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Abstract Parametric cost estimation models are widely used effort prediction tools
for software development projects. These models are based on mathematical models
that use as inputs specific values for relevant cost drivers. The selection of these inputs
is, in many cases, driven by public prescriptive rules that determine the selection of
the values. Nonetheless, such selection may in some cases be restrictive and some-
what contradictory with empirical evidence, in other cases the selection procedure
is somewhat subject to ambiguity. This paper presents an approach to improve the
quality of the selection of adequate cost driver values in parametric models through a
process of adjustment to bodies of empirical evidence. The approach has two essential
elements. Firstly, it proceeds by analyzing the diverse factors potentially affecting the
values a cost driver input might adopt for a given project. And secondly, an aggregation
mechanism device for the selection of input variables based on existing data is explic-
itly devised. This paper describes the rationale for the overall approach and provides
evidence of its appropriateness through a concrete empirical study that analyses the
COCOMO II DOCU cost driver.
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Fig. 1 Main steps in the development of parametric CERs

1 Introduction

Parametric software cost estimation models are one of the principal effort prediction
methods used in software project management (Boehm, Abts and Chulani, 2000).
Parametric estimation is based on the historical use of project databases and expert
knowledge to obtain a Cost Estimation Relationship (CER), i.e. a mathematical model
that derives effort estimates from selected project attributes. CERs use as input a set of
variables (cost drivers) that are known to significantly affect the overall effort required.
According to the Parametric Estimating Handbook (PEI, 1999), the main elements
of the development of a parametric model entails a first phase of data collection and
normalization followed by the development of the cost model. The latter includes
calibration and validation of the model. Figure 1 depicts these main phases.

When using this kind of cost estimation models, we can consider three major
aspects as determinants of the quality of the resulting models, besides of the quality
and meaningfulness of the available data:

(a) The CER expression used, not only regarding the mathematical model M selected
but also regarding the collection of input variables selected. A considerable amount
of research on parametric estimation models has focused on this aspect (e.g. Farr and
Zagorski, 1965; Herd et al., 1977; Putnam, 1978; Baylei and Basili, 1981; Boehm,
1981; Jensen, 1983; Rubin, 1983; Putnam and Mayers, 1992; Boehm et al., 1995).

(b) How models are calibrated. There are also many calibration studies that introduce
different techniques for better adjustment quality and the management of uncertainty
(e.g., Shrum, 1997; Fischman, 1997; Chulani et al., 1998, 1999a,b; Ferens and
Christensen, 1999; Mertes et al., 1999; Sicilia et al., 2005).

(c) The methods used to select the values for the cost drivers for each concrete project.
Surprisingly, this aspect has attracted less attention. In this direction, Baik and Boehm
(2000) described the decomposition of the COCOMO II TOOL cost driver, which
was later applied as a technique to improve predictive accuracy (Baik et al., 2002).
Similarly, Cuadrado et al. (2000) described the analytical decomposition of the
COCOMO II DOCU variable. Other texts as (DoD, 1999) show that the correct
assessment of the cost drivers inputs for each particular project is acknowledged as
a important milestone in parametric estimation.
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When refering to aspect (c), Cuadrado et al. (2005) demonstrated that the impact
of this factor may be larger than previously mentioned factors in a significant amount,
and that this may be even increased thorough the project development.

This paper describes a novel approach based on the concept of “second level” cost
drivers to improve the quality of the selection of the cost driver values and the results
of effort estimations The idea of multilevel process has been used before in other areas
of software process and software metrics, e.g. numerous examples similar to the FCM
(factor criteria metric) model for software quality evaluation (McCall et al., 1977).
Other examples of the application of multilevel process could be found in (Prather,
1995).

The rationale for this approach is that second-level or subordinate aspects of a cost
driver can be used for its indirect assessment, provided that empirical data for them is
available. In other words, the approach departs from the analysis of the diverse factors
potentially affecting the values a given cost driver might take for a given project. Then,
an aggregation device for the selection of input variables is explicitly devised, as a
result of a process of adjustment to empirical evidence. This technique is thus useful
both for the empirical validation of existing cost driver input selection procedures
and also as a technique to provide an alternative to them. An specific empirical study
regarding the COCOMO II DOCU variable that considers the impact of developing
software documentation (Boehm et al., 2000) is described as an illustration of the
appropriateness of the approach to obtain an enhanced input selection method.

