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Abstract. Software is quite often expensive to develop and can become a major cost factor in corporate infor-
mation systems’ budgets. With the variability of software characteristics and the continual emergence of new
technologies the accurate prediction of software development costs is a critical problem within the project man-
agement context.

In order to address this issue a large number of software cost prediction models have been proposed. Each
model succeeds to some extent but they all encounter the same problem, i.e., the inconsistency and inadequacy
of the historical data sets. Often a preliminary data analysis has not been performed and it is possible for the data
to contain non-dominated or confounded variables. Moreover, some of the project attributes or their values are
inappropriately out of date, for example the type of computer used for project development in the COCOMO 81
(Boehm, 1981) data set.

This paper proposes a framework composed of a set of clearly identified steps that should be performed before
a data set is used within a cost estimation model. This framework is based closely on a paradigm proposed by
Maxwell (2002). Briefly, the framework applies a set of statistical approaches, that includes correlation coefficient
analysis, Analysis of Variance and Chi-Square test, etc., to the data set in order to remove outliers and identify
dominant variables.

To ground the framework within a practical context the procedure is used to analyze the ISBSG (International
Software Benchmarking Standards Group data—Release 8) data set. This is a frequently used accessible data
collection containing information for 2,008 software projects. As a consequence of this analysis, 6 explanatory
variables are extracted and evaluated.
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1. Introduction

1.1. Preliminary data analysis

In the last two decades many software cost prediction techniques, models and tools
have been proposed. For instance, SLIM (Putnam, 1978), COCOMO (Boehm, 1981),
classification and regression trees (Porter and Selby, 1988; Boehm, 1981), Bayesian
belief networks (Chulani et al., 1999; Fenton and Neil, 2000), artificial neural networks
(Karunanithi et al., 1992; Samson et al., 1997). In order to build such models, a histori-
cal data set containing a reasonable number of observations is required (Boehm, 1981;
Basili, 1985; Basili and Rombach, 1988; Srinivasan and Fisher, 1995). Although some
success has been achieved all the prediction models have encountered the same prob-
lem, the inconsistency and inadequacy of the historical data sets. Furthermore, prelim-
inary data analysis has rarely been emphasized. As Kitchenham et al. (2002) state:

Analysts often plunge directly into using statistical techniques without first con-
sidering the nature of the data themselves. It is important to look first at the
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organization of the data, to determine whether any results might be due to out-
liers or data points that have an unreasonable influence.

Therefore, research has been complicated by the lack of either an accessible, stan-
dard historical data set or a systematically prelimary data analysis framework to assist
in replicating experiments.

1.2. Data sets

Limited classical historical data sets have been published in the field, for example,
Barry Boehm’s COCOMO 81 data set (Boehm, 1981) and Kemerer’s data set (Ke-
merer, 1987). However, most of these historical data sets used in software cost predict-
ing research were company-specific data (Basili, 1985; Basili and Rombach, 1988).
Because of the difficulty accessing such commercial databases, many researchers have
been impelled to derive their own data collection instruments which they then em-
ployed to collected their own data. Moreover, some of the project attributes or their val-
ues are inappropriately out of date, for example the type of computer used for project
development in the COCOMO 81 (Boehm, 1981) data set.

The inconsistency and inadequacy of the historical data sets is becoming a more and
more significant problem in software cost estimation.

1.3. Analysis techniques

Many approaches have been proposed in software engineering data analysis. For ex-
ample, statistical methods and tools have been used since the 1970’s (Conte et al.,
1986). Indeed, there is a dedicated book on this subject by Burr and Owen (1996)
“Statistical Methods for Software Quality—Using Metrics for Process Improvement.”
Putnam (Putnam and Myers, 1992) also introduced using scatter diagrams and sta-
tistical trend lines in software projects data analysis. More recently, Briand et al.
(1992) proposed the Optimal Subsets Reduction (OSR) model which has provided a
data reduction method as a side product. However, there has no such a systematical
framework of data analysis which can provide a sound basis for further research in
software cost estimation till Kitchenham (1998) proposed a method of forward pass
residual analysis to analyze unbalanced data sets. Although this paper presented a
software project data analysis procedure, the analysis was still demonstrated on the
COCOMO 81 data set. More recent research published in the field is Maxwell’s ap-
proach (Maxwell, 2002), which introduces a set of statistical techniques, but has not
yet been applied in a standard data set. Furthermore, it has been argued by Briand
et al. (1999) that:

No significant difference was found in accuracy between estimates derived from
company-specific data and estimates derived from multi-organizational data.

This research strengthens the contention that using a standard, accessible historical
data set to build software cost predicting models should contribute to the correctness
and reliability of such models.
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1.4. Summary of paper

This paper presents a data analysis framework derived from Maxwell’s paradigm
(Maxwell, 2002) and based on a new standard historical data set. The paper begins
by examining the type and format of data that is typically found within the software
engineering field. The ISBSG data set is then introduced and classified within the
context of these standard data types. Then a set of cost estimation techniques are pre-
sented that attempt to show the major techniques that are extant within the field of cost
estimation. We then present Maxwell’s recipe and a framework which is based closely
on Maxwell’s work, except using a different statistical method (multivariate analysis).
The framework shows how the predictive veracity of this model can be improved by
describing a framework for preprocessing or pre-analyzing a standard data set, the
ISBSG data. Then follows a discussion of the benefits that can be obtained by the use
of a preprocessing technique and a standard data set.

Finally, some recommendations regarding further evaluation of the usability and
applicability of the framework are suggested.

