
A new perspective on data homogeneity in software cost
estimation: a study in the embedded systems domain

Ayşe Bakır Æ Burak Turhan Æ Ayşe B. Bener

Published online: 5 July 2009
� Springer Science+Business Media, LLC 2009

Abstract Cost estimation and effort allocation are the key challenges for successful

project planning and management in software development. Therefore, both industry and

the research community have been working on various models and techniques to accu-

rately predict the cost of projects. Recently, researchers have started debating whether the

prediction performance depends on the structure of data rather than the models used. In this

article, we focus on a new aspect of data homogeneity, ‘‘cross- versus within-application

domain’’, and investigate what kind of training data should be used for software cost

estimation in the embedded systems domain. In addition, we try to find out the effect of

training dataset size on the prediction performance. Based on our empirical results, we

conclude that it is better to use cross-domain data for embedded software cost estimation

and the optimum training data size depends on the method used.

Keywords Application domain � Cost estimation � Data homogeneity �
Embedded software � Machine learning

1 Introduction

Cost estimation is one of the critical steps of the software development life cycle as

underestimation results in approving projects that would exceed their budgets, whereas

overestimation results in wasting of resources (Leung and Fan 2001). Modeling accurate

and robust software cost estimators is still a key challenge for managing successful

A. Bakır (&) � A. B. Bener
Department of Computer Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Turkey
e-mail: ayse.bakir@boun.edu.tr

A. B. Bener
e-mail: bener@boun.edu.tr

B. Turhan
Software Engineering Group, Institute for Information Technology, National Research Council
of Canada, 1200 Montreal Road, Building M50, Ottawa, ON K1A0R6, Canada
e-mail: Burak.Turhan@nrc-cnrc.gc.ca

123

Software Qual J (2010) 18:57–80
DOI 10.1007/s11219-009-9081-z

software projects. Thus, it preserves its popularity within the research community and

many articles continue to be published, each of which introduces a new perspective on cost

estimation (Kitchenham et al. 2007; Menzies 2007; Ohsugi et al. 2007; Premraj and

Zimmermann 2007).

Recently, the focus of cost estimation studies has shifted from comparing a number of

models on a specific dataset to investigating the relationship between the structure of cost

data and the prediction accuracy (Kitchenham et al. 2007; Ohsugi et al. 2007; Premraj and

Zimmermann 2007). Up to now, this issue has been considered as a comparison of either

cross- versus within-company methods or cross- versus within-business domain methods

and many studies reached different conclusions. In their article, Kitchenham et al. (2007)

perform a systematic review of these studies and report that (1) in 3 of the 7 studies

reviewed, cross-company models were not significantly different than within-company

models, (2) in 4 of the 7 studies reviewed, within-company models were significantly

better than cross-company models, (3) and in none of them, cross-company models were

significantly better than within-company models. They further discuss that within-com-

pany models based on small datasets are better, since these datasets may be more

homogeneous than large cross-company datasets in terms of incorporating similar projects.

In contrast to these studies, we treat data homogeneity from an application domain point of

view. By application domain, we mean domains such as embedded, real-time, desktop

application, etc. and we focus on the embedded domain in this research. Our aim is to find

out what type of data (within-domain data or cross-domain data) should be preferred for

embedded software cost estimation. In addition, we aim to find out the effect of training

dataset size on prediction performance.

Specifically, we set the limits of our research to the embedded software domain, because,

in the last decade, development of multimedia and wireless applications on mobile devices

have led to increasing interest in embedded systems (Vahid and Givargis 2002). We can see

examples of these systems in every part of our lives; from cellular phones to automobile

systems. These systems, which are formerly implemented in hardwired uni-processor

architectures, now contain programmable multiprocessors which means increased com-

plexity and cost. For this reason, cost-effective implementations of embedded systems that

meet performance, functional, timing, and physical requirements becomes a challenge. This

is the main reason why we focus on embedded software in this research.

Our main contribution is to investigate the homogeneity of cost data in terms of

application domains, and to focus on the embedded domain. For this purpose, we design

three experimental setups to compare models trained on cross-domain data with those

trained on within-domain data. While the first experiment provides a baseline by using

within-domain data, the second and third experiments deal with cross-domain data with

different training data sizes. In each setup, various machine-learning techniques have been

applied to make our results independent from the techniques used. Further, in the addi-

tional experiments conducted, we investigate the effect of training data size on prediction

performance, an open question discussed in other studies. In our experiments, we use

different datasets from public repositories so that other researchers can replicate and/or

improve our results (Boetticher et al. 2007; SoftLab 2009).

The rest of the article is organized as follows: Section 2 gives some related work from

the literature. Section 3 states our main problem and the proposed methodology with the

experiments conducted, the datasets, the methods used, and the performance measures.

Threats to validity in our experiments are also given in this section. In Section 4, the results

obtained are given and in Section 5 evaluation of the results are made. Finally, conclusions

and future work are given in Section 6.

58 Software Qual J (2010) 18:57–80

123

2 Background

In general, there are three types of domains as specified by (Lokan et al. 2001):

a. Business domain: the main operation area of a company such as finance, medical,

telecommunications, etc.

b. Application domain: the type of application being addressed by the project such as

embedded, process control, information system, etc.

c. Organizational domain: the type of organization that submitted the project such as

banking, manufacturing, and retail.

The latest trend in cost estimation is to concentrate on the homogeneity of cost data, in

terms of these domains, rather than individual cost models built on the data. As an

extension of Kitchenham et al.’s (2007) research on cross- versus within-company studies,

Premraj and Zimmerman (2007) examine the homogeneity of cost data from the business

domain point of view. By business domain, they mean the main operation area of a

company such as finance, medical, telecommunications, etc. The idea is that companies

can either use business specific data (within-business data) or data that belongs to other

businesses (cross-business data). In their article, they reported that within-business domain

data are better for developing estimation models on than cross-business domain data. In

contrast to this study, our main aim is to compare cross- and within-domain data and try to

find out what kind of data should be preferred for embedded software cost estimation.

Another study that focuses on data homogeneity is Ohsugi et al. (2007). In their

hypothesis, they test whether more homogenous analogies for a project produce a more

reliable cost estimate. In order to achieve this, they define a metric for homogeneity. As a

result, they observe a large variation in reliability between high and low homogeneity level

projects. The main disadvantage of this study is that they test their hypothesis on one

dataset using one estimation algorithm. Instead, we implement a number of estimators and

test them on more datasets in order to interpret the generality of our results independent of

the cost model used.

There is a lack of cost models that are specific to application domains, and there are no

published studies that address this gap specifically for the embedded domain. In the lit-

erature, research on embedded systems mainly concentrates on power cost analysis (Oli-

veira et al. 2004; Ragan et al. 2002; Tiwari et al. 1994; Zotos et al. 2005). To the best of

our knowledge, there is no published study that focuses on the modeling/estimation of

software development costs of embedded systems. In this article, our main aim is to fill in

this gap from a data homogeneity point of view.

