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Abstract Sample return from a main-belt asteroid has not yet been attempted, but appears
technologically feasible. While the cost implications are significant, the scientific case for
such a mission appears overwhelming. As suggested by the “Grand Tack” model, the struc-
ture of the main belt was likely forged during the earliest stages of Solar System evolution
in response to migration of the giant planets. Returning samples from the main belt has
the potential to test such planet migration models and the related geochemical and isotopic
concept of a bimodal Solar System.

Isotopic studies demonstrate distinct compositional differences between samples be-
lieved to be derived from the outer Solar System (CC or carbonaceous chondrite group) and
those that are thought to be derived from the inner Solar System (NC or non-carbonaceous
group). These two groups are separated on relevant isotopic variation diagrams by a clear
compositional gap. The interface between these two regions appears to be broadly coinci-
dent with the present location of the asteroid belt, which contains material derived from both
groups.

The Hayabusa mission to near-Earth asteroid (NEA) (25143) Itokawa has shown what
can be learned from a sample-return mission to an asteroid, even with a very small amount of
sample. One scenario for main-belt sample return involves a spacecraft launching a projec-
tile that strikes an object and flying through the debris cloud, which would potentially allow
multiple bodies to be sampled if a number of projectiles are used on different asteroids. An-
other scenario is the more traditional method of landing on an asteroid to obtain the sample.

A significant range of main-belt asteroids are available as targets for a sample-return
mission and such a mission would represent a first step in mineralogically and isotopically
mapping the asteroid belt. We argue that a sample-return mission to the asteroid belt does
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not necessarily have to return material from both the NC and CC groups to viably test the
bimodal Solar System paradigm, as material from the NC group is already abundantly avail-
able for study. Instead, there is overwhelming evidence that we have a very incomplete suite
of CC-related samples.

Based on our analysis, we advocate a dedicated sample-return mission to the dwarf planet
(1) Ceres as the best means of further exploring inherent Solar System variation. Ceres is an
ice-rich world that may be a displaced trans-Neptunian object. We almost certainly do not
have any meteorites that closely resemble material that would be brought back from Ceres.
The rich heritage of data acquired by the Dawn mission makes a sample-return mission from
Ceres logistically feasible at a realistic cost. No other potential main-belt target is capable
of providing as much insight into the early Solar System as Ceres. Such a mission should be
given the highest priority by the international scientific community.

Keywords Asteroid - Sample return - Main belt - Ceres - Meteorites - Spacecraft

1 Introduction

1.1 Why Is Sample Return Important?

Thanks to the regular delivery of meteorite samples to Earth, we already have an extensive
and diverse range of relatively pristine extraterrestrial materials in our worldwide collec-
tions. These falls are augmented by an even more extensive inventory of meteorite finds,
mainly recovered from hot (e.g., Sahara) and cold (e.g., Antarctica) desert regions. The re-
sult is that there are currently more than 60,000 individual meteorite samples (Meteoritical
Bulletin Database 2020) available on Earth for analysis. In addition to meteorites, we also
have significant collections of Interplanetary Dust Particles (IDPs) and micrometeorites col-
lected in a diverse range of terrestrial environments, including the stratosphere, deep ocean
basins, and polar regions (Brownlee 1985; Bradley 2014; Noguchi et al. 2015).

With such a diverse assemblage of, essentially low-cost, extraterrestrial materials avail-
able for detailed characterization studies, it is a valid question to ask why significantly more
expensive samples need to be collected by robotic missions.

The problem is that apart from relatively rare fireball trajectory information (Devillepoix
et al. 2018), and one-off events, such as the tracking of asteroid 2008 TCj; prior to atmo-
spheric entry (Shaddad et al. 2010), most Earth-recovered extraterrestrial materials provide
little detailed information about which bodies such samples actually originated from. In con-
trast, collecting material directly from a well characterized source body, as was the case of
asteroid (25143) Itokawa (Nakamura et al. 2011), provides a geologic context that is unavail-
able for Earth-recovered samples. A very important aspect of these sample-return missions
is that they link together laboratory (e.g., isotopic analyses, mineralogy) and remote sensing
(e.g., images, reflectance spectra) data.