2. Software engineering data

Not all data is equal. What we mean by this is that some data types may contain
more information than others. For example, an ordinal data type might indicate the
programming language used on a project. In itself, the number allocated to a particular
language has no meaning, it only has meaning insofar as it is different to the numbers
allocated to all the other programming languages. This concept extends to other data
types and is thoroughly discussed in Pfleeger et al. (1988).

Following the discussion in Pfleeger we recognize several scales of measurement—
nominal, ordinal, interval, and ratio. Each captures more information than its prede-
cessor. The data scales relate to different data types, each of which has the following
characteristics.

Nominal data Nominal data relate to qualitative variables or attributes, such as gen-
der or blood group, and are records of category membership. Nominal data is usu-
ally in the form of numbers. However, these numbers have no intrinsic meaning
of their own but are in contrast only indicative. In software engineering data, vari-
ables such as business sector, application type, programming languages, etc., are
nominal-scale variables, these variables differ in kind only. They have no ratio
sense. There is no meaningful order. Most of the variables relate to a software
project are nominal data which has less statistical power compared with other data
types.

Ordinal data The value of an ordinal-scale variable can be ranked in order. The Data
Quality Rating factors is an ordinal-scale variable. It is correct to say rate 1 is
more reliable than rate 4. However, equal differences between ordinal values do not
necessarily have equal quantitative meaning.

Interval data The value of an interval-scale variable can be ranked in order. In addi-
tion, equal distances between scale values have equal meaning. However, the ratios
of interval-scale values have no meaning. This is because an interval scale has an
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arbitrary zero point. Likert-type scale is an example of an interval scale. Factors are
rated on a scale of equal-appearing intervals, such as very low, low, average, high,
and very high, and are assigned Ratio values of 1, 2, 3, 4, and 5, respectively.

Ratio data Variables such as software project effort, application size, and duration
are measured using a ration scale. Ratio scale variables can be ranked in order,
equal distances between scale values have equal meaning, and the ratio of ratio
scale values make sense.

Numerical or continuous data are ratio or interval in the nature. In contrast, the
categorical or discrete data are ordinal or nominal in nature.

2.1. Problems related to cost estimation

A common problem in software estimation is the lack of reliable and accessible his-
torical data sets. Various historical data sets have been introduced in the past. The
following two data sets containing very limited samples:

• COCOMO 81 data set (Boehm, 1981), containing 63 projects.
• Kemerer’87 data set (Kemerer, 1987), containing 15 projects.

have been quoted and reused by many researchers, e.g., Chulani (Chulani et al.,
1999), Srinivasan (Srinivasan and Fisher, 1995), Samson (Samson et al., 1997), Briand
(Briand et al., 1998), Kemerer (1987) and Kitchenham (1998). However, an immediate
problem is their small sample size. Other historical data sets that have been employed
but rarely used in published research are:

• Boetticher, applied Electronic Commerce and Fleet Management data set (Boet-
ticher, 2001).

• Porter used the NASA System data sets (Porter and Selby, 1990).
• Finnie used Desharnais data sets (Finnie et al., 1997) from 17 organizations.

Moreover, many researchers developed customized data collection instruments and
collected their own data. For example, Basili (1985) introduced methods for collecting
and validating software project data.

In general, the major problems with historic data sets are:

• Limited sample size.
• Inconsistent or out of date attributes.
• Missing values.
• Limited accessability.

2.2. The ISBSG data set

To address the above problems, it is logical to employ a frequently used, large and
widely accessible data set for software estimation models. The International Soft-
ware Benchmarking Standards Group, ISBSG Release8-data set contains data for 2008
projects. The ISBSG project has developed and refined its data collection standard
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Table 1. ISBSG R8 data examples.

R Cou E Dev Dev Prg Org Meth
FPs Time Level Tech method Type Platform Lang DBMS Type acquired SWE

1587 4 4 1 3 1 1 1 1 1 1 7490
48 4 6 2 4 1 2 5 1 3 3 648

260 2 17 2 3 2 2 2 1 4 1 4150
152 1 9 1 1 1 2 6 1 5 1 668
252 1 4 1 1 2 3 7 1 6 1 3238
97 2 7 1 1 1 2 3 1 4 1 1158

303 2 12 1 2 1 1 7 0 3 1 3570
1306 1 19 1 1 1 3 9 1 6 1 73501

over a ten year period based on the metrics that have proven to be the most useful in
helping to improve software development management and processes. ISBSG offers
its data and materials to educational institutions, researchers and research students free
of charge, subject to receipt and approval of a completed application.

The ISBSG R8 data set records true project values in the real world, and can be
used to extract information to predict new projects’ cost in terms of Effort. ISBSG
rates the reliability of samples as 4 levels from A to D where level A represents the
most reliable data. In the ISBSG R8 data set, there are 681 A-rated observations, each
containing 50 explanatory variables (project size, time, programming language, etc.)
and 2 response variables (summarized work effort and standardized work effort). After
removing the observations that contain missing attribute values there are 345 project
records remaining. The two response variables are duplicated, one is summarized
work effort and the other is normalized work effort. Since both essentially encode the
same information we have chosen summarized work effort as the response variable in
this paper. Table 1 presents some examples from this refined data corpus where each
observation comprises 11 explanatory variables and 1 response variable.

2.2.1. The explanatory and response variables A prediction model can be devel-
oped by learning from past experience from a historical data set. The model could be
mathematical functional relationships, statistical statements, rule based systems, dy-
namic tree structures or even indefinable relationships, for instance, neural networks.
To clarify the roles of the data, constructing a software effort prediction model means
finding a mapping of project attributes to project effort. In effect we are looking for
some form of functional relationship as:

Effort = Function(project attributes). (1)

We call project attributes the explanatory or independent variables xi , the project Effort
as the response or dependent variable y.