The rest of this paper is structured as follows. Section 2 describes the details of the
method of empirical assessment just mentioned, providing the details of its application
in generic terms. Then, the method is evaluated in a concrete setting in which an avail-
able database is used for the assessment of the DOCU cost driver, resulting in rating
levels that are different to those provided by the COCOMO-II model. Conclusions
and future research directions are provided in Section 4. Finally, the details of the
computation of the rating for the case study are provided as an appendix to the paper
along with complimentary information about different aspects related to the example
and mathematical foundation.

2 A second level cost driver-based assessment technique

In this section, a method to improve the cost drivers rating level selection is described.
The first subsection provides the rationale for the method. Then, the second subsection
details the steps required for the application of the technique. As a definition, a cost
driver directly included in the CER is designated by the expression First Level Cost
Driver (FLCD).

2.1 Rationale for the use of second level cost drivers

The selection ratings of some cost drivers used for a parametric estimation model may
depend on the value of a set of factors, which affect such variables (Cuadrado et al.,
2000; Baik et al., 2000, 2002; Sicilia et al., 2005). For example, the product complexity
is a widely used FLCD in different parametric cost estimation models. Its rating level
for an specific project depends specifically in the COCOMO II Post-Architecture
Model on very different and heterogeneous factors with their own weights in the
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rating level selection, namely: control operations, computational operations, device
dependent operations, data management, operations user interface and management
operations. These ones can be considered as factors that contribute or are included
to some extent in the FLCD, which is of a more abstract nature. Another example of
cost driver that is usually considered through constituent aspects is required usability,
usually broken down in sub-aspects as efficiency, effectiveness and user satisfaction
(van Welie et al., 1999), and for which Crespo et al. (2004) devised a fuzzy aggregation
scheme in a particular application.

The factors that are candidate to decomposition in more concrete aspects or Second
Level Cost Drivers (SLCD) have two main properties:� They encompass heterogeneous facets, i.e., they reflect or summarize the effect of

different more concrete characteristics. Therefore, for a specific project, each of these
characteristics will eventually have its own assessment, being possibly independent
(i.e. no correlated) with the other factors affect the same FLCD.� Each of the second-level characteristics or factors will have its own relative influence
(weight) on the rating selected for the FLCD in question and, therefore, on the final
estimated values for the project being estimated.

Neglecting to inquiry about SLCD would imply an oversimplification in many
cases. This may lead to erroneous or biased selection of rating for the current project,
so the estimations obtained would not be adequate. As a consequence, we can conclude
that these secondary variables have a potential significant effect on the final estimation,
as they determine to a certain extent the value of its associated FLCD. Even though
they are not directly included into the CER, they can be referred to as (second level)
cost drivers because they are significant for estimations and appear as independent
inputs when considered in the parametric model.

For example, let us consider a generic lineal parametric model:

y = a0 + a1x1 + a2x2

where y is any dependent variable as effort, and a0, a1, a2 are the model coefficients
affecting linearly two indepedent cost drivers x1 and x2. They can be consider as FLCD
because they are directly included in the equation. We could have the following three
rating levels obtained from a calibration process with their corresponding numerical
values for both of them (see Table 1),

Let us suppose now that the rating level for x1 in each specific project will depend
only of one factor that can be obtained by applying the rules in Table 2.

Continuing the example, let us state that the rating level for in each specific project
will depend on three hetereogeous factors, that are assessed using other specific rules.
As these new factors do not appear directly in the CER and are associated and de-
termine the value for, they can be considered as SLCD. In the case that corresponds

Table 1 Rating level numerical values for x1 and x2 cost drivers

Rating Low Nominal High

x1 Numerical value 1.15 2.56 3.78

x2 Numerical value 0.54 1.05 4.56
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Table 2 Rating level selection criteria for x1 cost driver

Rating Low Nominal High

Selection criteria Some of the lifecycle Correct for the Excessive for the

needs are not covered lifecycle needs lifecycle needs

to usability, we could consider for example three interdependent aspects: efficiency
(z1), learnability (z2), and satisfaction (z3). In consequence, estimation will typically
include an aggregation stage in which partial estimations of importance regarding dif-
ferent attributes would need to be summarized in an overall value of usability. Crespo
et al. (2004) have described an example of using an OWA operator (Yager, 1988) to
model such aggregation for a given project. Nonetheless, the procedure described in
that paper is highly dependent on the nature of usability evaluation, since it applies
the commonly used Nielsen model for predicting the effort in terms of the number of
users required in usability testing (Nielsen, 1999). This raises the need for a general-
purpose technique that may be tailored to each specific case, but retaining a systematic
structure that justifies the decisions adopted. Such a method is described below.

