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Abstract
We review the surface flux transport model for the evolution of magnetic flux patterns on
the Sun’s surface. Our underlying motivation is to understand the model’s prediction of the
polar field (or axial dipole) strength at the end of the solar cycle. The main focus is on the
“classical” model: namely, steady axisymmetric profiles for differential rotation and merid-
ional flow, and uniform supergranular diffusion. Nevertheless, the review concentrates on
recent advances, notably in understanding the roles of transport parameters and – in particu-
lar – the source term. We also discuss the physical justification for the surface flux transport
model, along with efforts to incorporate radial diffusion, and conclude by summarizing the
main directions where researchers have moved beyond the classical model.
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1 Introduction

The surface flux transport (hereafter SFT) model is based on an elegant and simple idea,
originally formulated by Leighton (1964): radial magnetic flux on the solar surface behaves
like a passive scalar field. In other words, flux is carried around by horizontal plasma flows
but with no back reaction on these flows.

Despite its simplicity, the SFT model has proven remarkably successful at replicating
the magnetic flux patterns on the real solar surface (photosphere). Figure 1 shows an SFT
simulation for Solar Cycle 24, where new active regions have been inserted based on mag-
netograph observations. With appropriate parameters, the time-latitude “magnetic butterfly
diagram” in the SFT model (Fig. 1a) is a good match for the observed time-latitude plot
(Fig. 1c) at all latitudes. In general, the success of the SFT model has led to important ap-
plications both as (i) an inner boundary condition for extrapolations of the magnetic field in
the solar atmosphere, and (ii) an outer boundary constraint on models for the solar interior
dynamo.

In this review, our focus is on understanding the model itself: both its key ingredients and
fundamental behaviour when applied in the solar regime. Details about applications, partic-
ularly to the solar atmosphere, may be found in previous review articles (Sheeley 2005;
Mackay and Yeates 2012; Wang 2017). In the solar dynamo context, the SFT model has
been used to constrain theories and models of the magnetic field in the solar interior (e.g.,
Cameron et al. 2012; Cameron and Schüssler 2015; Jiang et al. 2014b; Lemerle and Char-
bonneau 2017; Whitbread et al. 2019; Hazra 2021). But it is also a valuable practical tool
for solar cycle prediction, enabling predictions to be made of the polar field at the end of the

Fig. 1 An SFT model for Solar Cycle 24 with emerging regions derived from SDO/HMI SHARPs data (fol-
lowing the method of Yeates 2020). Panel (a) shows the longitude-averaged field 〈Br 〉 in the simulation, and
(b) shows a snapshot of the two-dimensional field Br on 31 December 2014. For comparison, (c) shows
a magnetic butterfly diagram (or super-synoptic map) constructed from SDO/HMI pole-corrected synoptic
maps (Sun 2018), smoothed to a comparable resolution to the simulation. The individual, unsmoothed syn-
optic map for Carrington rotation CR2158 is shown in (d). Red/blue denote positive/negative values, capped
at ±10 G in (a,c) and ±50 G in (b,d)
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current solar cycle, and hence – through well-established correlations – the amplitude of the
following solar activity cycle (e.g., Cameron et al. 2016; Iijima et al. 2017; Jiang et al. 2018;
Upton and Hathaway 2018; Bhowmik and Nandy 2018; Jiang et al. 2023). Understanding
the origin and limitations of such polar field predictions requires an understanding of the
SFT model itself, which is what we seek to provide here.

The review is organised as follows. In Sect. 2, we present the basic equations of the “clas-
sical” SFT model. Section 3 discusses the imposed flows in the model, including the impor-
tance of including meridional flow and recent work on constraining the flow parameters.
Section 4 discusses the source term representing new flux emergence, which is fundamental
to the flux patterns that the model predicts. Section 5 examines the important question of
whether the SFT model – usually seen as purely phenomenological – can be derived from
physical principles. We conclude in Sect. 6 with an overview of model features beyond our
“classical” version.

2 Fundamentals of the Classical Model

Denoting the radial magnetic field distribution by Br(θ,φ, t), the equation for a passive
scalar field is

∂Br

∂t
+ ∇h · (uhBr

) = η∇2
hBr + S, (1)

where uh is the imposed advection velocity, and η is the diffusivity. In the classical model,
Br represents the large-scale mean field; the model does not resolve the smaller-scale mo-
tions of supergranular convection, but rather models these with the turbulent diffusivity η.
This was introduced by Leighton (1964) to parameterise the “random walk” of individual
magnetic flux elements due to the changing pattern of supergranular flows. For SFT it is
necessary to include also a prescribed source term S(θ,φ, t) that describes the emergence
of new magnetic flux, typically in the form of active regions. In a more complete physical
model, S would arise self-consistently through Faraday’s induction equation (to be discussed
in Sects. 5 and 6), but in the classical SFT model it is a prescribed model input. Throughout
we will use subscript h to denote the “horizontal” components of a vector, meaning those
tangential to the solar surface.

In the classical SFT model, the diffusivity η is uniform and constant, and most authors
assume a steady, axisymmetric imposed velocity of the form

uh(θ) = R� sin θ �(θ)eφ + uθ(θ)eθ . (2)

Thus �(θ) represents the angular velocity of solar differential rotation, and uθ (θ) represents
the meridional circulation. The choice of these flows is important and will be discussed
further in Sect. 3. Relaxing the classical assumptions is considered in Sect. 6 (except for the
addition of an exponential decay term which is discussed in Sect. 5).

2.1 Dimensionless Form

Ignoring S, we can consider non-dimensionalization of equation (1) by defining dimension-
less variables u′

h = uh/U0, ∇′
h = R�∇h and t ′ = tU0/R�, where U0 is a typical flow speed.

Then (1) becomes

∂Br

∂t ′
+ ∇′

h · (u′
hBr

) = 1

Rm
∇′

h

2
Br, (3)
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suggesting that the behaviour (in the absence of new emergence) is controlled by the dimen-
sionless magnetic Reynolds number

Rm = R�U0

η
. (4)

In effect, it is only the relative speed of advective to diffusive transport that matters.

2.2 Explicit Form

Writing out (1) explicitly in spherical coordinates, and assuming (2), gives the standard SFT
equation

∂Br

∂t
+ 1

R� sin θ

∂

∂θ

(
sin θ uθBr

)
+ �(θ)

∂Br

∂φ
=

η

R2� sin θ

∂

∂θ

(
sin θ

∂Br

∂θ

)
+ η

R2� sin2 θ

∂2Br

∂φ2
+ S. (5)

In some applications it suffices to consider the longitude-averaged field,

〈Br〉(θ, t) = 1

2π

∫ 2π

0
Br(θ,φ, t)dφ. (6)

Integrating (5), we find that 〈Br〉 obeys the one-dimensional equation

∂〈Br〉
∂t

+ 1

R� sin θ

∂

∂θ

(
sin θ uθ 〈Br〉

)
= η

R2� sin θ

∂

∂θ

(
sin θ

∂〈Br〉
∂θ

)
+ 〈S〉, (7)

showing in particular that differential rotation has no effect on the evolution of 〈Br〉
(Leighton 1964). On the other hand, the differential rotation – being the fastest flow – plays
an important role in determining the two-dimensional flux patterns seen on the solar surface.
By increasing the length of the polarity inversion lines in and between active regions, it also
speeds up the diffusive cancellation of non-axisymmetric components of Br (Sheeley and
DeVore 1986).