For estimating the cost of embedded software, in practice, parametric models like

COCOMO, REVIC, and some commercial tools are used (Boehm 2009; Debardelaben

et al. 1997; EstimatorPal 2009; Igoodsoft 2009; SCEP 2009). In particular, the embedded

models of COCOMO and REVIC are the most applicable tools for the software costing of

embedded systems. COCOMO uses nominal effort equations that are derived from labor

effort, and related to the size of the software system. REVIC is the US Air Force’s

embedded-mode REVised Intermediate Cocomo cost model. It includes many functions

such as those for calculating development effort, development time, annual maintenance

effort, multi-objective cost function, effort adjustment and utilization, and processors and

memory capacity. However, these models are designed to be rather generic and should be

calibrated before being used by other companies (Kitchenham et al. 2007).

Software Qual J (2010) 18:57–80 59

123

3 Methodology

We bring a new perspective to data homogeneity and propose an application domain

viewpoint, which we call within-domain versus cross-domain. The domain on which a

software project is developed plays a very important role as it affects the whole software

development lifecycle. In particular, the embedded domain is promising in today’s world

where embedded systems are so popular. Thus, we focus on the embedded software

domain and investigate what type of data should be used for embedded software cost

estimation.

In this context, we have the following research questions:

1. What type of training data should we use for embedded software cost estimation:

cross-domain datasets or within-domain (embedded software) datasets?

2. Elsewhere (Kitchenham et al. 2007), it is discussed that small within-company datasets

are more homogeneous and large cross-company datasets introduce heterogeneity to

the solutions. ‘‘What is the effect of training dataset size on the prediction

performance?’’

In order to answer the research questions above, we compare the estimators that are

trained on within-domain data with those trained on cross-domain data by using three

different experimental setups:

S1 train and validate the estimators only on the embedded software dataset

S2 train the estimators on a subset of the cross-domain dataset by randomly selecting the

same number of projects as in the embedded software dataset, and then validate on

the embedded software dataset

S3 train the estimators on the cross-domain dataset by using all of the projects and

validate on the embedded software dataset

Among these setups, S1 defines a baseline where the estimations are carried out with

within-domain datasets. S2 is a cross-domain setup where the training dataset is different

from the within-domain dataset, but has the same size as in S1. If we were to use different

training set sizes in S1 and S2, then we would have difficulty in determining whether our

results are due to using different applications domains or using different training set sizes.

In order to see how the results are affected by the training set size, S3 is designed. S3 is the

same as S2 except that this time all of the projects in the cross-domain dataset are used as

the training dataset.

3.1 Data

In our research, datasets from three main sources are used. The first one is PROMISE Data

Repository which is a public repository that contains data about software projects from

NASA and different universities located in US (Boetticher et al. 2007). Three of the cost

estimation datasets in PROMISE are used in this research: cocomonasa_v1, coc81_1_1,

and nasa93. These datasets are collected in COCOMO81 format and include 17 attributes

in total (15 effort multipliers, one size attribute, and one actual effort value) except that

nasa93 includes seven additional project attributes (Boehm 1981).

The second source is Bogazici University Software Engineering Research Laboratory

repository (SoftLab), which contains data about software projects that belongs to various

companies in Turkey. Three of the cost estimation datasets in SoftLab are used in this

research: sdr05, sdr06, and sdr07. All of these datasets are collected in COCOMO II

60 Software Qual J (2010) 18:57–80

123

format and include 22 attributes in total (15 effort multipliers, 5 scale factors, one size

attribute, and one actual effort value) (Boehm 1999).

The last resource is International Software Benchmarking Standards Group (ISBSG)

repository, which is a non-profit organization that maintains a software project manage-

ment database from a variety of organizations (Lokan et al. 2001). In this research, we use

ISBSG Release 10 that contains 4,106 projects each with around 106 attributes. These

attributes can be classified into 15 categories that are rating, sizing, effort, productivity,

schedule, quality, grouping attributes, architecture, documents and techniques, project

attributes, product attributes, effort attributes, size attributes, size other than FSM, and

software age. More details can be found in (Lokan et al. 2001).

In order to form the embedded software datasets to be used in our experiments, from

coc81_1_1 and nasa93, by choosing only the projects with embedded development mode,

we form two new datasets that we call coc81_e and nasa93_e. These new datasets contain

28 and 21 projects with 17 COCOMO I attributes. Then, we form a third embedded

software dataset from the ISBSG dataset by selecting the projects whose application type is

embedded. There are in total 21 such projects. From these projects, the ones whose size

and effort attributes are empty are removed and the number of projects decreases to 17.

Lastly, unnecessary attributes and the attributes with an empty value for all projects are

removed. The remaining attributes that are 8 in total are summary work effort, project

elapsed time, development platform, language type, primary programming language, 1st

operating system, 1st language, and Lines of Code. Among these eight attributes, those that

are categorical are converted into numerical format by assigning a number (1, 2, 3 …) for

each category. This final dataset is called ISBSG_e.

In order to form a cross-domain dataset to be used in S2 and S3, firstly, all the datasets

except nasa93_e and coc81_e (cocomonasa_v1, sdr05, sdr06, sdr07) are merged into one

large dataset, which is called crossdomain1. Secondly, one more cross-domain dataset is

formed by adding the nonembedded projects in coc81 and nasa93 to crossdomain1. This

second dataset is called as crossdomain2. While merging the datasets, only the common

attributes, which are 15 in total, are selected from each dataset. The reason for the different

number of features is that they are collected in either COCOMO or COCOMO II model

format. These two datasets, crossdomain1 and crossdomain2, will be used to train coc81_e
and nasa93_e since they have same attributes. However, for ISBSG_e, we have different

attributes; so, thirdly, a new cross-domain dataset is formed from the ISBSG dataset by

selecting the projects whose application types are not embedded and do not include null

values. This new dataset including 104 projects each with 8 attributes is called as ISBSG.

By taking into account all of the data repositories used, we have three embedded software

(within-domain) datasets and three cross-domain datasets for our experiments. An over-

view of the contents of these datasets is given in Table 1.

3.2 Cost models

There has been various research in the area of software cost and effort estimation, where

several different approaches have been used: parametric models, expertise-based tech-

niques, function point analysis, learning-oriented techniques, dynamics-based models,

regression-based models, and composite Bayesian techniques for integrating expertise-

based and regression-based models (Boehm 1981; Walston and Felix 1977; Albrecht 1979;

Putnam 1978). In real life, project managers have to make cost and effort related decisions

under uncertainty. Therefore, they need a model that has high accuracy, free of

expert judgment, and has flexible attributes. Such a model can be constructed by using

Software Qual J (2010) 18:57–80 61

123

machine-learning algorithms. The capacity to learn from experience, analytical observa-

tion, and other means, results in a system that can continuously self-improve and, thereby,

offer increased efficiency and effectiveness (Alpaydin 2004). In such circumstances,

learning-based predictor models are expected to be more useful. In the literature, there are

a number of studies that focus on applying machine-learning techniques to cost data

(Baskeles et al. 2007; Srinivasan and Fisher 1995; Briand et al. 1992; Boetticher 2001). We

have chosen six of these methods to be used in our research for estimating the effort value

for embedded software projects, since we wanted our results to be independent from a

specific model. We have chosen widely used models such as linear regression, support-

vector regression (SVR), and multi-layer perceptron (MLP) as well as other models such as

kernel smoother (KS), k-nearest neighbors, and voting cost estimation models in the

context of embedded system domain.

