
Software Qual J (2007) 15:179–212
DOI 10.1007/s11219-006-9010-3

Measuring size, complexity, and coupling of hypergraph
abstractions of software: An information-theory
approach

Edward B. Allen · Sampath Gottipati ·
Rajiv Govindarajan

Published online: 9 February 2007
C© Springer Science + Business Media, LLC 2007

Abstract Software development is fundamentally based on cognitive processes. Our moti-
vating hypothesis is that amounts of various kinds of information in software artifacts may
have useful statistical relationships with software-engineering attributes. This paper proposes
measures of size, complexity and coupling in terms of the amount of information, building
on formal definitions of these software-metric families proposed by Briand, Morasca, and
Basili.

Ordinary graphs represent relationships between pairs of nodes. We extend prior work
with ordinary graphs to hypergraphs representing relationships among sets of nodes. Some
software engineering abstractions, such as set-use relations for public variables, are better
represented as hypergraphs than ordinary (binary) graphs.

Traditional software metrics are based on counting. In contrast, we adopt information
theory as the basis for measurement, because the design decisions embodied by software
are information. This paper proposes software metrics of size, complexity, and coupling
based on information in the pattern of incident hyperedges. For comparison, we also define
corresponding counting-based metrics.

Three exploratory case studies illustrate some of the distinctive features of the proposed
metrics. The case studies found that information theory-based software metrics make dis-
tinctions that counting metrics do not, which may be relevant to software engineering quality
and process. We also identify situations when information theory-based metrics are simply
proportional to corresponding counting metrics.

E. B. Allen (�)
Department of Computer Science and Engineering, Box 9637, Mississippi State University, Mississippi
State, Mississippi 39762, USA
e-mail: edward.allen@computer.org

S. Gottipati
Technation Software Consulting, Inc., 300 N Dakota Ave, Suite 505B, Sioux Falls, SD-57104, USA
e-mail: sampath@tnscinc.com

R. Govindarajan
Peri Software, Warrenville, New Jersey, USA
e-mail: rajiv.govindarajan@citigroup.com

Springer

180 Software Qual J (2007) 15:179–212

Keywords Software metrics . Size . Complexity . Coupling . Properties of metrics .

Measurement theory . Information theory . Entropy . Excess entropy . C++ case studies

1 Introduction

This paper defines measures of a program’s size, complexity, and coupling in terms of the
amount of information in hypergraph abstractions of that program. This paper also presents
three case studies that explore the properties of the proposed metrics. We are motivated by
the possibility that the amounts of various kinds of information in software may have useful
statistical relationships with software quality attributes.

Software development is primarily an intellectual endeavor. We suspect that mistakes dur-
ing software design and implementation have their roots in cognitive processes. For example,
when making a design decision, it often is difficult to remember everything that is relevant.
Our working hypothesis (Allen, 2002) is that amounts of various kinds of information may be
associated with the potential for cognitive overload (Miller, 1956), because human memory
and recall capabilities are limited (Hilgard et al., 1971). Information is stored in memory
when a software abstraction is understood. The amount of such information may have useful
statistical relationships with mistakes which in turn result in software faults (Hatton, 1997).

A software measurement method typically has two phases: (1) creation of an abstraction
of the software, and (2) measurement of that abstraction. The abstraction is chosen to
characterize the attribute of interest. The measure is designed to quantify the attribute of
interest in a way that facilitates further analysis. For example, McCabe complexity (McCabe,
1976) is based on an abstraction of control flow, and is calculated from the number of nodes
and edges in a control flowgraph. In this paper, the class of abstractions is hypergraphs, and
the proposed measures are based on information theory, rather than counting. Information
theory offers a way to calculate the amount of information in an abstract object, irrespective
of perception by a person. Even though the total information of concern to a programmer is
found in the combination of many kinds of abstractions of software, our research has focused
on measurement of information in one abstraction at a time.

The software-engineering community often evaluates designs in terms of size, length,
complexity, coupling, cohesion, etc. Briand, Morasca, and Basili propose definitions of
these five attributes through a formal framework based on graphs (Briand et al., 1996b).
The framework defines sets of properties for each of these five attributes. We support their
proposal that the software-engineering community restrict the meaning of the attribute names
of “size,” “length,” “complexity,” “coupling,” and “cohesion” to measures that conform to
consensus properties. Software designs are often depicted by graphs. We adopt their idea
that graph abstractions of software should be the basis for software measurement.

While strictly speaking a graph represents relationships between pairs of nodes, a hy-
pergraph represents relationships among sets of nodes. Thus, a hyperedge may connect to
multiple nodes, as shown in Fig. 1. Some software engineering abstractions, such as set-use
relations for public variables, are better represented as hypergraphs than ordinary (binary)
graphs (Schütt, 1977). In the remainder of this paper, we use the term graph in a broad sense
to mean a hypergraph, unless otherwise indicated.

Traditional software metrics count software features (Fenton and Pfleeger, 1997). This
seems to be based on the assumption that each item is equal in the mind of a developer.
However, repetitive patterns are easier to remember than a random list. In contrast to counting,
we adopt information theory (Cover and Thomas, 1991; Shannon and Weaver, 1949) as the
basis for measurement (Allen, 1995). When symbolic content can be compactly described,

Springer

Software Qual J (2007) 15:179–212 181

Fig. 1 Example hypergraph
with one hyperedge

such as repetitive patterns, there is a small amount of information and high redundancy
(Cover and Thomas, 1991). This paper proposes software metrics based on information in
the pattern of incident hyperedges. For comparison, we also define corresponding counting-
based metrics.

Prior work proposed information theory-based measures of size, length, complexity,
coupling, and cohesion of ordinary graphs at the system level and at the module level
(Allen, 2002; Allen and Khoshgoftaar, 1999; Allen et al., 2001; Chen, 2000). This paper
extends this work proposing measures for size, complexity, and coupling of hypergraph
abstractions of software, rather than ordinary graphs. This paper also contributes three case
studies to elucidate the properties of the proposed metrics. Because we propose to measure
hypergraphs, we can use the same formulas to measure many kinds of software abstractions,
and thus, many kinds of software size, complexity, and coupling.

For convenient reference, Table 1 informally introduces basic terms used in this paper,
and Table 2 defines notation. The following sections discuss related work, our working

Table 1 Definitions

Term Definition

System An abstraction of a software-development artifact, defined by a set of elements
and a relation on them (Morasca and Briand, 1997). We restrict this abstraction
to a hypergraph, consisting of nodes and hyperedges.

Node Each node (or vertex) corresponds to an element.
Edge Each edge (or arc) corresponds to a binary relationship between two nodes.
Hyperedge Each hyperedge corresponds to a relationship among a subset of nodes.
System graph A graph consisting of a disconnected node, modeling the environment, plus all

the nodes and hyperedges in a system.
Hyperedges-only graph A graph consisting of all nodes of a system that are connected to hyperedges, and

all hyperedges, plus the environment node.
Undirected graph A representation of a system where the direction of each hyperedge connection is

ignored.
End points The nodes connected to a hyperedge.
Nodes × hyperedges

table
A table representing an undirected graph where each row signifies a node, each
column denotes a hyperedge, and a 1 or 0 in a cell indicates that the hyperedge
is incident to the node, or not, respectively.

Row pattern The pattern of values in the cells of a row of a nodes × hyperedges table.
Label A row pattern associated with a node.
Module A subset of nodes and their incident hyperedges.
Disjoint modules Two modules with no nodes in common and no path between them (Briand et al.,

1996b).
Modular system A partition of the nodes of a system into subsets, one subset for each module

(Briand et al., 1996b). (The subsets of nodes do not intersect.)
Intermodule-hyperedges

graph
A graph consisting of all the nodes in a modular system and all intermodule
hyperedges, plus the environment node.

Definitions are ordered such that each definition does not use terms below it in the list.

Springer

182 Software Qual J (2007) 15:179–212

Table 2 Notation

Symbol Definition

System-related symbols
S System
MS Modular system
S System graph or its nodes × hyperedges table
S# Hyperedges-only system graph
S∗ Intermodule-hyperedges system graph
S0 System graph with no hyperedges
Si Subtable of S# consisting of the columns where the ith row is not 0

Module-related symbols
mk Module
n Number of nodes in a system, S
nM Number of modules in MS
ne Number of hyperedges in a system, S
ne k Number of hyperedges incident to nodes in module, mk

ninter e Number of intermodule hyperedges in a system, S
ninter e k Number of intermodule hyperedges incident to nodes in module, mk

Row-related symbols
i, j Indexes for a row in S, i = 0, . . . , n and similarly j. By convention, the

environment node is indexed i = 0, and nodes in a system are indexed
i = 1, . . . , n.

k Index for a module in S, k = 1, . . . , nM

l Index for a pattern of values on a row (label)
L(i) Function that determines the label of a row i
Li(j) Function that determines the label of a row j in Si

Entropy-related symbols
p Probability mass function
p̂l Proportion of the lth row pattern (estimated probability)
log Logarithm, base 2
H Entropy of a probability distribution
C Excess entropy

abstractions for measurement, metric definitions and their rationale, exploratory case studies,
a discussion, and conclusions.

2 Related work

Khoshgoftaar and Allen’s survey (Khoshgoftaar and Allen, 1994) discusses numerous pro-
posed software metrics based on information theory. Several are entropy-based measures
of graph attributes, such as the entropy of control-flow graph nodes by their degree (Davis
and LeBlanc, 1988), and the entropy of a data structure graph by its topology (Lew et al.,
1988). From among the surveyed metrics, we extend Mohanty’s work (Mohanty, 1981),
which applied “excess entropy” to interaction among subsystems. The following summa-
rizes some information theory based software metrics that have been proposed since their
survey (Khoshgoftaar and Allen, 1994).

Springer

Software Qual J (2007) 15:179–212 183

Bansiya et al. propose an entropy-based metric of software classes (Bansiya et al., 1999).
Probability distributions are derived from the frequencies that name strings appear in a class’s
source code, and entropy is then calculated.

Abd-El-Hafiz proposes measures of “information content” of software (Abd-El-Hafiz,
2001). His abstraction of software is based on static frequencies of function calls in source
code, from which probability distributions can be derived. Several kinds of entropy are
proposed as software measures.