2.3 Implementation

Although some analytical analysis is possible (see Sheeley and DeVore 1986; DeVore 1987,
and also Sect. 4 below), for most applications it is usual to solve (5) or (7) with numer-
ical methods. This dates right back to the original paper of Leighton (1964). The most
natural numerical approach would be a spectral method based on spherical harmonics, as
implemented for example by Mackay et al. (2002) or Baumann et al. (2004) (see Bau-
mann 2005, for more details). However, care is needed in treating the source term S, since
newly-emerging active regions are typically highly localized in space and usually require
filtering in spectral space to avoid the Gibb’s phenomenon (“ringing”). A more straight-
forward approach is to use a simple explicit finite-volume method, provided that care is
taken in both the discretization and the source term to conserve magnetic flux (i.e., pre-
serve

∫ 2π

0

∫ π

0 Br(θ,φ, t) sin θ dθdφ = 0). The resulting time-step restriction is typically not
a severe problem on modern machines, given the two-dimensional nature and modest resolu-
tions typically used (for example, a 360 ×180 mesh). Much higher resolutions would not be
consistent with the mean-field assumption of the classical model (alternatives are discussed
in Sect. 6).
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Fig. 2 Velocity profile of differential rotation in the Carrington frame (a), and some example optimized pro-
files of meridional flow velocity (b), including (i) the simulation shown in Fig. 1; (ii) the Cycle 21 simulation
of Whitbread et al. (2017); and (iii) the Cycle 21 simulation of Lemerle et al. (2015). The corresponding
values of �u are (i) 0.7 × 10−7 s−1, (ii) 0.4 × 10−7 s−1, and (iii) 1.6 × 10−7 s−1

3 Flows

3.1 Differential Rotation

The solar surface differential rotation is well constrained observationally (see, e.g. Beck
2000) and usually treated as a fixed constraint. Typically, SFT models use a steady axisym-
metric angular velocity profile such as

�(θ) = 0.18 − 2.396 cos2 θ − 1.787 cos4 θ
[◦ day−1

]
(8)

as determined by Snodgrass and Ulrich (1990). The constant term here is written in the
Carrington frame that is usually adopted for SFT simulations. The resulting velocity pro-
file is shown in Fig. 2(a). As mentioned above, the differential rotation affects only the
non-axisymmetric component of Br , not the axisymmetric component 〈Br〉, and will not be
discussed further.

3.2 Meridional Flow

Although the only large-scale flow included by Leighton (1964) was the differential rotation,
it became clear from subsequent investigation of the SFT model that adding a meridional
flow gives more realistic magnetic flux distributions (DeVore et al. 1984). In particular, a
poleward flow is needed in order to concentrate the magnetic field into polar caps at the
end of the solar cycle – compare Figs. 3(a) and (b). Otherwise, once Br has become ap-
proximately axisymmetric it will tend to the slowest decaying (	 = 1) eigenmode of the
diffusion operator, which is the dipole Br ∼ cos θ . (A pure dipole is not seen in Fig. 3c
because it requires a few more years: the decay time for the next higher mode, l = 2, is
R2�/[ηl(l + 1)] ≈ 6 yr.)

Observational evidence now clearly supports the existence of a surface meridional flow
(Hanasoge 2022) although it is much slower than the differential rotation and potentially
more variable. As such, different modellers have used different flow profiles. Typical exam-
ples have a single peak in each hemisphere, but vary in their latitudinal profiles. Figure 2(b)
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Fig. 3 Effect of meridional flow in the simulation from Fig. 1, showing latitude-time plots of 〈Br 〉 when the
flow is included (a) or omitted (b). Panel (c) shows the latitudinal profiles of 〈Br 〉 at the end of the simulation.
The dashed curve shows the (near) steady-state profile (11) for the case with flow. (After Fig. 3 of Sheeley
2005)

illustrates three profiles: (i) and (ii) come from the simple two-parameter family

uθ(θ) = −R��u cos θ sinp θ, (9)

where �u is the flow divergence at the equator, and larger values of p lead to flows more
concentrated near the equator (the speed peaks at cos θ = ±(1 + p)−1/2). Profile (iii) in
Fig. 2(b) has the more complex form

uθ (θ) = −
√

πR��u

2w erfq(ν)
erfq(ν sin θ) erf(w cos θ), (10)

which allows the gradient to be concentrated nearer to the equator (see Wang 2017).
It is non-trivial to determine the precise eigenmodes of equation (7) when meridional flow

is included (DeVore 1987), even with a simple flow profile such as (9). However, one can
determine a useful approximation by seeking a perfectly axisymmetric steady state Br(θ)

that balances the poleward advection with diffusion. For example, for the flow profile (9),
equation (7) can be solved in an individual hemisphere to give the steady state solution

Br(θ) = Br(0) exp

[
−Rm0 sin1+p θ

(1 + p)

]
. (11)

Here Rm0 = R2��u/η, which is the magnetic Reynolds number Rm from (4) with the spe-
cific choice U0 = R��u, highlighting explicitly the dependence of the solution on the mag-
netic Reynolds number. The amplitude Br(0) will depend on the initial condition and source
term S and cannot be determined directly. The solution (11) can only be an approximation
to the slowest-decaying eigenfunction because it is necessarily non-zero at the equator, and
will therefore generate a discontinuity at the equator when applied in both hemispheres with
opposite sign. However, this discontinuity is small for typical values of Rm0 and will lead
to diffusive cancellation only on a timescale much longer than the solar cycle (cf. Cameron
et al. 2010). Indeed, Fig. 3(c) shows that (11) gives an excellent approximation to the latitu-
dinal Br profile at the end of the example simulation in Fig. 3(a), particularly in the Northern
hemisphere. (In the Southern hemisphere there is a remnant active region at low latitude that
modifies the profile.) This simulation used η = 425 km2s−1, p = 3.87, �u = 6.9 × 10−8 s−1,
and consequently Rm0 ≈ 79.
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3.3 Parameter Optimization

The primary flow parameters to choose are the meridional flow profile uθ(θ) and the dif-
fusivity coefficient η. The basic effects of varying these parameters were investigated in
the 1980s (DeVore et al. 1984; Wang et al. 1989). A more systematic parameter study was
published by Baumann et al. (2004), who explored the results of varying both η and the
meridional flow amplitude (in addition to properties of the source term), albeit varying only
one parameter at a time and not the shape of the meridional flow profile.

More recent studies have explored the parameter space more widely, and have also at-
tempted to optimize the parameters directly against synoptic magnetogram observations.
The two most general studies are Lemerle et al. (2015) and Whitbread et al. (2017), who
both allow the strength and shape of uθ (θ) to vary, in addition to η. For uθ , Whitbread et al.
(2017) allowed for profiles of the form (9), whereas Lemerle et al. (2015) allow for the more
general (but still single-peaked) form (10). The optimal profiles from both studies for data
from Cycle 21 are shown in Fig. 2. At present, it is not possible to select confidently be-
tween these solutions using observations, though helioseismic measurements of the plasma
flow suggest equatorial slopes �u in the range [0.6 − 1.2] × 10−7 s−1 – somewhere be-
tween profiles (i) and (iii) in Fig. 2. Measurements based on magnetic feature tracking give
lower equatorial slopes more like that of profile (ii), but it has been suggested that these are
contaminated by supergranular diffusion (Dikpati et al. 2010; Wang 2017). A recent list of
observations is given in Jiang et al. (2023).

Both Lemerle et al. (2015) and Whitbread et al. (2017) used the same genetic optimiza-
tion algorithm, PIKAIA (Charbonneau and Knapp 1995). These two studies differed in their
chosen goodness-of-fit functions, although both were ultimately derived from comparing
to observed Br(θ,φ) maps. Whitbread et al. (2017) gave more weight to lower latitudes
(where magnetogram observations are more reliable), whereas Lemerle et al. (2015) gave
additional weight to the mid-latitude “transport regions” (because they represent the result
of the model evolution rather than only the active region emergence) and to the axial dipole
strength. At the other extreme, a further parameter study by Petrovay and Talafha (2019)
focused only on optimizing the high latitude (polar) field, albeit in the 1D model. This study
used a synthetic (averaged) source term and fitted to average cycle properties from Wilcox
Observatory polar field measurements, such as reversal time or width of the polar cap.