2.2 Second level cost drivers application process

The mathematical method of rating selection for cost drivers based on SLCD is made
up of generic and a specific process, carried out in sequence.

2.2.1 Generic process

This process consists in three sequential steps, that must be carried out once for the
parametric cost estimation model selected:

Step 1. Study if each FLCD in the model CER could be better assessed in terms
of SLCDs, and, in the positive case, define them in a formal way. For example,
“analyst experience”, a commonly used first level cost driver, can be determined
univocally by only one magnitude: the average experience of the analysts’ team
measured, instance, e.g., in months. But other also commonly used first level cost
driver like “documentation developed through the project”, could be considered as
dependent on some second level cost drivers (details of the behavior of this cost
driver will be described below), as documentation size, documentation complexity
and others. The documentation input value for a specific project should be assessed
by aggregating the values of its associated SLCDs.

Step 2. Build a qualitative and quantitative rating scale for each SLCD (obtained in
step one) that allows us to determine its value for a specific project. For example,
for each of the documentation cost drivers mentioned above, a description and a
qualitative rating scale should be defined. “Documentation size” could be described
as “the amount of documentation developed during the project development regard-
ing the software process covered by project documentation” and its ratings could
be the ones showed in Table 3. The numerical values have taken into account the
mathematical aggregation operator used (which will be detailed below).
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Table 3 Rating level selection criteria and numerical values for SLCD documentation size

Rating Numerical value Description

Very low 0 Only the basic development documentation: user required

documents, software requisites, code documents and user manual

Low 2 More refined technical documentation which includes functional

analysis and low rating design

Nominal 4 In addition to the previous documents, documentation related to

software project management: description of the project plan,

estimation documentation, follow-up reports and final analysis

High 6 In addition to the previous documents, documentation related to

quality assurance of the plans and tests

Very high 8 In addition to the previous documents, documentation related to

auditing, management plans and other documentation

Table 4 Rating level selection criteria and numerical values for FLCD documentation

Rating Aggregated numerical value of the SLCD Description

Low (0,8) Some of the lifecycle needs are not covered

Nominal (9,15) Correct for the lifecycle needs

High (16,24) Excessive for the lifecycle needs

Step 3. Build a scale of numerical values for each FLCD that has associated SLCDs,
called a Rating Level Selection Scale. Each one of the numerical values into the
scale (Rating Level Selectors) will be associated with a specific rating level of
the FLCD. This will enable the selection of the appropriate FLCD rating level
for a specific project. This will be done starting with the values which, for this
project, have SLCD associated with the FLCD studied and using a mathematical
aggregation operator obtain the relevant rating level selector. For example, if we
consider documentation (provided that Table 2 rating levels are used for selection)
a new column containing the rating level selection scale could be added as showed
in Table 4.

2.2.2 Specific process

It consists of three sequential steps that should be done for each project estimated with
the model, i.e. it is the procedure actually used in practical estimation settings. In the
next section this process will be detailed through the case study.

Step 1. Select the rating of each SLCD associated with the studied FLCD and deter-
mine the corresponding numerical value for the project.

Step 2. Using the SLCD values obtained in step one, calculate the numerical value
of the rating selector for the FLCD using the devised mathematical aggregation
operator.

Step 3. Using the value obtained in step two, select the FLCD rating level.

Figure 2 depicts the main differences between the common technique that uses
only first-level input values (FLIV) for cost drivers (right part of the figure) and the
technique described here that uses second-level input values to derive them (left part
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Fig. 2 Graphical description of the differences between the single-level and the second-level cost driver
approach

of the figure). In the second-level approach, the values selected for the first-level cost
driver (N1) are obtained following the steps of selection and aggregation of input
values at the second-level (N2).

So the main problem that should be addressed to derive the rating selection pro-
cedure is the need of devising an aggregation operator and carefully selecting the
rating values for SLCD. This should be accomplished by adjusting them to empirical
evidence whenever project data is available in a process of local calibration for each
cost driver.

