
In search for a widely applicable and accepted software
quality model for software quality engineering

Marc-Alexis Côté Æ Witold Suryn Æ Elli Georgiadou

Published online: 7 June 2007
� Springer Science+Business Media, LLC 2007

Abstract Software Quality Engineering is an emerging discipline that is concerned with

improving the approach to software quality. It is important that this discipline be firmly

rooted in a quality model satisfying its needs. In order to define the needs of this discipline,

the meaning of quality is broadly defined by reviewing the literature on the subject.

Software Quality Engineering needs a quality model that is usable throughout the software

lifecycle and that it embraces all the perspectives of quality. The goal of this paper is to

propose the characteristics of a quality model suitable for such a purpose, through the

comparative evaluation of existing quality models and their respective support for Soft-

ware Quality Engineering.

1 Introduction

Over the last decade, the general focus of the software industry has shifted from providing

increasingly more functionality to improving what has come to be known as the user

experience. The user experience refers to characteristics such as ease-of-use, security,

M.-A. Côté (&)
Ubisoft Canada, Quebec, QC, Canada
e-mail: marc-alexis.cote@ubisoft.com

W. Suryn
Software and Information Technology Engineering Department, École de technologie supérieure,
Montreal, QC, Canada
e-mail: witold.suryn@etsmtl.ca

E. Georgiadou
Middlesex University, London, UK
e-mail: e.georgiadou@mdx.ac.uk

123

Software Qual J (2007) 15:401–416
DOI 10.1007/s11219-007-9029-0

stability and reliability. Improvements in such areas lead to an improved quality as per-

ceived by the end users. Some software products, most notably Microsoft’s next iteration

of their Windows operating system, have been delayed by as much as 2 years in order to

improve their quality. There is no doubt that software quality is becoming an increasingly

important subject in software engineering.

Traditionally, software requirements have been classified either as functional or non-

functional with eventual notions of quality hidden in the latter. As the industry focus is

shifting from functionality to improving quality, a new category of requirements focussed

on quality is emerging. In order to define these new quality requirements, quality itself

must be defined. A quality model provides the framework towards a definition of quality.

Engineers have long recognised that in order for something to find its way in a product, it

should be properly defined and specified. Unfortunately, the push towards software quality

that can be observed in the industry today is lacking a solid foundation in the form of an

agreed upon quality model that can be used not only to evaluate software quality, but also

to specify it.

Bourque et al. (2000) suggests that the implementation of quality in a software product

is an effort that should be formally managed throughout the Software Engineering life-

cycle. The implementation of quality should therefore begin with the specification of user

quality requirements. Such an approach to the implementation of quality leads to Software

Quality Engineering. Suryn (2003) has suggested that this discipline be defined as the
application of a continuous, systematic, disciplined, quantifiable approach to the devel-
opment and maintenance of quality of software products and systems; that is, the appli-
cation of quality engineering to software.

The objective of this paper is to identify the requirements for a software quality model

to be used as a foundation to Software Quality Engineering.

2 Definition of software quality

What exactly constitutes the quality of a product is often the subject of a hot debate. The

reason the concept of quality is so controversial is that people fail to agree on what it

means. For some it is ‘‘[the] degree to which a set of inherent characteristics fulfils

requirements’’ (ISO/IEC, 1999b) while for others it can be synonymous with ‘‘customer

value’’ or even ‘‘defect levels’’ (Highsmith, 2002). A possible explanation as to why any

of these definitions fail to garner a consensus is that they generally fail to recognise the

different perspectives of quality. Kitchenham and Pfleeger (1996), by referring to the

teachings of David Garvin, report on the five different perspectives of quality:

• The transcendental perspective deals with the metaphysical aspect of quality. In this

view of quality is ‘‘something toward which we strive as an ideal, but may never

implement completely.’’ (Kitchenham & Pfleeger, 1996);

• The user perspective is concerned with the appropriateness of the product for a given

context of use. Kitchenham and Pfleeger further note that ‘‘whereas the transcendental

view is ethereal, the user view is more concrete, grounded in the product characteristics

that meet user’s needs’’;

• The manufacturing perspective represents quality as conformance to requirements. This

aspect of quality is stressed by standards such as ISO 9001, which defines quality as

‘‘[the] degree to which a set of inherent characteristics fulfils requirements’’ (ISO/IEC,

1999b). Other models, like the Capability Maturity Model (CMM) state that the quality

402 Software Qual J (2007) 15:401–416

123

of a product is directly related to the quality of the engineering process, thus

emphasising the need for a manufacturing-like process;

• The product perspective implies that quality can be appreciated by measuring the inherent

characteristics of the product. Such an approach often leads to a bottom-up approach to

software quality: by measuring some attributes of the different components composing a

software product, a conclusion can be drawn as to the quality of the end product;

• The final perspective of quality is value-based. This perspective recognises that the

different perspectives of quality may have a different importance, or value, to various

stakeholders (Georgiadou, 2003b).