The intention of this paper is to identify the influential explanatory variables xk with
(k ≤ i), which contribute to the underlying relationships between the explanatory
variables and the response variable:

y = F(xk). (2)
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Table 2. Project attributes description.

Abbreviation Stands for Type Description

FPs Function Points Ratio The adjusted function point count number
(adjusted by the Value Adjustment Factor).

Time Project Elapsed Time Ratio Total elapsed time for project in months.
Rlevel Resource Level Nominal Data is collected about the people whose

time is included in the work effort data
reported. Four levels are identified in the
data collection instrument.

CouTech Count Approach Nominal A description of the technique used to count
the function points. Helps you to compare
apples with apples (e.g. IFPUG, MKII,
NESMA, COSMIC-FFP etc.).

Emethod Work Effort recording Nominal Three basic methods of recording
method are: Method-A—Staff Hours (recorded),

Method-B—Staff Hours (derived), Method-
C—Productive Time Only.

DevType Development Type Nominal This field describes whether the development
was a new development, enhancement
or re-development.

DevPlatform Development Nominal Defines the primary development platform
Platform (as determined by the operating system

used). Each project is classified as either, a
PC, Mid Range or MainFrame.

PrgLang Language Type Nominal Defines the language type used for the
project: e.g., 3GL, 4GL, Application
Generator, etc.

DBMS DBMS used Nominal Whether the project used a DBMS.
OrgType Organization Type Nominal This identifies the type of organisation that

submitted the project (e.g.: Banking,
Manufacturing, Retail).

MethAcquired How methodology- Nominal Describes whether the methodology was
acquired purchased or developed in-house.

SWE Summary Work Effort Ratio Provides the total effort in hours recorded
against the project by the development
organisation.

2.2.2. The nature of the data used in this paper Within this paper we employ 345
observations of software projects, as previously indicated. Each observation contains
12 variables, 11 of which are the explanatory variables, such as project size (Func-
tion Points), project durations (Elapsed Time), etc., and the remaining attribute is the
response variable that is a record of project effort (Man-Hours). Some examples are
illustrated in the Table 1. The abbreviations of the variables are described in Table 2.

The size of the project is determined by the number of function points (FPs), which
is a ratio variable. The most common method of counting FPs is IFPUG (IFPUG,
1994). There are 270 or 78% projects out of 345 A rating observations that were
counted by IFPUG. The second major counting method is MARK II, which was
adopted by 75 or 22% projects out of 345 A rating observations. The elapsed time
is defined as total duration of the project in months. This is also a ratio variable. Other
explanatory variables are detailed in Table 1.
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Table 3. Classification of the projects with quality rating A and size measurement
method IFPUG according to the methods used to measure the work effort.

Recording Method

Staff Hours Staff Hours Productive Combination Total
(recorded) (derived) time only

Rlevel 1 134 1 45 2 182
2 36 29 3 – 68
3 10 – – – 10
4 8 – 2 – 10

Total 188 30 50 2 270

Table 4. Classification of the projects with quality rating A and size measurement
method MARK II according to the methods used to measure the work effort.

Recording Method

Staff Hours Staff Hours Productive Combination Total
(recorded) (derived) time only

Rlevel 1 23 7 10 2 42
2 3 4 17 – 24
3 – – – 1 1
4 5 1 1 1 8

Total 31 12 28 4 75

The work effort (SWE) is a ratio response variable, and is counted by various meth-
ods. The variables Resource Level (denoting which team effort—development team,
development team support, computer operations involvement, end users or clients—
has been counted) and Recording Method indicate what was actually measured for
the work effort. For 345 samples, the combinations of the categories for these two
variables are shown in Tables 3 and 4.

3. Cost estimation statistical techniques

Statistical methods and tools have been used in software engineering data analysis
since the 1970’s. From the application of basic scatter diagrams, and statistical trend
lines (Putnam and Myers, 1992), to Analysis of Variance (ANOVA) (Maxwell et al.,
1996) and testing residuals (Kitchenham, 1998), researchers have endeavoured to in-
vestigate the application of statistical techniques in analyzing software engineering
data. Several common statistical techniques are discussed in this paper as a basis of
the data analysis framework.

3.1. Data visualization

To avoid invalid or incorrect data misleading the conclusions, it is necessary to validate
the data before starting analysis. Most of the historical databases contain extreme
samples, for example, a few projects with a very high project effort; or a very big
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project size. They may also contain many low effort, and small size projects. The
data visualization technique, for example, the data plot, is very helpful in detecting
and removing these outliers. This technique is also used to observe whether the data
is normally distributed.

3.2. Data transformation

Data transformation is another technique to validate the data. Many statistical tech-
niques assume that the underlying data is normally distributed. However, the distribu-
tions of some variables, for example, software project effort and size are not normally
distributed. They might have a wide range. For example, software project size of the
data set used in this paper spreads from 31 to 4887 function points. To approximate a
normal distribution, transformation techniques must be used. Some common transfor-
mations include taking the natural log or subtracting the population standard deviation
from the data values. Transformation methods generally make large values smaller
and bring the data closer together.