3 Evaluation of the cost driver value selection procedure

An experiment using the COCOMO II DOCU cost driver is described in this section as
an illustration of the method described in the previous one also as supporting evidence
of the appropriateness of the decomposition approach. The following six steps were
carried out:

Step 1 The COCOMO II Post-Architecture parametric model (Boehm et al., 2000)
was considered for the experiment due to its public nature and its wide acceptance,
more concretely the “documentation generated during the lifecycle of the software”
(DOCU) FLCD was selected as a case study. The COCOMO II model allows us
to estimate the effort and schedule involved in a software development project. It
is an update of the COCOMO series after Ada-COCOMO and the original CO-
COMO (also know as COOMO 81). The latest COCOMO II is composed of three
sub-models named Application Composition, Early Design and Post-architecture
that will be used at different stages of the development process as more informa-
tion becomes available. The Post-Architecture model, when the architecture of the
system is available, is the one that has been studied and developed in more detail.
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This model is based on the following equation:

P M = a · sizeb+0.01·∑5
i=1 SFi ·

17∏
i=1

E Mi

where PM is the development effort in Person-Months, and a and b are constants
which values are 2.94 and 0.91 respectively in the calibration provided by the authors
of the method. The variable Size is the size of the system in KLOC (thousand lines
of code), and the EMi variables represent cost drivers which are defined by a set of
rating levels with their corresponding set of numeric values. Finally, the equation’s
SFi are called “scale factors” and also present a rating level with their associated
numerical values.
The first level variable “Documentation Match to Lyfe-Cycle Needs” (DOCU) was
selected as a case study since empirical data was available that allowed the separa-
tion of their influence from the overall effort estimations. In addition, this variable
is used in many estimation models apart from COCOMO. COCOMO-II provides
a rating scale in which the values are selected according to the suitability of the
project documentation to the needs of the software process that it is followed. The
rationale behind is tha fact thatreducing the effort spent in documentation (e.g. in
an attempt to reduce costs) may lead to increased costs in maintenance.

Step 2 A set of 17 business applications with similar characteristics were developed,
with a previous statement of their characteristics, as described in the method above
(It is just a coincidence that the number of developed applications is the same
as the number of cost drivers in COCOMO model). The standard used in the
development of the documentation was in all cases the one of the European Space
Agency (ESA, 1991), which recommends the generation of the documents listed in
Table 5.

Table 5 ESA recommended
documents Acronym Document title

SQAP Software Quality Assurance Plan

SCMP Software Configuration Management Plan

SPMP Software Project Management Plan

URD User Requirements Document

SVVP Software Verification and Validation Plan

SRD Software Requirements Document

PFI Initial Function Points Document

UID User Interface Document

ADD Architecture Design Document

DDD Detailed Design Document

PFF Final Function Points Document

SVR Software Verification Report

DDD Detailed Design Document

STD Software Transference Document

SUM Software User Manual

AUD Audit Document

PHD Project History Document
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Table 6 Rating level numerical values and selection criteria for FLCD documentation

Rating Numerical value Description

Very low 0.81 Many of the lifecycle needs are not covered

Low 0.91 Some of the lifecycle needs are not covered

Nominal 1.00 Correct for the lifecycle needs

High 1.11 Excessive for the lifecycle needs

Very high 1.23 Very excessive for the lifecycle needs

Step 3. The documentation artifacts generated and the actual effort spent in the
projects were recorded and analyzed. This allowed the determination of a numerical
value for the input factor DOCU for each project. For all the projects the time spent
in the documentation development was recorded. This was done in order to calculate
the effort percentage of effort dedicated to develop the project documentation when
compared to the total project development effort. The final results pointed out that
the effort percentage dedicated to the documentation of the different projects from
the total project development effort ranged from a minimum value of 12.34% and
a maximum value of 31.67%, with an average value of 24.47%.
Using the computation procedures described in detail in Appendix A, the adjustment
value for the COCOMO II Post-Architecture variable DOCU was derived. The value
obtained from the experiment for DOCU ranges between 1.46 for the higher value
and 1.13 for the lower, with a most probable value of 1.32. This factor was adjusted
according to previously published studies (NASA 1990, 1995, 1996). These studies
indicate that the average effort needed to develop the documentation of a project is
11% of the total. Taking these results into account and adjusting the actual values
obtained for the coefficient DOCU, the determined value was obtained is 1.01 for
the lower and 1.26 for the higher, with 1.15 as the most likely value.