One could argue that in a world where conformance to ISO and IEEE standards is

increasingly present in contractual agreements and used as a marketing tool (Adey & Hill,

2000), all the perspectives of quality are subordinate to the manufacturing view. This

importance of the manufacturing perspective has increased throughout the years through

works like Quality is Free (Crosby, 1979) and the popularity of movements like Six-Sigma

(Biehl, 2001). The predominance of the manufacturing view in Software Engineering can

be traced back to the 1960s, when the US Department of Defence and IBM gave birth to

Software Quality Assurance (Voas, 2003). This has led to the belief that adherence to a

development process, as in manufacturing, will lead to a quality product. The corollary to

this belief is that process improvement will lead to improved product quality. According to

many renowned researchers, this belief is false, or at least flawed. Geoff Dromey states:

‘‘The flaw in this approach [that you need a quality process to produce a quality

product] is that the emphasis on process usually comes at the expense of con-

structing, refining, and using adequate product quality models.’’ (Dromey, 1996).

Kitchenham and Pfleeger reinforce this opinion by stating:

‘‘There is little evidence that conformance to process standards guarantees good

products. In fact, the critics of this view suggest that process standards guarantee

only uniformity of output [...]’’ (Kitchenham & Pfleeger, 1996).

Furthermore, data available from Agile (ISO/IEC, 1999a) projects show that high quality is

attainable without following a manufacturing-like approach.

However, recent studies conducted at Motorola (Haley, 1996; Diaz & Sligo, 1997) and

Raytheon (Haley, 1996) show that there is indeed a correlation between the maturity level

of an organisation as measured by the Capability Maturity Model and the quality of the

resulting product. These studies provide data on how a higher maturity level (as measured

by the CMM) can lead to:

• Improved error/defect density (i.e. the error/defect density lowers as maturity

improves),

• Lower error rate.

• Lower cycle time (time to complete parts of the lifecycle),

• Better estimation capability.

From these results, one could conclude quality can be improved by following a mature

process. Georgiadou (2003a) studied the development of lifecycle models, and established

that the maturity of the development process is reflected by the emphasis and location of

testing and other quality assurance activities. Her study demonstrated that the more mature

the process and its underlying lifecycle model the earlier the identification of errors in

the deliverables. However, these measured improvements are directly related to the

Software Qual J (2007) 15:401–416 403

123

manufacturing perspective of quality. Therefore, such quality improvement efforts fail to

address the other perspectives of quality. This might be one of the reasons that some

observers of the software development scene perceive the ‘‘quality problem’’ as one of the

main failings of the software engineering industry. Furthermore, studies show that

improvement efforts grounded in the manufacturing perspective of quality are difficult to

scale down to smaller projects and/or smaller teams (Boddie, 2000; Laitinen, 2000). In-

deed, rather than being scaled down in smaller projects, these practices are simply not

performed.

Over recent years, researchers have proposed new models that try to encompass more

perspectives of quality than just the manufacturing view. Geoff Dromey (1995, 1996)

proposed such a model in which the quality of the end product is directly related to the

quality of the artefacts that are a by-product of the process being followed. Therefore, he

developed different models that can be used to evaluate the quality of the requirements

model, the design model and the resulting software. The reasoning is that if quality arte-

facts are conceived and produced throughout the lifecycle, then the end product will

manifest attributes of good quality. This approach can clearly be linked to the product

perspective of quality with elements from the manufacturing view. This is certainly a step

forward from the manufacturing-only approach described above, but it fails to view the

engineering of quality as a process that covers all the perspectives of quality. Pfleeger

(2001) warns against approaches that focus only on the product perspective of quality:

‘‘This view [the product view] is the one often advocated by software metrics

experts; they assume that good internal quality indicators will lead to good external

ones, such as reliability and maintainability. However, more research is needed to

verify these assumptions and to determine which aspects of quality affect the actual

product’s use.’’

Georgiadou (2003b) developed a generic, customisable quality model (GEQUAMO) which

enables any stakeholder to construct their own model depending on their requirements. In a

further attempt to differentiate between stakeholders Siaka, Berki, Georgiadou, and Sadler

(1997) studied the viewpoints of users, sponsors and developers as three important con-

stituencies/stakeholders and suggested attributes of interest to each constituency as well as

level of interest. More recently, Siaka and Georgiadou (2005) reported the results of a

survey amongst practitioners (from the UK, Greece, Egypt and Cyprus) on the importance

placed on product quality characteristics. Using their empirical results they extended ISO

9126 by adding two new characteristics namely Extensibility and Security, which have

gained in importance in today’s global and inter-connected environment.