Linear regression (LR) seeks a linear combination of attributes to estimate cost

(Alpaydin 2004). The output is a linear function, which is the weighted sum of the input

variables. Despite its simplicity, it has been widely used in other studies, and this is the

reason why we used it in our research (Angelis and Stamelos 2000; Mason and Sweeney

1992; Perel 1994; Shepperd et al. 1996).

Another machine-learning algorithm we used is KS. It is similar to linear regression

except that the importance of data instances is not the same for all inputs. It gives less

weight to distant samples by dividing the data into bins and fitting a kernel function to the

data that are in the same bin. The most popular kernel function is the Gaussian kernel,

which is also the one used in this research (Alpaydin 2004).

We also apply SVR that approximates a solution into a higher dimensional space where

the solution is linear (Smola and Schölkopf 2003). We have used Steve Gunn’s SVR

implementation with a spline kernel (Gunn 1998). Another nonlinear complex model we

have included in our research is the MLP with back-propagation, where cost is estimated as

nonlinear combinations of input attributes (Fausett 1994). We have used Phil Brierley’s

neural network with a back-propagation implementation (Brierley 2009).

We have also included an unsupervised method, k-nearest neighbor algorithm (KNN),

which gives a baseline for comparing the similarity of the projects. While we use our prior

Table 1 An overview of the datasets

Datasets # of
Projects

Total # of
Projects

Domain Name Content

Within-domain
(embedded
software)

coc81_e Embedded software projects from coc81 28 28

nasa93_e Embedded software projects from nasa93 21 21

ISBSG_e Embedded software projects from ISBSG 17 17

Cross-domain crossdomain1 cocomonasa_v1 60 149

sdr06 24

sdr05 25

sdr07 40

crossdomain2 crossdomain1 149 256

Remaining projects from coc81 35

Remaining projects from nasa93 72

ISBSG Remaining projects from ISBSG 104 104

62 Software Qual J (2010) 18:57–80

123

knowledge about the application domain of projects for defining similarity, KNN measures

it in terms of the Euclidean distance between input attributes of different projects.

Finally, we have used a voting algorithm in order to combine the results of different

estimators. Voting is one of the methods for combining multiple learners (Alpaydin 1998).

The estimated cost value of each learner is given a particular weight and this weighted sum

of each estimate is taken as the final estimation. In this research, we have set equal weight

values for each learner (1/number of learners).

3.3 Experimental design

There are three embedded software (within-domain) and three cross-domain datasets that

can be used to compare our three setups (Table 1). Embedded software datasets are

coc81_e, nasa93_e, and ISBSG_e, whereas cross-domain datasets are crossdomain1,

crossdomain2, and ISBSG. In all these datasets, there are great variations between different

attributes (e.g. between nominal COCOMO attributes and numerical size attribute). Thus,

before performing any experiment, all of the datasets are normalized in order to remove

scaling effects by using Min-max normalization (Shalabi and Shaaban 2006).

The datasets used for S1 and the way they are processed are given in Fig. 1.

In S1, since the estimators are both trained and validated on embedded software

datasets, 10 9 10 cross-validation is used to create various training and validation sets

from the same dataset (Alpaydin 2004). Firstly, the normalized dataset is shuffled 10 times

into random order and then divided into 10 bins. Training data are built from nine of the

bins, and the remaining bin is set for validation. Secondly, Principal Component Analysis
is applied on both training and validation sets to extract relevant features for each of them

(Alpaydin 2004). Thirdly, the estimators are applied to the training set to learn the models’

SOFTLAB
REPOSITORY

sdr05

sdr06

sdr07

ISBSG

ISBSG_e

ISBSG

coc81_e nasa93_e ISBSG_e

Normalization

10x10 Cross-validation

Training
Set

Validation
Set

coc81_e

cocomo
nasa_v1

nasa93_e

coc81

PROMISE

nasa93

Fig. 1 Data processing in S1

Software Qual J (2010) 18:57–80 63

123

parameters. Then, the models and the voting method are applied to the validation bin for

estimation. Finally, the results on the validation set and the associated errors are collected

for all 100 cross-validation iterations. The pseudo code of S1 is given in Fig. 2.

The datasets used for S2 and the way they are processed are given in Fig. 3.

In S2, there is no need for cross-validation because there are separate training (cross-

domain datasets) and validation sets (embedded software datasets). As we want to use a

training set with the same size as the embedded software dataset, a group of projects in the

cross-domain dataset are selected randomly and used as the training set. After normali-

zation and dimensionality reduction with PCA, unlike S1, all of the estimators are first

trained on the randomly selected subset of projects from the cross-domain dataset, and then

validated on embedded software dataset in order to determine the performance measures.

In order to obtain 100 results as in S1, the whole setup is run for 100 times. The pseudo

code of S2 is given in Fig. 4.

The datasets used for S3 and the way they are processed are given in Fig. 5.

S3 is almost the same as S2. The only difference is that, instead of using a random

subset of projects from cross-domain datasets, all of the projects in them are used as the

training set. The reason for this is to check if the dataset size affects the performance of the

models on the embedded software dataset. The pseudo code S3 is given in Fig. 6.

3.4 Performance measures

For all setups, after the effort values are estimated for each project in the validation set,

three performance measures are calculated in order to compare the setups with each

other: mean magnitude of relative error (MMRE), median magnitude of relative error

(MdMRE), and prediction at level r (PRED(r)). These are the measures calculated from

M = 10 // num of iterations
N = 10 // num of bins
DATA = coc81_e,nasa93_e,ISBSG_e // embedded software datasets
REDUCER = PCA // dimensionality reducer
ESTIMATOR = (LR KS SVR MLP KNN) // estimators
VOTINGS = (Voting) // voting algorithm

for data in DATAS
 N_DATA = NORMALIZE(data)
 repeat M times
 data’ = randomize order in N_DATA
 generate N bins from data’
 for i=1 to N
 validationData = data’(i)
 trainingData = data’-validationData

for reducer in REDUCER
 data’’ = reducer(trainingData)
 data’’’ = reducer(validationData)
 for estimator j in ESTIMATOR
 predictor = estimator(data’’)
 RESULTS1(j) = apply predictor to data’’’
for voter in VOTINGS
 RESULTS2 = voter(RESULTS1)