Step 4. The COCOMO II Post-Architecture model was used to derive effort estimates
for the projects, using the original rating levels and the rating selection criteria for
the FLIV DOCU. The COCOMO 2000.0 calibration provides the numerical values
described in Table 6.
The documents created for the projects developed for this study should be classi-
fied as “Very High” according to the criteria in Table 6 or, using a broad margin of
error, as “High”, considering that all of them were experimental. In other words,
they were carried out without a rigorous following of the selected ESA software
process and without any provision for maintenance. Nonetheless, the standard for
the documentation used was conceived for projects with diametrically opposing
characteristics such as high ratings of quality and reliability, exhaustive tests and
continuous maintenance. In this case, if the ratings in Table 6 are used, the numerical
values corresponding to the COCOMO II 2000.0 calibration of the model proposes
for these ratings are 1.23 for “Very High” and 1.11 for “High”. Comparing these
values with those obtained in our case study, it can be concluded that they are very
similar. The divergence appears in the lower limit experimentally obtained for the
variable DOCU, since the numerical value 1.01 corresponds to the medium rating
of the COCOMO II model. If we consider the project characteristics and the docu-
mentation rating selection criteria for the COCOMO II Post-Architecture, it would
be impossible to select this rating for any of the projects presented. Summarizing
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Table 7 Rating level numerical values and selection criteria for SLCD S DOCU

Rating Numerical value Description

Very low 0 Only draft no planed documents

Low 2 Software requisites, code documents, user manual

Nominal 4 In addition to the previous document, functional analysis and

design documents.

High 6 In addition to the previous documents, documentation related to

software project management: description of the project plan,

estimation documentation, tracking reports

Very high 8 In addition to the previous documents, documentation related to

quality assurance

the above, a value lower than 1.11 could never be obtained. This is a case in which
existing rating levels diverge from a body of empirical evidence.

Step 5. The rating selection criteria determined by the consideration of the SLCDs are
used to produce alternative estimates. The determination of the numerical value for
the input variable DOCU obtained from this method was the result of application
of the above described general and specific processes:� Firstly, the SLCDs associated to FLCD DOCU were analyzed. The structured ex-

pert consensus method Delphi (Linstone and Turoff, 2002) was used to determine
the three fundamental factors which influence the effort used in the documenta-
tion development:

1. The size of documentation. SLCD S DOCU
2. The complexity of the documentation. SLCD C DOCU
3. The use of documentation standards and traceability. SLCD ST DOCU

To select each one of these SLCD, a set of ten academic and industry ex-
perts in software engineering were consulted with a two round Delphi ap-
proach. In the first round they were asked to define which are the main fac-
tors that could affect the FLCD DOCU following their expert criteria. In
the second round, they reached an agreement in the three selected ones. As
an example one of the proposed but not selected SLDC was the type of
documents.� Then, the characterization of the ratings for each of them was determined. Tables
7 to 9 providethe results of this process.

After that initial characterization, the variables proposed by COCOMO II Post
— Architecture (Table 6), were substituted with quantitative criteria. Concretely, the
numerical values ratings provided in Table 10 were used.

Once the three generic steps were completed, the specific process was carried out
for the rating selection for each SLCD associated with the FLCD DOCU:

SLCD S DOCU: Based on the sandard composition that followed, the Very High
rating level, which associated numerical value is 8 (Table 6), was chosen for this
first SLIV.

SLCD C DOCU: For this second SLIV, the rating chosen ranged “Low”, and in
certain cases, “Nominal”. This was because, in some cases, the documentation was
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Table 8 Rating level numerical values and selection criteria for SLCD C DOCU

Rating Numerical value Description

Very low 0 Plain text done without tools

Low 2 Plain text generated with common text editors

Nominal 4 Plain text and diagrams generated with CASE tools

High 6 In addition to the previous documents, multimedia documents

generated authoring tools

Very high 8 In addition to the previous documents, documents with new models

and methods written specifically for this

Table 9 Rating level numerical values and selection criteria for SLCD ST DOCU

Rating Numerical value Description

Very low 0 Standards are not used to prepare the documentation of the

software project. The documents are not related.

