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Abstract. It is cost-effective for software practitioners to monitor and control quality of software systems from
the early phases of development. Assessing and modeling the effects of design and coding factors on software
system maintainability can help provide heuristics to human designers and programmers to reduce maintenance
costs and improve quality. This paper presents a study based on intuitive and experimental analyses that use
a suite of twenty design/code measures to obtain indications of their effect on maintainability. This paper lists
several important contributions of the work, one of which is the investigation of an unprecedentedly large number of
systems (fifty) in a single study. The previous related studies on the other hand, have investigated 2–8 systems. The
results reported in this paper using experimental procedures are unique, many of which have not been empirically
established in the previous literatures, and are interesting because they are not normally intuitively obvious in most
cases. The study also serves to empirically validate those results that seem to be intuitive. The results of the study
indicate a number of promising effects of design and coding factors on system maintainability. The use of the
results from the relatively early phases of software development could significantly help practitioners to improve
the quality of systems and thus optimize maintenance costs.
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1. Introduction

The maintenance phase in the complete software system lifecycle is often the most expensive
and time-consuming of all phases. An important objective of software quality research is
to devise and engineer methodologies to produce high quality software at low costs. As
the software development progresses in its lifecycle through the phases of requirements
analysis, design, implementation, testing, and maintenance, the complexity and the cost
of the software increases. Because of its cost, software maintainability remains a major
challenge in software quality engineering studies. Indications of the impact of design and
coding considerations concerning maintainability in the “relatively early phases” of software
development, should help the software programmer to improve design or coding in the hope
of reducing the final maintenance costs that can occur due to poor design and coding. The
phrase “relatively early phases” is used to mean early phases relative to the maintenance
phase, viz., design or implementation phases.

The existing pieces of literature1 related to the area of concern in this paper can be broadly
classified into the following two categories2:

1. The ones that proposed new metrics: These new metrics can be classified as either
the ones that measure the quality of software processes (process metrics), or as ones
that measure the quality of the software products (product metrics). Since this paper
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discusses product-based metrics, this paper will review briefly some of the important
literatures that proposed product-based metrics. Broadly, these literatures propose mea-
sures that are either applicable for measuring procedural software (Adamov and Ritcher,
1990; Halstead, 1997; McCabe, 1976), or object-oriented software (Briand et al., 1997;
Chidamber and Kemerer, 1991, 1994; Henderson-Sellers, 1996; Li and Henry, 1994;
Lorenz and Kidd, 1994).

2. The ones that validated the existing and their newly proposed metrics, and investigated
the relationship between the different metrics and different quality attributes: There
are a plenty of works published in this category. Following the proposal of the dif-
ferent metrics by the different authors identified in (1) above, attempts were made by
Basili et al. (1996), Briand et al. (1997, 1998, 2000, 2001), Briand and Wust (2001),
Cartwright and Shepperd (2000), Daly et al. (1996), Deligiannis et al. (2003, 2004),
El Emam et al. (2001, 2002), Koru and Tian (2003), Li and Henry (1993), Prechlelt et al.
(2003), and Succi et al. (2003), to validate these measures and study their impacts on
the number of faults occurring in software (which, though, has an impact on software
maintenance).

Among the recent studies conducted in this area, Briand et al. (2000) studied the em-
pirical relationships between a few design measures and the probability of fault detection
during system testing. Their investigation revealed strong relationships between different
inheritance and coupling based measured and the probability of fault detection in a class.
Further, Briand et al. (2001) performed another experiment with similar goals, and found
the strong impact of system size, coupling, cohesion, and complexity on development ef-
fort. Following the previous validation studies by the different authors mentioned above,
El Emam et al. (2001) performed a validation study using fault data in which they in-
vestigated the confounding effect of class size on the validity of different object-oriented
metrics. They found very interesting results that led the authors to cast doubt over some of
the previous validation results reported in the pieces of literature published prior to their
studies. El Emam et al. (2002) further reported results of studies aimed at investigating the
optimal class size in regards to good quality software. In these studies the above authors as-
sumed the faults occurring in software as a contributor to the maintainability (quality) of the
software.

Apart from the principal pieces of work performed by the above mentioned authors,
several other discrete pieces of work broadly related to the results reported in this paper are
summarized below. Misra and Bhavsar (2003) studied the relationships between different
software measures, and the number of bugs detected by the Halstead’s bug-density measure
(Halstead 1997). Misra and Bhavsar (2003a) also extended their study to investigate the
relationships with Halstead’s program difficulty measure (Halstead, 1997). Succi et al.
(2003) empirically evaluated the impact of design decisions on the defect behavior of classes.
Koru and Tian (2003) reported results of their study in which they intended to compare
and characterize the similarities and dissimilarities between high complexity modules and
high defect rates. They found out that modules with higher defect rates are usually those
with complexity rankings little below the most complex ones. Deligiannis et al. (2003)
investigated the specific effect of any object-oriented design heuristic on the maintainability
of object-oriented systems. In another later study, Deligiannis et al. (2004) performed a
controlled experiment using undergraduate student subjects to investigate the impact of
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some design principles on maintainability. Prechelt et al. (2003) performed a controlled
experiment to study the effect of the depth of inheritance on code maintenance, and found
out that the previous claims that the depth of inheritance affects maintenance was without
sound basis.

Among the above mentioned previously published works, although a few notable studies
(Binkley and Schach, 1997; Daly et al., 1996; Deligiannis et al., 2004; Harrison et al., 1991,
2000; Lanning and Khoshgoftar, 1994; Li and Henry, 1993; Prechlelt et al., 2003; Rombach,
1987; Wake and Henry, 1988) observe the effect of the different design/code level metrics
on maintainability, all those studies collected maintainability data using indirect schemes
such as fault data during system testing, development effort, and maintenance data through
subjective evaluation of software. Since maintainability can be affected by a broad spectrum
of reasons, it is worth considering maintainability models in such studies that consider
several issues.

This paper presents a study conducted to study the usefulness of different, widely ac-
cepted design/code level metrics in assessing maintainability early in the software lifecycle.
This paper is based on a comprehensive empirical study involving direct measurements of
source-code through chosen projects. The chosen projects have varied characteristics. Main-
tainability was measured using the widely accepted Maintainability Index (MI) (Welker
and Oman, 1995). The values of the metrics studied were collected from static analyses of
source-code. The value obtained for each metric was statistical investigated together with
the value of MI. Interesting results that could not even be predicted logically were obtained
through the experimental analysis. Different bivariate and multivariate statistical analyses
were conducted so as to help the designers and programmers for controlling maintainability
of the final product by monitoring the effects of the important early phase design/coding
factors. However, it should be cautioned, that this study only provides probable statistical
indications of the effects of different measures on maintainability. The research conducted
in this study only takes into account the objective measures and does not consider the sub-
jective factors that influence human designers and maintainers of a system. The results of
this study should help the designers and programmers to consider different factors that they
should always keep in mind while developing the overall system. Some of the important
contributions of this research are highlighted below:

• Comprehensive study: This work considered twenty different design/code level mea-
sures and studied their effect on maintainability using different statistical and logical
techniques. Several interesting results were found from empirical analyses that appar-
ently do not follow intuition. The conclusions drawn from this work will serve as guidance
to the designers and programmers in developing a well maintainable product by control-
ling the influence of important design/coding factors from the early phases of software
development. The previous works that were done in the similar lines, as mentioned above,
did not empirically investigate the effects caused by most of the factors considered in this
study. While the exploration of the existence of relationships among some of the factors
and maintainability may sound trivial, their empirical validation is required to establish
the existence of such relationships. This also serves to negate the incorrect claims, if any,
made by the proponents of object-oriented development techniques.