The above observations illustrate the main disagreements that exist in both the research

community and the industry on the subject of software quality. The goal of a quality model

is in essence to provide an operational definition of quality. While specific definitions have

been established for given contexts, there is no consensus as to what constitutes quality in

the general sense in software engineering. A first requirement for a software quality model

to be useful as a foundation for Software Quality Engineering is thus to encompass all the

perspectives of quality mentioned at the beginning of this section.

3 Specification and evaluation of quality

Software Quality Engineering calls for a formal management of quality throughout the

lifecycle. In order to support this requirement, a quality model should have the ability to

404 Software Qual J (2007) 15:401–416

123

support both the definition of quality requirements and their subsequent evaluation. This

can be explained by referring to the manufacturing perspective of quality, which states that

quality is conformance to requirements. A quality model that is to be used as the foun-

dation for the definition of quality requirements should help in both the specification of

quality requirements and the evaluation of software quality.

IEEE Std 1061–1998 (IEEE, 1998) defines this as a top-down and bottom-up approach

to quality:

From a top down perspective the [quality] framework facilitates:

• Establishment of quality requirements factors, by customers and managers early in a

system’s life cycle;

• Communication of the established quality factors, in terms of quality sub-factors, to

the technical personnel;

• Identification of metrics1 that are related to the established quality factors and quality

sub-factors.

From a bottom-up perspective the [quality] framework enables the managerial and

technical personnel to obtain feedback by

• Evaluating the software products and processes at the metrics level;

• Analysing the metric values to estimate and assess the quality factors.

A quality model that is to be used as the foundation for the definition of quality

requirements should help in both the specification of quality requirements and the

evaluation of software quality. In other words, it should be usable from the top of the

development process to the bottom and from the bottom to the top.

4 Evaluation of quality models

Three requirements that a quality model should possess to be a foundation for Software

Quality Engineering have been identified:

• A quality model should support the five different perspectives of quality as defined by

Kitchenham and Pfleeger (1996);

• A quality model should be usable from the top to the bottom of the lifecycle as defined

by IEEE Std 1061–1998 (IEEE, 1998), i.e. should allow for defining quality

requirements and their further decomposition into appropriate quality characteristics,

subcharacteristics and measures;

• A quality model should be usable from the bottom to top of the lifecycle as defined by

IEEE Std 1061–1998 (IEEE, 1998), i.e. should allow for required measurements and

subsequent aggregation and evaluation of obtained results.

Four quality models will be evaluated with respect to these requirements.

1 In 2002, the ISO/IEC JTC1 sub-committee SC7—Systems and Software Engineering—replaced the term
‘‘metric’’ by ‘‘measure’’ to align its vocabulary with the one used in metrology. This paper will use the term
measure whenever possible

Software Qual J (2007) 15:401–416 405

123

4.1 McCall’s quality model

McCall, Richards, and Walters (1977) introduced his quality model in 1977. According to

Pfleeger (2001), it was one of the first published quality models. Figure 1 presents this

quality model. Each quality factor on the left hand side of the figure represents an aspect of

quality that is not directly measurable. On the right hand side are the measurable properties

that can be evaluated in order to quantify the quality in terms of the factors. McCall

proposes a subjective grading scheme ranging from 0 (low) to 10 (high).

Regarding this model, Pressman notes that ‘‘unfortunately, many of the metrics defined

by McCall et al. can be measured only subjectively’’ (Pressman, 2001). It is therefore

difficult to use this framework to set precise and specific quality requirements. Further-

more, some of the factors and measurable properties, like traceability and self-documen-

tation amongst others, are not really definable or even meaningful at an early stage for non-

technical stakeholders. This model is not applicable with respect to the criteria outlined in

the IEEE Standard for a Software Quality Metrics Methodology for a top to bottom

approach to quality engineering. Furthermore, it emphasises the product perspective of

quality to the detriment of the other perspectives. It is therefore not suited as a foundation

for Software Quality Engineering according to the stated premises.

Fig. 1 McCall’s quality model. Adopted from Pfleeger (2003) and McCall et al. (1977)

406 Software Qual J (2007) 15:401–416

123

4.2 Boehm’s quality model

Boehm’s quality model improves upon the work of McCall and his colleagues (Boehm,

Brown, Kaspar, Lipow, & MacCleod, 1978). As Fig. 2 shows, this quality model loosely

retains the factor-measurable property arrangement. However, for Boehm and his col-

leagues, the prime characteristic of quality is what they define as ‘‘general utility’’.