Another problem with the extraterrestrial samples recovered on Earth is that they are
likely to be a very unrepresentative and biased sampling of Solar System bodies (Campbell-
Brown 2019). Very friable carbonaceous materials are likely under-represented in the mete-
orite record as they tend not to be able to survive atmospheric entry intact (e.g., Sears 1998).
Poorly consolidated meteorites, such as the ungrouped carbonaceous chondrite Tagish Lake,
are rare exceptions (Brown et al. 2000).

Sample return is not a new concept and in fact has already made a very significant con-
tribution to our understanding of Solar System evolution. It is not an exaggeration to say
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that some of the greatest engineering feats of the late 20th and early 21st century have been
sample-return missions from planetary bodies. Samples have been returned from the Moon
(Apollo and Luna missions) (e.g., Lunar Sample Preliminary Examination Team 1969), a
comet [Stardust mission to comet 81P/Wild (Wild 2)] (e.g., Zolensky et al. 2006), and a
near-Earth asteroid (NEA) [Hayabusa mission to (25143) Itokawa] (e.g., Nakamura et al.
2011). Solar wind particles have also been collected from space by the Genesis mission
(e.g., Grimberg et al. 2006). Two NEA sample-return missions are currently being con-
ducted: the Hayabusa2 spacecraft to (162173) Ryugu (e.g., Wada et al. 2018; Watanabe
et al. 2019) and the OSIRIS-REx spacecraft to (101955) Bennu (e.g., Bierhaus et al. 2018;
Lauretta et al. 2019). Both asteroids are C-complex bodies. C-complex asteroids tend to have
low albedos, absorption features (when present) due to hydrated silicates, and have been
typically linked with carbonaceous chondrites. A Japanese sample-return mission (MMX:
Martian Moons eXploration) to Phobos is currently being planned (Usui et al. 2020). Except
for the Apollo missions, where the sampling was undertaken by humans, all sample-return
missions so far have been done robotically.

These sample-return missions have helped to “solve” a number of planetary science ques-
tions. Lunar samples have given evidence for an impact origin for the Moon (Hartmann and
Davis 1975), the presence of an early magma ocean (Wood et al. 1970), and the likely exis-
tence of a relatively high water content in the lunar interior (Saal et al. 2008). Samples from
comet Wild 2 have revealed the extent to which mixing of high temperature solids took place
throughout the disk during the earliest stages of Solar System evolution (Zolensky et al.
2006; Brownlee 2014; Westphal et al. 2017). Analyses of samples collected by Hayabusa
show evidence for space weathering (Noguchi et al. 2011) and confirm that at least one S-
complex asteroid has an ordinary chondrite composition (Nakamura et al. 2011). S-complex
bodies have absorption features that tend to be due to olivine and/or pyroxene and have been
typically linked with ordinary chondrites. Analyses of solar wind samples collected by the
Genesis mission have allowed the oxygen isotopic composition of the Sun to be estimated
(McKeegan et al. 2011).

1.2 Why do We Need Samples from the Asteroid Belt?

While NEAs have been sampled by the Hayabusa mission (Nakamura et al. 2011) and
are currently the targets of Hayabusa2 and OSIRIS-REx missions (Watanabe et al. 2019;
Lauretta et al. 2019), what has so far never been attempted is a sample-return mission from
a main-belt object, which have semi-major axes (a) between ~2.1 and ~3.3 AU. While the
cost implications of such a mission are significant, the scientific case for it is now over-
whelming. The reason for this is that potentially the main belt holds the key to a more
profound understanding of early Solar System evolution. This is because the structure of the
main belt was likely forged during the earliest stages of Solar System history, most probably
in response to migration of the giant planets (Walsh et al. 2011, 2012). This migration would
have scattered bodies into their present-day locations in the asteroid belt.