3.3. Recode data

It is sometimes convenient to combine or alter the categories that make up a variable.
We can construct a new variable with the new category assignments. For example,
in Kermerer (1987), he recoded the “Appl” variable as 6 indicator variables, “Lang”
as 7 indicator variables, “Type” as 4 indicator variables, and “Count” as 3 indicator
variables. As another example we can recode whether a DBMS has been used in the
project by “0” or “1” to indicate “No” or “Yes,” respectively.

3.4. Correlation analysis

The independence of explanatory variables is a common assumption when building a
multi-variable model.

A correlation coefficient measures the strength and direction of the relationship be-
tween two continuous variables (data should be ratio or interval in nature). The corre-
lation coefficient can have any value between −1 and +1. If the correlation coefficient
is −1, this means that the two variables are perfectly negatively correlated. If the cor-
relation coefficient is +1, this means that the two variables are perfectly positively
correlated. If the correlation coefficient is 0, this means that the two variables are not
correlated at all.

Two measures of correlation are commonly used when analyzing software project
data. Spearman’s rank correlation coefficient must be used when the data is ordinal, or
when the data is far from normally distributed. Pearson’s correlation coefficient can be
used when the data is of an interval or ratio type. It has been argued by Putnam (1978)
that software size is positively correlated to project effort.

Spearman’s rank correlation coefficient tests order relationships rather than actual
values. This correlation coefficient is also less sensitive to extreme values than the
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standard Pearson correlation coefficient. This correlation analysis is very efficient for
ordinal variables and quasi-interval Likert scale variables. If the absolute value of
Spearman’s ρ is greater than or equal to 0.75, and the Pr > |t | value equals 0.05 or
less, then the two variables are strongly correlated and should not be included in the
final model together.

3.5. Stepwise regression analysis

Ratio or interval scale project attributes, in another words, explanatory variables, can
easily be included in the analysis procedure. Their impact on the response variable can
be assessed using simple linear regression. Stepwise regression analysis (Gravetter and
Wallnau, 1996) can be used to determine the relative importance of such explanatory
variable’s relationship to the response variable.

3.6. Analysis of variance (ANOVA)

ANOVA is concerned with the testing of hypotheses about means. The ANOVA
F -statistic is calculated by dividing an estimate of the variability between groups by
the variability within groups:

F = Variance between

Variance within
. (3)

The null hypotheses H0 states that there is no difference between the populations
means. If we reject H0, then we must infer that the experimental manipulation does
have an effect.

If there are large differences among the explanatory variables’ means then the nu-
merator of F will be inflated and the null hypothesis is likely to be rejected. We can
use ANOVA to test whether there is an effect on the response variable of each of the
explanatory nominal variables. A significant F -value (the conventional significance
level of 0.05 or 0.01) tells us that the population means are probably not all equal.

Based on above description, ANOVA could be used to test the independence be-
tween the numerical and categorical variables.

3.7. Chi-Square test for independence

Two events are independent whenever the probability of one happening is unaffected
by the occurrence of the other. This concept can be extended to nominal variables.
The Chi-Square test for independence compares the actual and expected frequencies
of occurrence to determine whether or not two nominal variables are independent.

The assumption underpinning the Chi-Square test for independence is that, if two
variables are independent, the proportion of observations in any category should be
the same regardless of what attribute applies to the other variable. The null hypothesis
is that there is no relationship between the two variables. The Chi-Square test is used
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to test the independence between categorical variables in software engineering data
analysis.

4. Applying a stepwise analysis to the ISBSG data

The ISBSG data set, because of its size and scope of its variables, is highly suited to the
investigation of software cost estimation. Using this data overcomes the problem of the
inconsistency and inadequacy of the historical data sets, and in addition, a preliminary
data validation and analysis can be performed to remove non-dominated or interactive
variables.

This section represents a framework for performing this validation and analysis that
is based closely on a paradigm proposed by Maxwell (2002). Briefly, the framework
applies a set of statistical approaches, that includes correlation coefficient analysis,
analysis of variance and Chi-Square test, etc., to the data set in order to remove outliers
and identify dominant variables.

4.1. Maxwell’s recipe

Maxwell’s approach (Maxwell, 2002) can be summarized as three stages:

1. Validating software project data. Data visualization and transformation.
2. Analyzing the variance of the data. Build a multi-variable model.
3. Evaluating the data. Extract the equation and test the residues.

4.1.1. Validating software project data To carry out a valid statistical analysis, we
should remove outliers and missing data, and test the normality of the data. To visu-
alize data, we can plot histograms or boxplots for the explanatory variables and the
response variable individually. In the test of normality, some variables were found
to violate the statistical test. In each case, transformation by taking logarithm was
applied.

4.1.2. Analyzing the variance of the data Maxwell’s approach expects to identify
the relative significance of explanatory variables’s which explain the most variation
in the response variable by building a multi-variable model step by step. Adjusted
R2-values will be calculated to determine this relative significance. To acquire ad-
justed R2-values, correlation analysis is applied for the ratio or interval variables, and
ANOVA procedures for the nominal variables.

The idea is to run a stepwise analysis procedure, which allows us to determine the
influence of explanatory (independent) variables on the response (dependent) variable.
The model starts “empty” and then the variables most related to response variable
are added one by one in order of importance until no other variable can be added to
improve the model.

To find the explanatory variable which explains the most variation in the response
variable (project effort), we perform regression procedures for the ratio or interval
scale variables, and ANOVA procedures for the nominal variables. The importance
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of the explanatory variables to the response variable depends on the significant value,
P > |t | for regression procedures (between numerical variables) and Prob > F for
ANOVA procedures (between categorical variables, or between numerical variables
and categorical variables).

