According to Conte et al. (1985) an estimation technique is acceptable if

PRED(0.75) = 0.75. This means that in 75% of the time the estimated values fall within

75% of their actual values.

Three of the more well-known and used models and methods are the COnstructive COst

MOdel (COCOMO) (Chulani et al. 1999; Boehm et al. 2000), function points (Matson

et al. 1994) and planning poker (Moløkken-Østvold et al. 2008). As can be seen in

Table 5, the modifiability metamodel seems to produce a prediction quality similar to

COCOMO II.1997 and function points when considering all 21 projects. When considering

the 15 projects of 2,000 man-hours and more the metamodel seems to have a better

accuracy than all of these alternatives.

Moløkken-Østvold et al. (2008) found that the mean estimation accuracy for planning

poker was 82%, cf. Table 6, while the mean estimation accuracy of the modifiability

metamodel is 88% (when studying the 15 project above 2,000 man-hours). As we can see,

they seem to provide rather similar estimation accuracies.

8 Models and analysis

The proposed metamodel is intended to be employed in decision situations regarding

software change projects. Several case studies have been conducted based on the meta-

model and the enterprise architecture analysis approach presented. In all, 21 software

change projects at four different companies have been analyzed with the modifiability

metamodel.

Table 5 Comparing the pre-
diction quality of the modifi-
ability metamodel,
COCOMO II, and function
points

Model / method 75% accuracy,
PRED(0.75)= (%)

COCOMO II

1997 Before stratification 49

After stratification 55

2000 Before stratification 68

After stratification 76

Function points Model A 64

Model B 68

The modifiability
metamodel

All projects 62

All above 2,000 man-hours 87

Software Qual J (2010) 18:437–468 459

123

8.1 Case study information

One of the case studies was conducted at a large Nordic transportation company. Origi-

nally, the multiple case study consisted of nine software change projects. In this paper, we

detail one of them in order to describe how the created metamodel can be instantiated and

used for cost analysis. For the interested reader, Lagerström et al. (2009b) presents a more

detailed modeling and analysis section.

The company provides transportation services mostly within one of the Nordic coun-

tries, but also has some services in neighboring countries. They carry hundreds of millions

of passengers every year and employ several thousand people.

The project studied, project M, was a project focusing on modifying the company’s

public ticket webshop into an almost completely new version. The focus was on adding and

changing functionality in the webshop software, making the purchase of tickets online

easier, faster, more secure and more reliable. One especially important part of the project

was to increase the usability with focus on the user interface for finding journeys, choosing

ticket type, viewing price information, and printing pdf-tickets. The project included

developing a new web flow and creating new integration solutions with the sales, journey

planner, and ticket delivery systems. With these integrations, it followed that there were

numerous systems being modified within the project.

8.2 Data collection

The transportation company did not have an existing enterprise architecture function and

no architecture models had been instantiated. Otherwise, information in existing models

could have been used when instantiating project M. In the modifiability metamodel, some

classes and attributes are change project specific and always in need of new or at least

updated information. However, the information regarding the involved systems, compo-

nents, tools, infrastructure, documentation, personnel, and the change management process

could typically be found in already existing models. As mentioned in Sect. 2.2 one issue to

consider is whether to trust the models, i.e. is the information presented in the models

really updated. This usually depends on the enterprise architecture maintenance process

(Fischer et al. 2007) and is not addressed further in this paper.

The data for project M was instead collected by interviewing and surveying people

involved in the project, and by studying project documentation. Additional data was also

collected with the development tools used at the company, for instance the size and

component internal coupling measures. Based on the data collection, an architecture model

was instantiated for the project, illustrated in Fig. 8. The instantiated model presents

project M on a high level, i.e. excluding the aggregating classes and their attributes.

Focusing on the systems external coupling view of the instantiated architectural model

for project M, cf. Fig. 9, we can see that the webshop system is integrated with a sales

system. Also, the webshop system and the sales system are integrated with a seat-booking

system. Furthermore, the sales system and the seat-booking system are integrated with a

Table 6 Comparing the
mean estimation accuracy of
the modifiability metamodel
and planning poker

Model/method Mean accuracy (%)

The modifiability metamodel,
all above 2,000 man-hours

88

Planning poker 82

460 Software Qual J (2010) 18:437–468

123

journey planing system. In all, there are seven systems, coupled together, involved in the

change project, i.e. seven systems in need of modifications.