Returning samples from a main-belt asteroid has the potential, not only to test current
planet migration models (e.g., Walsh et al. 2011, 2012), but also to furnish critical evidence
with which to test current geochemical concepts of a bimodal Solar System (e.g., Warren
2011; Kruijer et al. 2017, 2020; Scott et al. 2018; Kleine et al. 2020) by mineralogically and
isotopically mapping the asteroid belt. This bimodality is in the form of compositional and
isotopic differences between materials that most likely originated in the inner Solar Sys-
tem compared to those that probably formed in the outer Solar System (Warren 2011). As
we will discuss, models for the early dynamical evolution of the main belt are inextricably
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linked to the concept of such a bimodal Solar System (Morbidelli et al. 2015). The central
goal of a sample-return mission to the main belt would be to rigorously test models of Solar
System formation. The return and subsequent detailed laboratory analyses of samples col-
lected directly from main-belt asteroids represent the most fundamental approach available,
both in terms of testing our existing migration models and also obtaining critical data that
may lead to the development of radically new ideas about the formation of our Solar Sys-
tem and its early evolution. The latest planetary decadal survey (National Research Council
2011) states that one of the important questions to try to answer in the future is “What were
the initial stages, conditions, and processes of Solar System formation and the nature of the
interstellar matter that was incorporated?”

The problem with sample return from just NEAs is that these bodies have dynamical
lifetimes of only a few million years (Gladman et al. 1997) and are fragments derived from
much larger bodies. The probability that a NEA or meteorite with a known orbit originates
from a particular source region (e.g., Hungaria region, vg secular resonance, 3:1 mean mo-
tion resonance) (e.g., Bottke et al. 2002a; Granvik and Brown 2018) can be calculated; how-
ever, it is currently not possible to definitively link any NEA or meteorite with any main-belt
object. Therefore, sample return from a NEA does not give any definitive information on the
exact location in the main belt where the NEA originated.

In this paper, we will look in detail at why sample return from the main belt is a critical
next step in the exploration of the Solar System and has the potential to significantly im-
prove our understanding of its early evolution. We will look first at the present-day structure
of the asteroid belt and review dynamical models for its evolution. We will then examine
recent geochemical concepts that invoke an essentially bimodal composition for Solar Sys-
tem materials. We will discuss the importance of sample return from main-belt objects and
possible scenarios for bringing fragments of these bodies back to Earth. We will examine
possible destinations and finally present what we believe is the single most strategic target
to “solve” the bimodal Solar System paradigm.

2 Structure of the Main Belt and Its Link to Gas Giant Migration

The asteroid belt is usually defined as the region lying roughly between the orbits of Mars
and Jupiter (Fig. 1). One of the most significant features of the main belt is its low mass. It
currently contains only ~3% of the mass of the Moon. Estimates for the primordial mass
of the asteroid belt range from between three and four orders of magnitude (Clement et al.
2019) to ~3.5 times more massive (Levison et al. 2015) than its current mass. Significant
mass loss from the belt likely took place at a very early stage in Solar System evolution,
prior to Jupiter attaining its full size (Bottke et al. 2005; Clement et al. 2019).

At the broadest scale, the main belt has a distinct structure with the outer regions (~2.8-
3.3 AU) dominated by C-complex and P-type asteroids, whereas its inner regions (~2.1-2.5
AU) contain a high percentage of S-complex asteroids (Gradie and Tedesco 1982; DeMeo
and Carry 2014). However, on a more detailed scale, there is significant mixing of different
spectral classes throughout the belt (DeMeo and Carry 2014).