According to Pfleeger (2001), this is an assertion that first and foremost, a software system

must be useful to be considered a quality system. For Boehm, general utility is composed

of as-is utility, maintainability and portability (Boehm, Brown, & Lipow, 1976):

• How well (easily, reliably, efficiently) can I use it [software system] as-is?

• How easy is it to maintain (understand, modify and retest)?

• Can I still use it if I change my environment?

If the semantics of McCall’s model are used as a reference, the quality factors could be

defined as: Portability, Reliability, Efficiency, Human Engineering, Testability, Under-

standability and Modifiability. These factors can be decomposed into measurable prop-

erties such as Device Independence, Accuracy, Completeness, etc. Portability is somewhat

incoherent in this classification as it acts both as a top-level component of general utility,

and as a factor that possesses measurable attributes.

It is interesting to note that in opposition to McCall’s model, Boehm’s model is

decomposed in a hierarchy that at the top addresses the concerns of end-users while the

bottom is of interest to technically inclined personnel. It is in effect the emergence of the

user perspective of quality. However, this interest wanes when one reads Boehm’s defi-

nition of the characteristics of software quality. Except for General Utility and As-is
Utility, all definitions begin with ‘‘Code possesses the characteristic [...]’’. The measurable

Fig. 2 Boehm’s quality model. Adopted from Pfleeger (2003), Boehm et al. (1976, 1978)

Software Qual J (2007) 15:401–416 407

123

properties and characteristics therefore concentrate on highly technical details of quality

that are difficult to grasp for non-technical stakeholders that are typically involved early in

the software lifecycle. The characteristics General Utility and As-is Utility are too generic

and imprecise to be useful for defining verifiable requirements. Like the McCall model,

this model is mostly useful for a bottom to top approach to software quality (i.e. it can

effectively be used to define measures of software quality, but is more difficult to use to

specify quality requirements).

While this model is a step forward in the sense that it provides basic support for a top to

bottom approach to software quality, this support is too ephemeral to be considered as a

solid foundation for quality engineering.

4.3 Dromey’s quality model

Dromey’s (1995) model takes a different approach to software quality than the two pre-

viously presented models. For Dromey, a quality model should clearly be based upon the

product perspective of quality:

‘‘What must be recognized in any attempt to build a quality model is that software

does not directly manifest quality attributes. Instead it exhibits product characteristic

that imply or contribute to quality attributes and other characteristics (product de-

fects) that detract from the quality attributes of a product. Most models of software

quality fail to deal with the product characteristics side of the problem adequately

and they also fail to make the direct links between quality attributes and corre-

sponding product characteristics.’’(Dromey, 1995) (Emphasis added to support the

argument)

Dromey has built a quality evaluation framework that analyses the quality of software

components through the measurement of tangible quality properties (Fig. 3). Each artefact

produced in the software lifecycle can be associated with a quality evaluation model.

Dromey gives the following examples of what he means by software components for each

of the different models:

Variables, functions, statements, etc. can be considered components of the implemen-

tation model;

• A requirement can be considered a component of the requirements model;

• A module can be considered a component of the design model;

Fig. 3 Dromey’s quality model

408 Software Qual J (2007) 15:401–416

123

• Etc.

According to Dromey (1995), these components all possess intrinsic properties that can

be classified into four categories:

• Correctness: Evaluates if some basic principles are violated.

• Internal: Measure how well a component has been deployed according to its intended

use.

• Contextual: Deals with the external influences by and on the use of a component.

• Descriptive: Measure the descriptiveness of a component (for example, does it have a

meaningful name?).

These properties are used to evaluate the quality of the components. This is illustrated in

Fig. 4 for a variable component present in the implementation model.

It seems obvious from the inspection of the previous figures that Dromey’s model is

focussed on the minute details of quality. This is stated explicitly:

‘‘What we can do is identify and build in a consistent, harmonious, and complete set

of product properties (such as modules without side effects) that result in manifes-

tations of reliability and maintainability.’’ (Dromey, 1995).

For Dromey, the high-level characteristics of quality will manifest themselves if the

components of the software product, from the individual requirements to the programming

language variables, exhibit quality-carrying properties. Dromey’s hypothesis should be

questioned. If all the components of all the artefacts produced during the software lifecycle

exhibit quality-carrying properties, will the resulting product manifest characteristics such

as maintainability, functionality, and others?

The following analogy will be useful in answering this question:

If you buy the highest quality flour, along with the highest quality apples and the

highest quality cinnamon, will you automatically produce an apple pie that is of the

highest quality?