4.1.3. Evaluating the data To evaluate the independence between explanatory
variables, correlation coefficient analysis, analysis of variance (ANOVA) procedure
and Chi-Square test are applied according to the variables’ scale.

To evaluate the goodness of fit of the model, Maxwell’s approach (Maxwell, 2002)
extracts the final model and tests the residues. In a well-fitted model, there should be
no pattern to the errors (residuals) plotted against the fitted values. The term “fitted
value” refers to the project effort predicted by the model. The term “residual” is used
to express the difference between the actual effort and the predicted effort for each
project. Therefore, there should be no pattern in the residuals of our final model.

4.2. A framework for data analysis in software project data

A framework based on Maxwell’s recipe together with a flow chart, see Figure 1, is
presented as a sequence of steps.

Step 1: Data visualization. Plot the histograms for each variable to see if the vari-
ables are normally distributed. If they are, use a boxplot to identify the outliers, then
prune these outliers. If they are not normally distributed, they need to be transformed
as described in the following step.

Step 2: Data transformation. To approximate a normal distribution, transformation
techniques are used. Some common transformations include taking the data’s natural
log or subtracting the population standard deviation from the data values. These meth-
ods make large values smaller and bring the data closer together. Transformed data
must be re-visualized and the outliers must be pruned.

Step 3: Correlation analysis. A common assumption about building a multi-variable
model is that explanatory variables are independent of each other. To check if the ratio
or interval variables are independent, a correlation analysis is used. If the absolute
value of the correlation coefficient is greater than or equal to 0.75, and the Pr > |t |
value equals 0.05 or less, then the two variables are strongly correlated and should
not be included in the final model together. Strongly related categorical variables can
cause problems similar to those cased by numerical variables. Unfortunately, strong
relationships involving categorical variables are much more difficult to detect. Exam-
ining the independence between categorical data is described in the following step.

Step 4: Regression analysis. Test the correlation between the explanatory numerical
variables and the response variable by running a stepwise regression analysis. This
procedure allows us to determine the relative importance of each explanatory numeri-
cal variable’s relationship to the response variable.
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Figure 1. A data analysis framework in software project data.
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Step 5: Stepwise ANOVA analysis. The following steps are to be followed.

• Find the best one-variable model. If there are i, where i ≥ 1 explanatory variables,
then we need to build i one-variable models. The best one-variable model will be
determined by the adjusted R2-values. This value is calculated for each explanatory
variable with the response variable (project effort). The regression adjusted correla-
tion coefficient square value will be calculated when the explanatory variable is type
ratio or interval and the ANOVA adjusted correlation coefficient square value will
be calculated when the explanatory variable is ordinal or nominal. The explanatory
variable that has the greatest adjusted R2-value explains most of the variation in
the response variable and is kept in the model, we call it z1, where z1 ∈ {zk} and
{zk} ⊆ {xi}.

• Find the best two-variable model by the same procedure. Determine which variable,
xi , in addition to z1, explains the most variation in the response variable. This
means that i − 1 two-variables models must be built. The most significant variable
is selected as the second variable to be added into the model: z2, where z2 ∈ {zk}
and {zk} ⊆ {xi}.

• Find the best three-variable model by the same procedure, in addition to z1 and z2.
The process is iterative, and the number of the variables in the model is increasing
until no further improvement in the model is possible. If there are two n variable
1 ≤ n ≤ i models that explain nearly the same amount of variation in the response
variable then develop n + 1 variable models based on each of them. This process
is continued iteratively until there is no significant variables that can be added to
improve the model.

• Finally, we will get the best k-variable model as Equation (4)

Y = F(zk) (4)

where {zk} ⊆ {xi} and k ≤ i.

Step 6: Independence between explanatory variables. The independence between
the numerical variables has been tested, however, at this stage it is not known whether
these numerical variables are correlated to any other categorical variables. Also, it
must be established whether the categorical variables are independent.

As suggested by Maxwell, to determine if there is a relationship between a cate-
gorical variable and a numerical variable, analysis of variance (ANOVA) procedures
can be used. To determine if there is a relationship between two categorical variables,
Chi-Square test can be used.

If significant relationships have been identified between two explanatory variables
they must be studied closely and a further judgement must be made. Although
Maxwell suggests making a 100% bar chart showing the percentage of each factor
level of both variables, this paper proposes the application of a multivariate analysis
to examine the interaction between those two variables against the response variable.
This procedure will be detailed in the following section.

Step 7: Extract and interpret equations. Normally, there are transformed variables or
categorical variables which have different multiplier (coefficients) for different levels.
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Therefore we need to extract equations of the model. For example, if the equation read
from the final model’s output

LnEffort = (−2.406596 − 0.772367) · (LnTime + 0.4475299)

· 77(LnSize − 0.190931) · t09

This can be transformed into the following non-linear equation for effort.

Effort = (
0.091Time−0.7224) · (

Size0.4475e−0.1909·t09).

Step 8: Test residuals. In a well-fitted model, there should be no pattern to the errors
(residuals) plotted against the fitted values. The term “fitted value” refers to the project
effort predicted by the model, the term “residual” is used to express the difference
between the actual effort and the predicted effort for each project. There should be no
pattern in the residuals of our final model. Finally, plot a histogram of the residuals, if
they are normal distributed, then the model is well fitted.

4.3. Applying the framework to the ISBSG data set

Step 1: Data visualization. After plotting the 11 explanatory variables, we found
that none of the numerical variables was normally distributed. For example, Figure 2
shows the distribution of the raw data of Function Points (FPs). These variables needed

Figure 2. Histogram of original project size—Function Points (FPs).
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to be transformed. A boxplot of each variable resulted in the removal of a further 18
outliers.