Dynamic models have been developed in part to explain the structure of the main belt
and in part the small size of Mars. The “Grand Tack” model is based on the premise that
prior to dispersion of the gas phase in the solar nebula, Jupiter and Saturn underwent an
initial inwards migration with Jupiter reaching ~1.5 AU, roughly the current location of
Mars (Walsh et al. 2011, 2012) (Fig. 2) and then both bodies subsequently migrated out-
wards to their present positions. Prior to migration, Jupiter and Saturn were still in the final
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Fig. 1 Artist’s depiction of the
structure and location of the
asteroid belt (2007). The
locations of the Sun, Ceres, and
Vesta are given. The orbits of
Mercury, Venus, Earth, Mars, and
Jupiter are also shown. Trojan
asteroids, which are found at
Jupiter’s distance from the Sun,
are also displayed. Image credit:
NASA/McREL
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Fig. 2 A cartoon of the “Grand Tack” model for the early evolution of the Solar System. The large dark
circle is Jupiter and the smaller dark circle is Saturn. (a) Jupiter and Saturn are growing in a region outside
the current location of the main belt with distinct populations of planetesimals in the inner and outer parts of
the Solar System. (b) Jupiter and Saturn undergo gas-driven inward migration with many of the S-complex
asteroids from the inner Solar System being scattered outwards. (¢) Subsequent outwards migration of Jupiter
and Saturn populates the inner main-belt region with S-complex asteroids that had originally been scattered
outwards and then subsequently populates the outer margins of the main belt with C-complex asteroids, which
are scattered inwards during the final stages of the gas giants’ migration. Plot used with the permission of
Kevin Walsh

stages of accretion and a gas phase was present in the nebula. Migration would therefore
have been early, only a few million years after the formation of the earliest nebular solids,
calcium-aluminium-rich inclusions (CAls). CAls have mineralogies consistent with being
early condensates from a hot gas of solar composition (Grossman 1972). The population of
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planetesimals at this early stage of Solar System evolution is considered to have been bi-
modal (Fig. 2a). Inwards of the gas giants (Jupiter and Saturn), planetesimals are believed to
be essentially anhydrous S-complex bodies and outwards they were hydrated and volatile-
rich (C-complex bodies). The initial inward migration of the gas giants to ~1.5 AU scattered
the S-complex planetesimals outwards, cleaning out the primordial belt region and truncat-
ing the disk (Fig. 2b). The restricted amount of material left at ~1.5 AU is argued to be the
reason for the relatively small size of Mars compared to the other terrestrial planets (Walsh
et al. 2011). The inward migration of Jupiter and Saturn was then reversed when Saturn
became captured in a 2:3 mean motion resonance (Pierens and Raymond 2011). As the
outward migration took place, the gas giants would first have encountered the remnants of
the S-complex bodies that had been scattered during the initial inward migration (Fig. 2c).
These would then have been scattered back into the inner part of the main belt. As migration
continued, the C-complex asteroids that would have populated the outer part of the Solar
System would then have been encountered and a fraction of them scattered inwards to pop-
ulate what became the outer portion of the current main belt (Walsh et al. 2011, 2012). The
outward migration phase ended once the nebular gas had dissipated (Walsh et al. 2012).

The “Grand Tack” model provides a viable explanation for the origin and structure of
the asteroid belt. It offers a coherent mechanism to explain how the main belt lost much of
its primordial mass and also why it shows an overall trend from predominantly S-complex
bodies at its inner margin to C-complex bodies at its outer margin. The “Grand Tack” model
(Fig. 2) is inextricably linked to the concept of a bimodal Solar System in which materials
that formed inwards of the “snow line” were distinctly different from those that formed
outside of it (Lecar et al. 2006).

However, the degree of scattering of bodies in the “Grand Tack” model has not been
tested with the analysis of samples derived from objects with known locations in the as-
teroid belt. Sample return from main-belt asteroids would allow mineralogical and isotopic
compositions to be correlated with present distance from the Sun. Our meteorite collections
contain evidence for between ~100-150 parent bodies (e.g., Greenwood et al. 2020), but the
“Grand Tack” model groups asteroids into only two types of general compositions (C- and
S-complex bodies). Samples from main-belt bodies should allow the “Grand Tack” model to
be refined to better duplicate the compositional and isotopic differences in the Solar System.

It is important to note that the “Grand Tack” is not the only recent model put forward
to explain the present day structure of the main belt. The results of a dynamical simulation
study undertaken by Raymond and Izidoro (2017) are consistent with the main belt forming
empty and only acquiring mass as a consequence of scattering and drag processes from the
inner terrestrial planet region and outer Solar System. Invoking a pebble accretion model,
Kretke et al. (2017) reach similar conclusions.