Kim, Shin, and Wu propose object-oriented software “complexity” measures based on
entropy for classes, systems of objects, and the combination (Kim et al., 1995). Their
abstraction of a class is a graph depicting function calls and set/use of data by functions
within each class. Their abstraction of an object system is a graph representing message
passing (method calls) among objects. The static frequency of these relationships is the
basis for calculating probability distributions. With probability distributions in hand, each
“complexity” is its entropy.

Shereshevshky et al. propose dynamic measures of “coupling” and “cohesion” based
on entropy (Shereshevshky et al., 2001). Their abstraction of software is a graph based
on information flows among components where the probability of each flow is based on
operational use of the software, and thus, depends on program dynamics. Various kinds of
“coupling” and “cohesion” are defined as the entropy of appropriate probability distributions
of information flows.

Visaggio proposes an entropy-based metric for impact analysis considering artifacts from
the requirements phase through the implementation phase (Visaggio, 1997). His abstraction
is a graph representing traceability and dependency relationships among models of software
from each phase of the software development life cycle. This graph allows one to identify
“impact paths” for each proposed modification to the software, from requirements through
implementation. Assuming impact paths are considered equally probable, the “structural
information” is proportional to the entropy of the uniform distribution of impact paths.

Independent of our research, Chapin proposes a “complexity” measure based on ex-
cess entropy (Chapin, 2002), similar to our system complexity metric for ordinary graphs
(Allen, 2002). His abstraction of software is a graph derived from message flows among
software components. Chapin prefers using the amount of information (“entropy loading”)
as a measure, rather than just entropy; our approach is similar to Chapin on this point.

In contrast to metrics proposed by many others, we propose measures of the aggregate
amount of information, rather than the average amount of information (i.e. entropy), and in
contrast to our prior work, we apply them to hypergraphs, rather than just ordinary graphs.
Hypergraphs can represent many different abstractions of software. For example, two of the
case studies in this paper focused on relationships between methods and public variables in
C++ source code.

3 Abstractions of software

During development, a large number of decisions are made on many levels of design and
implementation. The software product is the accumulation of these decisions. Each decision
can be viewed as an element of information. A design abstraction represents a set of design
decisions that are of interest. For example, when a graph is an abstraction of software, the
creation of each node and each edge are design decisions. Each connection is another design
decision. Thus, software development entails a myriad of small decisions. Design artifacts,
such as diagrams, are created during development to embody such abstractions.

Springer

184 Software Qual J (2007) 15:179–212

Graphs directly used by designers are likely to be related to software quality (Andersson
et al., 2003), for example, graphs produced by design tools. Graphs that are reverse engi-
neered from code may depict relationships perceived by someone reading the source code
(Runeson et al., 2006). The literature recommends many different metrics based on different
abstractions. For example, Briand, Daly, and Wüst survey measures of coupling and cohesion
for object-oriented designs (Briand et al., 1997a, 1999). They point out the various under-
lying abstractions, such as class inheritance, class type, method invocation, and attribute
references. Our approach is compatible with abstractions from both the object oriented and
procedural paradigms. Examples from the procedural paradigm include call graphs and set-
use graphs for data structures. In our context, each combination of an abstraction and a metric
measures a distinct attribute of the software.

Briand, Morasca, and Basili define an abstraction of a system as an ordinary graph (Briand
et al., 1996b). Morasca and Briand extend this to relations in general (Morasca and Briand,
1997). We restrict our study to relations represented by hypergraphs where the order of
elements in the relation does not matter. Software engineers often identify each node with
a component name. Consequently, we choose working abstractions that maintain a distinct
identity for each relationship, rather than an abstraction of topology alone (Lew et al.,
1988). The software-engineering meanings of elements (nodes) and relations (hyperedges)
is separately specified for each practical application. Our proposed metrics, defined below,
are applicable whenever the real-world system is represented by a hypergraph.

Definition 1 (System and module). A system, S, is an abstraction of a software system
represented by a graph with n > 0 nodes and with ne ≥ 0 hyperedges connecting zero or
more of the nodes. A subset of nodes and their incident hyperedges may be designated as a
module, mk.

In this paper, undirected graphs are sufficient for our purposes, and the topology is not
restricted (e.g., acyclic graphs are not required). For example, Fig. 2 depicts a hypergraph
with four modules. In this example, hyperedges 1, 2, 3, and 8 have more than two connections,
but the other hyperedges have only two end points, i.e. they are ordinary edges.

Given an abstraction of software represented by a graph, S, various subgraphs are work-
ing abstractions in this paper. We extend the system’s graph abstraction, S, by defining a
system graph, S, to model explicitly the lack of relationship between the system and its
environment.

Definition 2 (System graph) (Allen and Khoshgoftaar, 1999). The system graph, S, of a
system, S, with n nodes, is all nodes in S and all its hyperedges, plus a disconnected node
modeling the system’s environment. Without loss of generality, index the environment node
as i = 0, and the nodes in S as i = 1, . . . , n.

Our goal is to analyze patterns of connections in a system graph. We label each node
with the set of hyperedges that are incident to it. We want to work with a convenient tabular
representation of a graph that fully specifies an undirected graph. We choose a nodes ×
hyperedges table where each cell indicates whether the node is connected to the hyperedge,
or not, encoded as one or zero respectively (Allen and Khoshgoftaar, 1999). Consequently,
each node’s label (i.e., the set of incident hyperedges) is encoded as the binary pattern of
values in a row of the table. The abstraction of a nodes × hyperedges table is essentially an
object predicate table (van Emden, 1970), where nodes are objects and each predicate is of
the form, “Is this node related to other nodes by this hyperedge?”

Springer

Software Qual J (2007) 15:179–212 185

1

2

4

5 6

7 8

 93

10

11 12

1413

m1

m2 m3

m4

1

2

5

3 4

 6
 7

8

10
9

Fig. 2 Example of hypergraph,
S

Table 3 is the nodes × hyperedges table for Fig. 2. Columns of the binary pattern represent
hyperedges, numbered left to right. Complexity is defined by Briand, Morasca, and Basili
in terms of edges (Briand et al., 1996b). To support measurement of complexity, we make a
working abstraction, a hyperedges-only graph, S#.

Definition 3 (Hyperedges-only graph) (Allen, 2002). Given a system, S, its hyperedges-only
graph, S#, consists of all nodes in S connected to hyper edges and all its hyperedges. The
corresponding system graph is denoted by S#.

In other words, S# is constructed from S by deleting all isolated nodes except the environ-
ment node. The hyperedges-only graph of the system in Fig. 2 is similar to the system graph,

Table 3 Nodes × Hyperedges
table for example system Module Node Hyperedges

env. 0 0000000000
m1 1 1000000000
m2 2 1100000000
m2 3 0100100000
m2 4 0010100000
m3 5 1010000000
m3 6 1001000000
m3 7 0010010000
m3 8 0011001000
m3 9 0000001000
m4 10 0000010100
m4 11 0100000110
m4 12 0000000101
m4 13 0000000011
m4 14 0000000000

Springer

186 Software Qual J (2007) 15:179–212

Table 4 Nodes × hyperedges
table for example S# Module Node Hyperedges

env. 0 0000000000
m1 1 1000000000
m2 2 1100000000
m2 3 0100100000
m2 4 0010100000
m3 5 1010000000
m3 6 1001000000
m3 7 0010010000
m3 8 0011001000
m3 9 0000001000
m4 10 0000010100
m4 11 0100000110
m4 12 0000000101
m4 13 0000000011

except that Node 14 is omitted. It is not connected to any hyperedge, so it is not included.
Its nodes × hyperedges table is in Table 4.

Coupling is defined by Briand, Morasca, and Basili for a graph partitioned into subsystems
(modules) (Briand et al., 1996b), such as Fig. 2 above.

Definition 4 (Modular system) (Briand et al., 1996b). A modular system, MS, is a special
case of a system, S, whose n nodes are partitioned into nM modules, mk, k = 1, , nM .

This means every node is in a module and no node is in multiple modules.
To support measurement of coupling, we make a working abstraction, an intermodule-

hyperedges graph, MS∗.

Definition 5 (Intermodule-hyperedges graph) (Allen and Khoshgoftaar, 1999). Given a mod-
ular system, MS, its intermodule-hyperedges graph, MS∗, consists of all nodes in MS and all
its intermodule hyperedges. The corresponding system graph is denoted by S∗.

For example, Fig. 3 depicts the intermodule-hyperedges hyperedges-only graph, S∗#, for
the modular system in Fig. 2, and Table 5 depicts the corresponding nodes × hyperedges
table.

Table 5 Nodes × hyperedges
table for example S∗# Module Node Hyperedges

env. 0 0000
m1 1 1000
m2 2 1100
m2 3 0100
m2 4 0010
m3 5 1010
m3 6 1000
m3 7 0011
m3 8 0010
m4 10 0001
m4 11 0100

Springer

Software Qual J (2007) 15:179–212 187

1

2

4

5 6

7 8

3

10

11

m1

3m2m

m4

1

2

3

 6

0

EnvironmentFig. 3 Example
intermodule-hyperedges
hyperedges-only graph, S∗#

4 Size

Research in software metrics has found that “size” is one of the dominant attributes when
predicting software quality (El Emam et al., 2001; Munson and Khoshgoftaar, 1989). In this
paper, we focus on the size of a hypergraph in the abstract. The real-world meaning of the
hypergraph is the key to interpreting its size measurements.

4.1 Properties of size metrics

Briand, Morasca, and Basili propose a set of properties that defines the concepts of the size of
a system and the size of a module (Briand et al., 1996b). Table 6 summarizes the properties of
this family of measures. In a software metrics context, we reserve the term size for measures
that have these properties. Briand, Morasca, and Basili also state the corollaries in Table 7
(Briand et al., 1996b).

Table 6 Properties of size (Briand et al., 1996b)

System properties
1. Nonnegativity. The size of a system is nonnegative.
2. Null value. The size of a system is zero if its set of nodes is empty.
3. Module additivity. Given a system, S, having modules, m1 and m2, such that every node in S is in m1

or m2, but not both, the size of this system is equal to the sum of the sizes of the modules m1 and m2.