Fig. 2 Pseudo code of S1

64 Software Qual J (2010) 18:57–80

123

magnitude of relative error (MRE) between the actual and estimated values (Menzies

et al. 2006):

MRE ¼ predicted� actualj j
actual

ð1Þ

Simply, MMRE is the mean of the MRE values and MedianMRE (MdMRE) is the

median of the MRE values. A third measure is used to examine the cumulative frequency

of MRE for a specific error level, which is Prediction at level r or PRED(r). In this study,

we take the desired error level as r = 25. That is, if we have n projects and there are m of

them whose MRE is smaller than 25%, then PRED (25) is equal to m/n:

SOFTLAB
REPOSITORY

sdr05

sdr06

sdr07

ISBSG

ISBSG_e

ISBSG cocomo
nasa_v1

PROMISE

nasa93_ecoc81_e

coc81 nasa93

Validation
Set

Normalization

PCA

coc81_e

nasa93_e

ISBSG_e

Normalization

Select same #
of projects

Training
Set

crossdomain1
crossdomain2

ISBSG

crossdomain1

PCA
principal

components

Fig. 3 Data processing in S2

Software Qual J (2010) 18:57–80 65

123

PREDðNÞ ¼ 100

T

XT

i

1 if MREi� N
100

0 otherwise

�
ð2Þ

One important thing while evaluating the results is that we want MdMRE and MMRE

values to be low and PRED (25) values to be high in order to say that a model performs

well.

Since we have three competing setups that are used to predict the same dataset, the t-test

is used for comparing different sets of predictions (Stensrud and Myrtveit 1998). The t-test

is a test of the null hypothesis that two sample sets of predictions are not significantly

different, and the alternative hypothesis is that the two sets of predictions are significantly

different. If there is not enough statistical evidence at the 95% significance level

(a = 0.05) to reject the null hypothesis, then we can be confident that the two sets of

predictions are not significantly different.

3.5 Threats to validity

As a threat to internal validity of our results, firstly, we constructed three embedded

software datasets that are small in size. To overcome this issue, we used a 10 9 10 cross-

validation framework in our experiments so that, at each iteration, different training and

validation sets are generated. Secondly, the use of metrics based on absolute relative error

(MMRE, MdMRE, PRED) may be inaccurate for experimental evaluation (Foss et al.

2003; Korte and Port 2008). Although they are the most widely used evaluation criteria for

assessing the performance of different prediction models, there are some studies that

question their accuracy. For example, according to Foss et al. (2003), both MMRE and

MdMRE are inherently biased and do not always select the best model. Also, Korte and

Port (2008) stated that most of the results of these measures are questionable due to large

possible variations resulting from population sampling error. However, in order to obtain a

M = 100
TRA_DATA = crossdomain1, crossdomain2,ISBSG // training data
VAL_DATA = coc81_e,nasa93_e,ISBSG_e // validation data
REDUCER = PCA
 // dimensionality reducer
ESTIMATOR = (LR KS SVR MLP KNN) // estimators
VOTINGS = (Voting) // voting algorithm

TRA_DATA’ = NORMALIZE(TRA_DATA)
VAL_DATA’ = NORMALIZE(VAL_DATA)
repeat M times
 tra_data = randomize order in TRA_DATA’
 SIZE = size(VAL_DATA’)
 tra_data’ = tra_data (1…SIZE)
 for reducer in REDUCER
 tra_data’’ = reducer(tra_data’)
 val_data = reducer(VAL_DATA’)
 for estimator j in ESTIMATOR
 predictor = estimator(tra_data’’)
 RESULTS1(j) = apply predictor to val_data
for voter in VOTINGS
 RESULTS2 = voter(RESULTS1)

Fig. 4 Pseudo code of S2

66 Software Qual J (2010) 18:57–80

123

more accurate comparison of the models developed, we give statistical test results (t-test)

and show the box plots of residuals (i.e. the estimate-actual) for each setup as suggested in

(Kitchenham et al. 2001).

We can say that our results are externally valid, because, both the datasets collected

from software companies in Turkey and the datasets from PROMISE Data Repository are

used in our experiments instead of relying only on datasets from a single source. Fur-

thermore, the ISBSG dataset that contains data about current software development pro-

jects from different organizations in the world is used to generalize our results.

4 Results

4.1 Results for research question 1

In our experiments, there are two cross-domain datasets, crossdomain1 and crossdomain2,

that can be used for training coc81_e and nasa93_e. Thus, there are two possible cases for

Validation
Set

coc81_e

nasa93_e

ISBSG_e

Normalization

Training
Set

Normalization

crossdomain1
crossdomain2

ISBSG

crossdomain1

PCA

PCA

principal
components

SOFTLAB
REPOSITORY

sdr05

sdr06

sdr07

ISBSG

ISBSG_e

ISBSG cocomo
nasa_v1

PROMISE

nasa93_ecoc81_e

coc81 nasa93

Fig. 5 Data processing in S3

Software Qual J (2010) 18:57–80 67

123

S2 and S3 that we call S2-crossdomain1, S2-crossdomain2, S3-crossdomain1, and S3-

crossdomain2. However, for ISBSG_e dataset, there is only one cross-domain dataset,

ISBSG, thus, there is only one possible case for S2 and S3. Results for each embedded

software dataset are given in Tables 2, 3, 4 respectively. Since MdMRE, MMRE, and

PRED measures can be misleading as stated in our threats to validity section, Figs. 7, 8,

and 9 are included to visualize the residuals for each setup in Tables 2, 3, and 4,

respectively. The box plots are interquartile plots, and the line within each box is the

median. The length of the box indicates the spread of the distribution and the position of

the median (the line) show the skewness of the distribution. In order to say that a method

performs well, the box length and tails should be small (Kitchenham et al. 2001).

For coc81_e, the results for each setup are given in Table 2. Best values for each

method are given in bold. When we look at the results, we see that MdMRE and MMRE

values are very high and PRED values are very low. However, our aim is to compare the

setups we designed, not the methods with each other. With this in mind, the best values for

most of the methods are obtained when S1 is used, which means that the methods perform

better when they are trained on the embedded software (within-domain) dataset, coc81_e.

For coc81_e, the box plots for each method are given in Fig. 7 in order to compare their

performances in different setups. In contrast to the results given in Table 2, the best

performance is obtained when they are trained on crossdomain2 by using all of the pro-

jects, because the box length and tails for S3-crossdomain2 (5) are clearly smaller than the

box length and tails for other setups (Kitchenham et al. 2001).

For nasa93_e, the results for each setup are given in Table 3. Best values for each

method are given in bold. When we look at the results, we see that, again, the best values

for most of the methods are obtained when S1 is used, which means that the methods

perform better when they are trained on the embedded software (within-domain) dataset,

nasa93_e.