A robust finding in these optimization studies is a degeneracy between η and the am-
plitude of uθ . This is illustrated by Fig. 4, which shows that there is a long ridge of
near-optimal solutions in parameter space. Increasing both parameters together tends to
lead to a equally (or nearly equally) well-matched solution, perhaps explaining why dif-
ferent groups have been able to use quite different values of η – for example, Cameron
et al. (2010) use η = 250 km2s−1 as their standard value whereas the simulation in Fig. 1
used η = 425 km2 s−1. This degeneracy makes sense given the appearance of the magnetic
Reynolds number Rm in equation (3), which is essentially the ratio of η to |uθ |. It means
that SFT simulations can not be used to constrain both the meridional flow and diffusion
from magnetogram observations alone.

When optimizing the model individually for different solar cycles, Whitbread et al.
(2017) found some cycle-to-cycle variation in the optimal speeds and diffusivities. This is
understandable given the phenomenological nature of the model (to be discussed further in
Sect. 5). Indeed, when simulating multiple cycles, Wang et al. (2002) had previously varied
the meridional flow speed from cycle to cycle so as to avoid unrealistic drift of the polar field
over time. On the other hand, other authors have avoided this problem by varying instead the
tilts of emerging active regions (Cameron et al. 2010, see also Sect. 4.3), or adding an addi-
tion decay term (to be discussed in Sect. 5). In reality it is likely that the effective mean-field
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Fig. 4 Fitness function χ−2 as a
function of meridional flow
amplitude u0 = maxθ |uθ |
(horizontal axis) and diffusivity
ηR ≡ η (vertical axis), from the
optimization study of Lemerle
et al. (2015). Black lines show
the optimum value and blue lines
the limit of the acceptable region
(χ−2 ≥ 93%χ−2

max). (© AAS.
Reproduced with permission.)

meridional flow varies even over the course of a single Solar Cycle (see Sect. 6). Interest-
ingly, Hung et al. (2017) have shown – in the context of a flux-transport (interior) dynamo
model – that a time-dependent meridional flow may be recovered from surface magnetic
data through variational data-assimilation, and in future this approach could also be applied
to SFT.

4 The Source Term

The magnetic flux patterns in the SFT model are determined in large part by the source
term S(θ,φ, t), which – in the classical mean-field model – represents the emergence of
new macroscopic active regions on the solar surface. Since the classical SFT equation (1)
is linear in Br , the solution is a superposition of solutions for each individual active region,
so it is insightful to consider the evolution of one of these regions in isolation. Since most
SFT simulations follow the evolution for periods of years, it is usual to emerge each active
region instantaneously in time, so that

S(θ,φ, t) =
∑

i

B(i)
r (θ,φ)δ(t − t (i)), (12)

where B(i)
r (θ,φ) is the magnetic field of an individual active region emerging at t = t (i).

Traditionally, SFT models treat each active region as a bipolar magnetic region (BMR).
Figure 5 shows the shape used by Van Ballegooijen et al. (1998), with circular flux patches
centred on the poles (θ−, φ−) and (θ+, φ+) and having the form

Br(θ,φ) = B0

{
exp

[
−2(1 − cosβ+)

(bρ0)2

]
− exp

[
−2(1 − cosβ−)

(bρ0)2

]}
, (13)
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Fig. 5 Positive and negative
contours of Br for a BMR of the
Van Ballegooijen et al. (1998)
form (13). The size is
exaggerated (ρ0 = 25◦)
compared to a real active region.
This example follows Joy’s Law
in that the leading (rightmost)
polarity is closest to the equator

where

cosβ± = cos θ± cos θ + sin θ± sin θ cos(φ − φ±), (14)

cosρ0 = cos θ+ cos θ− + sin θ+ sin θ− cos(φ+ − φ−). (15)

Thus β±(θ,φ) denote the heliocentric angles from each pole, and ρ0 the heliocentric angle
between them. Van Ballegooijen et al. (1998) took b = 0.4. For some purposes, one can
approximate (13) with a pair of Dirac-delta sources,

Br(θ,φ) = �0

R2� sin θ

[
δ(θ − θ+)δ(φ − φ+) − δ(θ − θ−)δ(φ − φ−)

]
, (16)

where �0 gives the flux of each polarity, defined assuming flux balance as

�0 = R2�
2

∫

S

|Br | sin θ dθ dφ. (17)

Although the precise chosen shape for BMRs varies between implementations (see
Yeates 2020, for another variation), the key properties are the magnetic flux, �0, and pole
locations, (θ−, φ−) and (θ+, φ+). The latter may equivalently be specified by giving the co-
ordinates of the BMR centre (θ0, φ0) along with the separation ρ0 as in (15) and tilt angle
γ0, typically defined by

tanγ0 = θ+ − θ−
sin θ0(φ+ − φ−)

. (18)

Together these BMR properties determine both the short-term and long-term evolution of
the region.

After a new region emerges in the model, much of its magnetic flux cancels by supergran-
ular diffusion. This models the observed process of flux cancellation at the polarity inversion
line (PIL) between the positive and negative polarities. This cancellation rate is enhanced
as the region is sheared by differential rotation and the PIL lengthened. On short-timescales
(days) it is possible to approximate the solar surface as a Cartesian plane. Assuming a linear
shear flow profile for the differential rotation, Lagrangian variables can be used to solve the
Cartesian form of (1) for the exact evolution Br(θ,φ, t) of a tilted BMR (we will see an
example in Sect. 4.1). On longer timescales, it is necessary to follow the evolution numeri-
cally.
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Fig. 6 Long term evolution of three identical BMRs emerged at different latitudes (λ0 = π/2 − θ0) in the
SFT model. Left column shows the initial BMRs and right column the time-latitude plot of 〈Br 〉 in each case

It takes approximately 2 years for the non-axisymmetric component of Br to cancel com-
pletely (Wang and Sheeley 1991). Whether or not any axisymmetric Br remains on a longer
timescale depends on how much flux of one polarity escapes across the equator so that the
two polarities are pushed to opposite poles by the meridional flow. An untilted region will
send both polarities equally to each pole and so leave no asymptotic contribution at the end
of the solar cycle. In a similar way, a (tilted) region that is nearer to the equator will produce
a greater asymptotic contribution, because more flux escapes across the equator before being
cancelled. This important effect is illustrated in Fig. 6, where the same BMR is inserted at
three different latitudes.

4.1 Dipole Amplification Factor of a BMR

A common way to measure the end-of-cycle contribution of an individual BMR is through
its axial dipole strength, which is the axisymmetric spherical harmonic coefficient of Br

with lowest degree,

b1,0(t) = 3

4π

∫ 2π

0

∫ π

0
Br cos θ sin θ dθ dφ = 3

2

∫ π

0
〈Br〉 cos θ sin θ dθ. (19)

By linearity of the classical SFT model, the total axial dipole strength will be the sum of the
individual contributions from all of the active regions.