Step 2: Data transformation. To approximate a normal distribution, transformation
techniques are used, i.e., take the data’s natural log (ln). The software size (Function
Points), Elapsed Time and Summarized Project Effort were transformed in this way.
After transformation Step 1 is repeated. Figure 3 shows the distribution of the trans-
formed Function Points (FPs) variable. The iterative process of Steps 1 and 2 results
in a data set without outliers and which is suitable for the application of statistical
techniques. The data set was further restricted to 328 projects. Each observation com-
prises 11 explanatory variables and 1 response variable. The explanatory variables are
project attributes or their transformed values, such as the transformed project size (Ln
FPs), the transformed project elapsed time (Ln Time), etc., and the response variable
is recorded as transformed summarized work effort (Ln SWE). See Table 1.

Step 3: Correlation analysis. There are 3 numerical variables out of the 11 explana-
tory variables, LnFPs, LnTime and RLevel. We use the Spearman correlation coeffi-
cient to test their independence. According to the experiment results, there is no strong
relationship between those 3 numerical variables.

Step 4: Regression analysis. We then tested the correlation between the 3 explana-
tory numerical variable and the respond variable by running a stepwise regression
analysis. According to this analysis, one numerical variables, the RLevel was dropped.
In effect, the response variable effort (LnSWE) is correlated only to the two numerical

Figure 3. Histogram of transformed project size—Ln Function Points (LnFPs).
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Figure 4. Scatter plot LnFPs against LnSWE.

Figure 5. Scatter plot LnTime against LnSWE.

Figure 6. 3-D scatter plot LnTime and LnFPs against LnSWE.

explanatory variables: Size (LnFPs) and Duration (LnTime). These relationships can
also be visualized in Figures 4–6. At this stage we have remaining 10 explanatory
variables and 1 response variable.
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Table 5. Stepwise analysis results summary—part 1.

Variables Effect Adjusted Significance Methods Significant
R squared of added code

variable

1-variable models
LnFPs + 0.495 <2.2E−16 Regression ***
LnTime + 0.3583 <2.2E−16 Regression ***
CouTech + 0.002867 0.1649 ANOVA
Emethod − 0.002639 0.7091 ANOVA
DevType + 0.02211 0.004022 ANOVA **
DevPlatform + 0.07281 4.19E−07 ANOVA ***
PrgLang + 0.001352 0.2306 ANOVA
DBMS + 0.008426 0.05277 ANOVA
OrgType − 0.001607 0.491 ANOVA
MethAcquired + 0.01418 0.0175 ANOVA *

2-variable model
with LnFPs
LnTime + 0.5542 1.22E−10 Regression ***
CouTech + 0.4975 0.1068 ANOVA
Emethod + 0.5049 0.006534 ANOVA **
DevType + 0.4939 0.6162 ANOVA
DevPlatform + 0.5481 1.16E−09 ANOVA ***
PrgLang + 0.5039 0.009613 ANOVA **
DBMS + 0.5022 0.01775 ANOVA *
OrgType + 0.5098 0.00113 ANOVA **
MethAcquired + 0.4941 0.5388 ANOVA

A: 3-variable models
with LnFPs and LnTime
CouTech + 0.5678 0.0008961 ANOVA ***
Emethod + 0.5591 0.03293 ANOVA *
DevType + 0.5535 0.4742 ANOVA
DevPlatform + 0.6013 1.11E−09 ANOVA ***
PrgLang + 0.559 0.0347 ANOVA *
DBMS + 0.5581 0.05021 ANOVA
OrgType + 0.5622 0.008957 ANOVA **
MethAcquired + 0.5546 0.2607 ANOVA

B: 3-variable models
with LnFPs and DevPlatform
LnTime + 0.6013 1.18E−10 ANOVA ***
CouTech + 0.5473 0.5203 ANOVA
Emethod + 0.5612 0.001197 ANOVA **
DevType + 0.5468 0.9211 ANOVA
PrgLang + 0.5543 0.0198 ANOVA *
DBMS + 0.5493 0.1797 ANOVA
OrgType + 0.5556 0.01142 ANOVA *
MethAcquired + 0.5476 0.4233 ANOVA
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Table 6. Stepwise analysis results summary—part 2.

Variables Effect Adjusted Significance Methods Significant
R squared of added code

variable

4-variable models, with LnFPs,
LnTime and DevPlatform
CouTech + 0.6069 0.01874 ANOVA *
Emethod + 0.6088 0.00775 ANOVA **
DevType + 0.6002 0.7529 ANOVA
PrgLang + 0.6043 0.06312 ANOVA
DBMS + 0.6011 0.3553 ANOVA
OrgType + 0.6045 0.05932 ANOVA
MethAcquired + 0.6022 0.1881 ANOVA

5-variable models, with
LnFPs, LnTime, DevPlatform
and Emethod
CouTech + 0.6193 0.001761 ANOVA **
DevType + 0.6079 0.622312 ANOVA
PrgLang + 0.6119 0.058058 ANOVA
DBMS + 0.6082 0.485335 ANOVA
OrgType + 0.6162 0.007589 ANOVA **
MethAcquired + 0.6091 0.264873 ANOVA

D: 6-variable models, with
LnFPs, LnTime, DevPlatform,
Emethod and CountingTech
DevType + 0.6185 0.558137 ANOVA
PrgLang + 0.6214 0.098799 ANOVA
DBMS + 0.619 0.400667 ANOVA
OrgType + 0.6275 0.004757 ANOVA **
MethAcquired + 0.6192 0.341372 ANOVA

