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Abstract New methodologies and tools have gradually made the life cycle for software

development more human-independent. Much of the research in this field focuses on

defect reduction, defect identification and defect prediction. Defect prediction is a rel-

atively new research area that involves using various methods from artificial intelligence

to data mining. Identifying and locating defects in software projects is a difficult task.

Measuring software in a continuous and disciplined manner provides many advantages

such as the accurate estimation of project costs and schedules as well as improving

product and process qualities. This study aims to propose a model to predict the number

of defects in the new version of a software product with respect to the previous stable

version. The new version may contain changes related to a new feature or a modification

in the algorithm or bug fixes. Our proposed model aims to predict the new defects

introduced into the new version by analyzing the types of changes in an objective and

formal manner as well as considering the lines of code (LOC) change. Defect predictors

are helpful tools for both project managers and developers. Accurate predictors may help

reducing test times and guide developers towards implementing higher quality codes.

Our proposed model can aid software engineers in determining the stability of software

before it goes on production. Furthermore, such a model may provide useful insight for

understanding the effects of a feature, bug fix or change in the process of defect

detection.

Keywords Software defects � Defect prediction � Neural networks

Y. Kastro (&) � A. B. Bener
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1 Introduction

1.1 Motivation

Although there are various formal methods and tools to improve the automation of a

software delivery, the major part of software development is a human-driven process that

requires intensive labor. Hence, errors are mostly introduced as a result of the human

involvement in the process. There are several methods to make the software development

life cycle independent of human abilities. These methods are based on well-defined pro-

cesses (Fenton and Neil 1999; Ceylan et al. 2006; Boehm et al. 1995; Boehm and Basili

2000). Many research efforts are in the field of software quality (Fenton and Neil 1999;

Ceylan et al. 2006; Porter and Votta 2004; Brilliant et al. 1990). These efforts include the

formation of formal methods, offering new methodologies like CMM or the introduction of

new tools to increase quality.

Software quality is directly correlated with the number of defects in the software. Thus,

defect prediction is a significant part of the literatıre on software quality. Minimizing the

number of defects requires a thorough testing of the software in question. On the other

hand, the testing phase requires approximately 50% of the entire project schedule (Song

et al. 2006; Fenton and Ohlsson 2000). This implies that testing is the most expensive, time

and resource consuming phase of the software development life cycle. An effective test

strategy should, therefore, consider minimizing the number of defects while using

resources efficiently. Defect prediction models are helpful tools for software testing.

Accurate estimates of defective modules may yield decreases in testing times, and project

managers may benefit from defect predictors in terms of allocating the limited resources

effectively (Tahat et al. 2001). In this research, we were motivated to reduce both testing

efforts and the cost of software production in order to achieve a high quality software.

1.2 Background

Software defect prediction has been evaluated as both the prediction and the estimation of

the defects in a given software module (Fenton and Neil 1999). Generally, many efforts are

specifically focused on predicting the number of defects in the system, estimating the

reliability of the systems as statistical functions to time-to-failure, and understanding the

importance of design and testing processes on defect counts. Software metrics are attri-

butes of software that help us understand various characteristics of the software. Software

metrics are mostly used with the aim of ensuring product quality, process efficiency and

risk assessment in software projects (Menzies et al. 2002). One of the most significant

benefits of software metrics is that they provide information for fault prediction. Currently,

there are numerous metrics that can be used by project managers to assess software risks.

The early research on software metrics have focused their attention mostly on McCabe,

Halstead and Lines of Code (LOC) metrics (Fenton and Neil 1999; Menzies et al. 2007).

Previous research state that trying to detect defects using only size metrics is not

accurate (Padberg et al. 2004; Inoue et al. 2005). The number of defects discovered is

related to the amount of testing performed. Therefore, the defect count should be inter-

preted within the context of the testing effort. Otherwise, the defect count itself would lead

us to the wrong conclusion. For example, if we take a complex program that is not tested or

used, the defect count of that program will be zero. In this case, the defect count does not

tell us anything about the quality of the software since testing was not performed at all.
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When basic types of metrics such as LOC, Halstead and McCabe were used in the learning

process, the researchers found out that some metrics did not give similar prediction results

at different stages of the software development process. In their research, Fenton and Neil

explored the relationship between the number of faults and the Cyclomatic Complexity

values and discovered that the values were different in pre- and post-releases. Therefore, to

overcome such problems, the researchers used Bayesian Belief Network for defect mod-

eling (Fenton and Neil 1999). Although some research stood against using static code

measures (Fenton and Neil 1999; Sheppard and Ince 1994), a recent research showed that

using a Naı̈ve Bayes classifier with log-filtered static code measures yields significantly

better results than rule-based methods such as the decision tree (Menzies et al. 2007).