At the time of emergence, a BMR with the simple form (16) has

b1,0(tem) = 3�0

4πR2�

∫ π

0

[
δ(θ − θ+) − δ(θ − θ−)

]
cos θ dθ (20)
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= 3�0

4πR2�

(
cos θ+ − cos θ−

)
(21)

= 3�0

2πR2�
sin

(
θ− − θ+

2

)
sin

(
θ+ + θ−

2

)
(22)

≈ − 3�0

4πR2�
ρ0 sinγ0 sin θ0. (23)

Here we have defined the central colatitude θ0 = (θ+ + θ−)/2 and recognized that for tilt
angle γ0 and heliocentric angle ρ0 between the poles, their latitudinal separation is (θ+ −
θ−) = ρ0 sinγ0 (assuming θ+ > θ−). Thus, as noted by Wang and Sheeley (1991), the axial
dipole strength of a newly-emerged BMR depends on its flux, its latitudinal pole separation,
and the cosine of its emergence latitude.

Importantly, the axial dipole strength of a BMR can change under the ensuing SFT evo-
lution: it will be amplified if the BMR emerged near the equator, or will decay if the BMR
emerged far from the equator. It was first recognized by Jiang et al. (2014a) that the “dipole
amplification factor”

f∞ = lim
t→∞

b1,0(t)

b1,0(tem)
(24)

is well approximated by a Gaussian function of latitude, of the form

f∞(λ0) = A exp

(
− λ2

0

2λ2
R

)
, (25)

where λ0 = π/2 − θ0 is the central latitude of the BMR. (It is convenient to work in terms of
latitude λ = π/2 − θ rather than colatitude θ .) Fig. 7 shows the functional form measured in
several different numerical SFT models, where we note that both the amplitude A and width
λR depend on the model. Once these parameters are known, equation (25) – coupled with
the linearity of the SFT evolution equation (5) or (7) – allows the net axial dipole strength
at the end of a solar cycle to be determined algebraically just by adding up the contributions
of the individual BMRs, without the need to solve the evolution equation.

Fig. 7 Latitude dependence of
the dipole amplification factor for
BMRs in different published SFT
models. The solid lines show
Gaussian fits. Reproduced from
Petrovay et al. (2020)
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The interpretation of Fig. 7 is that only BMRs that emerge with latitude |λ0| < λR will
contribute to the global dipole moment at the end of the solar cycle. Petrovay et al. (2020)
call λR the “dynamo effectivity range”, and give the following simple physical derivation.
To give a lasting contribution, a BMR must be close enough to the equator that some of its
leading-polarity flux is able to cross the equator by diffusion, in opposition to the meridional
flow. The timescale for advective separation at the equator is �−1

u , where �u = R−1
� u′

θ (π/2)

is the equatorial divergence of uθ (θ). Equating this to the diffusion timescale (λR�)2/η

from latitude λ to the equator suggests that

λR ≈
√

η

R2��u

= Rm−1/2
0 . (26)

Note the reappearance of the magnetic Reynolds number from Sect. 3.2. Petrovay et al.
(2020) computed f∞(λ0) for numerical solutions with several different uθ profiles, and in
most cases found that the Gaussian width λR was indeed well approximated by Rm−1/2

0 , the
exception being a flow where uθ peaks at a very low latitude compared to observations.

Petrovay et al. (2020) went further and derived (25) analytically. (Readers not interested
in the details may skip to Sect. 4.2.) The trick is to recognize that the final dipole moment
– once the Br distribution has become (near) axisymmetric – will be proportional to the
remaining net magnetic flux in each hemisphere. (There will also be a coefficient depending
on the latitudinal profile of the near-steady state as in (11).) Because it is determined purely
by flux crossing the equator, the evolution of the net hemispheric flux can be quite well
approximated by a Cartesian SFT model near the equator, which has the advantage of being
analytically tractable. Thus Petrovay et al. (2020) consider the “low-latitude limit” of (7),

∂〈Br〉
∂t

+ 1

R�
∂

∂λ

(
uλ〈Br〉

) = η

R2�

∂2〈Br〉
∂λ2

. (27)

By choosing the linearised meridional flow uλ = R��uλ, we can define the Lagrangian
coordinate 	 = e−�utλ and new time variable τ = (

1 − e−2�ut
)
/(2Rm0) to reduce Equation

(27) to a standard diffusion equation

D

Dτ

(
e�ut 〈Br〉

) = ∂2

∂	2

(
e�ut 〈Br〉

)
, (28)

where D/Dτ denotes the partial derivative with 	 kept constant rather than λ. Equation (28)
may be solved for a variety of initial conditions using standard techniques.

If the initial condition consists of a single (monopole) point source,

〈Br〉(λ,0) = �0

2πR2�
δ(λ − λ0), (29)

then solving (28) gives

e�ut 〈Br〉 = �0

2πR2�
√

4πτ
exp

(
− (	 − λ0)

2

4τ

)
, (30)

which for large t is approximately

〈Br〉(λ, t) ∼ �0
√

Rm0e−�ut

2πR2�
√

2π
exp

(
−Rm0

(
e−�utλ − λ0

)2

2

)

. (31)
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In the approximation (31), the flux difference between the hemispheres is

�N − �S = 2πR2
�

(∫ ∞

0
〈Br〉dλ −

∫ 0

−∞
〈Br〉dλ

)
= �0 erf

(√
Rm0

2
λ0

)

, (32)

valid for either sign of λ0.
For a BMR we must combine two point sources as in (16), each contributing half of the

flux �0, so

�N − �S = �0

2

[

erf

(√
Rm0

2
λ+

)

− erf

(√
Rm0

2
λ−

)]

(33)

≈ �0
√

Rm0(λ+ − λ−)√
2π

exp

(
−Rm0λ

2
0

2

)
, (34)

where we recognize the finite difference as an approximation of the derivative at λ0 =
(λ− +λ+)/2. We therefore expect that, to a good approximation, b1,0(t) → a(�N −�S)/R

2�
as t → ∞, for some constant a that depends on the (normalized) shape of the steady
Br profile (thus only on uθ and D). At the initial time, Equation (23) gives b1,0(0) =
3�0(λ+ − λ−) cosλ0/(4πR2�). Approximating cosλ0 ≈ 1, the ratio is therefore

f∞ ≈ a
√

8πRm0

3
exp

(
−Rm0λ

2
0

2

)
. (35)

Thus we recover (25) with λR = Rm−1/2
0 as claimed. Moreover, for a known asymptotic

profile of Br(θ), we can determine a and hence also predict the amplitude A.

4.2 Non-bipolar Source Regions

Real solar active regions cannot always be represented as simple, symmetric BMRs. Even a
region with two polarities will be effectively “multipolar” if the polarities are asymmetric in
shape, and this will modify the evolution of b1,0 compared to a symmetric BMR. This was
investigated by Iijima et al. (2019), who ran SFT simulations with Gaussian BMRs of the
form (13), but where the leading polarity has a narrower width than the following polarity
(controlled by the b parameter in (13)). When calibrated to the observed level of sunspot
area asymmetry, their SFT simulation gave a more realistic evolution of both b1,0 and the
magnetic butterfly diagram, as compared to a reference simulation with equally-sized po-
larities. In particular, they noted that a wider following polarity leads to more following
polarity flux crossing the equator, cancelling some of the trans-equatorial leading polarity
flux and weakening the asymptotic contribution of the region. Similarly, Wang et al. (2021)
found for asymmetric BMRs with more diffuse following polarity, that f∞ is systematically
reduced (see their Fig. 4). As an illustration, Fig. 8 shows an example of the SFT evolution
for an asymmetric region inserted directly with its observed shape; in this case, the effect is
sufficiently extreme to reverse the sign of b1,0 altogether compared to a symmetric BMR.