E: 6-variable models, with
LnFPs, LnTime, DevPlatform,
Emethod and OrgType
CouTech + 0.6275 0.001121 ANOVA **
DevType + 0.615 0.914067 ANOVA
PrgLang + 0.6169 0.19996 ANOVA
DBMS + 0.6162 0.310981 ANOVA
MethAcquired + 0.6161 0.326111 ANOVA

Step 5: Stepwise ANOVA analysis. Tables 5, 6 illustrate the procedure in building
multi-variable model. The best one variable model is:

LnSWE = F(LnFPs) (5)

which is indicate the project size is the most influential variable upon the project effort.
The best two-variable model is:

LnSWE = F(LnFPs, LnTime). (6)

Finally, we get the best 6-variable model:

LnSWE = F(LnFPs, LnTime, CountingTech, Emethod, DevPlatform, OrgType).
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Table 7. Explanatory variables’ independence evaluations.

LnFPs LnTime CouTech Emethod DevPlatform OrgType

LnFPs – p = 0.582 R2 = −0.002 R2 = 0.029 R2 < 0.001 R2 = 0.013
p < 0.01 p = 0.729 p = 0.001 p = 0.277 p = 0.0236

LnTime R2 = 0.316 – R2 = 0.028 R2 = −0.003 R2 = 0.004 R2 = −0.001
p < 0.01 p < 0.01 p = 0.907 p = 0.140 p = 0.521

CouTech – – – χ2 = 24.273 χ2 = 3.382 χ2 = 19.741
χ − p < 0.01 χ − p = 0.184 χ − p < 0.01

Emethod – – – – χ2 = 11.167 χ2 = 63.066
χ − p = 0.083 χ − p < 0.011

Dev – – – – – χ2 = 6.694
Platform χ − p = 0.153
OrgType – – – – – –

Table 8. Test of Between-Subject Effects 1, dependent variable: LnSWE.

Source Type III sum of squares df Mean square F Sig.

Corrected model 17.922(a) 7 2.560 1.588 0.138
Intercept 3759.508 1 3759.508 2331.92 0.000
CouTech 8.427E−02 1 8.427E−02 0.052 0.819
Emethod 1.672 3 0.557 0.346 0.792
CouTech * Emethod 8.251 3 2.750 1.706 0.166
Error 515.903 320 1.612
Total 19349.095 328
Corrected Total 533.825 327
R squared = 0.034
Adjusted R squared = 0.012

Step 6: Independence between explanatory variables. We have tested the indepen-
dence between the numerical variables, however, we still do not know whether these
numerical variables are correlated to other categorical variables. Also it must be es-
tablished whether the categorical variables are independent of each other. Chi-Square
tests are applied between the ratio and nominal variables, also between the nominal
and nominal variables. The test results are shown in Table 7. As indicated in the ta-
ble, there are 3 significant chi-squared relationships between CouTech, Emethod and
OrgType. We need to look in more detail at these relationships. Instead of making
graphs as suggested by Maxwell, we applied univariate analysis to examine the inter-
action between explanatory variables when they simultaneously influence the response
variable. Although we could always present the 4-variable models. As there were no
strong interactions between those variables, see Tables 8–10, we can keep them in the
model. Therefore, we finally get a 6-variable model.

Step 7: Extract and interpret equations. The equation read from the 6-variable
model’s output is

LnEffort = 2.06298 + 0.68954 · LnSize + 0.55010 · LnTime + DevPlatform

+ Emethod + OrgType + CouTech.
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Table 9. Test of Between-Subject Effects 2, dependent variable: LnSWE.

Source Type III sum of squares df Mean square F Sig.

Corrected model 75.314(a) 23 3.275 2.171 0.002
Intercept 5979.145 1 5979.145 3964.267 0.000
CouTech 7.555 1 7.555 5.009 0.026
Orgtype 40.733 13 3.133 2.077 0.015
CouTech * Orgtype 15.437 9 1.715 1.137 0.336
Error 458.511 304 1.508
Total 19349.095 328
Corrected Total 533.825 327
R squared = 0.141
Adjusted R squared = 0.076

Table 10. Test of Between-Subject Effects 3, dependent variable: LnSWE.

Source Type III sum of squares df Mean square F Sig.

Corrected model 83.396(a) 33 2.527 1.650 0.017
Intercept 2968.157 1 2968.157 1937.348 0.000
Orgtype 38.333 13 2.949 1.925 0.027
Emethod 9.439 3 3.146 2.054 0.106
Orgtype * Emethod 28.156 17 1.656 1.081 0.372
Error 450.429 294 1.532
Total 19349.095 328
Corrected Total 533.825 327
R squared = 0.156
Adjusted R squared = 0.062

Table 11. Effort factor multipliers—
DevPlatform, where * means significant
codes: 0 ‘∗∗∗’, 0.001 ‘∗∗’, 0.01 ‘∗’.

Definition Value DevPlatform
multiplier

PC 1 0.00
Mid range 2 ∗∗0.39056
Main frame 3 ∗∗∗0.47019

This can be transformed into the following equation for effort:

Effort = 7.869385673 · Size0.68954 · Time0.55010 · eDevPlatform · eEmethod

· eOrgType · eCouTech.

The multipliers for each categorical variable are listed in Tables 11–15. For example,
when the DevPlatform is MainFrame, the multiplier is 0.47019.