• Confluent effects on maintainability: This work not only studies the singular effects
of the individual metrics on maintainability, but also considers the confluent effects of
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all twenty metrics on maintainability. This work is an important contribution over the
previous studies, as no study in the past considered such a large selection of different
important metrics on maintainability. Consequently, these results will help the consci-
entious designers and programmers in prioritizing those important design/coding factors
that have significant impact on maintainability.

• Relationship between independent variables: An important contribution of this work
is that for the first time, this paper has studied the relationships solely amongst the
independent variables considered in this study (i.e., the measures that are used to predict
maintainability). This investigation is quite insightful because some of these measures
are highly correlated between themselves and do not help to better explain the behavior
of maintainability.

• Investigated a large number of systems: Because of the rigor and complexity involved
in collecting a large number of systems and extracting a wide range of data from them,
it is quite possible that the previous studies investigated only a very limited number of
systems (typically two to eight). This limits the variability of the application domain,
size and complexity of the systems. Thus, the conclusions drawn from the data collected
from these limited number of systems tend to be unreliable. In this unprecedented study,
this paper has considered a large number of systems to draw reliable conclusions. Data
has been collected from 50 different systems. 30 systems were used for designing this
model and 10 were used for the purpose of validation.

• Improved accuracy of the conclusions: Unlike the previous studies, this paper has
minimized the biasness of the choice of systems by randomizing the selection of samples.
This improves the accuracy of the conclusions drawn from this study.

• Considered multiple aspects of maintainability: Most previous studies considered
maintainability based on either, or some, of the following: non-comment source lines,
known errors, error density, subjective maintenance effort or real industrial software mod-
ification reports. Since maintainability comprises of many factors (e.g., the psychological
factors that drive proper designing and coding of systems developed), it would be more
practical to consider many aspects of maintainability together as a dependent variable.
Such models would be more valuable to study the relationship between different design
level metrics and maintainability while observing the effect of the former on the latter
early in the software lifecycle. Unlike the previous studies, this paper considered the
well-accepted indicator of maintainability, the Maintainability Index (MI) (Welker and
Oman 1995), for collecting the data of maintainability of different systems.

2. Description of the study

2.1. Purpose of the study

An intuitive and empirical study was conducted to assess the nature and level of association
between maintainability and the different software metrics that can be obtained from the
relatively early stages of the software lifecycle. In other words, it was intended to observe
the statistical nature and significance of a relationship between a design/code level metric
and maintainability, and to model the relationship between the two. By knowing the values
of the design/code metrics from the early stages of development, quality can be monitored
right from the design and coding stages.
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2.2. Systems investigated

In the study, 50 projects written in C++ were considered. The systems varied in size and ap-
plication domains, and were mostly obtained as open-source software. Table 1 summarizes
some of the characteristics and sources of collection of the systems investigated.

2.3. Experimental procedure and data collection

Source code delivered at the end of the implementation phase was collected from different
projects. The measurement tool, Krakatau Metrics Professional developed by Power Soft-
ware Inc., was then used to extract the values of the different traditional, procedural and
object- oriented metrics.3 Each experiment involved obtaining one of the twenty metrics
data along with the data of maintainability. The methodology can be summarized into the
following main steps:

1. Initially, a pool of 50 C++ programs (Table 1) was constructed with various ranges of
lines of code, number of classes, number of methods and application domains.

2. From the pool, 30 programs were randomly selected using a random number genera-
tor. These programs were classified as the “model builder” sample set, and were used
to perform descriptive analysis, bivariate correlation, bivariate regression, multivariate
regression analysis, ANOVA, and to build the final model of multiple regression.

3. From the remaining 20 sample programs, again 10 programs were randomly selected
using a random number generator. These programs were classified as the “validation”
sample set, and were used to validate the multiple regression model.4 The validation
exercise is used to statistically check the correctness of the model developed using
empirical methods.

4. Two metrics, one of the twenty design/code level metrics and maintainability, were
extracted using a static analysis tool for each sample of both the “model builder” and
the “validation” sample sets.

5. Steps 2–4 were repeated for all the 40 samples.
6. The data obtained is used for analysis using statistical methods (See Section 3).

2.4. Variables and the data collected

For each of the samples, a broad range of values of twenty different software measures
were collected along with the value of maintainability. Table 2 lists, in an alphabetic order,
the different predictive metrics considered in the study and their definitions. The metrics
selected in the study are either from the popular metrics suites proposed and validated by
Chidamber and Kemerer (1994), Lorenz and Kidd (1994), and Brite e Abreu and Carapuca
(1994), or from other metrics that are commonly used and have been validated in the past,
for example, the number of source lines of code, and the number of methods. According to
the author’s opinion, these selected metrics characterize most of the major functionalities
of object-oriented designs.
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Table 1. Systems investigated.

Lines of Num Num
Syst. Source code class method

1 http://www.csse.monash.edu.au/∼ darrenp/diamondbase.html 16976 23 476
2 http://sourceforge.net/project/showfiles.php?group id = 3191 11943 16 393
3 http://www.objectcentral.com/ (V) 83436 135 1904
4 http://yaktest.sourceforge.net/ 931 18 65
5 http://www.sashanet.com/internet/download.html#anchor home 709 4 49
6 http://www.freecode.com/projects/billgpc/ 8175 3 154
7 http://www.codebeach.com/(NETCLASS) 1272 5 12
8 http://www.nwlink.com/ ∼ mikeblas/samples/index.htm (COLORLB) 704 4 21
9 http://www.laas.fr/ ∼ ortalo/openamulet/ 117447 156 4561