Jiang et al. (2019) considered the SFT evolution of a more complex “δ-type” flux dis-
tribution. They showed that b1,0 changed sign during the SFT evolution, ending up with a
completely different end-of-cycle contribution than would be expected for a BMR emerging
at the same latitude with the same flux and same initial b1,0. Wang et al. (2021) showed
further that the dipole amplification f∞ is no longer a simple function of emergence latitude
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Fig. 8 Evolution of an active region with asymmetric bipolar shape, taken from the simulation in Fig. 1. The
left column shows the region with its observed shape, with second row showing 〈Br 〉 and third row the axial
dipole strength b1,0. The right column shows the evolution of an “equivalent” symmetric BMR having the
same initial flux and b1,0. The dashed line shows the final b1,0 predicted by equation (36) using the observed
magnetogram

for such complex regions. However, the net effect of all of the real complex and asymmetric
regions seems to be a reduction in the net end-of-cycle dipole, at least for Cycle 24. Ev-
idence for this comes from Yeates (2020), who compared an SFT simulation of that cycle
where all active regions emerged with their observed flux distributions to a simulation where
they were all approximated by symmetric BMRs with the same flux and initial b1,0. The net
b1,0 at the end of the cycle was overestimated by 24% when the regions were modelled with
BMRs.

For predicting the dipole contributions of more complex regions, Wang et al. (2021)
showed that (35) can be generalized to regions with non-bipolar shapes, by treating them as a
superposition of point sources. In particular, for an active region with initial flux distribution
Br(θ,φ,0), combining the hemispheric flux differences (32) predicts that the axial dipole
strength at the end of the cycle would be

lim
t→∞b1,0(t) ≈ a

R2�

∫

S

Br(θ,φ,0) erf

[√
Rm0

2

(π

2
− θ

)]

sin θ dθdφ, (36)

where a is the coefficient in the relation b1,0 ≈ a(�N −�S)/R
2�. Wang et al. (2021) verified

this prediction against SFT simulations for 84 regions during Cycle 24. It gives an accurate
prediction for the region in Fig. 8.

4.3 Modelling the Source Term

It is not always viable to use observations of real individual active regions to construct the
source term. This situation arises when working with historical data, when running SFT
models into the future for forecasting purposes, or just in conceptual simulations studying
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Fig. 9 The smooth source term 〈S〉(λ, t) used by Petrovay and Talafha (2019). In (a), red/blue contours show
〈S〉, and dashed lines indicate ± sin[λ0(t)] from (39). Panel (b) shows the overall cycle shape A(t) from (38)
with a = 0.00185, b = 4.058, c = 0.71

the underlying physics. In such cases the source term S(θ,φ, t) needs to be modelled, either
as a smooth function (e.g., Cameron and Schüssler 2007; Petrovay and Talafha 2019) or as
random realizations of active regions drawn from a statistical distribution (e.g., Schrijver
2001; Mackay and Lockwood 2002; Baumann et al. 2004; Jiang et al. 2018; Wang and Lean
2021).

The smooth function approach has primarily been used in the 1D SFT model, (7), for
example by Petrovay and Talafha (2019), who use a pair of flux rings in each hemisphere,
shown in Fig. 9(a) and given by

〈S〉(λ, t) = (−1)nA(t)

{
exp

(
−[λ − λ+(t)]2

2δ2
λ

)
− exp

(
−[λ − λ−(t)]2

2δ2
λ

)

+ exp

(
−[λ + λ+(t)]2

2δ2
λ

)
− exp

(
−[λ + λ−(t)]2

2δ2
λ

)}
. (37)

This model incorporates a number of observed solar cycle features:

(i) All polarities alternate according to the solar cycle number, n.
(ii) The cycle has an asymmetrical shape in time, shown in Fig. 9(b) and given by the

Hathaway et al. (1994) observed fit

A(t) = a(t − tmin)

(
exp

[
(t − tmin)

2

b2

]
− c

)−1

, (38)

where tmin is the start of the cycle.
(iii) The centres ±λ0 of each pair of flux rings, i.e. λ0 = (λ+ + λ−)/2 shown by dashed

lines in Fig. 9(a), migrate equatorward at the rate

λ0(t) = 26.4 − 34.2

(
t

T

)
+ 16.1

(
t

T

)2

[◦] (39)

fitted empirically by Jiang et al. (2011), where T is the cycle length (11 years).
(iv) The separation �λ = λ− − λ+ decreases as λ0 approaches the equator, according to

�λ(t) = 0.5
sinλ0(t)

sin 20◦ [◦]. (40)
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This models the longitude-averaged effect of the well-established Joy’s Law (van Driel-
Gesztelyi and Green 2015), whereby BMRs emerging at lower latitude have (on average)
smaller tilt angle |γ0|, defined in (18).

The statistical BMR approach is similar, except the functions above are treated as overall
distributions from which discrete BMRs are chosen at random. For the longest historical
simulations, which date back to 1700 (Jiang et al. 2018; Wang et al. 2021), the only ob-
servational input is the sunspot number time series – equivalent to emergence rate, A(t).
For 20th Century simulations, data on the areas and locations of individual sunspot groups
can be used (e.g., Cameron et al. 2010). However, even here the magnetic flux and tilt an-
gle (equivalently axial dipole strength) must be chosen at random as they are not available
observationally before the onset of routine magnetograms in the 1970s.

The tilt angle is problematic as Joy’s Law, as modelled in (40), holds only for the mean,
and there is known to be very significant scatter (e.g., Wang and Sheeley 1989; Yeates 2020).
Recent studies have shown that individual “rogue” active regions – defined as those with
dipole moments significantly different from Joy’s Law expectation at their latitude – can
have a significant effect on the overall polar field at the end of the cycle (Jiang et al. 2015;
Nagy et al. 2017). In light of (35), such rogue regions must typically emerge near to the
equator, although their relative contribution depends on Rm0 and would be reduced if Rm0

were large. Nevertheless, simulations based on statistical source terms without individual
dipole moment data should be treated with caution, particularly for prediction.

The widely-accepted α� paradigm for the solar dynamo suggests a “self-consistent”
way to build a fully synthetic SFT model: set the amount flux emerging through the source
term in cycle n proportional to the axial dipole strength at the end of cycle n − 1. Talafha
et al. (2022) modified the one-dimensional model of Petrovay and Talafha (2019) to use
such an approach. They used this model to systematically study the impact of two possi-
ble nonlinearities in the source term: tilt quenching (where BMRs are less tilted in strong
cycles) and latitude quenching (where BMRs emerge at higher latitudes in strong cycles).
SFT simulations show that both effects act to reduce the axial dipole produced in strong
cycles (Cameron et al. 2010; Jiang 2020). They are both therefore possible saturation mech-
anisms to explain why the solar dynamo doesn’t exhibit runaway exponential growth. Ta-
lafha et al. (2022) showed that the relative impact of tilt versus latitude quenching on the
end-of-cycle axial dipole depends primarily on the dynamo effectivity range λR in equation
(26). In particular, for small λR , latitude quenching reduces the end-of-cycle dipole more
than tilt quenching, and vice versa for large λR . However, the amount of tilt and/or latitude
quenching present on the real Sun remains under debate.

5 Physical Justification

As introduced by Leighton (1964), the SFT model is purely phenomenological. But can
equation (1) be derived from known physical laws? The relevant law governing the evolution
of the large-scale magnetic field is the mean-field MHD (magnetohydrodynamic) induction
equation,

∂Br

∂t
= er · ∇ × (

u × B − η∇ × B
)
, (41)

where u is the plasma velocity and – anticipating the form of (1) – we have made a simple
approximation for the turbulent electromotive force of the form −η∇ × B (cf. McCloughan
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and Durrant 2002). Thus η represents turbulent diffusivity, not ohmic resistivity (which is
negligible in the highly conducting photosphere). This assumption of a turbulent diffusivity
is discussed further in Sect. 5.3 below.