However, these models do not address the problem of predicting defects in the process of

multiversion software development.

Boehm and Basili, found out through their research that finding and fixing a software

problem after delivery was often 100 times more expensive than finding and fixing it

during the requirement and design phase (Boehm and Basili 2001). They also claimed that

about 80% of avoidable rework comes from 20% of the defects. Additionally, about 80%

of the defects come from 20% of the modules, and about half the modules are defect-free.

Another research focused on N-version software experiment was also conducted (Brilliant

et al. 1990). Within the scope of this research, various universities used the same

requirements to code a program 27 times. They tried to prove whether the defects were

statistically independent. They found out that in some cases, the programmers made similar

logical errors, indicating that some parts of the problem were simply more difficult than

others. Finally, they concluded that minor differences in the software development envi-

ronment, such as the use of different programming languages for different versions would

not have a major impact on reducing the incidence of faults that caused correlated failures

(Ostrand et al. 2005).

Machine-learning algorithms have been proven to be practical in poorly-understood

problem domains with changing conditions (Zhang 2000). Software quality problems can

be formulated similar to learning processes, and they can be classified according to the

characteristics of defect. Therefore, it would be possible to apply regular machine learning

algorithms to come up with a probability distribution for defect analysis (Fenton and

Ohlsson 2000). Decision trees, artificial neural networks, Bayesian belief network, and

classification techniques such as k-nearest neighbor are examples of the most commonly

used techniques for software defect prediction problems (Zhang 2000; Mitchell 1997;

Jensen 1996; Khoshgoftaar and Allen 1999).

Padberg et al. proposed a system that learns from empirical data (Padberg et al. 2004).

They specifically examined the relationship between certain observable features of an

inspection as well as the number of defects actually contained in the documents. They

showed that some features could carry significant nonlinear information about the content

of the defect. Therefore, they used a nonlinear regression technique and neural networks to

solve the learning problem.

Machine learning is also used to generate models of program properties that are known

to cause errors. Support vector machines and decision tree learning tools are implemented

to classify and investigate the most relevant subsets of program properties. The underlying

intuition is that most of the properties leading to faulty conditions can be classified within a

few groups. The technique Brun and Ernst used consists of two steps: training and clas-

sification. Fault-relevant properties are utilized to generate a model, and this pre-computed

function selects the properties that are most likely to cause errors and defects in the

software (Brun and Ernst 2004).
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In their research, Podgurski et al. used clustering over function call profiles to determine

which features enabled a model to distinguish failures from non-failures (Podgurski et al.

2003). The researchers used a technique called dynamic invariant detection to pick pos-

sible invariants from a test suite and investigated violations that usually indicate an

erroneous state. This method is also used to determine counter examples and to find

properties that lead to correct results for all conditions (Groce and Visser 2003).

Previous research usually has dealt with the characteristics of the detectors or estimators

in the defect prediction problem domains. Koru and Liu argue in their research that,

besides the characteristics of the detector itself, another important property of successful

models is how the input data is handled. More specifically; they claim that organizing the

input data set at fine granularity level (i.e. class level abstraction against method level) will

bring forth better results in defect prediction (Koru and Liu 2005).

Linear regression analysis for defect prediction treats software metrics as independent

variables in order to estimate the dependent variable i.e. defect density. Munson and

Khoshgoftaar investigated linear regression models and discriminant analysis to conclude

that the performance of the latter is more favorable (Munson and Khoshgoftaar 1990).

They used Principal Component Analysis (PCA) as a pre-processing step in order to

eliminate the co-linearity in software metrics. Nagappan et al. also used linear regression

analysis with PCA for the STREW metric suite (Nagappan et al. 2005). Decision tree

learning is another common method that is preferred for its rule generation capabilities

(Menzies et al. 2003, 2004). Such rules are easier to explain to non-technical people

(Fenton and Neil 1999). There is another research that has used machine learning methods

in defect identification and in estimating defect density (Ceylan et al. 2006). Ceylan et al.

constructed a two-step model that predicts potentially faulty modules. They carried out

their experiments with different software metric datasets, which they obtained from real-

life projects. The results of the experiments show that the two-step model enhances the

regression performance.