10 http://www.nwlink.com/∼ mikeblas/samples/index.htm (APIBROW) 900 5 11
11 http://coool.mines.edu/ 3600 1 26
12 http://www.geocities.com/TheTropics/Paradise/7231/GraphLib.htm 809 19 91
13 http://www.shinecomp.com/index.shtml 3889 19 257
14 http://pobox.com/∼ oleg/ftp/Communications.html#tcp-stream 1389 17 81
15 http://www.gradsoft.com.ua/eng/Products/ToolBox/toolbox.html 9159 61 458
16 http://gql.sourceforge.net/ 11943 16 393
17 http://www.orcane.net/freeodbc++/ 16621 16 47
18 http://www.openip.org 117447 156 4561
19 http://www.cs.wustl.edu/∼ schmidt/ACE-overview.html 431910 12498 983
20 http://www.geocities.com/corwinjoy/dtl 15858 47 746
21 http://osalp.sourceforge.net/ 86814 56 1293
22 http://lin.fsid.cvut.cz/∼ kra/index.html#QpThread 7273 91 581
23 http://www.gnu.org/software/goose/goose.html 19549 46 943
24 http://yukon.genie.uottawa.ca/∼ lavoie/software/nurbs/ 38184 1 721
26 http://www.odin-consulting.com/OPP/ 46579 384 3523
27 http://www.dip.ee.uct.ac.za/∼ brendt/srcdist/ 15615 56 710
28 http://math.nist.gov/sparselib++ 17802 22 583
29 ftp://ftp.simtel.net/pub/simtelnet/msdos/cpluspls/calcplus.zip 3618 47 382
30 http://www.fltk.org 76046 182 3236
31 http://corelinux.sourceforge.net/ 53516 100 1381
32 http://www.webthing.com/cgiplusplus/ 18772 40 837
33 ftp://ftp.virginia.edu/pub/tools/ 4978 34 394
34 http://www.xraylith.wisc.edu/∼ khan/software/fftpack/ 16779 37 873
35 http://www.cryst.bbk.ac.uk/classlib/ 10863 31 393
36 http://www.netwood.net/∼ edwin/svmt/ 37321 88 3882
37 http://home.att.ne.jp/green/atlan/oz/index.html 18193 147 1240
38 http://www.oonumerics.org/blitz/ 98287 273 5036
39 http://www.csg.is.titech.ac.jp/∼ chiba/openc++.html 40379 135 1304
40 http://www.eskimo.com/∼ weidai/cryptlib.html 42611 308 2145
41 http://www.nwlink.com/∼ mikeblas/samples/index.htm (MRULESS) 928 6 25
42 http://www.media.mit.edu/∼ kbrussel/SocketMan/ 7047 4 155
43 http://www.gnu.org/software/goose/goose.html 195549 46 943
44 http://www.geocities.com/SiliconValley/Horizon/1350/pacman/ 6262 21 196
45 http://www.ph.tn.tudelft.nl/∼ klamer/cppima.html 6726 37 351
46 http://www.zeta.org.au/∼ jon/STL/views/doc/views.html 858 8 42
47 http://www.codesites.com/ (OPENC++) 40379 135 1304
48 http://www.xraylith.wisc.edu/∼ khan/software/fftpack/ 16779 37 873
49 http://goethe.ira.uka.de/∼ wilhelmi/pvm++/ 1958 1 70
50 http://www.vxcl.org/ 15691 45 260
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Table 2. Predictive metrics.

Predictive metric Acronym Definition

Average class size ACLOC Average class size in terms of the number of lines per class
Attribute Hiding factor AHF The measure of the visible attributes, and can be calculated

by summing the visibility of each attribute in respect to
the other classes in the system (Brite e Abreau and
Carapuca, 1994). In the calculation above, private = 1,
public = 0, Protected = Size of the Inheritance Tree /
Number of Classes.

Attribute inheritance
factor

AIF The percentage of class attributes that are inherited. It is
calculated by summing the inherited attribute for all
classes from its super-classes in a project.

Average method size AMLOC Average method size in terms of number of lines per
method (Lorenz and Kidd, 1994)

Average depth of paths AVPATHS The average depth of paths from methods that have paths at
all.

Control density CDENS Represents the percentage of control statements in the code
Coupling factor COF Coupling Factor measures the extent of communication

between client and supplier classes (Lorenz and Kidd,
1994). It is measured for the entire project as the fraction
of the total possible class coupling. Its value ranges
between 0 and 1. Lower values are better than higher
ones.

Depth of inheritance tree DIT Depth of inheritance tree (Chidamber and Kemerer, 1991)
measures the position of a class in the inheritance tree. It
corresponds to the level number of a class in the
inheritance hierarchy. The root class has DIT value of
zero.

Lack of cohesion in
methods

LOCM LOCM metrics calculates the degree of communication
between the methods and member variables of a class
(Chidamber and Kemerer, 1991). It is obtained by
calculating a list of member variables and the number of
references to each variable of all methods in that class.
Secondly, the sum of the ratios of the usage divided by
the total number of methods is obtained. Finally, LOCM
is calculated as the quotient of the sum of ratios by the
total number of attributes.

Method hiding factor MHF Helps to measure the visibility or invisibility of each
method with respect to other classes in the project (Brite e
Abreau and Carapuca, 1994). The visibility is calculated
as follows: private = 1, public = 0, protected = Size of
the Inheritance Tree divided by the Number of Classes.

Method inheritance factor MIF Obtained by dividing the total number of inherited methods
by the total number of methods. The total number of
inherited methods, on the other hand, is obtained by
summing the number of operations that a class has
inherited from its super- classes.

Program length N Measures the total number of operators and operands in a
program (Halstead, 1997).

(Continued on next page).
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Table 2. (Continued).

Program vocabulary n Measures the total number of unique operators and unique
operands in a program (Halstead, 1997).

Number of Classes NCLASS Calculates the total number of classes in a system.
Number of methods NMETH Calculates the total number of methods in a system.
Polymorphism factor POF Helps to measure the degree to which classes within a

system are polymorphic (Brite e Abreau and Carapuca,
1994). Polymorphism is used in object oriented
programming to perform run-time binding to one class
among several other classes in the same hierarchy of
classes. Polymorphism helps in processing instances of
classes according to their data type or class.

Percentage
public/protected
members

PPPC Calculates the percentage of public and protected members
of a class with respect to the other members of the class.

Response for classes RFC Measures the cardinality of the response set of a class
(Chidamber and Kemerer, 1994). Response for class is
the number of methods in a class, plus the number of
distinct methods called by those methods. Since the
principal mode of communication between objects is
through message passing, an object can be made to act in
a certain way through a particular way of method
invocation.

Source lines of code SLOC Calculates the number of source lines in the project.
However, this excludes lines with white-spaces and
comments.

Weighted methods in
classes

WMC Reflects the complexity of the classes and is the sum of the
cyclomatic complexities of all methods in the classes
(Chidamber and Kemerer, 1994). The WMC metric is
obtained by summing the values of McCabe’s
Cyclomatic Complexity of all local methods.

For quantifying the effort needed for maintaining software, MI (Welker and Oman, 1995)
was considered as the dependent variable. The lower the value of MI, the more difficult it
is to maintain and vice versa.

MI is computed as a function of four metrics: the average Halstead’s Volume per module
(avgV), average extended cyclomatic complexity (avgV(G’)), average lines of code (av-
gLOC), and average percent of lines of comments per module (perCM). Specifically, MI
= 171 − 5.2∗ ln (Avg V) − 0.23∗ avg V(G′) − 16.2∗ ln (avgLOC) + 50∗ sin(sqrt(2.4∗

perCM)). For further details, the readers are referred to Welker and Oman (1995) or Welker
et al. (1997). Welker et al. (1997) discuss four MI metric models of which the three-metric
and the four-metric models are considered to be better than the one-metric or the five-
metric models. Considered in the study was the four-metric model because it is believed
that comments in code have the potential to significantly contribute to maintainability.