For nasa93_e, the box plots for each method are given in Fig. 8. In contrast to the

results given in Table 3, it can be seen that for all methods, the best performance is

obtained when they are trained on crossdomain2 by using all of the projects (5).

M = 100
TRA_DATA = crossdomain1, crossdomain2,ISBSG // training data
VAL_DATA = coc81_e,nasa93_e,ISBSG_e // validation data
REDUCER = PCA // dimensionality
reducer
ESTIMATOR = (LR KS SVR MLP KNN) // estimators
VOTINGS = (Voting) // voting algorithm

TRA_DATA’ = NORMALIZE(TRA_DATA)
VAL_DATA’ = NORMALIZE(VAL_DATA)
repeat M times
 tra_data = randomize order in TRA_DATA’
 val_data = randomize order in VAL_DATA’
 for reducer in REDUCER
 tra_data’ = reducer(tra_data)
 val_data’ = reducer(val_data)
 for estimator j in ESTIMATOR
 predictor = estimator(tra_data’)
 RESULTS1(j) = apply predictor to val_data’
for voter in VOTINGS

Fig. 6 Pseudo code of S3

68 Software Qual J (2010) 18:57–80

123

Table 2 Results for coc81_e dataset

Method S1 (%) S2-crossdomain1 (%) S2-crossdomain2 (%)

MdMRE MMRE PRED MdMRE MMRE PRED MdMRE MMRE PRED

KS 1,528 1,528 10.89 97 1,278 10.14 91 754 11.35

KNN 213 213 18.31 216 944 12.02 122 658 15.20

LR 718 718 10.89 436 1,608 7.92 377 1,314 10.04

MLP 1,630 1,630 10.39 394 1,790 8.20 246 1,224 10.29

SVR 2,988 2,988 7.42 931 4,038 5.41 916 4,250 6.01

Voting 933 933 9.40 436 1,596 7.74 326 1,473 10.32

Method S3-crossdomain1 (%) S3-crossdomain2 (%)

MdMRE MMRE PRED MdMRE MMRE PRED

KS 98 1,375 10.32 92 743 11.42

KNN 124 926 7.07 87 464 10.60

LR 670 1,370 3.53 476 1,288 7.07

MLP 411 2,265 7.03 268 1,327 9.97

SVR 909 3,511 3.53 942 3,780 3.53

Voting 479 1,530 1.77 433 1,402 6.61

The bold values show the best values for each method and for each measure (MMRE, MdMRE, and PRED).
There are 3 bold values for each algorithm

Table 3 Results for nasa93_e dataset

Method S1 (%) S2-crossdomain1 (%) S2-crossdomain2 (%)

MdMRE MMRE PRED MdMRE MMRE PRED MdMRE MMRE PRED

KS 138 138 32.67 92 317 12.73 88 189 12.02

KNN 193 193 27.22 75 456 19 72 212 16.36

LR 116 116 24.75 108 675 15.7 97 422 15.60

MLP 175 175 28.21 112 546 16.36 100 297 15.18

SVR 444 444 16.37 274 922 12.58 276 864 12.91

Voting 187 187 26.23 86 533 18.81 69 334 20.03

Method S3-crossdomain1 (%) S3-crossdomain2 (%)

MdMRE MMRE PRED MdMRE MMRE PRED

KS 90 283 12.63 90 179 11.12

KNN 73 1,114 14.14 59 175 23.57

LR 78 871 33 72 478 28.28

MLP 125 736 14.09 91 368 16.50

SVR 169 619 9.42 174 919 14.05

Voting 72 683 22.96 60 372 21.97

The bold values show the best values for each method and for each measure (MMRE, MdMRE, and PRED).
There are 3 bold values for each algorithm

Software Qual J (2010) 18:57–80 69

123

For ISBSG_e, the results for each setup are given in Table 4. The best values for each

method are given in bold. We want to remind readers that there are in total three possible

cases for this dataset since there is only one cross-domain dataset that is ISBSG. When we

look at the results, we see that, again, the best values for most of the methods are obtained

when S1 is used, which means that the methods perform better when they are trained on the

embedded software (within-domain) dataset, ISBSG_e.

For ISBSG_e, the box plots for each method are given in Fig. 9. In contrast to the results

given in Table 4, it can be seen that for all methods except MLP, the best performance is

obtained when they are trained by using all of the projects (3). MLP performs the best

when it is trained on a subset of projects (2).

Table 4 Results for ISBSG_e dataset

Method S1 (%) S2 (%) S3 (%)

MdMRE MMRE PRED MdMRE MMRE PRED MdMRE MMRE PRED

KS 7,599 7,599 14.85 120 1,590 13.33 123 2,418 11.88

KNN 187 187 35.64 216 1,509 9.14 194 648 11.64

LR 1,878 1,878 6.93 244 2,585 8.21 198 1,644 5.82

MLP 91 91 68.3 299 2,754 8.85 524 3,026 8.50

SVR 9,819 9,819 22.7 2,258 11,483 11.53 2,919 14,248 17.47

Voting 3,239 3,239 10.8 623 3,800 6.69 762 4,230 5.94

The bold values show the best values for each method and for each measure (MMRE, MdMRE, and PRED).
There are 3 bold values for each algorithm

Fig. 7 Boxplots for coc81_e

70 Software Qual J (2010) 18:57–80

123

Fig. 8 Boxplots for nasa93_e

Fig. 9 Boxplots for ISBSG_e

Software Qual J (2010) 18:57–80 71

123

4.2 Results for research question 2

Using either a subset (in S2) or all of the projects in cross-domain datasets (in S3) does not

give us an idea about the direct relationship between the training set size and the per-

formance of the estimators. In order to observe this relationship, we perform an additional

experiment for embedded software datasets. In this experiment, we begin training the

embedded software datasets by using the same number of projects from the cross-domain

dataset and then increase training set size one by one, calculating the results for each

estimator at each step. This gives us the opportunity to observe the performances of each

estimator for each different training set size. We call this experiment as ‘‘Performance

Experiment’’ in the rest of the article.

For coc81_e, we perform the performance experiment by training the methods using the

crossdomain1 dataset, and then validating using the coc81_e dataset. We begin with 28

projects in the training set and continue by increasing the number one by one until all of the

149 projects in crossdomain1 are used. The results obtained are given in Fig. 10. When we

look at the figure, we can see that there is no general tendency such as effort estimation

performance gets better or worse as the training set size increases.

For nasa93_e, we perform the performance experiment by training the methods using the

crossdomain1 dataset and then validating using the nasa93_e dataset. We begin with 21

projects in the training set and continue by increasing the number one by one until all of the 149

projects in crossdomain1 are used. The results obtained are given in Fig. 11. When we look at

the figure, again, we cannot see a direct relationship between training set size and performance.