Fig. 4 Quality evaluation of a variable component

Software Qual J (2007) 15:401–416 409

123

The answer is obviously negative. In addition to quality ingredients, at least three more

things are needed in order to produce an apple pie of the highest quality:

• A recipe (i.e. an overall architecture and an execution process). Dromey acknowledges

this by identifying process maturity as a desirable high-level characteristic. However, it

is only briefly mentioned in both his publications on the subject (Dromey, 1995, 1996).

• The consumer’s tastes must be taken into account. In order for the result to be

considered of the highest quality by the consumer, it needs to be tuned to his tastes.

This is akin to what is commonly called user needs in software engineering. User needs

are completely ignored by Dromey. However, as it was demonstrated in the

introduction, they are an integral and non-negligible part of software quality.

• Someone with the qualifications and the tools to properly execute the recipe.

While Dromey’s work is interesting from a technically inclined stakeholder’s per-

spective, it is difficult to see how it could be used at the beginning of the lifecycle to

determine user quality needs. Dromey (1995) states that software quality ‘‘must be con-

sidered in a systematic and structured way, from the tangible to the intangible’’. By

focussing too much on the tangible, Dromey fails to build a model that is meaningful for

stakeholders typically involved at the beginning of the lifecycle. Do end users care about

the variable naming convention or module coupling? In most cases, it is doubtful that this

question can be answered affirmatively. Therefore, this model is rather unwieldy to specify

user quality needs. This does not mean that it cannot be useful later on as a checklist for

ensuring that product quality is up to standards. It can definitely be classified as a bottom to

top approach to software quality.

Furthermore, as was illustrated at the beginning of this section, this quality model has its

roots in the product perspective of quality, to the detriment of other perspectives. There-

fore, it fails to qualify as a foundation for Software Quality Engineering according to the

established requirements.

4.4 The ISO/IEC 9126 quality model

In 1991, the International Organisation for Standardisation introduced a standard named

ISO/IEC 9126 (1991): Software product evaluation—Quality characteristics and guidelines

for their use. This standard aimed to define a quality model for software and a set of

guidelines for measuring the characteristics associated with it. ISO/IEC 9126 quickly

gained notoriety with IT specialists in Europe as the best way to interpret and measure

quality (Bazzana, Anderson, & Jokela, 1993). However, Pfleeger (2001) reports some

important problems associated with the first release of ISO/IEC 9126:

• There are no guidelines on how to provide an overall assessment of quality.

• There are no indications on how to perform the measurements of the quality

characteristics.

• Rather than focussing on the user view of software, the model’s characteristics reflect a

developer’s view of software.

According to Pfleeger, this first incarnation of ISO/IEC 9126 is not usable as a bottom

up approach to quality engineering, and even less usable as a top down approach.

In order to address these concerns, an ISO committee began working on a revision of

the standard. The results of this effort are the introduction of a revised version of ISO/IEC

410 Software Qual J (2007) 15:401–416

123

9126 focussing on the quality model, and a new standard, ISO/IEC 14598 focussing on

software product evaluation. ISO/IEC 14598 addresses Pfleeger’s first concern while the

revision to ISO/IEC 9126 aims to resolve the second and third issues. ISO/IEC 9126 is now

a four part standard:

• ISO/IEC 9126-1 (ISO/IEC, 2001a) defines an updated quality model.

• ISO/IEC 9126-2 (ISO/IEC, 2003a) defines a set of external measures.

• ISO/IEC 9126-3 (ISO/IEC, 2003b) defines a set of internal measures.

• ISO/IEC 9126-4 (ISO/IEC, 2001b) defines a set of quality in use measures.

The new quality model defined in ISO/IEC 9126-1 recognises three aspects of software

quality and defines them as follows: (the full definition is given as it is pertinent to the

discussion that ensues).

• quality in use:

Quality in use is the user’s view of the quality of the software product when it is used

in a specific environment and a specific context of use. It measures the extent to

which users can achieve their goals in a particular environment, rather than

measuring the properties of the software itself (ISO/IEC, 2001a).

• external quality:

External quality is the totality of characteristics of the software product from an

external view. It is the quality when the software is executed, which is typically

measured and evaluated while testing in a simulated environment with simulated

data using external metrics. During testing, most faults should be discovered and

eliminated. However, some faults may still remain after testing. As it is difficult to

correct the software architecture or other fundamental design aspects of the software,

the fundamental design remains unchanged throughout the testing (ISO/IEC, 2001a).