It was intended to estimate the degree to which the maintainability index and the different
metrics, obtainable early in the software lifecycle, are related. MI has been validated several
times in the past (Coleman et al., 1994; Oman and Hagemeister, 1994; Welker and Oman,
1995) and has been shown by Oman and Hagemeister (1994) that model components are
good and sufficient predictors of maintainability.
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ACLOC, AHF, AIF, AMLOC, AVPATHS, CDENS, COF DIT, LOCM, MHF, MIF, n, N,
NCLASS, NMETH, POF, PPPC, RFC, SLOC and WMC were considered as the indepen-
dent predictor variables.5 In the study, each of these measures were considered along with
maintainability and the extent to which the former affects the latter was studied using the
techniques described in Section 3.

3. Analysis

3.1. Intuitive analysis

In order to determine the effect of the different design level measures on quality, the expected
relationship between the former and the latter was first intuitively analyzed and predicted.
For the sake of brevity, the detailed analysis of the results of the intuitive analysis are not
described, but are summarized in Table 3. The following are the results of the intuitive
analysis, in most general cases. However, there can be deviations from these points of
analyses in certain cases.

3.2. Experimental analysis

The intuitive analyses in Section 3.1 suffice only to predict the logical relationships between
the different design/coding factors and maintainability. However, they do not provide suffi-
cient evidence of the degrees of relationship between the different factors and maintainabil-
ity, the nature of variations of maintainability with respect to the variations in the factors,
and the extent of the effects of one factor in the presence of the others. These characteristics
need to be determined and validated using experimental means. The experimental method-
ology described in Section 2.3 was used to collect data, and analyze them statistically to
address the above issues.

3.3. Statistical analysis

Summarized in this section are some of the many statistical analyses performed on the
data obtained by performing the experiments in Section 3.2. The analytical techniques used
were Descriptive Analysis, Influential Analysis and Diagnostics, Linear and Non-Linear
Regression Analysis, Correlation Analysis, and Multiple Regression Analysis. The results
obtained from Multiple Regression were also statistically validated.

3.3.1. Descriptive statistics Basic descriptive statistics was performed for each of the
variables. While performing the analyses, the problematic or corrupted data points (points
that have inconsistencies, unusual distributions, unaccountability or incompleteness) were
rejected from further considerations. Some variables, e.g., DIT, NCLASS, NMETH and
SLOC, which, by definition, can only take integral values, were inspected in the frequency
tables for their correct type. The frequency table for DIT also shows a special condition
of this variable since all its values are clustered in only seven points. The definitions of
the other variables do not limit feasible values, so it was not possible to detect inaccurate
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Table 3. Results of intuitive analysis: Relationship with maintainability.

Predictive Relationship Intuitive cause of the relationship
measure (+ve, −ve, nil) (with increase in the value of the predictive measure)

Average class size
(ACLOC)

−ve The class becomes more complex, less structured and
more difficult to understand.

Attribute hiding (AHF) +ve In general, the amount of abstraction increases.
However, the analysis could be different in cases such
as where the system is actually abstracted to too great
a degree and important aspects are lost, requiring
rework to fix as the systems are maintained/evolved.

Attribute inheritance
factor (AIF)

−ve As attribute inheritance increases, the number of
attributes coupled between different classes’
increases.

Average method size
(AMLOC)

−ve The method becomes more complex, less structured and
more difficult to understand. However, the analysis
could be different in cases such as where there are
very small methods. The tracing and understanding of
dynamic behavior becomes more difficult, so the
relationship between average method size and
maintainability may be more complex.

Average depth of paths
(AVPATHS)

−ve The classes and methods become more difficult to
understand, debug and test

Control density (CDENS) −ve The number of controls paths that should be traced or
executed in a software unit increases.

Coupling (COF) −ve Coupling increases communication between classes,
reduces encapsulation, and in turn increases the
complexity of software.

Depth of inheritance tree
(DIT)

−ve The class deeper in the hierarchy could inherit more
data from its ancestors than the classes in the
shallower levels.

Lack of cohesion
(LOCM)

−ve Cohesion supports encapsulation and it reduces the
complexity of the software to understand, implement
and test.

Method hiding (MHF) +ve In general, the amount of abstraction increases.
However, the analysis could be different in cases such
as where the system is actually abstracted to too great
a degree and important aspects are lost, requiring
rework to fix as the systems are maintained/evolved.

Method inheritance (MIF) −ve The number of methods coupled between different
classes increases

Program vocabulary (n) −ve The sum of the number of unique operators and
operands increases.

Program length (N) −ve The total number of operators and operands increases.
Number of classes

(NCLASS)
−ve The intelligent content, the number of bugs, and the

difficulty to understand and test increases.
Number of methods

(NMETH)
−ve The intelligent content, the number of bugs, and the

difficulty to understand and test increases.

(Continued on next page.)
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Table 3. (Continued.)

Polymorphism (POF) −ve The run-time binding of message calls to one of
−venereal classes in the same class hierarchy
increases. Thus, polymorphism makes code very
difficult to understand (especially in a dynamically
typed environment). However, on the other hand, it
should also be noted this it is also often intended to
make the addition of further subclasses exhibiting the
same polymorphic behavior easier. So some
maintenance changes may produce a positive
correlation.

Percentage Public/
Protected Members
(PPPC)

−ve The visibility outside of a class increases, and the
encapsulation decreases.

Response for Class (RFC) −ve The number of methods and the number of distinct
methods called by those methods in a class increases.

Source Lines of Code
(SLOC)

−ve The intelligent content, the number of bugs and the
difficulty to understand and test increases.

Weighted Methods in
Class (WMC)

−ve The static complexity of the methods, the control flows
will be more complex.

data from mere inspection. Histograms and box-plots were also drawn for each variable to
see the shape of the samples and to help detect outliers, which will be studied further in
the diagnostic for the regression analysis. To maintain brevity of the paper, scatter plots,
histograms and box-plots are not presented. However, Table 4 in the Appendix shows the
summary of the results from the descriptive analysis.

3.3.2. Linear regression: Diagnostics for independent variables A linear regression
model was obtained for each independent variable versus the dependent variable, MI. A
diagnosis of influential points was done using leverage analysis and Cook’s distance to
check the outliers. The usual threshold values were used to eliminate points, i.e., 4/n for
Cook’s distance and (2k + 2)/n for the leverage (where n stands for number of observations
and k for number of predictors).6 Thereafter, the linear regression analyses were performed
without these points. In some cases, the results were analyzed again (drawing required
plots, like histograms and scatter-plots of residuals) and several iterations of analyses were
performed including or excluding influential points to find the best results. Table 5 in the
Appendix summarizes for each variables the results of all models including (i.e., for all
cases) or excluding the influential points (i.e., filtered).