So far, many researchers have dealt with the problem of tracking change in software as a

way of predicting defect density. Kung et al. examined change impact identification within

the scope of object-oriented software development (Kung et al. 1994; Inoue et al. 2005).

They described a formal model to capture changes and to make inferences on the changes

in order to identify the affected classes. Their model includes object relation diagram, the

block branch diagram and the object state diagram. They primarily focused on C++

projects. They claimed that the changed and affected classes can be tested in a cost-

effective order to avoid extensive construction of test stubs.

The previous research in defect prediction has so far not taken up the problem in a

multiversion software environment. Some research on tracking changes in multiversion

software, on the other hand, was conducted as specific to a single programming language.

We have proposed a software defect prediction model independent of language and plat-

form where the primary focus is on the multiversion software. We mainly observe the

changes between versions to propose a defect density metric in order to decide on a new

stable version.

The remainder of the paper is organized as follows: The second section discusses the

problem. The third section explains our proposed defect prediction framework for a

multiversion software as well as the data collection and analysis process. The fourth

section states the experimental design and the data sets used in the research, discusses the

threats to validity and presents results for the experiments. The fifth section concludes our

work and discusses the future directions.
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2 The problem statement

Software can be classified into three main groups according to their defect tolerances: zero-

defect (i.e. space applications), low-defect (i.e. operating systems) and high-defect (i.e.

non-critical user applications) (Nagappan and Ball 2005a, b; Jorgensen 2005). In zero-

defect density scenarios, the defected software cannot be used or proposed as a product. So

the software development company is fully focused on finding all defects and fixing them.

In the case of operating system software or non-critical user applications, the software is

designated to be defected below a certain defect density that is set depending on the

application. At this point, a relation is put along with the defect density and time-to-failure.

Using this relation, the software development institution can target a defect density level

and arrange a testing and correction phase to reach that specific defect level. In most cases,

formal review methodologies for requirements and design are executed as well as the

testing process of the software (Bowen and Hinchey 1995; Clarke and Wing 1996; Coppit

et al. 2005). Testing effort is a major part of the overall project effort and the related cost.

There are various studies on how to distribute this effort in order to have a high quality

software (Nagappan and Ball 2005a, b; Jorgensen 2005).

A defect prediction solution would help the software development institution to dis-

tribute their testing resources in line with the defect density. We can argue that the modules

with a higher defect density should have a higher share than regular distribution, whereas

the modules with a lower defect density should have a lower share than the regular. A

version-based defect density solution may also take changes into consideration. If the

software institution supplies the change information quantitatively, the defect prediction

solution can be predicted in relation to these changes. In this case, the regression testing

effort may also be reduced.

Another important aspect of a defect prediction solution is that such a solution becomes

necessary when there is a trade-off between an earlier delivery and a delivery with fewer

defects. In today’s software development industry, all companies and software develop-

ment houses are in a severe competition, such that minimizing the development time

decreases the overall project cost (Nagappan and Ball 2005a, b; Johnson et al. 2005). On

the other hand, less development and testing time also increases the defect density ratio in

terms of the final product. Therefore, a defect prediction solution may provide the required

quantitative metric to make a decision related to the delivery of the product. The senior

management of the software development company would be able to make a decision

concerning the product launch if the defect density level is below a certain threshold.

2.1 Version change tracking

Software products are developing and evolving (Gregoriades and Sutcliffe 2005;

Vaidyanathan and Trivedi 2005). The same product with the same name with some fea-

tures added or new functions introduced is announced as a new version. A new version

might differ from an older version in various ways. The most common differences are

newly introduced features originating from new requirements, changes of previous mod-

ules or the bug-correction of the older version. Although most of the software houses claim

that the stable version of their software does not contain bugs, many fixes can be perceived

in their new versions (Clarke et al. 1996).

It is highly possible that a newer version of software will differ from the older version

also in terms of LOC and the logs of Code Versioning Systems (CVS). So, the software
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development institution usually employs quantitative data to measure the alterations

between different versions (Jorgensen 2005). More importantly, every software product

has its own developing process. Programming language, programmers’ experience, algo-

rithm complexity, or even the development methodology makes software unique. Thus,

every software product should be evaluated in accordance with its own dynamics in mind.