Size(S) = Size(m1|S) + Size(m2|S)

Module properties
4. Nonnegativity. The size of a module is nonnegative.
5. Null value. The size of the module is zero if its set of nodes is empty.
6. Monotonicity. Adding a node to a module does not decrease its size.

Springer

188 Software Qual J (2007) 15:179–212

Table 7 Corollaries for size metrics (Briand et al., 1996b)

1. Node additivity. Given a modular system, MS, where each node is a module, mk , k = 1, . . . , nM , the size
of the modular system is given by

Size(MS) =
nM∑

k=1

Size(mk |M S)

2. Monotonicity. Adding a node to a system does not decrease its size.
3. General module additivity. Given a system, S, with any two modules, m1 and m2 such that every node in

S is a node in m1 or m2 or both, the size of the system is not greater than the sum of the sizes of the pair
of modules.

Size(S) ≤ Size(m1|S) + Size(m2|S)

4. Merging of modules. Given a system, S, with any two modules, m1 and m2 such that every node in S is a
node in m1 or m2 or both, construct S′ such that m1 and m2 in S are replaced by m1∪2 = m1 ∪ m2 in S′.

Size(S′) ≤ Size(m1|S) + Size(m2|S)

4.2 Counting-based size metrics

Morasca and Briand imply counting-based size metrics by asserting that the size of a system
depends on the elements (nodes) of the system and not its relations (edges) (Morasca and
Briand, 1997). Accordingly, systems with the same set of elements have the same size
regardless of their set of relationships (edges). Our counting-based size metrics have this
property.

Definition 6 (Counting size of a system). The counting size of a system S is the number of
nodes in S.

CountingSize(S) = n (1)

Definition 7 (Counting size of a module). The counting size of a module for a system S is
the number of nodes in the module.

CountingSize(mk |S) = nk (2)

Several measures can be classified as size measures, such as lines of code, number of
modules, number of procedures, etc. (Briand et al., 1996b). Each of the counted entities of
an abstraction is modeled as a node. In our case studies below, counting size of a module is
the number of methods in a class. This corresponds to Weighted Methods per Class (wmc)
(Chidamber and Kemerer, 1994) with weights of one.

4.3 Information theory-based size metrics

A theory for the information content of finite strings of characters was independently invented
by Solomonoff (1964), Kolmogorov (1965), and Chaitin (1966). The name Kolmogorov

Springer

Software Qual J (2007) 15:179–212 189

complexity has become commonly understood for this field (Li and Vitányi, 1988). Infor-
mally, the Kolmogorov complexity, K, of a string of characters is the size of the smallest
Turing machine program that outputs that string and then terminates. In this theoretical
context, Kolmogorov complexity is an attribute of the string of characters.

Such a theory is attractive for objectively quantifying the information in a software
abstraction, but there is a practical problem. The function K is not partial recursive, i.e., it
is not computable exactly (Li and Vitányi, 1988). Therefore, we must be satisfied with an
approximation.

Kolmogorov complexity and information theory (Shannon and Weaver, 1949) are inti-
mately related (Chaitin, 1975; Kolmogorov, 1968). For a random variable x, let H(x) be the
symbol for the entropy of the distribution of x. Let nx be the number of items in the domain
of x, and let pl be the probability of an item l from that domain. Entropy is calculated by the
following.

H (x) =
nx∑

l=1

pl (− log pl) (3)

where the base of the logarithm is the number of symbols in the alphabet used to encode the
domain of x (e.g., two for binary encoding). We do not assume all items in the domain are
equally probable.

An instantaneous code is a set of strings (code words) where no string in the set is a prefix
of another, and each code word corresponds to an item in the domain of x. Let E(Len(x))
be the expected length per item of an instantaneous code for the domain of x. Information
theory gives the following result (Cover and Thomas, 1991, p. 86).

E(Len(x)) ≥ H (x) (4)

In other words, the entropy of the distribution of x is the minimum expected length of an
instantaneous code for one sample item.

If we use an instantaneous code to describe the domain of x, and if a set X consists of n
independent identically distributed items from the domain of x, then the minimum expected
length of a description of X is nH(x). Based on the length of Shannon-Fano encoding (Cover
and Thomas, 1991, p. 170), this is an approximation to the Kolmogorov complexity of the
set of objects.

K̂ (X) = nH (x) (5)

In this context, the base of the logarithm in Eq. (3) is the number of symbols in the code
alphabet. Therefore, we interpret this as an approximation of the total information in the set.
Kolmogorov complexity focuses on the product, and therefore, does not address variation in
comprehension skills among individuals.

Suppose we have a system, S. We model the designer’s preferences for connecting nodes
to hyperedges as a probability distribution. Specifically, we model its system graph S as a
set of statistically independent identically distributed samples from a probability distribution
on the possible row patterns of its nodes × hyperedges table, pl, l = 1, . . . , nS , where nS is
the number of possible distinct row patterns. The entropy of the distribution of row patterns

Springer

190 Software Qual J (2007) 15:179–212

Table 8 Probabilities of row
patterns in S Nodes Hyperedges p̂l

0, 14 0000000000 2/15
1 1000000000 1/15
2 1100000000 1/15
3 0100100000 1/15
4 0010100000 1/15
5 1010000000 1/15
6 1001000000 1/15
7 0010010000 1/15
8 0011001000 1/15
9 0000001000 1/15

10 0000010100 1/15
11 0100000110 1/15
12 0000000101 1/15
13 0000000011 1/15

See Table 3.

(Shannon and Weaver, 1949) is the following.

H (S) =
nS∑

l=1

pl (− log pl) (6)

Table 8 lists the row patterns that occur in Table 3. The pattern 0000000000 occurs
twice among 15 nodes, and therefore we estimate the probability of that row pattern as
p̂0 = 2/15. The other thirteen row patterns are each unique, so we estimate each probability
as p̂l = 1/15. By Eq. (6), the estimated entropy is

Ĥ (S) = 2

15

(
− log

2

15

)
+ 13

(
1

15

(
− log

1

15

))
= 3.77 bits (7)

In this application, entropy is the average information per node. Because the nodes
× hyperedges table has binary values, we use base 2 logarithms in information theoretic
calculations. Consequently, the unit of measure is a bit. A bit is the commonly used measure
of information in the communications field.

The number of rows including the environment is n + 1. Let nl be the number of rows with
pattern l. The proportion of rows with pattern l is an estimate of the probability of pattern l
(van Emden, 1970), namely, p̂l = nl/(n + 1). By Eq. (6), entropy can be estimated by the
following.

Ĥ (S) =
nS∑

l=1

nl

n + 1

(
− log

nl

n + 1

)
(8)

Ĥ (S) =
n∑

i=0

1

n + 1

(− log p̂L(i)
)

(9)

where L(i) is a function that gives the label l (i.e., row pattern) of node i. Note that the
summation in Eq. (9) is over the set of nodes (i), rather than the set of distinct row patterns
(l), as in Eq. (6).

Springer

Software Qual J (2007) 15:179–212 191

If we model the number of nodes, n, and the number of hyperedges, ne, as given,1 and,
without loss of generality, if we use an instantaneous code to describe row patterns, then the
minimum expected length of a description (Cover and Thomas, 1991) of a set S consisting
of n + 1 nodes is (n + 1) H(S).

(n + 1)Ĥ (S) =
n∑

i=0

(− log p̂L(i)
)

(10)

Thus, each node contributes to the minimum expected length of a description of S. Because we
estimate probabilities by proportions p̂l = nl/(n + 1), the existence of the environment node
assures that the estimated probability of a disconnected node is nonzero, p̂L(0) ≥ 1/(n + 1) >

0. This facilitates monotonicity properties of metrics. We interpret the minimum expected
length of a description of S as the amount of information in S. This leads to our definition of
size.

Definition 8 (Information size of a system) (Allen, 2002). The size of a system, S, is the
amount of information in its system graph, S, less the contribution of the environment.

Size(S) = (n + 1)H (S) − (− log pL(0)
)

(11)

The estimated information contribution of the environment node is − log p̂L(0). Conse-
quently, by Eq. (10), the size of a system is estimated by the following.

estimated Size(S) =
n∑

i=1

(− log p̂L(i)
)

(12)

The summation begins with i = 1 instead of i = 0. Applying Eq. (12) to the probabilities in
Table 8, summing over Nodes 1 through 14.

estimated Size(S) = 13

(
− log

1

15

)
+

(
− log

2

15

)
= 53.7 bits (13)

A portion of the system’s information may be attributed to each module.

Definition 9 (Information size of a module) (Allen, 2002). The size of a module, mk, in a
system, S, is the information in its system graph contributed by the module.

Size(mk |S) =
∑

i∈mk

(− log pL(i)
)

(14)

Figure 2 has the size measurements in Table 9. This illustrates Corollary 1 in Table 7: the
system size is the sum of the module sizes.

The more row patterns are repeated in a nodes × hyperedges table, the smaller information
size becomes. In this way, information size is inherently different from counting size.

1 As a simplifying assumption, our analysis excludes from measurement the design decisions of how many
nodes and how many hyperedges the graph includes.

Springer

192 Software Qual J (2007) 15:179–212

Table 9 Size measurements of
example Object measured Information (bits) Count (nodes)

S 53.7 14
m1 3.9 1
m2 11.7 3
m3 19.6 5
m4 18.5 5

In the extreme case when a graph, S0, has no hyperedges, its nodes × hyperedges table is
equivalent to a table with an arbitrary number of columns and a zero in every cell. Because
p̂0 = 1, the contribution of the environment node is zero, − log p̂0 = 0, the estimated entropy
of the nodes × hyperedges table is zero, Ĥ (S0) = 0, and thus, the estimated information
size is zero, Size(S0) = 0, when there are no hyperedges. In contrast, the counting size is the
number of nodes, even if there is no hyperedge.

5 Complexity

The software metrics literature is rife with controversy over the term “complexity.” A
multitude of metrics have been proposed over the years (Zuse, 1997b). Briand, Morasca,
and Basili define complexity as an intrinsic attribute of a graph abstraction and not its
psychological complexity as perceived by an external observer (Briand et al., 1996b). In this
paper, we focus on relationships as complexity’s underlying concept.