• internal quality:

Internal quality is the totality of characteristics of the software product from an

internal view. Internal quality is measured and evaluated against the internal quality

requirements. Details of software product quality can be improved during code

implementation, reviewing and testing, but the fundamental nature of the software

product quality represented by the internal quality remains unchanged unless

redesigned (ISO/IEC, 2001a).

The internal and external quality model is inspired from McCall and Boehm’s work. It

is a three-layer model composed of quality characteristics, quality sub-characteristics and

quality measures. Figure 5 illustrates this model. More than 100 measures of internal and

external quality are proposed as part of the standard. It is important to note that the

measures do not make an exhaustive set, which means that other measures can also be

used.

Finally, Quality in use is modelled in a different way than internal and external quality.

Figure 6 illustrates the two-layer quality in use model composed of characteristics and

quality measures.

Theoretically, internal quality, external quality and quality in use are linked together

with a predictive mode1. This is illustrated in Fig. 7.

This prediction relationship states that user quality needs should first be established and

specified using the Quality in use model. From these requirements as well as other sources,

external quality requirements should be established using the external quality model. Fi-

nally, the internal quality requirements should be constructed from the external quality

Software Qual J (2007) 15:401–416 411

123

requirements and other sources. Once the requirements are established and software

construction is under way, the quality model can be used to predict the overall quality. For

example, measurement of internal quality can be useful in predicting external quality.

Likewise, measurement of external quality can be useful in predicting quality in use.

Fig. 5 Three-layer model for internal and external quality. Adopted from (ISO/IEC, 2001a)

Fig. 6 Quality in use model. Adopted from (ISO/IEC, 2001a)

Fig. 7 Relationships between the different aspects of quality. Adopted from (ISO/IEC, 2001a)

412 Software Qual J (2007) 15:401–416

123

The above paragraphs describe the ideal theoretical model that links these three aspects

of quality. However, in reality, no model may claim to follow perfectly this prediction

mechanism. Although the ISO/IEC 9126 model follows this approach closely, no claims

are made as to the real predictive power of the model. While the links between internal and

external quality seem rather obvious because the models are essentially the same, caution

must be exercised. While the name of the characteristics and sub-characteristics are the

same, the links between internal and external quality must be verified empirically. The

same reasoning applies to the links between external quality and quality in use.

The new version of ISO/IEC 9126 is gaining momentum in the industry. Some cor-

porate quality models, for example MITRE’s SQAE (Martin & Shaffer, 1996), are

beginning a migration from a model based on McCall’s and Boehm’s research to one based

on ISO/IEC 9126 (Côté, Suryn, Martin, & Laporte, 2004). This new version of ISO/IEC

9126 is thus seen as an improvement upon the older quality models.

It is interesting to see how the three aspects of quality defined above can be directly

linked to the perspectives of quality that were outlined previously. More specifically:

• ISO/IEC 9126-4, which defines quality in use, is directly related to the user and

value-based perspectives. The definition of the user perspective of quality states that

it is concerned with the appropriateness of a product for a given context of use.

Quality in use is defined as the capability of the software product to enable

specified users to achieve specified goals in specified contexts of use. The

relationship between the two is clear. Quality in use and the value-based perspective

of quality are linked essentially through the Satisfaction characteristic. This charac-

teristic inherently recognises that quality can have a different meaning and/or value

for different stakeholders. Satisfaction levels can thus be set according to those levels

of perception. This has been demonstrated by the study reported in (Siaka &

Georgiadou, 2005).

• ISO/IEC 9126-3, which defines internal quality, and ISO/IEC 9126-2, which defines

external quality, are directly related to both the manufacturing and product

perspectives. The definitions of the quality characteristics Functionality and Reliability

can be linked with the manufacturing perspective of quality. Reliability, Usability,

Efficiency, Maintainability and Portability are all inherent characteristics of the product

and a manifestation of the product perspective of quality (Fig. 8).

From the review of the different quality models, one might point out that none seem to

address the transcendental perspective of quality. One might even ask the following

pertinent question: Does ISO/IEC 9126 address the transcendental perspective of quality?

Recall that the transcendental perspective of quality relates to quality as something that is

recognised but not defined. At this point, the following hypothesis will be made:

As the transcendental perspective of quality cannot be defined, it cannot be explicitly

implemented in a software product. However, the transcendental aspect of quality

will emerge when a holistic approach to quality engineering is taken.

This model seems to recognise all the perspectives of quality as important contributors to

the overall assessment of quality. It takes an incremental approach to software quality that

begins with quality in use, something that is easy to grasp for non-technical stakeholders,

and ends with internal quality, something more technically inclined stakeholders will feel

more comfortable with. Furthermore, there is a comprehensive set of suggested measures

that allow for the assessment of software quality.