If the software development institution is able to track the bugs of the previously published

version and the changes between them, these data can be analyzed through the use of a

defect prediction model. The performance of a defect predictor would highly depend on the

historical data. Therefore, a brand new software may not produce meaningful predictions.

2.2 Defining and tracking change

Change is the core input of any prediction algorithm or method. We would like to give a

definition of change in our software versioning scope. We propose that ‘‘a change exists’’

when a line from the source code is modified, deleted or moved. In this scope, change can

be easily analyzed by a CVS program. If the software versions are kept in a software CVS

repository, then two versions can be compared easily in terms of line changes. The reason

we make a clear definition of change is that it needs to be objective and it should not differ

from developer to developer.

On the other hand, we can say ‘‘a change exists’’, if the developer of any module is able

to specify the minimum modification that produces a feature or bug fix. Thus, finding the

lowest level of change is human-dependent, meaning that the list of all versions’ change

should be prepared by the same team or person in order to overcome subjectivity. Changes

should be classified into groups of features, bug fixes and other changes. At the end of

change collection procedure, we should come up with either of the following for each and

every module:

i. The number of lines of source code changes

ii. The number of lines of source code insertions

iii. The number of lines of source code deletions

Or

i. The number of features introduced

ii. The number of bug fixes accomplished

iii. The number of modifications done

We can claim that ‘‘a modification has been done’’, when a change exists other than a

new feature introduction or bug fix. Improving a working algorithm, or changing a button’s

size are examples of modifications. Another important metric of change is the change in

the size of the software. In other words, each version’s size difference should also be

collected.

2.3 Defect identification over versions

We have used the terms ‘‘defect’’ and ‘‘bug’’ interchangeably throughout this paper. Thus,

bug tracking software is the major defect identification source for a defect prediction

scheme. During the life cycle of any version of a software product, the bug reports and

descriptions should be collected. The module information and the criticality of the bugs

should also be specified. It is important that the entries for bug reporting are moderated,
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and a team or person should approve the listing and criticality levels of the bugs to avoid

subjectivity.

Most of the bug tracking software products have a built-in statistics module; therefore, it

is relatively easy to get the information related to the bugs. Eventually, we should come up

with the information on the number of bugs in each module for each previous version as

well as the criticality level of the submitted bug. We establish a function to express the

relation between changes and bugs. We assume that we have the analysis of change input

and distribution data concerning bugs. If the change information is collected by classifying

changes, then the following function needs to be established:

Nbe ¼ f Af ; Ab; Ac; As; Abf ; Nf ; Nb; Nc; Nsð Þ ð1Þ

where:

Nbe: is the number of total bugs expected in the next stable version.

Af: is the array of the total number of features introduced for all past stable versions in

accordance with the order of version number.

Ab: is the array of the total number of bug fixes completed for all past stable versions

before publishing the version in accordance with the order of version number.

Ac: is the array of the total number of changes completed for all past stable versions in

accordance with the order of version number.

As: is the array of the size difference of a version with the previous version in terms of

kilobytes for all past stable versions in accordance with the order of version number.

Abf: is the array of the total number of bugs reported for all past stable versions in

accordance with the order of version number.

Nf: is the total number of features introduced for the next stable version.

Nb: is the total number of bug fixes completed for the next stable version.

Nc: is the total number of changes completed for the next stable version.

Ns: is the size difference of the next version with the previous version in terms of

kilobytes.

f: is a function of these parameters that builds up to predict Nbe.

If the change collection method is based on CVS logs and line changes, then the

following formula should be used.

Nbe ¼ f Ai; Ad; Ac; As; Ab; Ni; Nd; Nc; Nsð Þ ð2Þ

where:

Nbe: is the number of total bugs expected in the next stable version.

Ai: is the array of the total number of lines inserted for all past stable versions in

accordance with the order of version number.

Ad: is the array of the total number of lines deleted for all past stable versions in

accordance with the order of version number.

Ac : is the array of the total number of line changes completed for all past stable versions

in accordance with the order of version number.

As: is the array of size difference of a version with the previous version in terms of

kilobytes for all past stable versions in accordance with the order of version number.

Ab: is the array of the total number of bugs reported for all past stable versions in

accordance with the order of version number.

Ni: is the total number of lines inserted for the next stable version.

Nd: is the total number of lines deleted for the next stable version.

Software Qual J (2008) 16:543–562 549

123



Nc: is the total number of line changes completed for the next stable version.