8.3 Cost calculations

The probabilistic relational model based approach presented gives its values in the goal

attribute as probabilities. For project M, this means that the change cost has probability

values of being either High, Medium or Low. To enable estimations in man-hours, which is

a more common and intuitive measure, the probabilities need to be transformed into actual

man-hours. Transforming probabilities into cost, with a generally implementable cost

interval, is not an easy task, and a significant part of our ongoing research. In this paper, the

problem of probability transformation is approached by the introduction of segments, cf.

Table 7. These segments take into consideration whether the projects are seen as being of

either Large, Medium or Small size. In order to reach the levels of accuracy presented in

Table 4, the projects have to be fitted into one of the three segments before the estimation

Fig. 9 A systems external coupling view of the instantiated architecture model for project M

Software Qual J (2010) 18:437–468 461

123

is done. This has so far only been done a posteriori and further research is being conducted

to classify these more objectively and generally.

Once the project has been fitted into a segment, then it is possible to make a rather

accurate cost estimation. Table 7 depicts the transformation from probabilities of High,
Medium, and Low cost to number of man-hours for Large, Medium, and Small projects.

To be able to utilize the estimation capabilities of the metamodel for software change

project cost analysis within the accuracy ranges in Table 4, a highly subjective prediction

of the size of the project needs to be done. This high-level prediction of the project size is

preferably performed by project managers having experience of the project culture in the

company where the metamodel is being applied. Here, a simple categorization aims to

determine if, dependent on the company, the largest projects commonly turn out to demand

either 40,000, 12,000 or 5,000 man-hours. For example, if the largest projects in a com-

pany in general are considered to utilize man-hours closer to the range of 40,000 man-

hours than 12,000 man-hours the project should be labeled as a Large project. This means

that the probabilities of a project being High, Medium, or Low in the metamodel are

mapped to the man-hour levels 40,000, 6,000 and 1,000, respectively. If the project instead

had been determined to be of Medium size, the probabilities would be mapped to the levels

12,000, 6,000 and 1,000.

In a future version of the presented metamodel, there will hopefully not be a need for

the project managers to match projects with the segments presented in Table 7. General

cost levels suitable for change cost estimations independent of the project manager’s

subjective size segmentation of the projects will be obtained through empirical studies

where data for calibrating the change cost attribute will be used.

8.4 Case study conclusions

Based on project M, the following points can be emphasized: (1) the EA metamodel did

provide an estimation within 95% accuracy. (2) The metamodel enables early finding and

highlighting of risks. For instance, the instantiated model for project M shows that the

change difficulty is high for both the architectural and component changes. It also shows

that the involved systems are complex, that there are as many as 1,188 components

involved in the change, and that the systems involved are tightly coupled together.

A decision maker, typically a project leader within software change projects, will be

provided with three sorts of valuable information when utilizing the presented metamodel.

First, the expected costs of a set of change projects can be estimated. This enables a more

rational decision-making concerning what parts of a company’s project portfolio should be

prioritized. Furthermore, it is possible for a decision maker to test different scenarios

regarding the objects and attributes in the instantiated architectural model in order to try to

lower the cost of a specific project. This could for example be realized by involving other

developers having more suitable experience within the chosen design-specific language in

the project.

Table 7 Cost intervals for
categorization of change pro-
ject size

Segment\cost Hgh Medium Low

Large 40,000 6,000 1,000

Medium 12,000 6,000 1,000

Small 5,000 2,500 1,000

462 Software Qual J (2010) 18:437–468

123

Secondly, when a project has been chosen from the portfolio to be initiated, the archi-

tectural model will be able to aid the project manager in the planning phase of the project.

The planner can for instance get assistance to choose both architectural and development

team size, as well as elaborate how the team expertise will affect the outcome.

Thirdly, the instantiated architectural model can be used for conducting risk analyses.

The model is for example able to reveal which parts of the project carry a high risk of cost

overruns. Hence, action plans can be set up accordingly to mitigate the occurrence of these

risks. This enables the resources chosen for the project to be optimized for the project-

specific change activities. Hence, the risk of the project exceeding its given budget and

timeframes are somewhat more controllable.