5.1 Properties of complexity metrics

Briand, Morasca, and Basili propose a set of properties that defines the concepts of the
complexity of a system and the complexity of a module (Briand et al., 1996b). Table 10
presents our proposed properties of complexity for hypergraphs. Our properties agree with
Briand, Morasca, and Basili, except we require a slightly stronger constraint in Property 4:
we require “no nodes in common,” but Briand, Morasca, and Basili require “no edges
in common” in their corresponding property. Briand, Morasca, and Basili’s properties are
based on directed graphs. Property 3, based on their work, asserts that the direction of
hyperedge connections is not relevant to complexity. A nodes × hyperedges table represents
an undirected hypergraph, and thus, the metrics are consistent with Property 3. In a software
metrics context, we reserve the term complexity for measures that have these properties.
Briand, Morasca, and Basili also state the corollary in Property 6 of Table 10.

5.2 Counting-based complexity metrics

Examples by Briand, Morasca, and Basili guided us in defining counting-based complexity
metrics (Briand et al., 1996b).

Definition 10 (Counting complexity of a system). The counting complexity of a system S is
the number of hyperedges in the system.

CountingComplexity(S) = ne (15)

Springer

Software Qual J (2007) 15:179–212 193

Table 10 Properties of complexity

System properties
1. Nonnegativity. The complexity of a system is nonnegative.
2. Null value. The complexity of a system is zero if its set of hyperedges is empty.
3. Symmetry. The complexity of a system does not depend on the convention chosen to represent the

direction of hyperedge connections.
4. Module monotonicity. Given a System, S, with any two modules, m1 and m2, that have no nodes in

common, the complexity of the system is no less than the sum of the complexities of the two
modules.

Complexity(S) ≥ Complexity(m1|S) + Complexity(m2|S)

5. Disjoint module additivity. Given a system, S, composed of two disjoint modules, m1 and m2, the
complexity of the system is equal to the sum of the complexities of the two modules.

Complexity(S) = Complexity(m1|S) + Complexity(m2|S)

6. Corollary: Monotonicity. Adding a hyperedge to a system does not decrease its complexity.
Module properties

7. Nonnegativity. The complexity of a module is nonnegative.
8. Null value. The complexity of a module is zero if its set of intermodule and intramodule hyperedges

is empty.
9. Monotonicity. Adding an intermodule or intramodule hyperedge to a module does not decrease its

complexity.

Definition 11 (Counting complexity of a module). The counting complexity of a module mk

in a system S is the number of hyperedges incident to nodes in the module.

CountingComplexity(mk |S) = ne k (16)

The data-flow complexity measure proposed by Oviedo is an example measure that counts
the number of direct and indirect variable definitions (i.e., setting a value) in a block of a
program that can directly reference the set of variables (Oviedo, 1980). This data-flow
complexity satisfies all of the properties of Briand, Morasca, and Basili, and thus, is a
complexity measure according to their definition (Briand et al., 1996b).

5.3 Information theory-based complexity metrics

Because the properties of complexity focus on hyperedges, we define complexity as a
measurement of a hyperedges-only graph, S#. Consider the following subgraph of S#.

Definition 12 (Node subgraph) (Allen and Khoshgoftaar, 1999). Given a hyperedges-only
graph, S#, the node subsystem graph, Si, consists of all the nodes in S# and the hyperedges
of S# connected to the ith node. Its system graph is denoted by Si.

Similar to S, we label each node with the set of hyperedges incident to it, and we represent
Si by a nodes × hyperedges table. Figure 4 is an example of a node subgraph for Node 2,
S2, in S#, and its nodes × hyperedges table is Table 11. Hyperedges 1 and 2 are the only
ones in Table 4 that are incident to Node 2. Disconnected nodes are included in Si, but are
not drawn in Fig. 4.

Springer

194 Software Qual J (2007) 15:179–212

Table 11 Nodes × hyperedges
table for example node subgraph,
S2

Module Node Hyperedges

env. 0 00
m1 1 10
m2 2 11
m2 3 01
m2 4 00
m3 5 10
m3 6 10
m3 7 00
m3 8 00
m3 9 00
m4 10 00
m4 11 01
m4 12 00
m4 13 00

All other nodes are disconnected (not shown)

1

2 5 6

3

11

m1

m2 m3

m4

1

2

Fig. 4 Example node subgraph,
Si, for Node 2

For size, we model S as a probability distribution on its row patterns. Similarly, we also
model Si as a probability distribution, estimated by the proportions of distinct row patterns,
p̂l . Similar to Eq. (9), we estimate the entropy of the distribution of row patterns by the
following.

Ĥ (Si) =
n∑

j=0

1

n + 1

(− log p̂Li (j)
)

(17)

where Li(j) is a function that gives the pattern index, l, of the jth row of Si.
Each row of each Si is a subset of the corresponding row of S#. S# represents the joint

distribution of all the Si. Information theory states that the entropy of a joint distribution is
less than or equal to the sum of the entropy of the components.

n∑

i=0

H (Si) ≥ H (S#) (18)

Springer

Software Qual J (2007) 15:179–212 195

Watanabe shows that the difference is a measure of the relationships among the components
(Watanabe, 1960). Excess entropy (van Emden, 1970) of S# is defined as

C(S#) =
n∑

i=0

H (Si) − H (S#) (19)

Excess entropy is the average information in relationships. Connected nodes are related to
each other by the presence of a hyperedge. If the Si are highly related to each other by
common hyperedge connections and common disconnected nodes, then the excess entropy
is high.

Mohanty proposes to measure interactions among subsystems by excess entropy
(Mohanty, 1979, 1981). We extend his approach to measure complexity and coupling (Allen,
2002; Allen and Khoshgoftaar, 1999). Rather than information per subsystem, we are inter-
ested in the amount of information overall (Chapin, 2002). Multiplying excess entropy by
the number of nodes yields the amount of information in the relationships among the nodes,
(n + 1)C(S#).

Definition 13 (Information complexity of a system) (Allen, 2002). The complexity of a
system, S, is given by the amount of information in relationships in its hyperedges-only
graph, less the contribution of the environment.

Complexity(S) =
n∑

i=1

Size(S#
i) − Size(S#) (20)

When probabilities refer to S# and its Si, note that by Eqs. (9), (12), (17), and (19),

estimated Complexity(S) =
(

n∑

i=1

n∑

j=1

(− log p̂Li (j)
)
)

−
n∑

i=1

(− log p̂L(i)
)

(21)

estimated Complexity(S) = (n + 1)Ĉ(S#) −
(

n∑

i=1

(− log p̂Li (0)
) − (− log p̂L(0)

)
)

(22)

Definition 14 (Information complexity of a module) (Allen, 2002). The complexity of a
module, mk, in a system, S, is its contribution to the complexity of the system, given by

Complexity(mk |S) =
∑

i∈mk

Size(S#
i) − Size(mk |S#) (23)

Figure 2 has the complexity measurements shown in Table 12. The number of nodes in
S# is 14, including the environment, but not Node 14. The row pattern for every row in
Table 4 is unique, and therefore, p̂l = 1/14 for Nodes 0 through 13. The information column
is the value of Complexity for the object measured. This illustrates that the information
system complexity is the sum of the information module complexities. This is not true for
counting complexities, because counting module complexity includes incident intermodule
hyperedges for each module, sometimes counting the same hyperedge in two or more
modules.

Springer

196 Software Qual J (2007) 15:179–212

Table 12 Complexity
measurements of example Object measured Information (bits) Count (hyperedges)

S 189.1 10
m1 7.8 1
m2 47.3 4
m3 74.6 5
m4 59.4 5

Table 13 Example where
module 1 has negative module
complexity

Module Node Hyperedges

env. 0 00000
m1 1 10000
m2 2 11000
m2 3 10110
m3 4 10001

Complexity(m1|S) = − 1.0 bits
Complexity(m2|S) = 4.4 bits
Complexity(m3|S) = 2.2 bits
Complexity(S) = 5.6 bits

We found that this definition of module complexity does not conform to Property 7
regarding module nonnegativity in Table 10 for certain extreme cases. If a module consists
of a single node in which hyperedges connected to this node are also connected to all other
nodes in the system, then the complexity of this module will be negative, such as the example
in Table 13 (except in the case of a completely connected hypergraph).

Module m1 has a single node. Hyperedge 1 is connected to all the nodes in the system
and the remaining hyperedges are not connected to the node in module m1. In this case,
Complexity(m1|S) = − 1.0 bits < 0, which does not conform to Property 7 in Table 10,
which in turn, means that it also does not conform to Property 9. Future research will
investigate the practical importance of such extreme cases.

6 Coupling

A large literature on coupling (Briand et al., 1999) highlights the multitude of mechanisms
that can cause one module to be related to another. In this paper, we focus on intermodule
relationships in the abstract (Briand et al., 1996b). A wide variety of coupling mechanisms
can be abstractly represented by a hypergraph. Our metrics are applicable to any such
abstraction, yielding a wide variety of measures that are computed in a similar manner.

6.1 Properties of coupling metrics

Briand, Morasca, and Basili propose sets of properties that define the concepts of the coupling
of a modular system, and the coupling of a module (Briand et al., 1996b). Table 14 summarizes
properties of coupling of a modular system extended for hypergraphs.

In contrast to Briand et al. (1996), we make no distinction between inbound and outbound
coupling, because a nodes × hyperedges table does not distinguish direction. In Proper-
ties 2, 3, 7, and 8 of Table 14, our properties say “intermodule” hyperedges, whereas the

Springer

Software Qual J (2007) 15:179–212 197

Table 14 Properties of coupling

System properties
1. Nonnegativity. Coupling of a modular system is nonnegative.
2. Null value. Coupling of a modular system is zero if its set of intermodule hyperedges is empty.
3. Monotonicity. Adding an intermodule hyperedge to a modular system does not decrease its coupling.
4. Merging of modules. If two modules, m1 and m2, are merged to form a new module, m1∪2, that

replaces m1 and m2, then the coupling of the modular system with m1∪2 is not greater than the
coupling of the modular system with m1 and m2.