Ns: is the size difference of the next version with the previous version in terms of

kilobytes.

f: is a function of these parameters that builds up to predict Nbe.

2.4 Building the f function

The f function has a total of nine parameters. The first five parameters, namely the Ai, Ad,

Ac, As, Ab parameters, are used to build up the historical data and to figure out the past

experiences. The last four parameters, namely Ni, Nd, Nc, Ns, are used to supply only

version-specific data in order to be able to use historical experience. This function can be

divided into two parts. The first part includes five parameters that should build up the

environment, and the second part includes the last four parameters that supply input to this

environment for predicting the number of bugs.

An alternative approach for ‘‘function’’ could be the interpolation or extrapolation of

arrays on polynomials. However, we worked on large datasets so that interpolation or

extrapolation algorithms are not the best alternatives for the path to converge. We,

therefore, have chosen another common approach that includes the use of neural networks.

The first five arrays should be used to build up the neural network and train the network.

Then, the last four parameters should be used to acquire the prediction data from the neural

network. The f function will convert into a procedure that consists of the following steps

(Fig. 1).

3 Proposed defect prediction framework

In order to build up a robust model, we need to describe various tasks to be completed. Our

proposed model requires that each task is completed in a sequential manner and that each

task corresponds to an independent module.

As we stated in Fig. 2, the framework consists of four layers. In the first layer, the

metric data are collected. The required metric data include CVS level change, feature level

data and previous versions’ defect density data. Then, the collected data are reorganized

and converted into input format as described in detail in Sect. 3.1. Also, data are con-

solidated to sum up the defect numbers and changes for each module. In the third layer, the

normalized data are used to train the selected predictor. Depending on the performance of

Procedure P 

Build a feed-forward neural network with the five arrays 

For each item in train dataset 

Train the neural network 

End For 

Simulate the network over the last four parameters regarding the upcoming version 

Return the output of neural network 

End Procedure P 

Fig. 1 Neural network procedure
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the previous versions’ defect predictions, optimizations are performed in this layer. These

optimizations include the normalization of data within the limit range from -1 to 1, and

removing non-orthogonal data from the datasets. We have used the PCA function in

Matlab (Pendharkar et al. 2005). Consequently, we believe that our proposed model

enables us to make accurate predictions.

3.1 Data collection and analysis process

The main focus of our research was to predict defects in multiversion software develop-

ment. Therefore, defect data collection and a clear definition of defect data are two of the

critical success factors for an accurate defect prediction. The bug tracking listings are the

major source for analyzing the bugs. Thus, in such a research we had to find projects that

have an extensive bug tracking and grouping tool containing historical data. However,

some bug tracking systems may carry a risk of anyone easily entering any kind of bugs

without any approval or filter. Therefore, such a public system can not be considered as a

reliable bug tracking system in the scope of this research.

In selecting the bug tracking system, it was also important for us that the system

included the following metrics: the related module or class of the bug, the version of the

  CVS Level Data   Change Level Data 

Organization, Consolidation and Normalization of Data 

Previous versions’ 
bugs data 

Training and Optimizations 

Predicting Defect 
Density

Fig. 2 Proposed defect prediction framework
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software in which the bug is observed, the classification of the bug (user interface, function

interface etc.), and the severity of the bug. A bug may cause a total failure of a software

system, whereas another may only degrade the performance. In our context, the severity of

the bug describes the impact of a specific bug on the software system. Since we wanted our

proposed model to predict defect densities, we had to collect the bug data at module level.

We defined a module as an independent software unit (i.e. user interface, database layer,

communication library, etc.).

After forming the bug collection, we counted the bugs by grouping the modules and also

weighted them according to their degree of severity. As a result, the final dataset contained

the information of every version with the weighted bug densities. Since we focused our

research on the impact of the change among versions, we also required another dataset that

contained the change information. We can form a list of version changes by using two

different approaches. In the first approach, the features, changes and bug fixes are collected

at the level of functionality (feature level approach), whereas in the second approach only

changes in CVS are collected (CVS level approach).

In the feature level approach, a version’s change data should contain a number of new

features introduced for each module, number of changes done for each module and number

of bug fixes completed. ‘‘The feature’’ should be evaluated in the smallest possible piece of

enhancement. The feature can be defined as a ‘‘notable property of a software system’’

(Harrold 2000). According to this definition, we can say that the feature introduces a better

user experience, a nicer way of doing something, or it causes an increase in the definition

of program requirements. In our research, we have also used the same definition. Because

of the criticality of the definition of feature, we believe that the identification of features

should be done by experts, and that the trained classifiers should be the secondary tools for

these experts (Harrold 2000).