9 Discussion

During the research work, several issues concerning the validity have been addressed.

Multiple sources in both the development phase and the validation phase were used. Key

stakeholders have been addressed for reviews of drafts. A chain of evidence was estab-

lished. Theory was developed and used. There are however some threats to the validity.

These threats mainly concern the 21 change projects studied in the validation phase when

focusing on the estimation capabilities. Since there was no possibility of studying projects

from start to end, most data gathered in these case studies was collected after the projects

were finished. Thus, they provide a final cost of the projects for comparison, but they also

imply an uncertainty of the a priori value of the data. Another issue threatening the validity

concerns the scales used when collecting and analyzing data, especially the transformation

between these scales. The cost interval segmentation used when estimating the costs is also

a validity issue since this so far only has been done after the projects were finished.

Reliability was achieved by documenting the research work during all phases. All case

studies have their own reports describing data collection and analysis. The aim has been to

operationalize as many steps as possible, e.g. conducting surveys with predefined choices

and using methods with well-defined guidelines and rules, thereby allowing other inves-

tigators to repeat the work.

9.1 Future work and implications

To the industrial practitioner, the present paper assists the enterprise modeling effort when

the concern is focused on modifiability and enterprise software change. If the metamodel is

employed in the beginning of change projects, the modeler will get cost estimations and the

possibility to highlight risks early.

Since large contemporary enterprises all have different concerns, systems, organizations,

etc., the presented metamodel might need to be tailored to fit each company (Brinkkemper

1996, 2000). The idea for the industrial practitioner would thus be to employ the modifi-

ability metamodel as a base together with the method presented in Lagerström et al.

(2009d). This would provide the user with a stakeholder concerns tailored metamodel.

To the EA tool industry, the present paper hints to potential new features or products. A

tool incorporating the provided metamodel would give qualitative and quantitative support

to the user’s modeling effort. The current market for EA tools does not explicitly consider

different analyses, especially not with focus on modifiability and change cost.

To the scientific community, the presented metamodel combines the approach of

enterprise architecture modeling for analysis with the approaches of modifiability analysis

Software Qual J (2010) 18:437–468 463

123

and change cost estimation. These communities can benefit from this work as well as

continue contributing in the combined area by extending/improving the metamodel and the

methods utilizing it. As discussed in the validation section, there are some metamodel

elements that after further research perhaps could be reconsidered, i.e. removed or chan-

ged. Also, in the surveys and case studies some new elements have been suggested to be

included in the metamodel. Before any such additions can be made, some additional

research is needed. Since the current version of the metamodel mainly focuses on change

organization, change environment, documentation, and software system related issues,

special focus could be on the business related elements of enterprise architecture. Many

business issues are now implicitly included in the change difficulty attribute of the tech-

nical changes class. New classes to add and test might be management, business organi-

zation, requirement specification and business process.

Another part of the metamodel that could be improved is the final step of the cost

calculation. In the modifiability metamodel presented in this paper, the cost translation

from probabilities to man-hours is made on a change project level. We do however believe

that the cost transformation can be improved if the focus shifts from project to activity,

thus translating the cost for each change activity instead of the whole project. This will

however need more data before it can be implemented.

Since the size segmentation used when calculating the estimated cost has been cali-

brated based on data collected from already finished projects this might be biased. A next

step is thus to follow projects from start to end in order to collect more accurate data and to

improve the calibration of the segmentation.

In this paper, expert validation and case studies have been used for validating the

modifiability metamodel. Besides, there are other methods that in the future could be used

to further test and validate the metamodel. An appropriate method could be structural

equational modeling (SEM) (Warner 2008). SEM is mainly used for testing causal rela-

tionships and it requires a larger data set than the one available in this study.

10 Conclusions

Enterprise architecture models can be used in order to increase the general understanding

of enterprise systems and specifically to perform various kinds of analysis. This paper

proposes a metamodel for enterprise systems modifiability analysis, i.e. assessing the cost

of making changes to enterprise-wide systems. The enterprise architecture metamodel is

formalized using probabilistic relational models, enabling the combination of regular

entity-relationship modeling aspects with means to perform enterprise architecture anal-

ysis. The presented metamodel contains classes such as change activities, architects and

developers, systems and their components, documentation, infrastructure, and change

management process. Each class has a set of attributes related to it. For instance, the class

System has the attributes understandability, internal and external coupling, complexity, and

size. These attributes are causally related to each other, providing the user with analysis

capabilities under conditions of uncertainty.