The values of the correlation coefficient, together with that of the p-value of the linear
regression models, show that the variables ACLOC, AMLOC, AVPATHS, CDENS, COF,
DIT, n, N , PPPC, and WMC are relatively strongly7 influential on MI, the variables MHF,
RFC, SLOC, and AIF are relatively moderately influential on MI, whereas the other variables
are negligibly influential on MI. It is to be noted from the results of the regression analysis
that the significance levels reported are singularly related to that of linear regression. Thus,
for the cases where no good model was found, a non-linear relationship should be explored.
Besides, since the highest R2 found is 0.657, many of the variables considered do not
explain, per se, more than half of the behavior of MI. So, a multiple regression model
should be considered.
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Table 4. Results of descriptive analysis.

N Minimum Maximum Mean Std. deviation

SAMPLE 30 1 50 25.67 14.667
ACLOC 30 11.00 106.88 40.1454 27.37158
AHF 30 .000 .333 .17330 .107055
AIF 29 .1251 .5412 .336885 .1145597
AMLOC 30 5.068 27.157 13.36660 6.630415
AVPATHS 30 1.05 4.51 2.2129 .89455
CDENS 30 .1300 .5350 .398759 .0876392
COF 30 .00 .45 .1813 .13752
DIT 30 0 7 2.27 1.760
LOCM 30 12.00 118.00 65.3882 28.66731
MHF 30 .0 .4 .133 .1034
MIF 30 .000 .386 .15730 .130833
SMALLN 30 32.44 171.91 77.8120 38.54853
N 30 6 1509 587.66 366.112
NCLASS 30 1 384 96.70 107.660
NMETH 30 81 7547 1780.07 1945.231
POF 30 .00 .55 .1788 .16365
PPPC 30 33.16 118.00 81.7065 15.69710
RFC 30 4.47 9875.00 345.2230 1800.00367
SLOC 30 744 143209 27005.23 36495.306
WMC 30 4.43 49.80 17.4656 10.91256
MI 30 68.55 148.37 95.6436 14.38119
Valid N (listwise) 29

3.3.3. Non-linear models An analysis of non-linear fit was done for each independent
variable against the dependant variable MI. In each case, 7 different models, quadratic, cubic,
exponential, inverse (y = a + b/x), logarithmic (y = a + b ln(x)), power (y = axb), and
the S model (y = exp(a + b/x)), were considered along with the linear model. For each
model, the R, R-square and ANOVA results were considered to select the best fitting model.
When the results were similar in nature, quadratic and cubic models were discarded, since
their estimation demands more degrees of freedom (they take more coefficients).

The complete results are listed in Table 6 in the Appendix. From this analysis, good
fitting models were found for 8 of the variables: ACLOC, AMLOC, AVPATHS, CDENS,
DIT, PPPC, SLOC, and WMC. For the first six the inverse model was selected, for SLOC a
logarithmic model was selected, and for WMC the best fitting model was found to be linear.

3.3.4. Correlations between independent variables Correlation analysis was performed
between the independent variables used in the study. In case two, the variables were found
to be highly correlated, one of them was considered to be redundant as a predictor, since
it carries the same information as the other. Both Pearson’s and Spearman’s correlation
were performed since Pearson’s analysis only detects linear associations. The significant
values (at least at 95%) obtained are listed below in Table 7 in the Appendix. The values
non-significant for Spearman’s rho, but significant for Pearson’s, are marked with a “star”(∗).

The correlation analysis was performed again excluding the outliers identified in the
bivariate linear models. The results are shown in Table 8 in the Appendix. Although many
of the associations are weak, some of the variables show strong associations with many other
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Table 5. Results of linear regression.

Variable Model N R R-square P-value Const. Coefficient

ACLOC All cases 30 0.221 0.049 0.241 100.305 −0.116
Filtered 25 0.601 0.361 0.001 105.223 −0.308

AHF All cases 30 0.070 0.005 0.712 97.279 −9.437
Filtered 29 0.206 0.042 0.284 90.067 20.963

AIF All cases 29 0.243 0.059 0.204 84.869 30.241
Filtered 28 0.013 0.000 0.947 94.419 −1.078

AMLOC All cases 30 0.662 0.439 0.000 114.845 −1.436
Filtered 28 0.810 0.657 0.000 110.284 −1.242

AVPATHS All cases 30 0.086 0.007 0.650 92.568 1.390
Filtered 27 0.536 0.287 0.004 76.585 2.280

CDENS All cases 30 0.286 0.082 0.125 114.364 −46.946
Filtered 28 0.413 0.171 0.029 112.644 −44.404

COF All cases 30 0.418 0.174 0.022 87.728 43.669
Filtered 27 0.415 0.172 0.31 87.408 34.960

DIT All cases 30 0.176 0.031 0.353 92.391 1.435
Filtered 27 0.434 0.188 0.021 88.839 2.425

LOCM All cases 30 0.119 0.014 0.531 99.551 −5.9E-2
Filtered 28 0.193 0.037 0.324 90.392 6.7E-2

MHF All cases 30 0.207 0.043 0.272 99.480 −28.803
Filtered 26 0.379 0.144 0.056 99.485 −34.518

MIF All cases 30 0.015 0.000 0.938 95.386 1.637
Filtered 28 0.155 0.024 0.430 92.777 11.577

n All cases 30 0.186 0.034 0.326 101.263 −6.9E-2
Filtered 26 0.408 0.166 0.039 102.206 −0.111

N All cases 30 0.124 0.015 0.515 98.497 −4.8E-3
Filtered 27 0.419 0.176 0.030 101.263 −1.3E-2

NCLASS All cases 30 0.006 0.000 0.973 95.727 −8.6E-4
Filtered 25 0.084 0.007 0.671 93.963 7.4E-3

NMETH All cases 30 0.158 0.025 0.405 97.718 −1.2E-3
Filtered 27 0.183 0.034 0.360 95.957 −8.8E-4

POF All cases 30 0.145 0.021 0.446 97.914 −12.700
Filtered 27 0.187 0.035 0.349 96.592 −11.782

PPPPC All cases 30 0.137 0.019 0.506 95.262 −8.063
Filtered 26 0.467 0.219 0.016 54.675 0.479

RFC All cases 30 0.121 0.015 0.524 95.978 −9.7E-4
Filtered 28 0.278 0.077 0.152 91.747 0.140

SLOC All cases 30 0.270 0.073 0.149 98.515 −1.06E-4
Filtered 27 0.310 0.096 0.116 97.236 −9.8E-5

WMC All cases 30 0.115 0.013 0.544 98.298 −0.152
Filtered 27 0.521 0.272 0.005 102.754 −0.512

variables: SLOC, NMETH and NCLASS are particularly highly correlated between them.
Thus, these variables are candidates to be left out while considering a multiple regression
model (their inclusion was also tested).

3.3.5. Multiple regression For performing multiple regression analysis, new variables
were created with the corresponding transformations to inverse, exponential, or logarithm,
so that the transformed variables can be included in the model linearly using the multiple
regression function. For instance, since the selected model for AMLOC was the inverse,
a new variable called i AMLOC was created with the inverse of the values for AMLOC.
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Table 6. Non-linear models.