Low 2 Only some of the documents on technical development adapt to

a standard. The documents are not related

Nominal 4 All the documents on technical development adapt to a

standard. The documents are related

High 6 All the documents on technical development and management

adapt to a standard. Both kind of documents are not related

Very high 8 All the documents on technical development and management

adapt to a standard. Both kinds of documents are related

Table 10 Rating level
numerical values and selection
criteria for SLCD Use of
standards and traceability of
documentation

Rating Numerical value

Very low 0–4

Low 5–9

Nominal 10–14

High 15–19

Very high 20–24

Table 11 Rating level selected
for SLCD SLCD Rating Numerical value

SLCD S DOCU Very high 8

SLCD C DOCU Low, nominal 2, 4

SLCD ST DOCU Very high, high, nominal 8, 6, 4

prepared using only a text editor but, normally, CASE tools were used. Therefore,
the associated numerical values for this variable, using Table 7, are 2 or 4.

SLCD ST DOCU: If we again consider the composition of the ESA standard
for this SLIV, we are forced to choose the “Very High” rating, (with associ-
ated numerical value 8). However, as the projects were experimental, some of
them did not develop some of the documents (among these, SQAP was al-
ways underdeveloped). Therefore, the “High” or “Nominal”, with a numerical
value of 6 or 4 (Table 8), could also be selected for this variable for specific
projects.
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The selected rating levels for SLCD are presented in Table 11.
After selecting the rating of each SLCD, the numerical value of the rating selector

for the FLCD DOCU was computed.
The set BDOCU (see Appendix B) obtained from the previous step is:

BDOCU = {S − DOCU, C − DOCU, ST − DOCU}
= {b1DOCU

, b2DOCU
, b3DOCU

} = {Z1DOCU
, Z2DOCU

, Z3DOCU
}

= {(8), (2, 4), (4, 6, 8)}

Then, the equation provided in Appendix B for the aggregation of second level
values into first level ones is used

ykai
=

r∑
l=1

wl(zml )
fl

with wl = 1 and fl = 1∀l (the reason to adopt these values is that the equation above
is a generic equation that has been devised with the purpose of introducing different
weight for each one of the SLCD in the process to select the rating level for the FLCD
associate (this can be appreciated in Figure 2). In this case we have establishes that
all the SLCD have the same weight so the values for w and f adopt the value 1 and
introduce the values zml from the set BDOCU for this experiment in particular. From
this we get the following set of rating selectors YDOCU (see Appendix B)

YDOCU = {14, 16, 18, 20}

Using Table 10, the Medium, High and Very High ratings for the FLCD DOCU
ratings are finally computed.

If Table 4 is used, we get the set XDOCU (see Appendix B)

XDOCU = {0.81, 0.91, 1.00, 1.11, 1.23}

and consequently the correspondence CDOCU with the sets YDOCU and XDOCU is the
following one:

CDOCU = {(1.00, 14), (1.11, 16), (1.11, 18), (1.23, 20)}

This is determined by establishing a relationship between Tables 6 and 10. This
means that, using the mathematical model described in the second-level technique,
the values chosen for the FLIV DOCU for the projects would be 1.23 “Very High”,
1.11 “High” and 1.0 “Nominal”.

Step 6. The values obtained in steps 4 and 5 for the FLIV DOCU are compared
with those ones obtained in step 3 for the ratings corresponding to each project.
The degree of coincidence is determined and, in consequence, the accuracy of each
of the rating selection methods is compared. For the experiment the results of the
technique proposed here (based on the use of the SLCD) are more coherent with the
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experimental evidence than the other ones. This can be explained by the use of the
original COCOMO ratings tend to preclude the selection of the 1.01 rating, a level
that, as we have explained above, is required due to the characteristics of performance
of some projects. This fact is important for managers that need to do estimations for
such projects and with the traditional method, the selection of the “Nominal” rating
level could be impossible even in the case that, taking into account his experience and
the knowledge of the specific projects to be estimated with COCOMO, indicates him
that Nominal is the adequate rating level. The use of the SLCD model allows him to
balance the effect of the different SLCD in order to obtain the Nominal value for the
FLCD DOCU.

4 Conclusions

The above described technique for modeling cost driver input value selection allows
the linking of the parametric model to a body of empirical evidence that, in turn, can
be used to formulate some overall criteria about the quality of input assessment in
parametric estimation. In an specific way, the quality of an input selection procedure
or technique can be assessed in terms of the following aspects:� Its clearness and lack of ambiguity, if a non-automated procedure is provided.