For ISBSG_e, we perform the performance experiment by training the methods using

the ISBSG dataset, and then validating using the ISBSG_e dataset. We begin with 17

Fig. 10 Performance results for coc81_e

72 Software Qual J (2010) 18:57–80

123

projects in the training set, and continue by increasing the number one by one until all of

the 104 projects in crossdomain1 are used. The results obtained are given in Fig. 12. When

we look at the figure, again, there is no general tendency about the methods’ performances.

5 Evaluation

Up to now, the effort estimation results for each setup are presented separately for each

dataset. However, we still do not have an idea about what type of training data (within-

domain or cross-domain) should be used for embedded software cost estimation.

According to the MdMRE, MMRE, and PRED results obtained, most of the best values for

either measure were obtained when the methods are trained on the embedded software

datasets (S1). However, when we look at the box plots of residuals for each method, we see

that the best performances are obtained when the methods are trained on crossdomain2 or

ISBSG by using all of the projects (S3-crossdomain2 or S3 for ISBSG). Thus, in order to

come up with a neutral conclusion, we performed t-tests between different sets of results of

each algorithm. While performing the t-tests, we used a 0.05 significance level (� = 0.05).

According to the t-tests performed, the best performing setups obtained for each esti-

mator are given for coc81_e dataset in Table 5. When we look at the results, S3-cross-

domain2 performs best for most of the methods. This means that when the estimators are

trained by using all of the projects in crossdomain2, the best performances are obtained for

the coc81_e dataset.

The best performing setups for nasa93_e dataset are given in Table 6. When we look at

the results, S3-crossdomain2 again performs best for most of the methods. This means that

Fig. 11 Performance results for nasa93_e

Software Qual J (2010) 18:57–80 73

123

Fig. 12 Performance results for ISBSG_e

Table 5 t-test results for coc81_e dataset

Method MdMRE MMRE PRED (25)

SVR S3-crossdomain1 S3-crossdomain1 S2-crossdomain2

GS S3-crossdomain2 S3-crossdomain2 S3-crossdomain2

LR S2-crossdomain2 S1 S2-crossdomain2

MLP S3-crossdomain2 S3-crossdomain2 S3-crossdomain2

KNN S3-crossdomain2 S1 S2-crossdomain2

Voting S2-crossdomain2 S1 S2-crossdomain2

Table 6 t-test results for nasa93_e dataset

Estimator MdMRE MMRE PRED (25)

SVR S3-crossdomain1 S1 S3-crossdomain2

GS S3-crossdomain1 S3-crossdomain2 S1

LR S3-crossdomain2 S1 S3-crossdomain2

MLP S3-crossdomain2 S1 S1

KNN S3-crossdomain2 S3-crossdomain2 S3-crossdomain2

Voting S3-crossdomain2 S1 S3-crossdomain2

74 Software Qual J (2010) 18:57–80

123

when the estimators are trained by using all of the projects in crossdomain2, the best

performances are obtained for the nasa93_e dataset.

The best performing setups for the ISBSG_e dataset are given in Table 7. We should

note that the ISBSG_e dataset can use only the ISBSG dataset as training data, because, the

attributes in crossdomain1 and crossdomain2 are different; so, there are three possible

cases: S1 S2, and S3. When we look at the results, as being different from the previous

results, S2 performs best for most of the algorithms. This means that when the estimators

are trained by using the same number of projects from ISBSG, the best performances are

obtained for the ISBSG_e dataset.

As a result, for all of the embedded software datasets, the estimators that are trained on

cross-domain datasets outperform those trained on the embedded software datasets. Thus,

we can conclude that cross-domain datasets should be used for training estimators in

embedded software cost estimation.

On the other hand, for two of the embedded software datasets used (coc81_e and

nasa93_e), using all the projects in the cross-domain dataset as training data gives the best

results. For only one dataset, ISBSG_e, using the same number of projects from cross-

domain dataset performs best. According to these results, it may seem that as training set

size increases performance gets better for cross-domain datasets. However, in order to

make a conclusion about how much data should be used as training data, we must take the

performance experiments into account. In the performance experiments we made, we

observed that there is no direct relationship between training set size and the performances

of the estimators. We can only suggest that all possible training set sizes should be tested,

and then the best one should be selected for use in experiments.

Although finding the best performing algorithm is not the main focus of this research,

we would like to give some insights on the comparative performances of the algorithms we

used. When we look at the six algorithms used, k-nearest neighbor (KNN) outperforms the

others, because KNN learns the effort values only from similar projects. KS and MLP are

the next best ones, where Kernel smother assigns larger weight values to the similar

projects and MLP dynamically adjusts its weights according to the delta between the

attributes of input project and the training project. Linear regression comes next in terms of

prediction performance, since it tries to fit a linear model to the multi-variate project

samples. Voting algorithm, on the other hand, does not perform well compared to the

previous models. The reason may be that we use equal weights for each model and, thus,

all models including the bad-performing ones have the same effect on the result. Finally,

the support-vector regression (SVR) model is the worst performing one among the six

models used. SVR tries to approximate the solution into a higher dimensional space, where

the solution is linear. Cost data is generally high-dimensional; the solution becomes highly

complex resulting in over fitting.

Table 7 t-test results for IS-
BSG_e dataset

Estimator MdMRE MMRE PRED (25)

SVR S2 S2 S3

GS S3 S2 S2

LR S3 S3 S2

MLP S1 S1 S1

KNN S3 S1 S1

Voting S2 S2 S2

Software Qual J (2010) 18:57–80 75

123

We should carefully note that the ordering of these methods may not necessarily reflect

their accuracies in practice. Our sole intention is to span as large a number of methods as

possible while investigating within versus cross- application domain issues. Determining

the best method is out of the scope of this article and is still an open issue.

5.1 Answers to research questions and practical implications

In this article, we report our study about training data domain on software cost modeling,

and we especially focus on the cross- versus within-application domain. We have analyzed

embedded software systems due to the increasing attention in this domain. We have

designed experiments to answer our research questions. Below, we provide the analysis on

the rationale of our experimental results for each research question:

1. What type of training data should we use for embedded software cost estimation:

cross-domain datasets or within-domain (embedded software) datasets?—In our

experiments, we observed that all estimators perform better when they are trained on

the cross-domain datasets than they do on the embedded software datasets. Thus, we

can conclude that cross-domain datasets should be used for training estimators in

embedded software cost estimation.

2. What is the effect of training dataset size on the prediction performance?—In our

experiments, we observed that as training set size increases, performance gets better

for two of four cross-domain datasets. However, we could not observe this relationship

consistently through all datasets. Thus, we suggest determining the correct training

dataset size after validating on possible set sizes. A possible reason why this remains

an open issue is the fact that the choice of the learning algorithm and data quality have

undeniable effects on the size of the training set.

Our results also have practical implications for decision making in the software engi-

neering industry. Below, we list the implications of our research for software practitioners:

1. Our comprehensive analysis of data usage for cost estimation in embedded software

development domain can help managers to decide which data to use: cross-domain or

within-domain. This is very critical for companies that are newly established or that do

not have enough historical data. In such a case, they can use the cross-domain datasets

for their cost estimation studies, at least for embedded systems.