Variable Mode R-square Signif. Coefficient Constant

ACLOC Inverse 0.337 0.0015 311.823 83.50
AMLOC Inverse 0.743 0.0000 176.527 77.128
AVPATHS Inverse 0.141 0.0489 −21.928 105.548
CDENS Inverse 0.182 0.0237 3.778 84.610
DIT Inverse 0.240 0.0095 −14.288 103.384
PPPC Inverse 0.234 0.0123 −3159.223 132.919
SLOC Log 0.146 0.0450 −2.819 121.497
WMC Linear 0.272 0.0053 −0.512 102.754

Table 7. Correlation results between independent variables (with outliers).

Pearson Significance Spearman’s Significance
Variable 1 Variable 2 Correlation (2-tailed) Rho (2-tailed)

ACLOC AHF 0.418 0.021 0.351∗ 0.058∗
ACLOC AIF −0.387 0.038
ACLOC NMETH 0.384 0.036 0.557 0.001
ACLOC SLOC 0.407 0.026
ACLOC WMC 0.641 0.000 0.632 0.000
AHF AVPATS 0.373 0.043 0.312∗ 0.094∗
AHF NCLASS 0.375 0.041
AHF NMETH 0.388 0.034
AHF POF 0.393 0.032
AMLOC DIT −.411 0.024 −0.432 0.017
AMLOC WMC 0.407 0.025
AVPATHS DIT 0.526 0.003 0.598 0.000
AVPATHS N 0.407 0.026 0.243∗ 0.195∗
AVPATHS NCLASS 0.444 0.014
AVPATHS RFC 0.448 0.013
CDENS RFC 0.387 0.035
CDENS WMC 0.480 0.007 0.503 0.005
DIT MIF 0.446 0.013
DIT NCLASS 0.510 0.004 0.718 0.000
LOCM N 0.421 0.020 0.486 0.006
MHF MIF 0.425 0.019
MHF PPPC −0.556 0.001 −0.436 0.016
n N 0.437 0.016 0.556 0.001
N SLOC 0.380 0.038
N WMC 0.440 0.015 0.351∗ 0.057∗
NCLASS NMETH 0.690 0.000 0.659 0.000
NCLASS SLOC 0.619 0.000 0.667 0.000
NMETH SLOC 0.877 0.000 0.815 0.000
POF RFC 0.429 0.018 0.136∗ 0.437∗
RFC WMC 0.742 0.000

Similarly, the names of each transformed variable indicate the transformation performed on
it, - i indicates an inverse transformation, e an exponential transformation, and l a logarithmic
transformation. The influential points identified from the analyses in the previous sections
were excluded in the multiple regression models.
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Table 8. Correlation results between independent variables (excluding outliers).

Pearson Significance Spearson’s Significance
Variable 1 Variable 2 Correlation (2-tailed) Rho (2-tailed)

ACLOC AMLOC 0.44 0.019
ACLOC DIT −0.38 0.046
ACLOC MIF −0.407 0.032
ACLOC NMETH 0.53 0.004
ACLOC SLOC 0.423 0.025
ACLOC WMC 0.619 0.000 0.603 0.001
AMLOC DIT −0.411 0.030 −0.455 0.015
AMLOC SLOC 0.448 0.017
AMLOC WMC 0.392 0.039 0.528 0.004
AVPATHS DIT 0.467 0.012 0.513 0.005
AVPATHS N 0.451 0.061
AVPATHS PPPC 0.377 0.048
AVPATHS RFC 0.427 0.023
CDENS N 0.401 0.035
CDENS WMC 0.455 0.015 0.469 0.012
DIT NCLASS 0.469 0.012 0.653 0.000
DIT POF −0.399 0.035
DIT PPPC 0.408 0.031 0.488 0.008
LOCM N 0.443 0.018
MHF PPPC −0.48 0.01
MHF RFC −0.438 0.020
n N 0.457 0.015 0.576 0.001
N WMC 0.497 0.007 0.414 0.028
NCLASS NMETH 0.678 0.000 0.639 0.000
NCLASS SLOC 0.615 0.000 0.692 0.000
NMETH SLOC 0.877 0.000 0.812 0.000
POF RFC 0.434 0.021
RFC WMC 0.729 0.000

Six possible models were analyzed. Their results are summarized in the Table 9 in the
Appendix. Not all the statistical results from the analysis are presented for all the models.
The table shows, for each model considered, R2, the significance level, and the significance
level of the coefficient for each variable included.

Of all the models, Model 6 was considered to be the best. The detailed results of its
analysis are presented in Tables 10 and 11 in the Appendix. The detailed results of analyses
for all the rest of the models are omitted. Analyzing the correlations between the independent
variables, it was found that most of the variables not present in Model 6 are accounted for
due to the correlations with other variables in the model. However, some are not (e.g.,
AHF, AIF, COF and MIF). So, the model was analyzed again to see if adding them made
any improvement. In all cases, the models with those added variables gave non-significant
coefficients. So they are excluded. The final best model can be presented as follows:

MI = 123.344
1

AMLOC
+ 1.944ln(N) + 2.166

1

CDENS

−5.692
1

DIT
− 17.707eMHF + 89.426
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Table 9. Multiple regression models.

Model Model Model Model Model Model Model Model
1 2 3 4 5a 5b 5c 6

R2 0.734 0.911 0.857 0.745 0.768 0.773 0.745 0.776
Signif 0.001 0.152 0.129 0.000 0.000 0.000 0.000 0.000
i AMLOC 0.013 0.653 0.147 0.000 0.000 0.000 0.000 0.000
l N – 0.074 0.097 0.008 0.010 0.020 0.023 0.041
i CDENS 0.165 0.088 0.139 0.083 0.051 0.174 0.082 0.043
e MHF – 0.116 0.305 – 0.159 – 0.082 0.052
i DIT 0.185 0.164 0.512 – – – – 0.100
l n – 0.165 0.432 0.084 0.162 0.092 – –
i AVPATHS 0.921 0.267 0.899 – – 0.111 – –
i ACLOC 0.661 0.993 0.763 – – – – –
i PPPC 0.545 0.357 0.750 – – – – –
l SLOC 0.519 0.218 0.656 – – – – –
WMC 0.406 0.162 0.328 – – – – –
i COF – 0.732 0.661 – – – – –
i LOCM – 0.928 0.666 – – – – –
e POF – 0.806 0.670 – – – – –
i MIF – 0.807 0.664 – – – – –
i AIF – 0.673 0.619 – – – – –
RFC – 0.407 0.864 – – – – –
i NCLASS – 0.208 – – – – – –
i NMETH – 0.383 – – – – – –
l AHF – 0.401 0.894 – – – – –

Table 10. Model summary for model 6.

Change statistics

Adjusted Std. error of R- F Sig. F
Model R R square R square the estimate Square Change df 1 df 2 change

1 .881a .776 .723 4.994387 .776 14.577 5 21 .000

3.3.6. Validation Model 6, the final best model obtained from the analyses in Section
3.3.5, was considered for further validation. From the initial pool of 50 sample programs,
10 samples that were not considered in the previous analyses were selected for validation.
The points corresponding those samples were checked to see if their range was compatible
with the range of the cases used to build the model. The estimated value as indicated by the
model was computed. The estimation error was also computed as the difference between the
estimation given by the model and its true value. Several analyses were run on the results
to check whether the estimation errors were similar to the original data and the new points
used for the validation. The analysis showed a very similar behavior in the residuals for
both data groups, with similar range, min and max, mean and standard deviation as shown
in Table 12 in the Appendix.
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Table 11. Coefficients of independent variables for model 6.