The use of SLCD avoid any ambiguity included in the FLCD definitions. SLCD
definitions should be more concise and precise. This is based on the fact that each
different aspect of a FLCD that could introduce ambiguity in the definition of the
criteria description for a rating level is considered as a different SCLD with its own
definition. For example,for the FLCD used in the experiment, DOCU, one manager
could determine himself if the quantity of the documentation is correct o excessive
for the lifecycle needs (Table 6); two different managers could have two different
opinions for the same quantity of documentation for the same project. However,
following with the same example, it is easy to verify by reading of the description
of the rating level selection criteria that its more difficult to doubt which of the three
cost drivers presented in Tables 7, 8 and 9 is appropriate.� Its consistency with empirical evidence. In the experiment we have observed that
the use of SCLD allow us the determination of rating levels for the cost drivers
with more consistency with the values actually observed. This is the case of the
“Nominal” rating level for some projects.� Its capability to cover the range of situations that actually take place in specific
project settings. The combination of the values of different SLCD in the aggregation
equation give us the possibility of determining the value of the FLCD ratting levels
(almost impossible of being obtained with the traditional selection method). A clear
example in the experiment where the rating level “Nominal” that the second level
selection method allow to obtain for some of the projects studied: this selection was
impossible to be done with the traditional method.

Clearness, consistency and coverage address different aspects of the notion of
quality in cost driver input selection, and could be used as general criteria for auditing
or evaluation of parametric estimation models. Clearness is only meaningful when
human-oriented procedures are provided for selection. The most typical case is the
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one of COCOMO, where input selection for many cost drivers relies on judgment
about some categories.

Effort required to obtain the effort estimation using the SLCD rating level estimation
method is not as long as with the use of the traditional method. If we consider again
the example used in the experiment, the additional effort to read three tables instead
of one its no too much compared with the advantages in the precision obtained in the
equations and makes it worthless of extra effort. There are only additional work in
the definition of the SLCD for each FLCD in each model, but this work its done only
once for each FCLD in a model.

Appendix A. Calculation of the total effort adjustment factor of the project
attributed to the development of documentation

We will assume a non-lineal parametric equation such as the one used in the COCOMO
II Post – Architecture model.

EN = A × (s)B (A.1)

where EN is the average effort in man-months, s is the size of the product in thousands
of lines of source code, and A and B are two adjustment factors.

If an adjustment factor d is introduced, which represents the contribution of the
software documentation to the overall effort spent, the equation will be changed as
expressed in (A.2):

ED = A × (s)B × d (A.2)

where ED is the effort developed in man-months, considering the effort dedicated to
develop the software documentation.

In our experiment, we obtained the values for each project, ED and Ed , the lat-
ter is the effort devoted to develop the documentation of the project and expressed
as in (A.3), where p is the percentage of the total effort dedicated to software
documentation.

Ed = ED × p (A.3)

Therefore, the development effort expression that takes into account the consideration
of documentation is (A.4).

ED =
(

1

1 − p

)
× EN (A.4)

If the real numerical value p is known, we can therefore calculate the coefficient d,
which should have been used on each product, from Equation (A.5).

d =
(

1

1 − p

)
(A.5)
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Appendix B. Mathematical foundations of the method

A is the non null set its n elements are the FLCD of the model

A =
{

{ai |i ∈ ℵ ∧ (1 ≤ i ≤ n)

n depending on the model

}
(B.1)

This should be non-empty set since, the initial established assumption is that the
method will be applied to parametric models. This imply the use of a not null set of
input variables. The number of variables used would vary according to the model.

ai is the FLCD whose value rating is the finite not null set Xai

Xai =
{

x jai
|x jai

∈ � ∧ j ∈ ℵ ∧ ({1 ≤ j ≤ p)

p depending on the FLCD ai and the model

}
(B.2)

Each of the FLCD ai, (which value depends on the model and the calibration chosen)
will include a set of corresponding real numerical values. These values are classified
as a set of ratings, which also depends on the model used.

Yai is the finite not null set whose elements q are the rating selectors of the FLCD
ai of the model.