Consider the first term in (41). Decomposing u = uh + urer , where er · uh = 0, and
similarly B = Bh + Brer , we can write

er · ∇ × (
u × B

) = ∇ · (urBh

) − ∇ · (uhBr

)
. (42)

The last term is precisely the advection term in the SFT equation (1), while the term ∇ ·(
urBh

)
represents flux emergence, so corresponds to the source term S in (1). Thus the SFT

model is incorporating the correct advection terms.
Now consider the diffusion term in (41). For simplicity, we will assume that η = η(r)

only, in which case

−er · ∇ × (
η∇ × B

) = η∇2
hBr + Rη. (43)

This has the diffusion term from (1) plus an additional remainder term

Rη = − η

R�
∇h · B − η

R� sin θ

∂

∂θ

(
sin θ

∂Bθ

∂r

)
− η

R� sin θ

∂

∂φ

(
∂Bφ

∂r

)
. (44)

Using ∇ · B = 0, this may be rewritten entirely in terms of Br , simplifying to

Rη = η

R2�

∂2

∂r2

(
r2Br

)
. (45)

Thus in mean-field MHD there is an additional term representing the radial diffusion of mag-
netic flux that is missing from the original SFT equation (1). Physically, this incorporates
the fact that the surface magnetic field is connected to the interior; for example, the decay
of active regions can be slowed if they remain connected to deeper layers of the convection
zone where the diffusivity is lower (Wilson et al. 1990; Whitbread et al. 2019).

One way to justify the classical SFT model is to assume that Bθ,Bφ ≈ 0 in the near-
surface region of the solar convection zone. It then follows from (44) that Rη = 0. To some
extent this is justified by vector magnetogram observations at the photosphere (for a recent
discussion, see Virtanen et al. 2019; for a theoretical argument, see van Ballegooijen and
Mackay 2007). If this radial-field approximation is not made, then self-consistent compu-
tation of the radial diffusion term Rη would require simulation of the three-dimensional
magnetic field in the solar convection zone. However, two approaches have been used to
parametrize (45) in SFT models without the need for three-dimensional simulations, and
these will be considered next.

5.1 Exponential Decay Term

The most common parametrization for the radial diffusion term (45) is to assume that Rη ≈
−Br/τ , so that (1) becomes

∂Br

∂t
+ ∇h · (uhBr

) = η∇2
hBr − Br

τ
+ S. (46)

Multiplying by et/τ shows that

∂

∂t

(
et/τBr

) + ∇h · (uhet/τBr

) = η∇2
h

(
et/τBr

) + et/τ S. (47)
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Fig. 10 Application of the radial diffusion term to reduce spurious cycle-to-cycle memory in the SFT model,
from Baumann et al. (2006). The top row shows the north polar field (above 75◦ latitude) in a simulation
with no radial diffusion, while the middle and bottom rows show the same simulation with η0 = 50 km2s−1

and 100 km2s−1 according to the prescription in Sect. 5.2. The simulation uses random emerging BMRs
proportional to the observed sunspot numbers. The dashed line shows a simulation started in 1750, illustrating
how the memory of the initial conditions persists. (© ESO. Reproduced with permission.)

Thus if B∞
r denotes the solution to the original equation (1), corresponding to τ → ∞, then

the solution with finite τ but all other parameters the same is Br = e−t/τB∞
r . In other words,

the solution decays exponentially at uniform rate τ−1. For example, the dipole amplification
factor (35) for a BMR would become

f∞ ≈
√

8πRm0

3
exp

(
−Rm0λ

2
0

2

)
exp

(
− t

τ

)
, (48)

reflecting continuing decay of the magnetic field due to the new term.
The first application of such a decay term was by Schrijver et al. (2002), who motivated

it not by consideration of radial diffusion but purely as a necessary addition to reduce the
“memory” of the polar field (equivalently b1,0) over multiple solar cycles. Without it, the
varying amount of polar field production caused by the differing sunspot numbers in dif-
ferent cycles led to an unrealistic drift in the polar field over time, rather than the regular
reversals that are observed. This drift is illustrated (for another SFT model) in the top panel
of Fig. 10.

The optimization studies discussed in Sect. 3 have also looked for the optimum τ in
shorter simulations where long-term memory is not an issue. With their simplified source
term, Petrovay and Talafha (2019) found that a decay term (with τ in the range 5–10 yr) was
essential, otherwise b1,0 reversed too late for all of the flow profiles and parameters tried.
And in simulations of Cycle 23 driven by idealised BMRs, Whitbread et al. (2017) found
that a decay term with τ < 5 yr helped to reduce unrealistically high values of b1,0. However,
they found that emerging active regions with observed shapes reduced b1,0 in itself (as did
Yeates 2020, for Cycle 24), and the optimization did not strongly select for a particular τ .
Moreover, the fit of the optimum model did not improve significantly when the decay term
was included in the model compared to when it was not. Lemerle et al. (2015) also found
that τ was not strongly constrained by the optimization process, with acceptable solutions
found for suitable parameter combinations with τ in the range from 7–32 yr. In summary,
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the presence of a decay term as required by Schrijver et al. (2002) does not seem to be ruled
out by observations.

It should be noted that, in principle, an additional decay term is not the only way to
reduce the cycle-to-cycle memory of b1,0 in the model. Alternatives that have been adopted
include imposed cycle-to-cycle variations in either the meridional flow speed (Wang et al.
2002) or the tilt angles of emerging BMRs (Cameron et al. 2010). It is difficult to choose
definitively between these options with only about four solar cycles of full magnetogram
observations.

5.2 Diffusive Interior Model

An improved parametrization for (45) was suggested by Baumann et al. (2006). They ob-
served that if one assumes a purely diffusive evolution with uniform diffusivity η = η0

throughout the convection zone, then the term Rη may be approximated using only Br on
the solar surface.

Specifically, Baumann et al. (2006) consider a purely poloidal field B = ∇ × ∇ × (
rP

)

inside the convection zone Rb < r < R�, with boundary conditions Br(Rb, θ,φ) = 0 and
Bθ(R�, θ,φ) = Bφ(R�, θ,φ) = 0. Under a purely diffusive decay

∂B
∂t

= −η0∇ × (∇ × B
)

(49)

with η0 constant, and a suitable gauge choice for P , this reduces to the scalar problem

∂P

∂t
= η0∇2P,

∂

∂r

(
rP

)
∣∣
∣∣
r=R�

= P

∣
∣∣
r=Rb

= 0. (50)

The solution, omitting the monopole term, may be written as an expansion

P (r, θ,φ, t) =
∞∑

n=0

∞∑

l=1

l∑

m=−l

[
al,njl(kl,nr) + cl,nyl(kl,nr)

]
Y m

l (θ,φ)e−η0k2
l,n

t
, (51)

where Y m
l are spherical harmonics and jl , yl are spherical Bessel functions of the first and

second kinds. Linearity of (50) allows Baumann et al. (2006) to set al,n = 1 without loss of
generality, so the inner boundary condition fixes the other coefficient

cl,n = − jl(kl,nRb)

yl(kl,nRb)
. (52)

The upper boundary condition then gives

l
[
jl(kl,nR�)yl(kl,nRb) − yl(kl,nR�)jl(kl,nRb)

] =
kl,nR�

[
jl−1(kl,nR�)yl(kl,nRb) − yl−1(kl,nR�)jl(kl,nRb)

]
. (53)

This equation must be solved numerically for each l and n to determine the eigenvalues kl,n,
which give the decay times τl,n = (η0k

2
l,n)