Irrespective of whether the main belt evolved by significant mass loss or alternatively
never had much mass is the first place, the concept of a compositionally bimodal Solar
System is supported by significant geochemical evidence. We look in detail at the supporting
evidence for a bimodal Solar System concept in the next section.

3 Bimodality in the Early Solar System
Warren (2011), based on data from a range of earlier studies (e.g., Trinquier et al. 2007; Qin
et al. 2010a), demonstrated that Solar System materials show a distinct bimodal distribu-

tion. with respect to a number of isotopic systems. This variation is clearly seen on a plot
of A0 versus £3*Cr (Fig. 3). Two distinct groupings are present. One cluster contains all
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Fig. 3 Plot of A0 versus £24Cr for a range of Solar System materials. This figure is modified from plots
found in Warren (2011) and Greenwood et al. (2020). Two distinct clusters of data are present. The cluster
in the upper left comprises the non-carbonaceous chondrite (NC) group and includes the ordinary chon-
drites (OC); enstatite chondrites (E Chon); R chondrites (R); Bulk Earth; Bulk Moon; Mars; howardites, eu-
crites, and diogenites (HEDs); main-group pallasites (MG Pall); aubrites; angrites; mesosiderites (Mesosid.);
winonaites (Winon); and ureilites. The carbonaceous chondrite (CC) cluster in the lower right includes all the
carbonaceous chondrites (Carb Chon), Eagle Station pallasites (Eagle Stn. Pall), and various ungrouped chon-
drites (Chon — Ungrouped). The NC and CC groups are separated by a well-defined gap, which is sometimes
referred to as “The Warren Gap” (e.g., Voosen 2018) based on its initial identification by Warren (2011). By
definition, the Earth falls at an £34Cr value of 0 and a A!70 value of 0

the carbonaceous chondrites and a relatively minor subset of achondrites. The other con-
sists of all other Solar System materials, including planetary-derived samples (Mars, Earth,
Moon); ordinary, enstatite, and R chondrites; and a wide range of achondrites (main-group
pallasites, howardites, eucrites, diogenites, ureilites, aubrites). Warren (2011) suggested that
the carbonaceous chondrite (CC) group may represent material that accreted in the outer
Solar System, whereas the non-carbonaceous chondrite (NC) group might be materials de-
rived from the inner Solar System. The gap separating the NC and CC groups is sometimes
referred to as “The Warren Gap” (e.g., Voosen 2018).

While the NC-CC dichotomy was originally identified with reference to the isotopes
of a relatively limited number of elements (Cr, Ti, O, Ni, Mo, Mg) (Warren 2011;
Budde et al. 2016; Van Kooten et al. 2016; Kruijer et al. 2017, 2020), this variation has
now been documented for a much wider range of elements (Burkhardt et al. 2019). In addi-
tion to silicate-dominated types, iron meteorites also display a distinct bimodal distribution
of nucleosynthetic anomalies (e.g., Budde et al. 2016).

With the notable exception of oxygen, isotopic mass-independent variation in extrater-
restrial samples, not caused by spallation or radioactive decay, reflects nucleosynthetic pro-
cesses in the feeder stars to the Solar System (Dauphas and Schauble 2016; Scott et al. 2018;
Burkhardt et al. 2019; Nanne et al. 2019). Such anomalies are a reflection, at various scales,
of the heterogeneous distribution of the presolar grains that carried these anomalies and
which would have been derived from a range of stellar sources (Kruijer et al. 2020). The
processes of mixing and homogenization that took place in the parental molecular cloud
of the Solar System, and later within the solar protoplanetary disk, were not sufficient to
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erase these anomalies (Burkhardt et al. 2019; Nanne et al. 2019; Kruijer et al. 2020). In
the case of oxygen, mass-independent variation may be the result of selective UV dissocia-
tion of CO, either in the presolar giant molecular cloud or the solar nebula (Clayton 2002;
Yurimoto and Kuramoto 2004; Lyons and Young 2005). The oxygen isotope anomalies pro-
duced by this process may then have become locked into different phases, including water
ice, gas, and dust. Preservation of these oxygen isotopic differences may also reflect incom-
plete homogenization in the protosolar nebula (Ireland et al. 2020).