5. Disjoint module additivity. If two modules, m1 and m2, which have no intermodule hyperedges
between nodes in m1 and nodes in m2, are merged to form a new module, m1∪2, that replaces m1 and
m2, then the coupling of the modular system with m1∪2 is equal to the coupling of the modular
system with m1 and m2.

Module properties
6. Nonnegativity. Coupling of a module is nonnegative.
7. Null value. Coupling of a module is zero if its set of intermodule hyperedges is empty.
8. Monotonicity. Adding an intermodule hyperedge to a module does not decrease its module coupling.
9. Merging of modules. If two modules, m1 and m2, are merged to form a new module, m1∪2, that

replaces m1 and m2, then the module coupling of m1∪2 is not greater than the sum of the module
coupling of m1 and m2.

10.
Disjoint module additivity. If two modules, m1 and m2, which have no intermodule hyperedges

between nodes in m1 and nodes in m2, are merged to form a new module, m1∪2, that replaces m1 and
m2, then the module coupling of m1∪2 is equal to the sum of the module coupling of m1 and m2.

corresponding properties of Briand, Morasca, and Basili say “output” edges (Briand et al.,
1996b).

6.2 Counting-based coupling metrics

Coupling captures the amount of relationship between nodes belonging to different modules
of a system. Examples from the literature (Briand et al., 1999) guided our definitions of
counting-based coupling metrics.

Definition 15 (Counting coupling of a system). The counting coupling of a modular system
MS is the number of intermodule hyperedges in the system.

CountingCoupling(S) = ninter e (24)

Definition 16 (Counting coupling of a module). The counting coupling of a module mk in
a modular system MS is the number of intermodule hyperedges incident to nodes in the
module.

CountingCoupling(mk |S) = ninter e k (25)

In our case studies below, we focused on use of public variables. This counting coupling
is part of the idea for Coupling Between Objects (cbo) (Chidamber and Kemerer, 1994),
which also includes use of methods.

Springer

198 Software Qual J (2007) 15:179–212

Table 15 Coupling
measurements of example Object

measured
Information
(bits)

Count
(hyperedges)

S 89.9 4
m1 7.3 1
m2 28.8 3
m3 43.6 3
m4 10.2 2

6.3 Information theory-based coupling metrics

The properties of coupling focus on intermodule hyperedges. Consequently, we define cou-
pling as a measure on an intermodule-hyperedges graph, MS∗. Our definition of coupling of
a modular system builds on our definition of complexity (Allen and Khoshgoftaar, 1999).

Definition 17 (Information coupling of a modular system). The coupling of a modular
system, MS, is the amount of information in intermodule relationships in its system graph,
less the contribution of the environment.

Coupling(MS) = Complexity(MS∗) (26)

Definition 18 (Information coupling of a module). The coupling of a module, mk, in a
modular system, MS, is its contribution to the coupling of the system, given by

Coupling(mk |M S) = Complexity(mk |MS∗) (27)

Figure 2 has the coupling measurements shown in Table 15, based on the S∗# of Fig. 3.
The Information column in Table 15 is the value of Coupling for the objects measured.

7 Case studies

This section provides exploratory case studies of (1) a set of artificially generated graphs
(Gottipati, 2003), (2) a data manipulation program for a physics research project (Gottipati,
2003), and (3) selected source files from a mathematical library (Govindarajan, 2004).

7.1 Artificial examples

This case study considered small artificial hypergraphs to explore the properties of our
metrics. This study illucidated some patterns and principles that also apply to larger systems.

Figures 5 through 8 show graphs that we generated for this case study. Figure 5 depicts
a series of small graphs where a node is added and then a hyperedge is added. Figure 6
depicts three series of graphs where hyperedges are added which have the same connections
as existing hyperedges. Table 16 presents the system-level metrics for these two figures. In
these small graphs, every node is considered a module. Coupling measurements are the same
as complexity, because every hyperedge is an intermodule hyperedge.

Springer

Software Qual J (2007) 15:179–212 199

Table 16 System-level measurements of artificial examples

Size Complexity
System Information (bits) Count (nodes) Information (bits) Count (hyperedges)

Test10 1.2 2 1.2 1
Test15 3.0 3 1.2 1
Test17 4.0 3 5.3 2

Test10 1.2 2 1.2 1
Test11 1.2 2 1.2 2
Test12 1.2 2 1.2 3
Test13 1.2 2 1.2 4
Test14 1.2 2 1.2 5

Test16 1.3 3 2.5 1
Test18 1.3 3 2.5 2
Test20 1.3 3 2.5 3

Test17 4.0 3 5.3 2
Test19 4.0 3 5.3 3

The graphs in Fig. 5 illustrate how adding a node increases information size, but not
information complexity, and how adding a hyperedge increases both information size and
information complexity.

The graphs in Fig. 6 illustrate that our information theory-based measurements are not
sensitive to multiple hyperedges connected to exactly the same nodes. Redundant hyperedges
do not add information in this probabilistic model, because the estimated probabilities of
row patterns are not affected by redundant hyperedges.

Graph test16 in Fig. 6 has a smaller information size than test15 in Fig. 5, because the
nodes in test16 have a symmetric pattern of connections which in turn, is described by less
information than the pattern in test15.

Figure 7 depicts two pairs of binary trees. Trees 1a and 2a have ordinary edges (two con-
nections per edge). Trees 1b and 2b have hyperedges with three connections per hyperedge.
Figure 8 depicts two pairs of (nonbinary) trees. Trees 3a and 4a have ordinary edges (two
connections per edge). Trees 3b and 4b have hyperedges with more than two connections per
hyperedge. Table 17 presents the system-level metrics for these two figures. Abstractions of
software using ordinary edge smake a distinction for each edge relationship. Abstractions
using hyperedges are appropriate when such distinctions are not relevant, and thus, informa-
tion size is smaller. However, we see that information complexities are about the same for
the larger graphs.

exn.71tsetexn.51tsetexn.01tset

n1

n2 n3

n1

n2

n1

n2 n3

Fig. 5 Adding a node and a hyperedge to a small graph

Springer

200 Software Qual J (2007) 15:179–212

test10.nxe test11.nxe test12.nxe text13 .nxe test 14.nxe

exn.02tsetexn.81tsetexn.61tset

exn.91tsetexn.71tset

n1

n2

n1

n2

n1

n2

n1

n2

n1

n2

n1

n2 n3

n1

n2 n3

n1

n2 n3

n1

n2 n3

n1

n2 n3

Fig. 6 Identical hyperedges do not add information

b1a1

b2a2

Fig. 7 Binary trees with ordinary edges vs. hyperedges

In summary, we have seen the following.

– Information theory metrics can differ from corresponding counting metrics.
– The information metrics are not sensitive to redundant hyperedges, because they do not

add information in this model.
– Hypergraphs have less information than corresponding ordinary graphs.

Springer

Software Qual J (2007) 15:179–212 201

Table 17 System-level measurements of trees with ordinary edges vs. hyperedges

Ordinary edges Hyperedges
Information Count Information Count

System 1a 1b
Size 6.0 bits 3 nodes 1.2 bits 3 nodes
Complexity 6.0 bits 2 edges 2.5 bits 1 hyperedge

System 2a 2b
Size 21.0 bits 7 nodes 17.0 bits 7 nodes
Complexity 45.0 bits 6 edges 45.5 bits 3 hyperedges

System 3a 3b
Size 49.5 bits 13 nodes 35.2 bits 13 nodes
Complexity 115.1 bits 12 edges 150.2 bits 4 hyperedges

System 4a 4b
Size 30.0 bits 9 nodes 23.9 bits 9 nodes
Complexity 84.6 bits 10 edges 88.6 bits 3 hyperedges

3a

3b

b4a4

Fig. 8 Trees with ordinary edges vs. hyperedges

Springer

202 Software Qual J (2007) 15:179–212

Table 18 Summary of physics
program Classes 3

Methods 14
Public variables 32
Language C++
Function Data manipulation

Table 19 Nodes × hyperedges table for the physics program

Module Node Hyperedges

env. 0 00000000000000000000000000000000

Lattice get periodic 10010011000011110110010000000111
get scale 01001100000000011100000111111001
get refvector 00110111110100010100111100010011
get parameter 00000100001010100000000000010000
set latticetype 00000000000000000100000000000000
set parameter 00000000000000000001000000000000

Element get mass 01100000000000000000000000000000
get name 01000000000000000000000000010000
get weight 00100000000000000100000000010000
report 00100000000000000000010000000000
setname 00000000000000001000000100101001

Atom getpos 01100100000000010100000101010000
setid 00000100001010000000000000010000
setname 00000000000000000000000000000001

7.2 Use of public variables in a physics program

We analyzed a data manipulation program developed for a physics research project. This
small program, summarized in Table 18, reads different data sets, manipulates the data, and
writes the results to an output file. The source files were written in C++ . Each class was
defined as a module. The methods were represented by nodes, and each public variable was
represented by a hyperedge. We derived a hypergraph from the relationships between public
variables and the methods that use them. C++ system classes, their methods, and their
public variables were excluded from the analysis, because we do not view them as part of
the product that the programmer creates.

The primary C++ file (∗.cpp) was preprocessed using the gcc compiler to generate a
preprocessed (∗.ii) file. This step included all header files (∗.hpp) and subsidiary C++ files
(∗.cpp) into the resulting file (∗.ii). The preprocessed file (∗.ii) was parsed using the Datrix
metric analyzer (Bell Canada, 2000b; Lapierre et al., 2001; Mayrand and Coallier, 1996),
generating an abstract semantic graph (asg, ∗.asg) (Bell Canada, 2000a). The asg (∗.asg) was
input to our abstractor research tool, generating a nodes × hyperedges table (∗.nxe). The
∗.nxe file was input to our measurement research tool for the metric calculations (Gottipati,
2003). Table 19 presents the nodes × hyperedges table for the program.