The other metric is the number of changes done for each module. Contrary to a feature a

‘‘change’’ simply changes the way a program functions. This change could be in user

interface, class definitions or even in algorithms. We need to note that value-additions in

algorithms should be considered as a feature. By keeping the modules that have changes or

features introduced, our proposed prediction system will be able to predict not only at

global but also at module level.

Another important metric in the feature level approach is the number of bug fixes com-

pleted. We assumed that every so-called stable version may contain bugs, and all the known

bugs are fixed for the next stable version. This assumption is valid since we weight the bugs

as per their severity, and we can ignore the ones with low impact. Consequently, the bug

fixing information is the crucial data for predicting the stability of the forth-coming version.

The CVS level approach, on the other hand, does not carry an ambiguity. All we need is

the source code differences based on lines inserted, deleted and changed. Most of the CVS

systems are capable of supplying these metrics by comparing two versions of a source file.

The primary data used in this research come from open source applications. Open

source applications are much easier to access in terms of their source code as well as the

statistical information on their code. Choosing the correct project for data extraction is

quite an important issue. After an extensive assessment in open source projects, we

selected Azureus–Bit torrent client. Azureus is the most active project in the open-source

community. 22 developers actively participate in the development process. This number is

quite high concerning the developers involved in an open-source project. It has 28 stable

versions for analyzing defects. Also, there are a total of 2322 bugs for analysis. Moreover,

it is a user-application P2P software. Thus, it has wide range of new features. 3 stable

releases before 2.0.0.0 were not containing any bug records. The 8 releases from version
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2.0.0.0 to 2.0.3.2 contain bug records but not the grouping of bugs as feature, change or

bugfix. As a result, Fig. 3 contains 25 versions, and Fig. 4 contains 17 versions.

We have mapped all bugs with the stable version. An important property of the bug data

is the severity level. After mapping bugs, the weighted distribution was calculated by

taking these severity classes into consideration. We multiplied bug counts with their

severity level to come up with the defect density of the modules in the different versions.

Consequently, we obtained the following distribution in Fig. 3.

This dataset gives us insight on the distribution of defect density. Each version has its

own defect impact rate, which also implies the severity of the defects. Within the scope of

this project, we also collected the change information for defect prediction purposes. Each

version has major differences from the previous one in terms of change, bug fix and

feature. The CVS logs of this project were scanned in detail, and we were able to put

through a dataset and distribution of change over the versions. We collected 758 lines of

change data for all versions. This data contain module-based change type with an expla-

nation of completed task, and they are collected from the CVS and file change log of the

www.sourceforge.net. The distribution of the data is shown in the Fig. 4.

The final adaptation of data merged the change information with the defect information

of each version. So, two datasets were merged and grouped into versions. The output is

shown in Fig. 5.

After completing an extensive data collection and pre-processing, we can use the dataset

in our proposed model for defect prediction. To validate our proposed model, we need to

test with metric data from different projects as well as the two different approaches we had

explained earlier. The previous project was a user application for P2P network connec-

tions. We chose Linux kernels as a different project to test our proposed model. Linux

kernels are more sensitive to defects. They have lower defect tolerance limits since Linux

is an operating system (Sontag 1992). The dataset is chosen among sub releases of 2.4 and

2.6 versions of Linux kernels as they are considered to be the stable versions. We also

chose the versions older than 6 months, because the defect-reporting pool would not be full

enough with all defects for the latest versions of kernels. In the end, we came up with 33

versions of Linux kernels to observe during our experiment.

Fig. 3 Weighted defect densities versus versions
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At this point, we wanted to look at CVS level changes instead of feature, change and

bug fix analysis. The main purpose of using CVS level changes was to test the CVS level

approach. It was also impractical to obtain feature level data for Linux kernels. The CVS

file difference analysis tool helps us give the number of changed lines, deleted lines and

inserted lines. Thus, we extracted the change information for all 33 versions. Another

challenge for Linux kernels was extracting the defect information for each version. We

have, therefore, used the query mechanisms of Linux Kernel Tracker. This site contains

Fig. 4 Change type distributions versus versions

Fig. 5 Final dataset containing both change and defect information
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every single bug entered for any of the Linux kernel versions. It has extensive statistics and

querying options. The last data that we had to collect was the size change information of

Linux kernels. We collected size change data by calculating the differences from version to

version (Fig. 6). The first column shows the file name that is given as an input for com-

parison. The second column shows the number of insertions the third column shows the

number of lines deleted, whereas the last column shows the total number of changes. After

extensive human work for data extraction, the change data was fully collected. The final

output is shown in Fig. 7.