The paper discusses the validity of the modifiability metamodel based on data collected

in workshops and surveys with both academia and industry. The studied data indicates that

the metamodel contains the appropriate elements. Data was also collected in 21 software

change projects by employing the metamodel. This data was used in order to validate the

metamodel’s estimation capability, i.e. how well the metamodel estimates software change

cost. The metamodel produced estimates within a 75% accuracy for 13 out of 15 of the

464 Software Qual J (2010) 18:437–468

123

projects above 2,000 man-hours. However, the metamodel seems to provide less accurate

estimations for the smallest projects, i.e. the ones with a cost of 1,200 man-hours and less.

Furthermore, the modifiability metamodel is instantiated based on a case study at a large

Nordic transportation company, showing the applicability of the proposed metamodel.

References

Aggarwal, K., Singh, Y., & Chhabra, J. K. (2002). An integrated measure of software maintainability. In
Proceedings of the annual IEEE reliability and maintainability symposium.

Aier, S., Buckl, S., Franke, U., Gleichauf, B., Johnson, P., Närman, P., Schweda, C., & Ullberg, J. (2009). A
survival analysis of application life spans based on enterprise architecture models, enterprise modelling
and information systems architectures. In Proceedings of the 3rd international workshop EMISA.

Allen, R. (1997). A formal approach to software architecture. PhD Thesis, Carnegie Mellon University.
April, A., & Abran, A. (2008). Software maintenance management. Hoboken, New Jersey: IEEE Computer

Society/John Wiley & Sons.
Bass, L., Clements, P., & Kazman, R. (1998). Software architecture in practice. Reading, MA: Addison

Wesley Longman/Software Engineering Institute.
Bengtsson, P. O. (2002). Architecture-level modifiability analysis. PhD Thesis, Blekinge Institute of

Technology.
Boehm, B. (1981). Software engineering economics. Upper Saddle River: Prentice Hall.
Boehm, B., Abts, C., & Chulani, S. (2000). Software development cost estimation approaches—a survey.

Annals of Software Engineering, 10, 177–205.
Brinkkemper, S. (1996). Method engineering: Engineering of information systems development methods

and tools. Information and Software Technology, 38, 275–280.
Brinkkemper, S. (2000). Method-engineering with web-enabled methods. In Informations Systems engi-

neering—State of the art and research themes (pp. 123–133). Berlin: Springer.
Chan, T., Chung, S. L., & Ho, T. H. (1996). An economic model to estimate software rewriting and

replacement times. IEEE Transactions on Software Engineering, 22.
Chulani, S., Boehm, B., & Steece, B. (1999). Calibrating software cost models using bayesian analysis.

IEEE Transactions on Software Engineering, 573–583.
Conte, S., Dunsmore, H., & Chen, V. (1985). Software effort estimation and productivity. New York:

Academic Press Inc.
Department of Defense Architecture Framework Working Group. (2007). DoD architecture framework,

version 1.5. Technical Report, Department of Defense, USA.
Fenton, N. E., & Pfleger, S. L. (1997). Software metrics: A rigorous and practical approach. Boston, MA:

PWS Publishing Company.
Fischer, R., Aier, S., & Winter, R. (2007). Enterprise modelling and information systems architectures. A

Federated Approach to Enterprise Architecture Model Maintenance, 2, 14–22.
Franke, U., Flores, W. R., & Johnson, P. (2009a). Enterprise architecture dependency analysis using fault

trees and bayesian networks. In Proceedings of 42nd annual simulation symposium (ANSS) (pp. 209–
216), http://www.scs.org.

Franke, U., Höök, D., König, J., Lagerström, R., Närman, P., Ullberg, J., Gustafsson, P., & Ekstedt,
M. (2009b). EAF2—a framework for categorizing enterprise architecture frameworks. In Proceedings
of 10th ACIS international conference on software engineering, Artificial intelligence, Networking and
Parallel/Distributed Computing (pp. 327–332).