Table 20 presents the information theory-based and counting-based measurements.
Table 20 shows that the module Element has medium information complexity, and mod-
ule Atom has low information complexity. However, the counting complexity is about the
same. Table 19 shows there are more connections in module Element than in module Atom,

Springer

Software Qual J (2007) 15:179–212 203

Table 20 Measurements of the physics program

Size Complexity Coupling
Information
(bits)

Count
(nodes)

Information
(bits)

Count
(hyperedges)

Information
(bits)

Count
(hyperedges)

System 54.7 14 366.3 32 341.2 15
Module:

1. Lattice 23.4 6 172.6 32 157.1 15
2. Element 19.5 5 113.6 10 107.7 10
3. Atom 11.7 3 80.1 11 76.4 11

which helps explain the higher information complexity. The additional connections are not
considered in counting complexity. The module Lattice contributes more than the other mod-
ules to all the system-level metrics. In this case study, if one uses a metric to order modules,
the corresponding information metrics and the counting metrics generally result in the same
order.

7.3 Use of public variables in a mathematical library

Development of the Parallel Mathematical Library Project (pmlp) (Birov et al., 1999) was a
joint effort by Intel, Lawrence Livermore National Laboratory, the Russian Federal Nuclear
Agency (VNIIEF), and the High Performance Computing Laboratory at the Mississippi
State University. It is a parallel mathematical library suite for sparse matrices. Pmlp includes
sequential sparse basic linear algebra, parallel sparse matrix vector products, and sequential
and parallel iterative solvers with Jacobi and incomplete LU preconditioners. Pmlp consists of
scalable libraries that combine the features of object-oriented design, sequential and parallel
modes, etc. Pmlp was developed in C++ using object-oriented techniques, such as template
classes, generic programming, parametrized types, run-time polymorphism, compile-time
polymorphism, and iterators. The major part of pmlp is coded as header files. Programs by
users call its methods to perform various mathematical functions.

We identified several directories in pmlp version 4.0 containing related sets of files that
can be considered “systems.” Govindarajan studied three out of five systems (Govindarajan,
2004). In the interest of space, we present one system here, the Sequential Sparse Basic
Linear Algebra system, sp blas. The others had similar results. In this study, classes and
templates were considered “modules.” Methods were “nodes.” Public variables were the
“hyperedges,” represented as columns in a nodes × hyperedges table. Table 21 presents a
summary.

In object-oriented programming, variables are declared public in order to allow access
from any class. “Intermodule hyperedges” are public variables accessed by at least two
different classes. “Intramodule hyperedges” are public variables that are accessed only by
methods in the same class; these variables would better be declared as private or protected.
Complexity is defined in terms of all hyperedges, and coupling is defined in terms of

Table 21 Summary of
SP BLAS from PMLP Classes/templates 95

Methods 681
Public variables 246
Language C++
Function Sparse linear algebra function library

Springer

204 Software Qual J (2007) 15:179–212

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450 500

Information Size (bits)

C
o

u
n

ti
n

g
 S

iz
e

(m
et

h
o

d
s)

Fig. 9 Information module size vs. counting module size of sp blas

intermodule hyperedges only. For an abstraction of software based on public variables, we
expect all hyperedges to be intermodule. Therefore, complexity will be equal to coupling.
This was largely the case in our analysis of pmlp. Consequently, we present a case study
here that is limited to size and coupling.

Simple programs were produced by a test-program generator that was created for system
testing. The resulting programs test various functions of sp blas like matrix-element func-
tions, matrix-matrix functions, matrix-vector, vector-element, and vector-vector functions.
Test programs were a necessary vehicle for measurement, because pmlp functions are largely
implemented by header files, but source code analyzers need a complete program to parse.

The test programs of the sp blas were preprocessed using the gcc preprocessor, and the
resultant file was used as an input to cppx, a software analysis tool (University of Waterloo,
2004; Dean et al., 2001). cppx generated an abstract semantic graph similar to that generated
by Datrix in our case study above. The abstract semantic graph was analyzed for class-
method-public variable relationships to generate a nodes × hyperedges table. There were
95 modules in sp blas. Table 22 shows a sample fragment of the nodes × hyperedges table
generated for sp blas.

Information theory-based and counting-based measures were calculated for the nodes
× hyperedges table. Table 23 shows the system-level information theory based metrics
and counting-based metrics. Table 24 has summary statistics for the module-level measure-
ments. Table 25 gives correlation between information theory-based module metrics to the
corresponding counting-based metrics.

Information size is highly correlated with counting size. Figure 9 is a scatter plot com-
paring information module size with counting size. This visualizes their high correlation.
When all the row patterns of the nodes in a module, mk, are unique, then by definition,
the information size of a module is proportional to the number of nodes in the module, nk,
namely, counting size (Govindarajan, 2004).

Size(mk |S) = nk

(
− log

1

n + 1

)
(28)

Springer

Software Qual J (2007) 15:179–212 205

Ta
bl

e
22

Sa
m

pl
e

no
de

s
×

hy
pe

re
dg

es
ta

bl
e

fo
r

sp
bl

as

M
od

ul
e

N
od

e
R

ow
pa

tte
rn

co
m

pl
ex

<
flo

at
>

co
m

pl
ex

11
11

11
10

01
10

00
11

11
10

10
11

00
11

10
11

00
11

11
11

00
11

01
01

..
.

’c
om

pl
ex

<
lo

ng
>

co
m

pl
ex

01
00

01
00

00
10

00
10

00
00

00
11

00
10

10
01

00
00

01
01

00
10

01
00

01
0.

..

D
en

se
R

ow
s<

PR
E

C
>

G
ot

o
fir

st
00

00
00

00
00

10
00

00
00

00
00

00
00

10
00

01
00

00
00

01
00

0.
..

D
en

se
R

ow
s<

PR
E

C
>

Is
in

co
l

be
gi

n
00

00
00

00
00

00
00

00
10

00
00

00
00

10
10

10
00

01
..

.

D
N

S
<

PR
E

C
>

Se
t

fla
g

so
rt

ed
11

10
01

01
01

11
01

11
11

00
10

11
01

11
11

11
10

01
11

11
10

1.
..

Fo
rm

at
O

th
er

R
ow

Fo
rm

at
O

th
er

R
ow

00
00

00
00

00
00

00
00

00
00

01
00

00
00

00
00

00
00

00
00

00
00

1.
..

M
at

N
ot

H
er

m
Sy

m
sk

ew
G

en
’o

pe
ra

to
r=

’
11

10
00

00
00

00
00

10
00

00
00

00
00

00
00

00
00

00
00

00
0.

..

M
at

ri
x<

PR
SF

M
T
>

R
em

ov
e

sh
ar

e
00

10
00

01
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

..
.

M
at

ri
xP

oo
l<

do
ub

le
>

Is
no

t
em

pt
y

00
00

00
00

10
00

00
00

00
01

01
00

11
00

00
00

00
00

0.
..

M
at

Sy
m

B
as

e
M

at
Sy

m
B

as
e

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

0.
..

R
ef

C
ou

nt
D

ec
r

re
f

co
un

t
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
01

00
00

10
0.

..

R
ef

C
ou

nt
L

oc
k

00
00

00
00

00
00

00
00

00
00

00
00

10
00

00
00

00
00

00
00

01
00

00
10

00
0.

..

Sf
C

sr
U

se
r

Sf
C

sr
U

se
r

11
10

01
01

10
01

01
10

00
01

01
00

11
00

01
00

10
00

00
00

10
00

10
10

00
00

0.
..

sp
co

o.
h

R
es

iz
e

01
00

01
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

0.
..

sp
el

l.h
G

ot
o

fir
st

in
ro

w
00

00
00

00
01

00
00

01
01

00
10

00
00

01
00

00
00

00
10

0.
..

sp
lis

t
er

r
sp

lis
t

er
r

11
10

01
00

00
00

00
10

00
00

00
11

00
00

00
00

00
00

01
00

00
10

01
0.

..

sp
m

th
er

m
.h

G
et

el
em

en
t

11
10

01
01

00
01

01
10

00
00

00
11

01
00

01
00

10
00

01
00

10
10

01
00

0.
..

sp
m

th
er

m
sk

ew
.h

In
se

rt
el

em
en

t
11

10
01

01
00

00
00

10
00

00
00

00
00

00
00

00
00

00
00

00
10

..
.

sp
m

ts
ym

sk
ew

.h
M

at
ri

xS
ym

m
et

ri
cS

ke
w

11
10

01
01

10
01

01
10

00
01

01
11

11
00

01
00

10
00

01
0.

..

sp
sk

yu
pp

.h
G

ot
o

ne
xt

in
ro

w
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

..
.

sp
sp

ve
c.

h
’o

pe
ra

to
r+

=
.

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
10

00
0.

..

V
ec

to
rB

lo
ck

ed
<

do
ub

le
>

’o
pe

ra
to

r(
)’

11
10

01
01

00
01

01
10

00
00

00
11

01
00

01
00

10
00

..
.

V
ec

to
rR

ep
<

PR
>

’o
pe

ra
to

r(
)’

11
10

01
01

10
01

01
10

00
01

01
00

01
00

01
00

10
00

00
00

10
10

..
.

V
ec

to
rR

ep
<

PR
>

V
ec

to
rR

ep
11

10
01

01
10

01
01

10
00

01
01

00
11

00
01

00
10

00
00

00
10

10
10

0.
..

..
.

..
.

..
.

Springer

206 Software Qual J (2007) 15:179–212

Table 23 System
measurements of sp blas Size Coupling

Information metric 6,174.4 bits 1,504,101.9 bits
Counting metric 681 methods 246 public variables

Table 24 Summary statistics for sp blas module measurements

Module-level metric Mean Std dev. Min. Median Max.

Information size (bits) 65.0 97.1 7.4 18.8 470.7
Information coupling (bits) 15, 832.6 24, 719.1 296.8 3, 960.7 129, 445.7
Counting size (methods) 7.2 10.7 1 2 52
Counting coupling (pubic variables) 78.6 68.7 1 57 239

Number of modules was 95.

Table 25 Correlation among
sp blas module measurements Counting size Counting coupling

Information size 0.999 0.679
Information coupling 0.692 0.521

Number of modules was 95.