The experiments in this dataset were not extended to modules. Each kernel was treated

as a single module. Our basic assumption was that all the bugs were fixed before the next

release. We can confidently make this assumption since we multiplied the severity level

with the bug counts. Therefore, the remaining unfixed bugs had a minor impact on sys-

tem’s stability so that we were able to neglect their existence.

4 Experimental design

We have chosen to use neural networks in our experiments because neurons have the

ability to adapt to a particular situation by changing their weights and thresholds. A feed-

forward neural network allows signals to travel one way only: from input to output (Sontag

1992). Throughout the experiments in this research, the multilayer perceptron (MLP)

method was used in neural network experiments. MLPs are feed-forward neural networks

trained with the standard back-propagation algorithm (Sontag 1992). The back-propagation

networks were trained using the scaled conjugate gradient optimization in our experiments.

Bishop and Sontag claim that in MLPs with step/threshold/Heaviside activation func-

tions, two hidden layers are sufficient for full generality (Bishop 1995; Sontag 1992). On

the other hand, if there is only one input, using more than one hidden layer has no

advantage. According to Sarle (1996);

Fig. 6 The CVS log analysis of kernel files between versions
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Unfortunately, using two hidden layers exacerbates the problem of local minima, and

it is important to use lots of random initializations or other methods for global

optimization. Local minima with two hidden layers can have extreme spikes or

blades even when the number of weights is much smaller than the number of training

cases. One of the few advantages of standard backprop is that it is so slow that spikes

and blades will not become very sharp for practical training times.

We, therefore, used one hidden layer, considering that our total number of inputs is four

(Swingler 1996). There are various proposed methods for deciding the number of units in a

hidden layer (Song 2006; Tahat and Korel 2001). Although there is no ‘‘silver-bullet’’ to

calculate the best hidden unit number, certain rules of thumb exist for general cases.

Swingler claims that, ‘‘you will never require more than twice the number of hidden units

as you have inputs’’ in an MLP with a single hidden layer (Swingler 1996). In our case,

since our number of input units was four, one or two hidden units were enough for

generalization. Barry and Linoff also support this claim by stating that, ‘‘One rule of thumb

is that it should never be more than twice as large as the input layer’’ (Barry and Linoff

1997). In the light of these previous research, we have decided to use one single hidden

layer with two units hidden inside, so that the hidden units will be exactly the half of the

inputs and exactly twice the number of the outputs. Figure 8 represents our final network:

Fig. 7 Final dataset containing both change and defect information of Linux Kernels
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4.1 Threats to validity

Similar to any other empirical research, the threats to validity in our research is twofold:

our results and conclusions are biased based on the data we used and the machine-learning

algorithm we employed (Menzies et al. 2007).

The datasets we used come from open source projects. Project Azereus is a large open

source P2P application which has a wide range of new features. Such a project would be a

typical commercial application. The other dataset comes from a Linux kernel project. An

operating system software is a good representative of a type of software that has a lower

defect tolerance limit. We believe that choosing two different large and multiversion

projects with different characteristics (product and defect tolerance) would lead us to draw

relevant conclusions for the community of software engineering. Moreover, since our data

are public and we share our proposed model and methodology in detail, other researchers

may repeat and improve our experiments.

We have chosen neural networks for our experiments as well as the MLP method in

neural networks since it gives better learning results when compared to other algorithms

(Fenton and Neil 1999; Ceylan et al. 2006; Boehm et al. 1995; Boehm and Basili 2000).

Since our network structure is not too complex and we have a limited number of data, we

were not concerned about the running time of the algorithm. Our experiments took only

14 hours of execution and did not require a high-performance CPU. One of the major

problems of neural networks is the problem of overfitting (Alpaydin 2004). To avoid

overfitting, we examined error versus epoch plots for different learning rates. When we

observed a plateau of error, we set our parameters. We also shuffled data in each epoch to

overcome ordering and sampling bias.