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational models. In
Proceedings of the 16th international joint conference on artificial intelligence (pp. 1300–1309).

Granja-Alvarez, J. C., & Barranco-Garcia, M. J. (1997). A method for estimating maintenance cost in a
software project: A case study. Software Maintenance: Research and Practice, 9, 161–175.

Grubb, P., & Takang, A. (2003). Software maintenance: Concepts and practice. Singapore: World
Scientific.

Gustafsson, P., Höök, D., Ericsson, E., & Lilliesköld, J. (2009). Analyzing it impacts on organizational
structure. In Portland international center for management of engineering and technology Conference
Proceedings.

Halstead, M. H. (1975). Toward a theoretical basis for estimating programming effort. In ACM 75: Pro-
ceedings of the 1975 annual conference (pp. 222–224). New York, NY, USA: ACM.

Software Qual J (2010) 18:437–468 465

123

http://www.scs.org

Harrison, W., & Cook, C. (1990). Insights on improving the maintenance process through software mea-
surement. In Proceedings of the IEEE software maintenance Conference.

Höök, D., Nordström, L., & Johnson, P. (2009). An enterprise architecture based method for quantified
analysis of ict system impact on maintenance management. In ICOMS asset management conference
proceedings.

IDS Scheer. (2009). Aris business performance edition. Available on http://www.ids-scheer.com/en/ARIS,
Accessed 18 June 2009.

IEEE Standards Board. (1990). IEEE standard glossary of software engineering technology. Technical
Report, The Institute of Electrical and Electronics Engineers.

International Organization for Standardization. (2001). Software engineering–product quality–part 1:
Quality model. International standard ISO/IEC TR 9126–1:2001(E), International Organization for
Standardization.

International Organization for Standardization. (2003a). Software engineering–product quality–part 2:
External metrics. International standard ISO/IEC TR 9126–2:2003(E), International Organization for
Standardization.

International Organization for Standardization. (2003b). Software engineering–product quality–part 3:
Internal metrics. International standard ISO/IEC TR 9126–3:2003(E), International Organization for
Standardization.

Jarzabek, S. (2007). Effective software maintenance and evolution: A reuse-based approach. Boca Raton,
FL: Auerbach Publications, Taylor & Francis Group.

Jensen, F. (2001). Bayesian networks and decision graphs. New York, Secaucus, NJ, USA: Springer.
Johansson, E. (2005). Assessment of enterprise information security—How to make it credible and efficient.

PhD Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden.
Johnson, P., & Ekstedt, M. (2007). Enterprise architecture—Models and analyses for information systems

decision making. Studentlitteratur.
Johnson, P., Lagerström, R., Närman, P., & Simonsson, M. (2007). Enterprise architecture analysis with

extended influence diagrams. Information Systems Frontiers, 9.
Jürjens, J. (2005). Secure systems development with UML. Berlin, Heidelberg: Springer.
Kan, S. (2003). Metrics and models in software quality engineering (2nd ed.). London: Pearson Education.
Kazman, R., Asundi, J., & Klein, M. (2001). Quantifying the costs and benefits of architectural decisions. In

Proceedings of the 23rd international conference on software engineering (pp. 297–306).
Kazman, R., Klein, M., & Clements, P. (2000). ATAM: Method for architecture evaluation.
König, J., & Nordström, L. (2009). Assessing impact of ict system quality on operation of active distribution

grids. In IEEE PowerTech.
Kurpjuweit, S., & Winter, R. (2007). Viewpoint-based meta model engineering. In Enterprise modelling and

information systems architectures (EMISA 2007).
Lagerström, R. (2007). Analyzing system maintainability using enterprise architecture models. Journal of

Enterprise Architecture, 3, 33–41.
Lagerström, R., Chenine, M., Johnson, P., & Franke, U. (2008). Probabilistic metamodel merging. In

Proceedings of the Forum at the 20th international conference on advanced information systems (Vol.
344, pp. 25–28).

Lagerström, R., Franke, U., Johnson, P., & Ullberg, J. (2009a). A method for creating enterprise architecture
metamodels—applied to systems modifiability analysis. The International Journal of Computer
Science and Applications, 6, 89–120.