Unstandardized
coefficients

Std. Standardized
Model B error Coefficients t Sig

1(constant) L N 89.426 12.290 7.276 .000
J AMLOC 1.944 .894 .232 2.174 .041
E MHF 123.344 25.167 .600 4.901 .000
I CDENS −17.707 8.607 .219 −2.057 .052
I DIT 2.166 1.004 .250 2.158 .043
a. dependent variable: MI −5.692 3.304 .195 −1.723 .100

Table 12. Validation results (Case summaries)

Std. error Std.
Model N Mean Median of mean minimum Maximum deviation variance

In model 27 −.1964 −.9314 .87082 −6.21 11.89 4.52491 20.475
Validation 10 −2.2124 −4.4587 2.01039 −9.06 10.62 6.35741 40.417
Total 37 −.7413 −.9815 .83367 −9.06 11.89 5.07103 25.715

Case Summaries
ERR EST

The scatter-plot in Figure 1 shows the estimation errors for all the points, both the original
and the validation data. It can be seen that they seem to have a similar behavior.

3.3.7. Summary of the analyses: Insight for designers and maintainers Based on the
results of the analysis performed, the following implications of the design/code-level metrics
on maintainability can be summarized. The different factors that affect maintainability
of software are listed below. These factors should serve as heuristics to designers and
maintainers willing to control maintainability of software from the design or implementation
phases of the software lifecycle. The results presented earlier provide empirical evidence
for the claims.

– MI shows a marked non-linear correlation with some of the variables. Particularly inter-
esting are ALOC and SLOC. AMLOC shows a very high R2 value, particularly using
the inverse model. This is consistent with the common knowledge that individual func-
tions/methods in a program should be kept short to improve program readability and
maintainability. Also, there is a strong log-dependence of MI on SLOC. This is also
very insightful since it is to be expected that maintainability decreases as program size
increases. On the other hand, an increase in the relative program size is a better measure
of increase in the complexity than the absolute program size. For example, the effect on
maintainability of adding 100 lines to a 1000-lines program is clearly not the same as
adding 100 lines to a 10000-lines program. Mathematically it can be shown that if the in-
crease in complexity is a function of the relative increase in program size, the relationship
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Figure 1. Scatter plot showing estimation errors for both the original and the validation data.

between both is a logarithmic function:

�MI = k
�SLOC

SLOC

⇔ dMI = k
d SLOC

SLOC

⇔ d MI

d SLOC
= k

1

SLOC

⇔ MI = k log(SLOC) + b

– Correlation analysis shows that the variables ACLOC, AMLOC, AVPATHS, CDENS,
COF, DIT, n, N, PPPC, and WMC are relatively strongly influential on MI. The variables
MHF, RFC, SLOC, and AIF are relatively moderately influential on MI. Whereas the other
variables are negligibly influential on MI. Irrespective of the strength of the relationship of
the above factors on MI, correlation analysis shows many interesting results that were not
expected from the intuitive analysis. However strong or weak the relationship may be, the
variables AHF, AIF, AVPATHS, COF, DIT, MIF, RFC show positive relationship with MI.
In other words, the increase of attribute hiding, attribute inheritance, method inheritance,
average depth of paths, coupling, depth of inheritance tree, increase in public/protected
members, and response for classes, are likely to increase maintainability. However, it
should be remembered that the strength of the relationship is dependent on the coefficient
of correlation.
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– Some variables show relatively low values of coefficients of correlation with MI, re-
gardless of the model used (whether linear or non-linear), most notably AHF, AIF, COF,
LOCM, MHF, MIF, NCLASS, NMETH, POF and RFC.

– It is particularly important to note that a good correlation (close to one) is not to be
expected between any given variable and maintainability. If such a good correlation were
found, it would mean that this single variable is able to explain most of the behavior of MI,
and therefore the other variables would not be needed as predictors, which is, intuitively,
not considered a possibility, if careful attention is paid to the definition of the variables.
It is to be expected that more than one variable has an influence on the maintainability
index, and therefore no single univariate regression should be a good predictor.

– From the definition of the independent variables used as possible predictors for MI, it
can be gathered that some of them are likely to be highly correlated between themselves.
This is indeed the case for the relationships between the following variables:

• ACLOC, SLOC, and NCLASS
• AMLOC, SLOC, and NMETH
• AIF, DIT, and MIF
• PPPC and MHF

Therefore, some of them were ignored for further statistical analysis, since they provide
redundant information and cannot help to better explain the behavior of MI.

– A multivariate, non-linear regression analysis shows that there are several possible models
that can explain quite well the behavior of MI, with good significance values and a value
of R2 close to 1. The variables that intervene in these models are not necessarily the
most intuitive ones (although AMLOC is always present, and able to describe most of
the variation). This apparently strange selection of input variables has several reasons:

• Due to the correlations between the input variables, some of them have to be discarded
to avoid collinearity. The method applied by SPSS to perform this analysis tries to
keep the “best” variables from a purely statistical point of view and is unable to
ascertain whether they are meaningful or not in reality.

• The particular sample in use might also have a considerably high influence on the
particular selection of meaningful variables. It is quite possible that adding additional
cases to the samples (or changing some of the cases with others) might change the
variable selection, although the type of model in use will probably remain unaffected.
This is due to the small size of the sample in use and the large number of parameters
to be estimated for models using most or all of the input variables.

• Since AMLOC is able to explain most of the variation of MI, the effect of the other
variables is weakened, and small random variations of MI in different samples are
amplified and can affect the result for these variables.

– Finally, it is to remark that the aforementioned strength of AMLOC as a predictor of
MI, explaining most of its behavior, is in line with the well-known heuristics that tell
that a function should not be more than two screens long and “spaghetti code” should be
avoided. As obvious as it may sound, the relevance of this conclusion stands on the fact
that it confirms that while programming, this is the most important measure to keep in
mind. A programmer cannot pay attention to 20 different measures at the same time that
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would increase the maintainability of his/her code. Knowing that the average method size
will influence almost 60% of the final maintainability of the code can be really helpful.
Thus, an important conclusion that can be drawn from this research is to “bound” the
influence that the other 19 measures can have, and in that way, guide the practical work
of a conscientious programmer.