This accounts for the high correlation between information module size and counting size.
All row patterns of many modules in sp blas were unique, reflecting the usage patterns
for global variables. Statistical modeling of sp blas using both size metrics as independent
variables would not be helpful due to the high correlation. The counting module size measure
might be preferred, because the it is easier to collect than the information size.

Modules that had some nonunique row patterns are points that are not perfectly on the
regression line. Such special cases, which have similar usage of global variables by multiple
methods, may be of interest to practitioners.

Figure 10 shows a scatter plot representing information module coupling versus counting
coupling measurements. Because it is a nonlinear relationship, the coupling measures have

0

50

100

150

200

250

300

0 20000 40000 60000 80000 100000 120000 140000

Information Coupling (bits)

C
o

u
n

ti
n

g
 C

o
u

p
lin

g
 (

p
u

b
lic

 v
ar

ia
b

le
s)

Fig. 10 Information module coupling vs. counting module coupling of sp blas

Springer

Software Qual J (2007) 15:179–212 207

moderate correlation values, as shown in Table 25. Table 25 also shows that the correlation
between information module coupling and counting size is moderate, 0.692.

If each module has a unique pattern of usage of public variables, and each module also has
a unique pattern in each subgraph, Si, then information module coupling will be proportional
to the number of nodes in the module, namely, counting coupling.

Coupling(mk |S) = nk(n − 1)

(
− log

1

n + 1

)
(29)

Some of the modules in this study fit these conditions, accounting for the moderate correla-
tion.

8 Discussion

We have observed that the software-metrics literature tends to gloss over the distinction
between forming an abstraction and measuring that abstraction, calling the entire process
“definition of a software metric.” This paper separates the abstraction process from the mea-
surement method, allowing many aspects of software to be modeled by the same abstraction
type which can then be measured in a unified manner.

Kitchenham et al. propose a framework for validating software metrics from a theoretical
perspective, irrespective of a metric’s utility (Kitchenham et al., 1995). Our proposed metrics
fulfill the following criteria proposed by Kitchenham et al.

– Measurements are allowed to take different values.
– Multiple systems are allowed to have the same values.
– Each metric is a valid representation of its attribute, because it essentially conforms to the

properties of Briand et al. (1996b), with the exception of module complexity.
– Each metric has an accepted unit of measure, namely, a bit which is widely used for

information.
– All the metrics are compatible with the ratio scale-type (Briand et al., 1996a).
– Given a hypergraph, the measurement procedures are well defined.

Briand et al. (1996b) advocate ordinary graphs as a useful type of abstraction of software.
Our work extends this notion to hypergraphs, which are well-suited to modeling some
attributes. If a system’s abstraction consists of one connected ordinary graph, Sc, n > 2 (not
considering an environment node), then the formula for the entropy of its system graph, Sc,
is simplified, because each hyperedge has exactly two end points and each node’s pattern is
unique (Allen, 2002).

H (Sc) = log(n + 1) (30)

In such systems, our metrics are highly correlated to simple functions of the number of
nodes (Allen, 2002). Consequently, we suspect that the proposed information theory-based
metrics will have value to practitioners when applied to abstractions of software suited to
hypergraphs with varied numbers of connections, rather than ordinary graphs.

Counting features is the measurement method most often found in the software metrics
literature. This research contributes an alternative approach that is not based on counting.
Our focus is on measuring the amount of information in the abstraction. When features
are independent, then counts and information can be highly correlated, and counts may be

Springer

208 Software Qual J (2007) 15:179–212

preferable. When patterns of relationships are important, then information theory offers a
way to measure them, as illustrated by our case study results.

The results of the case study of artificial hypergraphs illustrate how information theory-
based metrics are sensitive to patterns of hyperedge connections in a way that corresponding
counting metrics are not. However, our metrics are not sensitive to redundant hyperedges, and
thus, our metrics do not model the idea of “strength of relationship.” The results also show
how hyperedges model sets of similar relationships more compactly than corresponding sets
of individual ordinary edges. This could be valuable when relationships can be grouped in
sets according to the underlying semantics.

The case studies of the physics program and pmlp represent scaling up to 14 methods
and 681 methods respectively. In the pmlp case study, information module size was highly
correlated to counting size, but not perfectly; exceptional cases may be of interest to soft-
ware engineers. Information module coupling had a non-linear relationship with counting
coupling, which we interpret to indicate that they measure different things.

9 Conclusions

This paper lays measurement foundations for future empirical research that will assess
relationships between the amounts of information in software development artifacts and
attributes of software quality and process. We build on proposals of Briand, Morasca, and
Basili that graphs are a useful abstraction of software for measurement purposes, and that
property sets are a practical way to give meaning to common terminology, such as size,
length, complexity, coupling, and cohesion (Briand et al., 1996b).

We extend prior work to hypergraphs where a hyperedge signifies a relationship among a
subset of nodes, in contrast to an ordinary edge representing a binary relationship between
just two nodes. To measure the amount of information, we turn to information theory as
the basis for calculating size, complexity, and coupling. For comparison, we also propose
corresponding counting-based metrics.

Three exploratory case studies illustrate some of the distinctive features of information
theory-based software metrics. The first case study looked at a set of small artificially
generated graphs. The second case study examined relationships between methods and
public variables in a single C++ program. The third case study measured relationships
between methods and public variables in 95 C++ classes from the Parallel Mathematical
Library Project (pmlp) (Birov et al., 1999). We found some situations where information
theory-based metrics at the module level are simply proportional to counting-based metrics.
In general, the case studies found that information theory-based software metrics distinguish
various configurations of hypergraph connections in a way that counting metrics do not.
Future work may show that this is relevant to software engineering quality and process.

Future work will evaluate the formal properties of these measures in more depth, and will
evaluate their usefulness in the context of full-scale real-world software products. Similar
extensions to length and cohesion are also expected in the future, as well as extensions to
directed graphs.

Information theory addresses the amount of information when compactly encoded. In
future research, cognitive-science experiments will be necessary to determine the extent
that perceived information corresponds to compactly encoded information. This in turn,
will indicate whether information theory provides a good basis for modeling software as
perceived by programmers.

Springer

Software Qual J (2007) 15:179–212 209

Acknowledgments This work was supported in part by grant CCR-0098024 from the National Science
Foundation. We thank Bell Canada for an academic license to use Datrix, a software measurement tool. We
thank the Software Architecture Group of the University of Waterloo for providing the open-source tool
cppx. We thank Shiva Juluru for providing the physics data manipulation program’s source code. We thank
Anthony Skjellum for providing pmlp source code. We thank Yoginder Dandass and Archana Chilukuri for
help with pmlp measurement. We thank the Empirical Software Engineering research group at Mississippi
State University for helpful discussions. We thank the anonymous reviewers for their helpful suggestions
which significantly strengthened the paper.

References

Abd-El-Hafiz, S.K. 2001. Entropies as measures of software information. In: Proceedings IEEE International
Conference on Software Maintenance, Florence, Italy. IEEE Computer Society, pp. 110–117.

Allen, E.B. 1995. Information theory and software measurement. PhD thesis, Florida Atlantic University,
Boca Raton, Florida. Advised by Taghi M. Khoshgoftaar.

Allen, E.B. 2002. Measuring graph abstractions of software: An information-theory approach. In: Proceedings:
Eighth IEEE Symposium on Software Metrics, Ottawa, Canada. IEEE Computer Society, pp. 182–193.

Allen, E.B., Khoshgoftaar, T.M. 1999. Measuring coupling and cohesion: An information-theory approach.
In: Proceedings of the Sixth International Software Metrics Symposium, Boca Raton, Florida. IEEE
Computer Society, pp. 119–127.

Allen, E.B., Khoshgoftaar, T.M., Chen, Y. 2001. Measuring coupling and cohesion of software modules:
An information-theory approach. In: Proceedings: Seventh International Software Metrics Symposium,
London, England. IEEE Computer Society, pp. 124–134.

Andersson, C., Thelin, T., Runeson, P., Dzamashvili, N. 2003. An experimental evaluation of inspection
and testing for detection of design faults. In: Proceedings: 2003. International Symposium on Empirical
Software Engineering, Rome, Italy. IEEE Computer Society, pp. 174–184.

Bansiya, J., Davis, C.G., Etzkorn, L. 1999. An entropy based complexity measure for object-oriented designs.
Theory and Practice of Object Systems 5(2):1–9.

Bell Canada 2000a. Datrix Abstract Semantic Graph Reference-Manual (Version 1.4).
Bell Canada 2000b. Datrix Metric Reference Manual. Montreal, Quebec, Canada, version 4.0 edition. For

Datrix version 3.6.9.
Birov, L., Prokofiev, A., Bartenev, Y., Vargin, A., Purkayastha, A., Skjellum, A., Dandass, Y., Erzunov, V.,

Shanikova, E., Ovechkin, V., Bangalore, P., Shuvalov, E., Orlov, N.F.A., Egorov, S. 1999. The Parallel
Mathematical Libraries Project (PMLP): Overview, design innovations, and preliminary results. In:
Proceedings of the Fifth International Conference on Parallel Computing Technologies.

Briand, L.C., Daly, J.W., Wüst, J. 1997a. A unified framework for cohesion measurement in object-oriented
systems. In: Proceedings of the Fourth International Symposium on Software Metrics, Albuquerque, New
Mexico. IEEE Computer Society, pp. 43–53.

Briand, L.C., Daly, J.W., Wüst, J.K. 1999. A unified framework for coupling measurement in object-oriented
systems. IEEE Transactions on Software Engineering 25(1):91–121.

Briand, L.C., El Emam, K., Morasca, S. 1996a. On the application of measurement theory in software
engineering. Empirical Software Engineering: An International Journal 1(1):61–88. (See Briand et al.,
1997b; Zuse, 1997a).

Briand, L.C., El Emam, K., Morasca, S. 1997b. Reply to Comments to the paper: Briand, El Emam, Morasca:
On the application of measurement theory in software engineering. Empirical Software Engineering: An
International Journal 2(3):317–322. (See Briand et al., 1996a; Zuse, 1997a).

Briand, L.C., Morasca, S., Basili, V.R. 1996b. Property-based software engineering measurement. IEEE
Transactions on Software Engineering 22(1):68–85. See comments in Briand et al. (1997c), Poels and
Dedene (1997), Zuse (1997c).