Lagerström, R., Johnson, P., & Höök, D. (2009b). Architecture analysis of enterprise systems modifiabil-
ity—models, analysis and validation. submitted to journal.

Lagerström, R., Johnson, P., Höök, D., & König, J. (2009c). Software change project cost estimation—a
bayesian network and a method for expert elicitation. In the International Workshop on Software
Quality and Maintainability Proceeding.

Lagerström, R., Johnson, P., & Närman, P. (2007). Extended influence diagram generation. In Interoper-
ability for enterprise software and applications conference.

Lagerström, R., Saat, J., Franke, U., Aier, S., & Ekstedt, M. (2009d). Enterprise meta modeling methods—
combining a stakeholder-oriented and a causality-based approach. In Enterprise, business-process and
information systems modeling, Lecture Notes in Business Information Processing (Vol 29, pp. 381–
393), Berlin Heidelberg: Springer. ISSN 1865-1348.

Laird, L., & Brennan, C. (2006). Software measurement and estimation: A practical approach. Hoboken,
New Jersey: IEEE Computer Society/John Wiley & Sons.

Lankhorst, M. (2005). Enterprise architecture at work. Heidelberg: Springer.
Matinlassi, M., & Niemelä, E. (2003). The impact of maintainability on component-based software systems.

In Proceedings of the 29th IEEE EUROMICRO conference ‘‘New Waves in System Architecture’’.

466 Software Qual J (2010) 18:437–468

123

http://www.ids-scheer.com/en/ARIS

Matson, J., Barrett, B., & Mellichamp, J. (1994). Software development cost estimation using function
points. Software Engineering, IEEE Transactions on, 20, 275–287.

Moløkken-Østvold, K., Haugen, N. C., & Benestad, H. C. (2008). Using planning poker for combining
expert estimates in software projects. Journal of Systems and Software, 81, 2106–2117. New York,
NY, USA: Elsevier Science Inc.

Närman, P., Johnson, P., & Nordström, L. (2007). Enterprise architecture: A framework supporting system
quality analysis. In Proceedings of the international annual enterprise distributed object computing
Conference.

Neapolitan, R. (2003). Learning bayesian networks. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.
Oman, P., Hagemeister, J., & Ash, D. (1992). A definition and taxonomy for software maintainability.

Technical Report, Software Engineering Lab.
Pigoski, T. (1997). Practical software maintenance. New York: John Wiley & Sons.
Putnam, L., & Myers, W. (2003). Five core metrics. New York: Dorset House Publishing.
Ross, J. W., Weill, P., & Robertson, D. (2006). Enterprise architecture as strategy: Creating a foundation

for business execution. Boston, MA: Harvard Business School Press.
Simonsson, M. (2008). Predicting IT governance performance: A method for model-based decision making.

PhD Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden.
Smith, D. (1999). Designing maintainable software. Berlin: Springer.
Society of Automotive Engineers. (2009). Architecture analysis and design language (aadl) standard.

Technical Report, Carnegie Mellon University.
Tekinerdogan, B. (2004). ASAAM: aspectual software architecture analysis method. In Proceedings of the

fourth working IEEE/IFIP conference on software architecture (pp. 5–14). IEEE Computer Society.
Telelogic-IBM. (2009). Ibm rational system architect. Available on http://www.telelogic.com/Products/

systemarchitect/, Accessed 15 June 2009.
The IT Governance Institute. (2007). Control objectives for information and related technology (COBIT)

4.1. Technical Report, The IT Governance Institute.
The Open Group. (2009). The Open Group Architecture Framework (TOGAF)—version 9. The Open Group.
Troux Technologies. (2009). Troux 8. Available on http://www.troux.com, Accessed June 15, 2009.
Ullberg, J., Lagerström, R., & Johnson, P. (2008). A framework for service interoperability analysis using

enterprise architecture models. IEEE International Conference on Services Computing.
Warner, R. (2008). Applied statistics—From bivariate through multivariate techniques. Beverley Hills, CA:

Sage Publications Inc.
Winter, R., & Fischer, R. (2007). Essential layers, artifacts, and dependencies of enterprise architecture.