2. Project managers can benefit from the learning-based methods we have used, in order

to make more accurate estimates while bidding for (1) a new project, (2) allocating the

resources among different projects, as well as among different stages of software

development lifecycle.

3. A widely used approach is to employ analogy based cost models. However, this

assumes the availability of project data that are similar to the project at hand, which

can be difficult to obtain, i.e. there may be no similar projects in house and obtaining

data from other companies may be limited due to confidentiality. On the other hand,

our proposed framework suggests that it is not necessary to take care of particular

development characteristics of a project, i.e. its similarity with other projects, while

constructing cost models. On the contrary, we observe that rather than using projects

from a similar application domain, it is better to use projects from a wider spectrum.1

1 This observation is consistent with other cost models such as COCOMO, where model parameters are
determined from a diverse set of software projects. Though COCOMO is a generic model with predefined
parameters, these can be fine tuned with local data.

76 Software Qual J (2010) 18:57–80

123

6 Conclusion and future work

There have been many studies that compare within-company cost estimation models to

cross-company models and try to find an answer to the question of when companies should

rely on cross-company models. However, in this study, we focus on a different aspect of

data homogeneity, that is the application domain, and investigate what type of training data

should be used for embedded software cost estimation. Further, we investigate the effects

of training data size on prediction performance.

We carry out our experiments on public datasets in order to enable other researchers to

replicate our experiments. We have used three different experimental setups with a number

of learning-based methods. The first setup is to apply the estimators in a within-domain

setup. The second one uses a cross-domain training dataset with the same as in the first

setup. The last one is the same as the second one except that the training dataset size grows

larger. According to the experiments, we can conclude that cross-domain datasets should

be used for training estimators in embedded software cost estimation.

In order to find the effect of training data size, we performed additional experiments and

we observed that there is no direct relationship between training set size and performance.

The optimum training data size depends on the method used, thus, we can only suggest that

all possible training set sizes should be tested and then the best one should be selected for

use in experiments.

Our main research contribution is to investigate the homogeneity of cost data in terms of

application domain. This issue has not been studied before in software cost estimation

literature. The second contribution of our study is that, we investigate the effect of training

data size on prediction performance, an open question discussed in other studies. We

performed experiments to answer this question, yet we conclude that this still remains as an

open issue due to variations in data quality and the choice of prediction algorithm.

However, the current experiment results can guide project managers in making a decision

on how much data is enough for training the algorithm. Finally, we benefit from various

machine-learning techniques for software cost estimation and provide a performance

comparison. Also, our experimental design may inspire and guide other researchers who

would be conducting research on this domain. In our experiments, we use different datasets

from public repositories so that other researchers can replicate, refute and/or improve our

results.

As a future research direction, the data collection process in embedded systems domain

may focus on searching for domain specific attributes, so that the information content of

the attributes becomes richer and as a result prediction performance of the algorithm

improves.

Acknowledgments This research is supported in part by Boğaziçi University research fund under grant
number BAP 06HA104 and by Tubitak EEEAG 108E014.

References

Albrecht, A. J. (1979). Measuring application development productivity. In Proceedings of the joint SHARE,
GUIDE, and IBM application development symposium, Monterey, CL, October 14–17 (pp. 83–92).
IBM Corporation.

Alpaydin, E. (1998). Techniques for combining multiple learners. Proceedings of Engineering of Intelligent
Systems, 2, 6–12.

Alpaydin, E. (2004). Introduction to machine learning. Cambridge: MIT.

Software Qual J (2010) 18:57–80 77

123

Angelis, L., & Stamelos, I. (2000). A simulation tool for efficient analogy based cost estimation. Journal of
Empirical Software Engineering, 5(1), 35–68. doi:10.1023/A:1009897800559.

Baskeles, B., Turhan, B., & Bener, A. (2007). Software effort estimation using machine learning methods.
ISCIS, 2007, 1–6.

Boehm, B. W. (1981). Software engineering economics. Advances in computer science and technology
series. Borough: Prentice Hall PTR.

Boehm, B. W. (1999). COCOMO II and COQUALMO data collection questionnaire. University of Southern
California, Version 2.2.

Boehm, B. W. (2009). COCOMO II model definition manual. University of Southern California, Version
1.4. http://sunset.usc.edu/research/.

Boetticher, G. D. (2001). Using machine learning to predict project effort: Empirical case studies in data-
starved domains. 1st International workshop on model-based requirements engineering, pp. 17–24.

Boetticher, G., Menzies, T., & Ostrand, T. (2007). PROMISE repository of empirical software engineering
data. West Virginia University, Department of Computer Science. http://promisedata.org/repository.

Briand, L. C., Basili, V. R., & Thomas, W. M. (1992). A pattern recognition approach for software
engineering data analysis. IEEE Transactions on Software Engineering, 18(11), 931–942. doi:
10.1109/32.177363.

Brierley, P. (2009). http://www.philbrierley.com/main.html?code/matlab.html&code/codeleft.html.
Debardelaben, J. A., Madisetti, V. K., & Gadient, A. J. (1997). Incorporating cost modeling in embedded-

system design. IEEE Design & Test of Computers, 14(3), 24–35. doi:10.1109/54.605989.
EstimatorPal. (2009). http://software.techrepublic.com.com/download.aspx?docid=236622.
Fausett, L. (1994). Fundamentals of neural networks. Borough: Prentice Hall.
Foss, T., Stensrud, E., Kitchenham, B., & Myrtveit, I. (2003). A simulation study of the model evaluation

criteria MMRE. IEEE Transactions on Software Engineering, 29(11), 985–995. doi:
10.1109/TSE.2003.1245300.

Gunn, S. R. (1998). Support vector machines for classification and regression. Faculty of Engineering,
Science and Mathematics, School of Electronics and Computer Science, Tech. Rep., May 1998
(online). Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.9736.

Igoodsoft. (2009). http://www.igoodsoft.com/sesdevelopment.asp.
Kitchenham, B. A., Mendes, E., & Travassos, G. H. (2007). Cross- vs. within-company cost estimation

studies: A systematic review. IEEE Transactions on Software Engineering, 33(5), 316–329. doi:
10.1109/TSE.2007.1001.

Kitchenham, B. A., Pickard, L. M., MacDonell, S. G., & Shepperd, M. J. (2001). What accuracy statistics
really measure. IEEE Proceedings-Software, 148(3), 81–85. doi:10.1049/ip-sen:20010506.

Korte, M., & Port, D. (2008). Confidence in software cost estimation results. PROMISE, 2008, 63–70. doi:
10.1145/1370788.1370804.

Leung, H., & Fan, Z. (2001). Software cost estimation. Handbook of software engineering and knowledge
engineering. ftp://cs.pitt.edu/chang/handbook/42b.pdf.