Software Qual J (2007) 15:401–416 413

123

ISO/IEC 9126 is thus the only model that fulfils all the stated requirements for a model

to be useful as a foundation to Software Quality Engineering.

5 Conclusion

This paper has defined three requirements that a quality model should meet to serve as a

foundation to Software Quality Engineering:

• A quality model should support the five different perspectives of quality as defined by

Kitchenham and Pfleeger (1996).

• A quality model should be usable from the top to the bottom of the lifecycle as defined

by IEEE Std 1061-1998 (IEEE, 1998).

• A quality model should be usable from the bottom to top of the lifecycle as defined by

IEEE Std 1061-1998 (IEEE, 1998).

These criteria were applied to four quality models:

• It was found that the models proposed by McCall, Boehm and Dromey focus on the

product perspective of quality to the detriment of other perspectives. Furthermore, they

are primarily useful in a bottom up approach to quality that is not suitable for Software

Quality Engineering.

• ISO/IEC 9126 is the only model that supports all the perspectives of quality (with the

exception of the transcendental perspective as noted). Furthermore, its predictive

framework clearly supports both the top down and bottom up approaches.

This paper has focussed on analysing the semantics of the different models with respect

to the stated requirements. In theory, ISO/IEC 9126 seems well suited for Software Quality

Engineering. Further research is needed to see if the measures associated with ISO/IEC

9126 make this model usable for Software Quality Engineering in practice, and particu-

larly for prediction, estimation and evaluation.

References

Adey, C. A., & Hill, G. K. (2000). Quality / ISO 9000 as a marketing tool, [on line]. http://www.smps.org/
mrc/articles/0200qualityiso.pdf.

Fig. 8 Relationships between ISO/IEC 9126 and the perspectives of quality

414 Software Qual J (2007) 15:401–416

123

http://www.smps.org/mrc/articles/0200qualityiso.pdf
http://www.smps.org/mrc/articles/0200qualityiso.pdf

Bazzana, G., Anderson, O., & Jokela, T. (1993). ISO 9126 and ISO 9000: Friends or foes? Presented at
Software Engineering Standards Symposium.

Biehl, R. E. (2001). Six sigma for Software. IEEE Software, 21(2), 68–70.
Boddie, J. (2000). Do we ever really scale down? IEEE Software, 17(5), 79–81.
Boehm, B. W., Brown, J. R., Kaspar, J. R., Lipow, M. L., & MacCleod, G. (1978). Characteristics of

software quality. New York: American Elsevier.
Boehm, B. W., Brown, J. R., & Lipow, M. L. (1976). Quantitative evaluation of software quality. In

Proceedings of the 2nd international conference on Software engineering, San Francisco, California,
United States (pp. 592–605). IEEE Computer Society Press.

Bourque, P., Dupuis, R., Abran, A., Moore, J. W., Tripp, L. L., & Wolff, S. (2000) Fundamental principles
of software engineering – a journey. Journal of Systems and Software, 62(1), 59–70.

Côté, M.-A., Suryn, W., Martin, R. A., & Laporte, C. Y. (2004). Evolving a corporate software quality
assessment exercice: A migration path to ISO/IEC 9126. Software Quality Professional, 6(3), 4–17.

Crosby, P. B. (1979). Quality is free: The art of making quality certain. New York: McGraw-Hill.
Diaz, M., & Sligo, J. (1997). How software process improvement helped motorola. IEEE Software, 17(5),

75–81.
Dromey, R. G. (1995). A model for software product quality. IEEE Transactions on Software Engineering,

21, 146–162.
Dromey, R. G. (1996). Cornering the chimera. IEEE Software, 13(1), 33–43.
Haley, T. J. (1996). Software process improvement at Raytheon. IEEE Software, 13(6), 33–41.
Georgiadou, E. (2003a). Software process and product improvement, a historical perspective. International

Journal of Cybernetics, 19(10), 172–197.
Georgiadou, E. (2003b). GEQUAMO – a generic, multilayered, customisable. Software Quality Model,

11(4), 313–323.
Highsmith, J. (2002). Agile software development ecosystems. Addison-Wesley Professional.
IEEE (1998). Std. 1061–1998 IEEE standard for a software quality metrics methodology.
ISO/IEC (1999a). ISO/IEC 14598-1 Software product evaluation-part 1 : General overview. Geneva,

Switzerland: International Organization for Standardization.
ISO/IEC (1999b). ISO/IEC 9000:2000 Quality management systems – Fundamentals and vocabulary.

Geneva, Switzerland: International Organization for Standardization.
ISO/IEC (2001a). ISO/IEC 9126-1: Software engineering-software product quality-part 1: Quality model.