Journal of Enterprise Architecture, 3, 7–18.
Zachman, J. (2009). The Zachman framework—the official concise definition. Available on

http://www.zachmaninternational.com, Accessed 16 June 2009.
Zachman, J. A. (1987). A framework for information systems architecture. IBM Systems Journal, 26, 276–

292. Riverton, NJ, USA.
Zuse, H. (1997). A framework of software measurement. Berlin: Walter de Gruyter.

Author Biographies

Robert Lagerström received his Msc degree in computer science
from the Royal Institute of Technology in late 2005. In early 2006, he
started his PhD at the department Industrial Information and Control
Systems at the Royal Institute of Technology in Stockholm, Sweden.
His topic of research as a PhD-student is Enterprise Architecture and
Systems Modifiability. Robert is responsible for the courses ‘‘Industrial
Information Systems, System Technology’’ and ‘‘Industrial Informa-
tion Systems, Case Studies’’. In addition to that he supervises master
thesis students. Robert was a member of the Swedish Chapter com-
mittee of INCOSE (International Council on Systems Engineering) up
until 2009. He is responsible for the Software Metrics network at the
Swedish Computer Society. Robert has written a number of academic
publications in the field of Enterprise Architecture and Modifiability,
also he is a co-author of the book Enterprise Architecture: Models and

Analyses for Information Systems Decision Making. Robert is partner and consultant at Management
Doctors, a Swedish IT-management consultancy firm.

Software Qual J (2010) 18:437–468 467

123

http://www.telelogic.com/Products/systemarchitect/
http://www.telelogic.com/Products/systemarchitect/
http://www.troux.com
http://www.zachmaninternational.com

Pontus Johnson is Professor and Head of the Department of Industrial
Information and Control Systems at the Royal Institute of Technology
(KTH) in Stockholm, Sweden. Active at the department are 25
researchers and PhD students focusing particularly on the analysis of
architectural models of information systems and their context. He is
secretary of the IFIP Working Group 5.8 on Enterprise Interoperabil-
ity, technical coordinator of the FP7 Viking project, organizer, pro-
gram committee member, and associate editor of several international
conferences, workshops, and journals. Pontus supervises a number of
PhD students. In his research, he has much contact with Swedish
corporations and organizations in the form of research projects, master
thesis projects, seminars, and consultations. He has written a book with
the title Enterprise Architecture: Models and Analyses for Information
Systems Decision Making, available in many book stores. He received
his MSc from the Lund Institute of Technology in 1997 and his PhD
and Docent title from the Royal Institute of Technology in 2002 and

2007. He was appointed professor in 2009.

Mathias Ekstedt received his MSc in electrical engineering and PhD
in Industrial Information and Control Systems from the Royal Institute
of Technology in Stockholm, Sweden in 1999 and 2004, respectively.
He is currently a research associate at the Royal Institute of Tech-
nology and the manager of the program IT Applications in Power
System Operation and Control within the Swedish Centre of Excel-
lence in Electric Power Engineering. His research interests include
information and control systems and enterprise architecture for the
power industry. Mathias is a member of the Task force on Cyber
Security of Power Systems within IEEE PES Technical Committee on
Power System Analysis, Computing and Economics Subcommittee of
Computer and Analytical Methods. He is a member of INCOSE and a
former member of the Swedish INCOSE Chapter board. He is also the
founder of the enterprise architecture network at the Swedish Com-
puter Society.

468 Software Qual J (2010) 18:437–468

123

	Architecture analysis of enterprise systems modifiability: a metamodel for software change cost estimation
	Abstract
	Introduction
	Enterprise architecture
	Enterprise system modifiability
	Outline

	Related work
	Modifiability analysis
	Enterprise architecture

	Probabilistic relational models
	Creating the modifiability metamodel
	Method for creating the qualitative part of the metamodel
	Method for creating the quantitative part of the metamodel

	The modifiability metamodel
	Classes and reference slots
	Attributes and their parents

	Validation
	Are there attributes missing in the metamodel?
	Does the metamodel contain attributes that can be removed?
	Does the metamodel provide good estimation capabilities?
	Industrial feasibility

	Comparison with other models and methods
	Models and analysis
	Case study information
	Data collection
	Cost calculations
	Case study conclusions

	Discussion
	Future work and implications

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