Lokan, C., Wright, T., Hill, P. R., & Stringer, M. (2001). Organizational benchmarking using the ISBSG
data repository. IEEE Software, 18(5), 26–32. doi:10.1109/52.951491.

Mason, A. K. & Sweeney, N. (1992). Parametric cost estimating with limited sample sizes. In Proceedings
of the 3rd annual artificial intelligence symposium.

Menzies, T. (2007). Data mining static code attributes to learn defect predictors. IEEE Transactions on
Software Engineering, 33(1), 2–13. doi:10.1109/TSE.2007.256941.

Menzies, T., Chen, Z., Hihn, J., & Lum, K. (2006). Selecting best practices for effort estimation. IEEE
Transactions on Software Engineering, 32(11), 883–895. doi:10.1109/TSE.2006.114.

Ohsugi, N., Monden, A., Kikuchi, N., Barker, M. D., Tsunoda, M., Kakimoto, T., & Matsumoto, K. (2007).
Is this cost estimate reliable?—The relationship between homogeneity of analogues and estimation
reliability. In 1st International symposium on empirical software engineering and measurement, ESEM
2007.

Oliveira, M. N., Martins, P. R. M., Barreto, R. S., & Carvalho, F. F. (2004). Towards a software power cost
analysis framework using colored petri net. PATMOS 2004: International workshop on power and
timing modeling, optimization and simulation, Santorini, Greece, Vol. 3254, pp. 362–371.

Perel, R. J. (1994). Mold cost estimator generator utilizing standard data and linear regression. In Pro-
ceedings of the regional technical conference of the society of plastic engineers, pp. GI–G19.

Premraj, R., & Zimmermann, T. (2007). Building software cost models using homogenous data. In ESEM
’07: Proceedings of the 1st empirical software engineering and measurement, Madrid, Spain, Sep-
tember 2007, IEEE, pp. 393–400.

Putnam, L. H. (1978). A general empirical solution to the macro software sizing and estimating problem.
IEEE Transactions on Software Engineering, 4(4), 345–361. doi:10.1109/TSE.1978.231521.

78 Software Qual J (2010) 18:57–80

123

http://dx.doi.org/10.1023/A:1009897800559
http://sunset.usc.edu/research/
http://promisedata.org/repository
http://dx.doi.org/10.1109/32.177363
http://www.philbrierley.com/main.html?code/matlab.html&code/codeleft.html
http://dx.doi.org/10.1109/54.605989
http://software.techrepublic.com.com/download.aspx?docid=236622
http://dx.doi.org/10.1109/TSE.2003.1245300
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.9736
http://www.igoodsoft.com/sesdevelopment.asp
http://dx.doi.org/10.1109/TSE.2007.1001
http://dx.doi.org/10.1049/ip-sen:20010506
http://dx.doi.org/10.1145/1370788.1370804
ftp://cs.pitt.edu/chang/handbook/42b.pdf
http://dx.doi.org/10.1109/52.951491
http://dx.doi.org/10.1109/TSE.2007.256941
http://dx.doi.org/10.1109/TSE.2006.114
http://dx.doi.org/10.1109/TSE.1978.231521

Ragan, D., Sandborn, P., & Stoaks, P. (2002). A detailed cost model for concurrent use with hardware/
software co-design. DAC 2002, ACM, pp. 269–274.

SCEP. (2009). Software cost estimation program. http://www.retisoft.com/Products.html.
Shalabi, L. A., & Shaaban, Z. (2006). Normalization as a preprocessing engine for data mining and the

approach of preference matrix. In IEEE proceedings of the international conference on dependability
of computer systems (DEPCOS-RELCOMEX’06).

Shepperd, M., Schofield, C., & Kitchenham, B. (1996). Effort estimation using analogy. 18th International
conference on software engineering (ICSE’96), p. 170.

Smola, A. J., & Schölkopf, B. (2003). A tutorial on support vector regression. NeuroCOLT Technical
Report. http://eprints.pascal-network.org/archive/00002057/01/SmoSch03b.pdf.

SoftLab. (2009). Software Research Laboratory. Department of Computer Engineering, Bogazici Univer-
sity. http://softlab.boun.edu.tr.

Srinivasan, K., & Fisher, D. (1995). Machine learning approaches to estimating software development
effort. IEEE Transactions on Software Engineering, 21(2), 126–137. doi:10.1109/32.345828.

Stensrud, E., & Myrtveit, I. (1998). Human performance estimating with analogy and regression models: An
empirical validation. In Proceedings of 5th international metrics symposium. Bethesda, MD: IEEE
Computer Society.

Tiwari, V., Malik, S., & Wolfe, A. (1994). Power analysis of embedded software: A first step towards
software power minimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2(4), 437–445. doi: 10.1109/92.335012.

Vahid, F., & Givargis, T. D. (2002). Embedded system design: A unified hardware/software introduction.
New York: Wiley.

Walston, C. E., & Felix, C. P. (1977). A method of programming measurement and estimation. IBM Systems
Journal, 16(1), 54–73.

Zotos, K., Litke, A., Chatzigeorgiou, A., Nikolaidis, S., Stephanides, G., & Giannakides (Greece), G. (2005).
Energy complexity of software in embedded systems. From Proceeding (483) ACIT—Automation,
Control, and Applications.

Author Biographies

Ayşe Bakır She received her MSc degree in Computer Engineering
from Bogazici University and her BSc degree in Computer Engi-
neering from Gebze Institute of Technology in 2006. Her research
interests include software quality modeling and software cost
estimation.

Burak Turhan He is a research assistant and pursuing a PhD degree in
the Department of Computer Engineering at Boğaziçi University. He
received his BS and MS degrees from the same department. His
research interests include all aspects of software quality and are
focused on software defect prediction models. He is a student member
of IEEE, IEEE Computer Society, and ACM SIGSOFT.

Software Qual J (2010) 18:57–80 79

123

http://www.retisoft.com/Products.html
http://eprints.pascal-network.org/archive/00002057/01/SmoSch03b.pdf
http://softlab.boun.edu.tr
http://dx.doi.org/10.1109/32.345828
http://dx.doi.org/10.1109/92.335012

Ayşe B. Bener She is an assistant professor and a full time faculty
member in the Department of Computer Engineering at Boğaziçi
University. Her research interests are software defect prediction, pro-
cess improvement and software economics. Bener has a PhD in
information systems from the London School of Economics. She is a
member of the IEEE, the IEEE Computer Society, and the ACM.

80 Software Qual J (2010) 18:57–80

123

	A new perspective on data homogeneity in software cost estimation: a study in the embedded systems domain
	Abstract
	Introduction
	Background
	Methodology
	Data
	Cost models
	Experimental design
	Performance measures
	Threats to validity

	Results
	Results for research question 1
	Results for research question 2

	Evaluation
	Answers to research questions and practical implications

	Conclusion and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