Yai =
{

ykai
|ykai

∈ � ∧ k ∈ ℵ ∧ (1 ≤ k ≤ q)

q depending on the FLIV ai

}
(B.3)

The rating selectors corresponding to a specific FLCD only depend on the studied
variable, as they will determine the associated numerical values correspond to each
FLCD described in the set B.2 through the correspondence set (Equation B.4) described
in the paragraph below.

Cai is the not null product set Xai × Yai , which defines the correspondence between
Xai eYai

Cai = {(x jai
, ykai

)|∀x jai
∈ Xai ∧ ykai

∈ Yai } (B.4)

Bai is the set whose elements are the SLCD of the FLCD ai

Bai =
{

blai
|l ∈ ℵ ∧ (1 ≤ l ≤ r )

r depending on the FLCD ai

}
(B.5)

This set can be empty in some cases since, for a specific parametric model, it may
have FLCD for which it is not necessary to define a set of second level variables. Its
rating will depend on one unique aspect which is adequately reflected in the associated
selection rating criteria. Therefore, it does not depend on the set of heterogeneous
characteristics or second level variables. As a result, the number of second level
variables, which will influence the value of a first level variable for a specific project,
depends only on the variable considered.
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blai
is the SLCD whose rating values is the not null finite set Zlai

Zlai
=

{
zmlai

|zmlai
∈ � ∧ m ∈ ℵ ∧ (1 ≤ m ≤ s)

s depending on the SLCD blai

}
(B.6)

Each second level variable has a set on ratings whose number depends only on the
variable considered.

Therefore, if we apply the non- lineal equation

ykai
=

r∑
l=1

wl(zml )
fl (B.7)

we can obtain the ratings selector value yk for the FLCD ai and, consequently, through
set Cai , its real value x jai

. wl is the weight factor associated with the SLCD bl and
shows the relative importance of each of its SLCD with which it obtained the specific
FLCD rating. fl is the exponent associated with the SLCD l.

Appendix C. Brief description of COCOMO II Post-Architecture model

The COCOMO II Post–Architecture model is based on a no lineal Equation (C.1) that
obtains an estimation of the effort to be spent in the development of a software project.

E = A.(s)B+C
∑5

i=1 yi .

( 17∏
j=1

x j

)
(C.1)

E is the overall project effort measured in MM (Man-Month); s is the product size
measured in KLOC (thousands of source code lines); A, B, C, are constants; x j is the
value of the cost driver j; and yi is the value of the scale factor i.

Each one of the 17 cost drivers represent a different feature of the analyzed project.
Five of them are related to product features: RELY (Required product reliability),
DATA (Size of the product database), CPLX (Product Complexity), RUSE (Product
reusability) and DOCU (Product documentation). Three of them are related to plat-
form features: (TIME, execution time restrictions), (STOR, main store restrictions)
and (PVOL, Platform volatility). Six of them are related with Personal features: ACAP
(Analyst capability), PCAP (Programmers capability), AEXP (Analyst experience),
PEXP (Platform experience), LEXP (Language experience) and PCON (Personnel
continuity). And finally, three of them are related to project features: (TOOL (Soft-
ware tools utilization), SITE (Development localization) and SCED (Time needed to
develop the project)). There is also a set of five scale factors: PREC (Precedents),
FLEX (Development flexibility), RESL (Architecture, Risk resolution), TEAM (Staff
cohesion) and PMAT (Process Maturity)).

The process to use both, cost drivers and scale factors, for a specific project again
requires two steps. The first one uses a rating level selection criteria, usually showed
in a table (i.e. Table 2). The adequate rating level for each cost driver and scale
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factor in the current project is selected using the table. The second step requires that
the numerical values associated to the rating selected for each cost driver should be
identified, (usually using a different table but, in same cases, it could be the same one,
e.g. Table 6.)

As an example, we may consider that the quantity of documentation developed is
excessive for our current project according to the software lifecycle needs. If we use
Table 2, we obtain a rating level High and the first step is completed. In step two we
consult Table 6 and obtain a value of 1.11.

Once numerical values for the cost drivers and scale factor have been determined,
they are introduced in the Equation C.1 to obtain the value for E, the effort estimated
for the project. In the example, the multiplier for DOCU is x4 = 1.11 to be multiplied
by the other 16 cost drivers, by A and the value of the size powered to the numerical
value obtained after solving the scale factors expression.

A more extended explanation of how COCOMO II Post-Architecture model works
can be found in Boehm et al. (2000).
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