Geneva, Switzerland: International Organization for Standardization.
ISO/IEC (2001b) ISO/IEC DTR 9126-2 Software engineering – software product quality-part 4: Quality in

use metrics. Geneva, Switzerland: International Organization for Standardization.
ISO/IEC (2003a) ISO/IEC TR 9126-2: Software engineering-software product quality-part 2: External

metrics. Geneva, Switzerland: International Organization for Standardization.
ISO/IEC (2003b) ISO/IEC TR 9126-3 Software engineering-software product quality-part 3: Internal

metrics. Geneva, Switzerland: International Organization for Standardization.
Kitchenham, B., Pfleeger, S. L. (1996). Software quality: The elusive target. IEEE Software, 13(1), 12–21.
Laitinen, M. (2000). Scaling down is hard to do. IEEE Software, 17(5), 78–80.
Martin, R. A., & Shaffer, L. (1996). Providing a framework for effective software quality assessment.

Bedford, Mass: MITRE Corporation.
McCall, J. A., Richards, P. K., & Walters, G. F. (1977). Factors in software quality. Griffiths Air Force

Base, NY: Rome Air Development Center Air Force Systems Command.
Pfleeger, S. L. (2001). Software Engineering: Theory and practice (2nd edn.). Upper Saddle River, N.J.:

Prentice Hall.
Pressman, R. S. (2001). Software engineering: A practitioner’s approach (5th edn.). Boston: McGraw-hill.
Siaka, K. V., Berki, E., Georgiadou, E., & Sadler, C. (1997). The complete alphabet of quality software

systems: Conflicts and compromises. 7th World Congress on Total Quality&Qualex 97, New Delhi,
India, 17–19 February.

Siaka, K. V., & Georgiadou, E. (2005). PERFUMES: A scent of product quality characteristics. SQM 2005,
UK.

Suryn, W. (2003). Course notes SYS861. Montréal: École de Technologie Supérieure.
Voas, J. (2003). Assuring software quality assurance. IEEE Software, 20(3), 48–49.

Author Biographies

Software Qual J (2007) 15:401–416 415

123

Marc-Alexis Côté graduated in 2005 from the École de Tech-
nologie Supérieure in Montreal, Canada. His research interests
include software quality engineering, software engineering tools
and programming languages. Côté graduated summa cum laude in
computer engineering from the University of Ottawa in 2003. He
was awarded a Lucent Global Science Scholarship in 2001. He is
presently working for Ubisoft, where he is trying to bridge the gap
between fiction and reality. He can be reached by e-mail at marc-
alexis.cote@ubisoft.com.

Dr. Witold Suryn is a Professor at the École de technologie
supérieure, Montreal, Canada (engineering school of the Univer-
sité du Québec network of institutions) where he teaches graduate
and undergraduate software engineering courses and conducts
research in the domain of software quality engineering, software
engineering body of knowledge and software engineering funda-
mental principles. Dr Suryn is also the principal researcher and the
director of GELOG: IQUAL, the Software Quality Engineering
Research Group at École de technologie supérieure. From October
2003 Dr. Suryn holds the position of the International Secretary of
ISO/IEC JTC 1 Subcommittee 7 (SC7)—System and Software
Engineering.

Elli Georgiadou is a Principal Lecturer in Software Engineering and Curriculum Leader for Postgraduate
Courses in Business Information Systems, at Middlesex University, London. Her teaching includes Software
Metrics, Methodologies, CASE and Project Management. She co-ordinates the European Affairs and
International Exchanges of her School. She is engaged in research in Software Measurement for Product and
Process Improvement, Methodologies, Metamodelling, Cultural Issues and Software Quality Management.
She is a member of the University’s Global Campus project (developing and offering ODL). She has
extensive experience in academia and industry, and has been active in organising/chairing conferences and
workshops under the auspices of the British Computer Society, the ACM British Chapter and various
European programmes for Technology Transfer and development of joint curricula. She established a
Distance Mode Initiative between a UK University and a Hong Kong Institute developing and offering
technology-based learning. She designed and carried out evaluations of various ODL initiatives in the UK,
Greece, Spain, Finland, Hong Kong and Cyprus. She is currently serving as an Academic Governor with
responsibility for Computing, Computer Science and Information Technology courses.

416 Software Qual J (2007) 15:401–416

123

	In search for a widely applicable and accepted software quality model for software quality engineering
	Abstract
	Introduction
	Definition of software quality
	Specification and evaluation of quality
	Evaluation of quality models
	McCall’s quality model
	Boehm’s quality model
	Dromey’s quality model
	The ISO/IEC 9126 quality model

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