−1 for each component, where l is the spherical
harmonic degree and n is the radial mode number. Since the SFT model does not give the
subsurface radial structure, Baumann et al. (2006) propose to keep only the modes with
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n = 0, which are the slowest decaying modes for each l. They modify the SFT equation (1)
to

∂Br

∂t
+ ∇h · (uhBr

) = η∇2
hBr −

∞∑

l=1

l∑

m=−l

bl,m(t)

τl,0
Y m

l (θ,φ) + S, (54)

where bl,m(t) are the spherical harmonic coefficients in the expansion of Br ,

Br(θ,φ, t) =
∞∑

l=1

l∑

m=−l

bl,m(t)Y m
l (θ,φ). (55)

The interior diffusivity η0 that determines τl,0 is taken to be different from the coefficent η

of the classical diffusion term.
Note that, since radial modes with n > 0 are neglected, the effect on b1,0 is identical

to the simple exponential decay term, with τ = τ1,0 = (η0k
2
1,0)

−1. Accordingly, Baumann
et al. (2006) showed that their alternative form of the decay term can also reduce the spu-
rious long-term memory of the SFT model, as illustrated in the middle and bottom rows of
Fig. 10. They found that diffusivity values in the range η0 = 50 − 100 km2s−1 gave polar
field evolutions consistent with recent observations. For Rb = 0.7R�, and since k1,0 ≈ 5.46,
this corresponds to decay times for b1,0 in the range τ1,0 ≈ 5 − 10 yr. In their model driven
by idealized BMRs, Whitbread et al. (2017) found an optimum η0 = 190 km2s−1, giving a
decay time τ1,0 = 2.7 yr, in agreement with the τ found by optimizing the simple exponen-
tial decay term. Virtanen et al. (2017) also adopted the Baumann et al. (2006) model, but in
a simulation where active regions had observed shapes; they found a value η0 = 100 km2s−1

to give reasonable results.
It is worth remarking that these implementations of (54) have used different diffusivities

for η (the classical horizontal diffusion) and η0 (which determines τl,0). Moreover, the extra
term in (54) includes both radial and horizontal diffusion due to the interior diffusivity η0.
If one evaluates the radial diffusion term (45) for a single mode of the interior solution (51),
one obtains

η0

R2�

∂2

∂r2

(
r2Br

) = −η0

(
k2

l,n − l(l + 1)

R2�

)
Br, (56)

giving a decay time τ ′
l,n = η−1

0 [k2
l,n − l(l + 1)/R2�]−1 for radial diffusion alone. However, for

small l the difference from τl,n is negligible.

5.3 Other Turbulent Transport Effects

If we drop the simple assumption of a turbulent diffusion in the mean-field induction equa-
tion (41), then there are a wealth of possible transport effects that could be explored in SFT
models. One such effect – expected to be present from numerical convection simulations –
is turbulent pumping (Petrovay 1994), which adds −γ × B to the turbulent electromotive
force (mathematically equivalent to u). Downward pumping (γr < 0) in a region near the
surface could reduce the aforementioned diffusive link of active regions to deeper layers
(Cameron et al. 2012; Karak and Cameron 2016). This is because it will tend to make the
magnetic field lines radial, and – as noted earlier – if Bθ,Bφ ≈ 0 in some region near the
surface then it follows from (44) that Rη = 0, so no additional radial diffusion term should
be included in the SFT model. Latitudinal pumping (γθ �= 0) is also found to be very strong
in convection simulations. However, this relies on a significant influence of rotation on the
turbulence, which is weaker nearer the surface than in deeper layers.
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6 Beyond the Classical Model

Several have sought to improve on the classical SFT model described in the previous sec-
tions. We therefore conclude this review by outlining some of these developments.

6.1 Improved Small-Scale Flows

The approximation of small-scale flows by a uniform supergranular diffusivity, D, is perhaps
the greatest simplification in the classical model. Three main approaches for improving the
fidelity of the small-scale flow model have been applied.

Computationally cheapest is the method of Worden and Harvey (2000), whose primary
aim was to improve the unobserved or poorly observed regions of synoptic maps. For this
application, the classical diffusion model is not ideal because it does not reproduce the
“clumping” of magnetic flux on supergranular network boundaries that is clearly evident in
observed portions of the map. To better reproduce this, Worden and Harvey (2000) replaced
the diffusion with a “random attractor” term added to each pixel in the map (without in-
creasing the resolution compared to the classical SFT model). This is shown in Fig. 11(a).
They also added a random emergence term to each pixel to sustain the small-scale back-
ground field. This background field was found not to affect the diffusion of large-scale flux
patterns, but it gives a more accurate net flux in quiet regions (Fig. 11b). The technique was
successful in improving the appearance of simulated maps, and continues to be used in the
Air Force Data-Assimilative Photospheric flux Transport model (ADAPT; Arge et al. 2010;
Hickmann et al. 2015).

A second approach is to dispense completely with parametrization of the small-scale
flows, and model them directly through the advection term. This requires higher spatial and

Fig. 11 Illustration of the “random attractor” model for flux dispersal, taken from several figures of Worden
and Harvey (2000). Panels (a)-(c) show simulated maps after evolving for 27 days, all starting from a synoptic
map for CR1928 but with successively more model components included. (Differential rotation and merid-
ional flow were included in all three cases.) Panel (d) shows the “ground truth”: an observed synoptic map
for CR1929. In all cases Br is shown in greyscale (white positive, black negative). (© Springer. Reproduced
with permission.)
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temporal resolution so as to resolve individual convective cells on the computational grid.
Nevertheless, it has been applied successfully in the Advective Flux Transport (AFT) model
(Upton and Hathaway 2014b, 2018). In this model, the small-scale flows are randomly im-
posed, based on a vector spherical harmonic decomposition of the form

uθ (θ,φ) =
lmax∑

l=1

l∑

m=0

(
Sm

l

∂Y m
l (θ,φ)

∂θ
+ T m

l

1

sin θ

∂Y m
l (θ,φ)

∂φ

)
, (57)

uφ(θ,φ) =
lmax∑

l=1

l∑

m=0

(
Sm

l

1

sin θ

∂Y m
l (θ,φ)

∂φ
− T m

l

∂Y m
l (θ,φ)

∂θ

)
, (58)

where the complex amplitudes Sm
l and T m

l determine the curl-free and divergence-free com-
ponents of uh and are chosen to match the spectrum to observations. Hathaway et al. (2000)
found that observed Doppler flows could be well matched by a two-component spectrum,
comprising a supergranular component centred on l = 110 and a granular component cen-
tered on l = 4000.

The third approach is to dispense with a computational grid altogether and model the
magnetic flux by a discrete ensemble of individual flux “concentrations”. This was imple-
mented by Schrijver (2001) whose main aim was to simulate cool stars other than the Sun,
and who therefore wanted to include the mixed-polarity network of small-scale magnetic
flux because of its contribution to chromospheric emission. The discrete model of Schrijver
(2001) includes (i) emergence of both active regions and ephemeral regions as BMRs, (ii) a
large-scale random walk dispersal as well as differential rotation and meridional flow, (iii)
a model for fragmentation and coalescence of flux concentrations, and (iv) cancellation of
flux between opposite polarity fragments. The model has been successfully applied over all
latitudes (Schrijver and Title 2001) and over a full 11-year cycle (Schrijver and Liu 2008).
A similar model in Cartesian geometry was applied by Martin-Belda and Cameron (2016)
to study the dispersion of a single active region.

One notable new feature that all three of these models have in common is nonlinearity:
the rate of magnetic flux dispersal is chosen to depend on the local magnetic field strength,
|Br |. In particular, dispersal is suppressed in strong-field regions, compared to the classical
diffusion model. This better represents real active regions which suppress shedding of the
magnetic flux by supergranulation (Schrijver 1989). The effect is particularly important for
more active stars (Schrijver 2001) but is still clearly observed on the Sun.