Some of these reported relationships are counter-intuitive. In other words, based on the
intuitive analysis, expected a strong relationship between many of these variables and MI.
For instance, the positive influences of coupling on maintainability are counter-intuitive
from the viewpoint of object-oriented theory. The results obtained in this study are quite
interesting and can have several possible explanations, some of which are stated as follows.
Since the analysis is done one variable at a time, and since MI is probably dependant
on several of these at the same time, the results can be very sensitive on the particular
sample set in use. This effect is increased by the use of a small sample size. In an ideal
experiment, a sample set where all of the variables except one are kept fixed would be
used to analyze the effect of a particular variable on the result. Obviously, this is neither
practical nor possibly possible in this case. These claims are bounded by these experimental
procedures, its limitations, and the samples used. Therefore, without sufficient experimental
or theoretical evidence using other means, the cause of these unintuitive correlations cannot
be stated conclusively. Regardless of the cause, this study goes an important step forward for
setting the ball rolling for future investigation of these relationships using other techniques.

4. Limitations

There are a few limitations of this study that should be taken into consideration while
interpreting the results. Some of these limitations are characteristics of studies of similar
nature and are not uniquely attributable to this study.

• The results obtained in this study are based on the statistical analysis of data obtained from
a collection of fifty systems, which have specific characteristics and behavior. Although
the number of systems considered in the study is considerably larger than the previous
ones (typically 2–8), the results should not be universally generalized for all systems.

• It is shown that most of the measures investigated have statistically significant relation-
ship with maintainability. Such statistical methods provide only empirical evidence of
relationships and do not demonstrate the actual scenario. Controlled experiments where
certain measures can be varied in a controlled manner while keeping the others constant,
could actually demonstrate the scenario. As usual however, it is difficult to undertake
such controlled experiments in reality.

• This study calculates maintainability based on the widely accepted MI. This study as-
sumes the validity of MI in measuring maintainability and does not separately prove it
before using it as a maintainability indicator. MI has already been validated several times
in the past (Coleman et al. 1994; Oman and Hagemeister 1994; Welker and Oman 1995;
Welker et al., 1997).

A notable aspect of MI is that it is traditionally a non-object oriented metric. The ap-
plicability of this non-object oriented metric to object oriented systems in this paper can
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be questionable sometimes. However, Welker et al. (1997) themselves successfully per-
formed a practical case study to test the applicability of MI to object-oriented systems.
They justified that object-oriented systems, like the procedural systems, are comprised of
lines of code, lines of comments, operators and operands, and the number of paths through
a module or system, which form the constituents of MI. Additionally, they state that code
density, size, comments and execution logic are important in both non-object oriented and
object-oriented systems. However, investigating this aspect is cause for future research.

• Maintainability can be affected by different factors. For example, applications presumably
span many different technical and business areas, with different teams of developers
having different competencies/expertise and using different standards. There may be
other factors, such as the number of active developers, the development history of the
systems, the type of the system (e.g., reusable library, compiler, end user software) that can
potentially affect the maintainability of software systems. These factors, including many
others, can affect maintainability, but are not considered in this study. However, because
in actuality it is difficult to consider the enormously large number of factors that can affect
maintainability, the study has been restricted to the indications of maintainability that
can be obtained using MI. It should be reiterated that this study only provides probable
indications of the effect of different measures on maintainability. Since it was not possible
to consider all factors that affect maintainability in one model in this study, the results
obtained here are worth verifying as part of future work using the models that consider
other factors as well.

• It has been assumed that the design/code level metrics considered in this study calculate
what they are supposed to measure. With the knowledge available, most of these metrics
considered in this study have been validated in the past and their results can be found in
the literatures cited in the introduction section of this paper.

• Finally, it should be noted that only code developed in C++ was considered in this
study. The conclusions derived from using C++ code are believed to be valid for code
developed in other object-oriented programming languages, e.g., Java. However, further
research is called for to verify this proposition.

5. Conclusions and future work

This paper presented a study aimed at assessing and modeling the effect of different de-
sign/code level metrics on maintainability of systems. Early design/coding considerations
and programming practices by human designers and maintainers of the systems based on
the said factors from the early phases of system development could have an important ef-
fect on the overall quality of products. Several interesting results, listed in Section 3.3.7,
were obtained that do not naturally follow from intuition. However, it is recommended that
further validation studies be performed using other analytical techniques before the results
are actually used in practice. Since the results are based on statistical predictions, one can
expect that by abiding by the conclusions from these studies from the early phases of system
development that the final product would be more maintainable and of better quality than
a product in which maintainability is not monitored.

The guidelines presented in this paper are derived based on intuition and experimentation.
First, it was intuitively predicted based on logic and the object-oriented theory how the
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increase or decrease of a particular metric would affect maintainability. Then the results
obtained from the intuitive analysis were experimentally verified using the data collected
from different software samples. Although MI has received considerable attention in the
past, as part of any future research, plans have been made to investigate other sources of
maintainability data. Both the analysis methods considered in this study depend on several
factors, the effects of which are worth studying in the future. While intuitive analysis
obviously depends on the factors such as the proper understanding of the object-oriented
principles and other psychological factors, experimental analysis depend on several factors
such as, the systems considered, correctness of measurement and analysis tools, etc. It
is thus encouraged to conduct further theoretical and experimental studies to validate the
results obtained in this study. In addition, further research is called for to investigate the
limitations of this study listed in Section 5.

Appendix

Statistical analyses were performed using the data collected by following the experimental
procedures mentioned in Section 2.3. The Appendix lists the summary of the results of the
statistical analyses described in Section 3.3.

Notes

1. We summarily list only the important works related to this paper, without providing too many details of the
work. This also helps us to keep the readers’ understanding of the materials discussed in the paper in the right
perspective, while maintaining the brevity of the paper. Readers interested in following up their understanding
about a particular piece of work can refer to the detailed reference of the work listed at the end of the paper.

2. However, some of the papers can be classified under more than one of these three categories.
3. This tool is widely used in the industries in quality measurement programs. To validate the correctness of the

tool, we have manually computed the value of the different measures on small samples, and have compared
their results with the results that are produced by the tool.

4. The reader should note that unlike the ”model builder” set, where we have considered all the samples for
our investigation, we have introduced to select the “validation set” to reduce biasness in select our validation
samples.

5. It should be noted that in this study considered these 20 predictor vaiables, including the program length (N),
the program vocabulary (n), and the number of lines of code (LOC), which were also used by Welker and
Oman(1995) to define MI. However, along with these 3 variables, this paper considers 17 other important
predictor variables to analyze their effects on maintainability. Even though these 3 variables were considered
in the definition of MI, it was intended to observe the effects of these 3 variables in the presence of the other 17
variables. Even if individually they are likely to correlate highly with MI, that may not necessarily be the other
variables. The reader should also note that Welker and Oman’s definition of MI uses only the number of lines
of code (LOC), On the other hand, the study presented in this paper considered the number of source lines of
code (SLOC).

6. In each case, those points (samples) that statistically lie at an abnormal distance from the rest of the points were
excluded from further consideration. This study restricted itself to only statistically investigating the outliers
which occur rarely. However, this article does not present the investigation of the nature and behavior of the
abnormal points, because the primary goal of this study was to provide some general design/coding guidelines
to the practitioners, by investigating only the points that follow the general trend.

7. In an absolute sense, the results may not seem to be strong enough. The results are intuitively not surprising,
if we consider the fact that the behavior of MI, in which case, the necessity of different factors to control MI
would be unnecessary - that would be illogical.
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