Briand, L.C., Morasca, S., Basili, V.R. 1997c. Response to: Comments on Property-based software engineering
measurement: Refining the additivity properties. IEEE Transactions on Software Engineering 23(3):196–
197. (See Briand et al., 1996b; Poels and Dedene, 1997).

Chaitin, G.J. 1966. On the length of programs for computing finite binary sequences. Journal of the Association
for Computing Machinery 13(4):547–569.

Chaitin, G.J. 1975. A theory of program size formally identical to information theory. Journal of the Association
for Computing Machinery 22(3):329–340.

Chapin, N. 2002. Entropy-metric for systems with COTS software. In: Proceedings: Eighth IEEE Symposium
on Software Metrics, Ottawa, Canada. IEEE Computer Society, pp. 173–181.

Springer

210 Software Qual J (2007) 15:179–212

Chen, Y. 2000. Measurement of coupling and cohesion of software. Master’s thesis, Florida Atlantic University,
Boca Raton, Florida. Advised by Taghi M. Khoshgoftaar.

Chidamber, S.R., Kemerer, C.F. 1994. A metrics suite for object oriented design. IEEE Transactions on
Software Engineering 20(6):476–493.

Cover, T.M., Thomas, J.A. 1991. Elements of Information Theory. John Wiley & Sons, New York.
Davis, J.S., LeBlanc, R.J. 1988. A study of the applicability of complexity measures. IEEE Transactions on

Software Engineering 14(9):1366–1372.
Dean, T., Malton, A., Holt, R. 2001. Union schemas as the basis for a C++ extractor. In: Proceedings:

Working Conference on Reverse Engineering, Stuttgart, Germany.
El Emam, K., Benlarbi, S., Goel, N., Rai, S.N. 2001. The confounding effect of class size on the validity

of object-oriented metrics. IEEE Transactions on Software Engineering 27(7):630–650. (See Evanco,
2003).

Evanco, W.M. 2003. Comments on ‘The confounding effect of class size on the validity of object-oriented
metrics’. IEEE Transactions on Software Engineering 29(7):670–672. (See El Emam et al., 2001).

Fenton, N.E., Pfleeger, S.L. 1997. Software Metrics: A Rigorous and Practical Approach, 2nd edn. PWS
Publishing, London.

Gottipati, S. 2003. Empirical validation of the usefulness of information theory-based software metrics.
Master’s thesis, Mississippi State University, Mississippi State, Mississippi. Advised by Edward B.
Allen.

Govindarajan, R. 2004. An empirical validation of information theory-based software metrics in comparison to
counting-based metrics: A case study approach. Master’s thesis, Mississippi State University, Mississippi
State, Mississippi. Advised by Edward B. Allen.

Hatton, L. 1997. Reexamining the fault density-component size connection. IEEE Software 14(2):89–
97.

Hilgard, E.R., Atkinson, R.C., Atkinson, R.L. 1971. Introduction to Psychology. Harcourt Brace Jovanovich,
New York.

Khoshgoftaar, T.M., Allen, E.B. 1994. Applications of information theory to software engineering measure-
ment. Software Quality Journal 3(2):79–103.

Kim, K., Shin, Y., Wu, C. 1995. Complexity measures for object oriented program based on the entropy. In:
Proceedings: 1995 Asia Pacific Software Engineering Conference, Brisbane, Australia. IEEE Computer
Society, pp. 127–136.

Kitchenham, B.A., Pfleeger, S.L., Fenton, N.E. 1995. Towards a framework for software measurement valida-
tion. IEEE Transactions on Software Engineering 21(12):929–944. (See comments in Kitchenham et al.
1997, Morasca et al., 1997).

Kitchenham, B.A., Pfleeger, S.L., Fenton, N.E. 1997. Reply to: Comments on ‘Towards a framework for soft-
ware measurement validation’. IEEE Transactions on Software Engineering 23(3):189. (See Kitchenham
et al., 1995; Morasca et al., 1997; Weyuker, 1988).

Kolmogorov, A.N. 1965. Three approaches for defining the concept of information quantity. Problems in
Information Transmission 1(1):1–7.

Kolmogorov, A.N. 1968. Logical basis for information theory and probability theory. IEEE Transactions on
Information Theory IT-14(5):662–664.

Lapierre, S., Laguë, B., Leduc, C. 2001. Datrix source code model and its interchange format: Lessons learned
and considerations for future work. ACM SIGSOFT Software Engineering Notes 26(1):53–60.

Lew, K.S., Dillon, T.S., Forward, K.E. 1988. Software complexity and its impact on software reliability. IEEE
Transactions on Software Engineering 14(11):1645–1655.

Li, M., Vitányi, P.M.B. 1988. Two decades of applied Kolmogorov complexity. In: Proceedings of the Third
Annual Structure in Complexity Theory Conference, Washington, DC, pp. 80–101.

Mayrand, J., Coallier, F. 1996. System acquisition based on software product assessment. In: Proceedings of
the Eighteenth International Conference on Software Engineering, Berlin. IEEE Computer Society, pp.
210–219.

McCabe, T.J. 1976. A complexity measure. IEEE Transactions on Software Engineering SE-2(4):308–320.
Miller, G.A. 1956. The magical number seven plus or minus two: Some limits on our capacity for processing

information. Psychological Review 63(2):81–97.
Mohanty, S.N. 1979 Models and measurements for quality assessment of software. Computing Surveys

11(3):251–275.
Mohanty, S.N. 1981. Entropy metrics for software design evaluation. Journal of Systems and Software 2:39–

46.
Morasca, S., Briand, L.C. 1997. Towards a theoretical framework for measuring software attributes. In:

Proceedings of the Fourth International Symposium on Software Metrics, Albuquerque, New Mexico,
IEEE Computer Society, pp. 119–126.

Springer

Software Qual J (2007) 15:179–212 211

Morasca, S., Briand, L.C., Basili, V.R., Weyuker, E.J., Zelkowitz, M.V. 1997. Comments on ‘Towards a
framework for software measurement validation’. IEEE Transactions on Software Engineering 23(3):187–
188. (See Kitchenham et al., 1995; Weyuker, 1988).

Munson, J.C., Khoshgoftaar, T.M. 1989. The dimensionality of program complexity. In: Proceedings of the
Eleventh International Conference on Software Engineering, Pittsburgh, Pennsylvania. IEEE Computer
Society, pp. 245–253.

Oviedo, E.I. 1980. Control flow, data flow and program complexity. In: Proceedings: The IEEE Computer
Society’s Fourth International Computer Software and Applications Conference, Chicago, Illinois. IEEE
Computer Society, pp. 146–152.

Poels, G., Dedene, G. 1997 Comments on ‘Property-based software engineering measurement’: Refining the
additivity properties. IEEE Transactions on Software Engineering 23(3):190–195. (See Briand et al.,
1996b).

Runeson, P., Andersson, C., Thelin, T., Andrews, A., Berling, T. 2006. What do we know about defect detection
methods? IEEE Software 23(3):82–90.

Schütt, D. 1977. On a hypergraph oriented measure for applied computer science. In Digest of Papers:
COMPCON 77 Fall, Washington, DC. IEEE Computer Society, pp. 295–296, Abstract only.

Shannon, C.E., Weaver, W. 1949. The Mathematical Theory of Communication. University of Illinois Press,
Urbana, Illinois.

Shereshevshky, M., Ammari, H., Gradetsky, N., Mili, A., Ammar, H.H. 2001. Information theoretic metrics
for software architecture. In: Proceedings 25th Annual International Computer Software and Applications
Conference, Chicago. IEEE Computer Society, pp. 151–157.

Solomonoff, R.J. 1964. A formal theory of inductive inference, part 1 and part 2. Information and Control
7:1–22, 224–254.

University of Waterloo 2004. CPPX: Open source C++ fact extractor. http://swag.uwaterloo.ca/ ∼ cppx.
(Current July 7, 2006).

van Emden, M.H. 1970. Hierarchical decomposition of complexity. Machine Intelligence 5:361–380. (See
also van Emden, 1971 for details).

van Emden, M.H. 1971. An Analysis of Complexity. Number 35 in Mathematical Centre Tracts. Mathematisch
Centrum, Amsterdam.

Visaggio, G. 1997. Structural information as a quality metric in software systems organization. In: Proceedings
International Conference on Software Maintenance, Bari, Italy. IEEE Computer Society, pp. 92–99.

Watanabe, S. 1960. Information theoretical analysis of multivariate correlation. IBM Journal of Research and
Development 4(1):66–82.

Weyuker, E.J. 1988. Evaluating software complexity measures. IEEE Transactions on Software Engineering
14(9):1357–1365.

Zuse, H. 1997a. Comments to the paper: Briand, Emam, Morasca: On the application of measurement theory
in software engineering. Empirical Software Engineering: An International Journal 2(3):313–316. (See
Briand et al., 1996a, 1997b).

Zuse, H. 1997b. A Framework for Software Measurement. Walter de Gruyter and Co., Berlin.
Zuse, H. 1997c. Reply to: ‘Property-based software engineering measurement’. IEEE Transactions on Soft-

ware Engineering 23(8):533. (See Briand et al., 1996b).

Edward B. Allen is currently an Associate Professor at Mississippi State University. He received his B.S.
degree in engineering from Brown University, his M.S. degree in systems engineering from the University
of Pennsylania, and his Ph.D. degree in computer science from Florida Atlantic University in 1995. Prior to
earning his Ph.D. degree, he worked for 20 years in industry performing systems engineering and software
engineering on military systems and corporate data processing systems. His research interests are software
metrics, verification of software for critical systems, and other areas of software engineering.

Springer

212 Software Qual J (2007) 15:179–212

Sampath Gottipati is currently a programmer for Technation Software Consulting. He received his B.E.
in computer science degree from the University of Madras and his M.S. degree in computer science from
Mississippi State Univerisity in 2003. His research interest is software engineering.

Rajiv Govindarajan is currently a programmer for Peri Software Solutions. He received his B.E. in computer
science degree from the University of Madras and his M.S. degree in computer science from Mississippi State
University in 2004. His research interest is software engineering.

Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