6.2 Fluctuating Large-Scale Flows

The classical model neglects fluctuations in the meridional flow and differential rotation,
keeping them steady for periods of a solar cycle or longer. However, observations do suggest
variations over the course of the cycle, particularly in the meridional flow. For example,
Hathaway and Rightmire (2010) estimated the flow from cross-correlating latitudinal strips
in magnetograms over Solar Cycle 23, and found that the dominant Legendre component,
P 1

2 ∼ sin(2θ), reduced in amplitude from 11.5−13 ms−1 at cycle minimum to only 8.5 ms−1

at cycle maximum.
A plausible cause of meridional flow variations is the observed inflow toward active

regions determined by helioseismology (Gizon et al. 2001). In SFT simulations, Jiang et al.
(2010) showed that an axisymmetric meridional inflow toward the activity belts leads to a
significant decrease of the polar field, suggesting that such meridional flow variations could
be a significant ingredient in the SFT model. And Cameron et al. (2010) pointed out that
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the variations in P 1
2 found by Hathaway and Rightmire (2010) could be explained by this

inflow, without the need for an overall modulation of meridional flow speed.
Other studies have accounted for the observed dependence of inflow speed on the active

region magnetic flux, through applying a nonlinear velocity that depends on |Br |. Whilst
more detailed models for magnetic back-reaction on flows and transport coefficients have
been introduced in dynamo models (Rempel 2006), SFT studies have so far been limited to
simple parametrizations. De Rosa and Schrijver (2006) added a velocity of the form

δu(θ,φ, t) = α∇|Br |β (59)

to the discrete SFT model – where Br denotes a Gaussian smoothing of the original Br with
width 15◦ – but found that the observed flow speeds ( 50 ms−1) prevented altogether the
dispersal of active regions. However, Martin-Belda and Cameron (2016) did not find this
problem and proposed that the original calculations of De Rosa and Schrijver (2006) were
underestimating the flux dispersal because they continued to apply the nonlinear damping of
dispersal within the active region, while the inflows alone could themselves account for the
damping effect. Cameron and Schüssler (2012) proposed an axisymmetric parametrization

δuθ (θ, t) = c0

∫ π

0

sin(θ ′)
sin(30◦)

d〈|Br |〉
dθ ′ e−(θ−θ ′)2/σ dθ ′, (60)

which corresponds to a Gaussian smoothing of the derivative in latitude (with σ chosen
to give width 20◦). The sin(θ ′) factor suppresses unrealistically strong fluctuations at high
latitudes, and an amplitude c0 = 9.2 m s−1G−1 gives comparable inflow speeds to Gizon
et al. (2001). Again, the presence of inflows reduces the axial dipole at the end of the solar
cycle, by about 30% in a moderate cycle (Martin-Belda and Cameron 2017), with about
a 9% variation between cycles suggesting that this nonlinearity could conceivably help to
saturate the Babcock-Leighton dynamo. Nagy et al. (2020) coupled an SFT model with
flux-dependent inflows to such a dynamo model. They confirmed that inflows do indeed
tend to have a stabilizing effect on cycle amplitudes, although they also greatly increase
the probability of the dynamo entering a grand minimum of reduced activity – a nonlinear
effect which is not apparent from SFT alone. On the other hand, Yeates (2014) found that
the inflows in a BMR-driven SFT model for Cycle 23 gave poorer matches to the observed
butterfly diagram and dipole reversal time.

A more pragmatic approach is to impose the observed flow variations directly, as in
the AFT model (Upton and Hathaway 2014b), where the best-fit Legendre coefficients are
extracted from 27-day averaged velocity fields derived from magnetogram cross-correlation.
These then determine uh(θ, t) in the model, allowing variations in both meridional flow and
differential rotation. Using data from Solar Cycle 23, Upton and Hathaway (2014a) found
that the fluctuating meridional flow in the AFT model actually increased the axial dipole
strength by 20% compared to a simulation where the meridional flow was fixed to a steady
latitudinal profile. Thus it is possible that meridional flow variations can increase the axial
dipole as well as reduce it.

6.3 Observational Data Assimilation

In applications where the aim is to recreate as accurately as possible the real Sun at an
observed time, it makes sense to construct magnetic maps that combine SFT model results
with real observations. The role of the SFT model is then to fill in unobserved (or poorly
observed) parts of the solar surface, such as high latitudes or the far side of the Sun. This
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approach is central to the model of Worden and Harvey (2000), as illustrated in Fig. 11(c)
which shows the result of combining daily magnetogram observations with the simulation.
The observations are weighted more highly near disk-centre and also eastward of Central
Meridian (where the time since previous observation is greatest). Similar assimilation of
observed magnetograms has been applied in the discrete SFT model (Schrijver and DeRosa
2003) and in the AFT model of Upton and Hathaway (2014b).

A more sophisticated approach to data assimilation has been implemented in the ADAPT
model, which includes several different sequential data-assimilation methods such as en-
semble Kalman filtering (Hickmann et al. 2015). The concept is to perform an ensemble
of model runs. Each is adjusted at intervals using the observed magnetogram data, with
observations being given greater weight in areas where the model runs disagree with one
another.

Unfortunately, difficulties arise in driving time-dependent coronal magnetic field simu-
lations from SFT models with data assimilation. In such simulations, the required photo-
spheric boundary condition is the tangential electric field Eh, not simply Br . In the classical
SFT model, the natural electric field would be

Eh = −u × B + η∇ × B + ES, (61)

where ES accounts for the source term (i.e., −er · ∇ × ES = S). When S comprises indi-
vidual active regions that have no net magnetic flux, a well-behaved electric field can be
determined (e.g., Yeates and Bhowmik 2022). But if the magnetic flux is unbalanced over a
larger region then it is impossible to find a localized ES as would be expected from Ohm’s
Law (Yeates 2017). This can be a problem when observed magnetograms are incorporated
directly, particularly when active regions straddle the edge of the assimilation region so that
only one polarity is included. If the flux imbalance is corrected by spreading it over the full
Sun, the resulting spurious electric fields lead to generation of significant spurious electric
currents in time-dependent coronal simulations (Weinzierl et al. 2016). Of course, this prob-
lem is not restricted to data assimilation, but could arise from the use of any unbalanced
source term.

In practice the simplest way to ensure flux balance is to rephrase the right-hand side
of equation (5) as −er · ∇ × Eh, then apply a “constrained transport” discretization with
a staggered mesh (Yee 1966). Here Eθ and Eφ are defined at cell edges, and Br at cell
centres. Such a numerical scheme is used, for example, by Yeates (2014). When assimi-
lating magnetograms into the SFT model in this framework, one would estimate Eh from
the observed front-side evolution. In the case of a flux imbalance, this would automatically
create a balancing polarity just outside the observed region, minimizing disruption to the
global topology of the coronal magnetic field. However, it remains the case that systematic
errors in observed magnetograms, especially centre-to-limb variations of the errors, are not
well understood. A better understanding of these errors will require forward modelling with
radiative MHD and Stokes polarimetric inversions.

A final remark is that the simplified decay term Br/τ from Sect. 5.1 may also be written
as the curl of an electric field. In particular, we would need er · ∇ × E = Br/τ . For exam-
ple, writing E = −∇ × (�er ), we could determine � and hence E by solving the Poisson
equation

∇2
h� = Br

τ
, (62)
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which has a unique solution on the sphere since
∫

S
Br dS = 0. Of course, this does not mean

that this approximation is a good representation of the real radial diffusion term (45); for
example, this particular E will not be localized to the active region itself.
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