Step 8: Test residuals. There is no pattern to the errors (residuals) plotted against the
fitted values in the final model, see Figure 7. The residuals are normally distributed
as shown in Figure 8. Therefore, this model is valid, and we can conclude these 6
variables explain most of the variance of the response variable.
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Table 12. Effort factor multipliers—Emethod.

Definition Value Emethod multiplier

Staff Hours (recorded) 1 0.00
Staff Hours (derived) 2 0.12368
Productive Time Only (recorded) 3 ∗∗∗0.60890
Combination 4 ∗∗1.08632

Table 13. Effort factor multipliers—CountingTech.

Definition Value CouTech multiplier

Convert Supported by a tool 1 0.00
Wholly Manual 2 ∗−0.25934
Automated 3 0.00

Table 14. Effort factor multipliers—OrgType.

Definition Value OrgType multiplier

Financial, Property and Business 1 0.00
Services
Public administration 2 −0.25934
Manufacturing 3 0.03281
Insurance 4 −0.03528
Electricity, Gas, Water 5 −0.20037
Communication 6 0.53783
Banking 7 ∗∗0.88708
Public administration 8 −0.05632
Oil 9 0.00
Wholesale and Retail Trade 10 0.00
Aerospace or Automotive 11 −0.28934
Credit Card Processor 12 0.00
Chemicals 13 −0.25988
Medical and Health Care 14 −0.20090
Computers 15 0.00
Transport and Storage 16 −0.01241
Computer Consultants 17 0.00
Occupational Health and Safety 18 −0.25934
Revenue 19 0.00
Professional Services 20 −0.19375
Agriculture, Forestry, Fishing, 21 −0.70455
Hunting
Community Services 22 0.00
Recreation, Personnel and other 23 0.00
Services
Mining 24 ∗−1.02574
Distribution 25 0.00
Coronial Services 26 0.00
Government 27 0.00
IS-Metrics collection system 28 0.00
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Table 15. Effort factor multipliers.

Definition Value t09 multiplier

Very low 1 0.826190
Low 2 0.682589
Average 3 0.563948
High 4 0.465928
Very high 5 0.384945

Figure 7. No pattern in the residuals of the final model.

Figure 8. Residuals are normally distributed.



PRELIMINARY DATA ANALYSIS METHODS IN SOFTWARE ESTIMATION 113

5. Discussion

5.1. Independence and interaction

In Maxwell’s approach, we use correlation coefficients to test independence between
numerical variables; ANOVA to test the independence between numerical and cate-
gorical variables, Chi-Square to test between ratio and nominal variables, and also
between nominal and nominal variables. All of these tests concentrate on testing the
interaction between the explanatory variables. Attention should be focused on the in-
teraction between explanatory variables when they simultaneously effect the response
variable.

5.2. Use ANOVA with caution

If there are large differences among the explanatory variables’ means, the numerator
of F will be inflated and the null hypothesis is likely to be rejected. There remains a
problem, however, if the null hypothesis states that all the means are equal, the alterna-
tive hypothesis is simply that they are not. If the ANOVA F -test gives significance, we
know there is a difference somewhere among the means, but that does not justify the
conclusion that any particular comparison is significant. Further analysis is necessary
to localize whatever differences there may be among the individual explanatory vari-
ables’ means. That is, although we can use ANOVA to test whether there is an effect on
the response variable by each explanatory nominal variables, the null hypothesis could
be rejected if any pair of means is unequal. We need to locate where the significant
differences lie. This requires post-hoc analysis. Unfortunately, Maxwell’s paradigm
does not account for this possibility.

5.3. Extract categorical data with caution

In Maxwell’s recipe, there is a step called extraction of the model. However, if there
are more than two multi-level variables in the final model, it will be unrealistic to
extract it to a series of equations without a computerized method. According to the
empirical results in this paper, not every level of a categorical variable in the final
model is significant. It could be helpful if we split the entire data set partitioned based
on different levels in the categorical variables.

6. Conclusions

This paper has described a general framework for the analysis of software engineer-
ing data. The framework is based closely on Maxwell’s work, except using different
statistical method (multivariate analysis) to test interaction between the categorical ex-
planatory variables. Within the framework, a set of statistical experiments have been
run based on a frequently used accessible data set, which contains data for 2,008 soft-
ware projects. As a result of the analysis, 6 explanatory variables are extracted and
evaluated. The generality of the approach and the empirical results support the us-
ability of the framework. In addition to assessing the importance of each variable, the
framework also affords the analyst a means of assessing the nature of the relationships
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between the predictors and the response variable. The framework handles all scales
of software project and identifies confounded variables. Furthermore, the framework
provides insight into the relationships among explanatory variables in their prediction
of the response measure.

Although the framework provides a systematical analysis method, there are still
some aspects that need to be further considered. In particular, the analysis of the in-
teraction between explanatory variables when they simultaneously effect the response
variable.

7. Further work

To further evaluate the usability and applicability of the framework, some standard
predicting techniques should be applied to construct cost estimation models. Some
examples are General linear model (GLM), Classification and regression tree (CART),
k-neariest neighbor (kNN) and artificial intelligent neural network (ANN). The 6-fold
and 2-fold cross validation methods should be applied in constructing these models.
Such experiments are currently being conducted and will be reported in a forthcoming
paper entitled “Usability and Applicability of Preliminary Data Analysis in Software
Cost Estimation.”

Further research is necessary to extend and evaluate the accuracy of the preliminary
data framework based on further historic data sets. Another outcome of the research
could be the provision of benchmarking results, i.e. allowing future proposed cost
estimation methods to be compared against known standards.
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