4.2 Common features of experiments

We calculate the Mean Squared Error (MSE) as:

MSE ¼
X

i

Reali � Predictedið Þ2
 !,

Ntest ð3Þ

Fig. 8 Neural network model used for evaluating dataset
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where Ntest = size of test set. We use MSE as a performance indicator because it gives an

objective idea about the success of the prediction and it is widely used in neural network

applications (Sontag 1992).

4.3 Feature level data set

The experiments are done with the feature level data set which is the Azureus project. As

we explained in detail in the beginning of Sect. 4, we have chosen the learning algorithm,

decided the learning rate and found the necessary epoch number in order to measure the

performance results in the end. Various research experiments have been using MLP with

different learning algorithms. It is mentioned that the MLP and Radial Basis learning

functions have better results compared to other learning algorithms (Ceylan et al. 2006).

We have decided to use MLP to train our neural network model.

The learning rate parameter is also important to find the correct convergence to the

desired output. Thus, we have tested the learning rate for different inputs. We see a plateau

of internal error after the 40th epoch. Only in the case of 0.5 as the learning rate, the

internal error could not drop below 0.14. Considering the performances regarding the

learning rate, 0.2 was selected as the best performing one on our dataset.

The dataset was used with shuffling, such that all versions were predicted at an instance

of multiple runs. We have done a regression analysis of predicted and actual data (Fig. 9).

The execution was repeated 100 times, and the average values were extracted for error.

The closer points to 45 degree line represent the more successful prediction. We have small

deviations representing the same predicted values. MSE is calculated as 1.7374 e+004.

4.4 CVS level data set

The second group of experiments were conducted on Linux Kernel data. The dataset was

used with shuffling, in a way that all versions were predicted at an instance of multiple

runs. We have done a regression analysis of predicted and actual data. This analysis can be

seen in Fig. 10.

Fig. 9 Real values versus
predicted values for feature level
dataset
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The execution were repeated 100 times, and the average values were extracted for error.

MSE was calculated as 1.5880 e+003.

4.5 Evaluation

The research in this paper focused on two diverse approaches for defect predictions. The

feature level one applied the Azureus project data which had the following dimensions: the

number of bug fixes completed, features introduced, changes done, and the size difference

between the versions. This experiment was conducted with a large number of bugs for all

versions.

The second experiment was performed with a completely different dataset. This dataset

was collected from stable Linux kernel versions and from kernel bugs databases. This

dataset was approximately twice as large as the previous dataset. The major difference of

the CVS Level experiment was the input dimensions introduced to the model. The input

dimensions were: the number of lines inserted, lines deleted, lines changed, and the size

difference between te versions.

The major difference between the first and the second experiments was the approach on

code change. The second experiment focused only on the changes in CVS level, whereas

the first experiment took into consideration the changes in feature and the bug fix abstract

level. These two experiments were executed over two different datasets with two different

approaches. Since, we are working with real life data, it is practically impossible to obtain

identical data structures for two different software projects of different teams.

5 Conclusions and future work

Within the scope of our study, we have proposed a defect prediction model for a multi-

version software and collected the necessary data to conduct various experiments. We

believe that our research has three main contributions: data, method and experiment.

The first contribution is the collection and pre-processing of extensive data on bugs and

changes over versions for two different software products. The data contain important

Fig. 10 Real values versus
predicted values for CVS level
dataset
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statistical information regarding developmental life cycles of software versions. Some of

the statistical analyses have been mentioned in the data collection section. The second

contribution of this research has been to propose a novel method for defect prediction

systems. Introducing the concept of defect prediction systems for software versioning and

using difference between versions were important issues covered through this research.

Our decision process to choose the correct mathematical framework and algorithms may

inspire other researchers. The third contribution of this research is the experimental set-up.

Having two different experiments enhanced the validity and usability of the proposed

model.

There are also practical contributions of this research to software development com-

panies. Assuming that these companies are using a well-defined metric collection

framework, our proposed model can be used continuously as a version-control mechanism

for upcoming software versions. Software development companies may target a defect

density level for the new version. Our proposed model could help them proactively track

the defect density. As a result, they can acquire a better position to prioritize testing tasks

as well as allocating their limited testing resources more efficiently.

As a future work, our proposed model can be extended to include both CVS level inputs

and feature level inputs. We believe that such a hybrid model can provide more accurate

prediction results. If a dataset can be found in real life projects, our experiments based on

two different datasets and approaches may be repeated on the same project. In addition, the

identification of defect sources may also be added in the future.
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