Recent studies have invoked a change in the composition of the infalling material
(Burkhardt et al. 2019; Nanne et al. 2019; Kruijer et al. 2020) to produce this isotopic di-
chotomy. CAls are believed to have formed close to the proto-Sun and preserve the isotopic
composition of the earliest Solar System solids. This material was enriched in nuclides
produced in neutron-rich stellar environments and would have been transported outwards
through viscous spreading. Later infalling material, assumed to be depleted in neutron-rich
nuclides, would have tended to accumulate in the inner part of the disk and have diluted the
isotopic signature within the NC region.

That Solar System materials should show significant variation with respect to a range of
isotopic systems is not a novel finding and, particularly with respect to oxygen, has been well
documented (Greenwood et al. 2017, 2020). However, the preservation of a distinct com-
positional gap between inner and outer Solar System-derived materials, as demonstrated by
Warren (2011), is unexpected. The early Solar System was likely to have been a highly en-
ergetic environment, with considerable mixing taking place between different reservoirs of
gas and dust (Misener et al. 2019). One explanation that has been advanced to explain the
preservation of the NC-CC dichotomy is that it can be related to the early, rapid accretion of
Jupiter, which then acted as a barrier between the inner and outer Solar System regions pre-
venting complete isotopic homogenization within the disk (Kruijer et al. 2017, 2020). This
scenario has been disputed by Brasser and Mojzsis (2020) who argue that Jupiter accreted
at too slow a rate to have represented a significant barrier to mixing within the disk. Instead,
Brasser and Mojzsis (2020) invoke a pressure maximum in the disk close to the present
location of Jupiter and suggest that it was this feature, rather than the planet itself, which
prevented significant mixing between the inner and outer Solar System regions. Brasser and
Mojzsis (2020) speculate that the early Solar System may have had multiple rings, such
as those observed by ALMA (Atacama Large Millimeter/submillimeter Array) in the disk
around the young star TW Hydrae (Fig. 4) (Andrews et al. 2016). If this interpretation is
correct then additional data clusters, over and above the dichotomy so far identified, might
be present on isotopic plots such as shown in Fig. 3. The fact that additional clusters have not
so far been identified may be a reflection of inadequate sampling of Solar System materials,
an insufficient level of analytical resolution to identify such clusters, or alternatively these
features do not actually exist.

Bimodality in Solar System materials is not just confined to isotopic anomalies. It has
been well known for many decades that carbonaceous chondrites on the one hand and or-
dinary and enstatite chondrites on the other show distinctive and contrasting characteris-
tics (Weisberg et al. 2006; Krot et al. 2014). Carbonaceous chondrites generally contain
abundant CAls, predominantly plot below the terrestrial fractionation line (TFL) on oxygen
three-isotope plots and often show evidence of having accreted water ice into their par-
ent bodies (e.g., Grimm and McSween 1989). In contrast, ordinary and enstatite chondrites
generally have a relatively low CAI content, plot on or above the TFL, and show relatively
anhydrous characteristics. Thus, a bimodal, inner versus outer Solar System dichotomy has
always been evident in meteoritical studies, it is just that the new isotopic evidence has
brought this concept into sharper focus (e.g., Scott et al. 2018).
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Fig. 4 ALMA (Atacama Large Millimeter/submillimeter Array) image of protoplanetary disk around the
T-Tauri star TW Hydrae (Andrews et al. 2016). This object is the closest T-Tauri star to the Solar System (196
light years away). The gaps in the disk are generally considered to be due to planets that are forming. Brasser
and Mojzsis (2020) suggest that pressure maxima in the early Solar System protoplanetary disk may have
resulted in a similar ring system. These pressure maxima may have prevented radial mixing. Image credit: S.
Andrews (Harvard-Smithsonian CfA); B. Saxton (NRAO/AUI/NSF); ALMA (ESO/NAOJ/NRAO)

The concept of bimodality in the meteorite record mirrors the overall structure of the
Solar System itself, which is conventionally divided into the inner terrestrial planet region
and the outer gas and ice giant region (Morbidelli et al. 2015). What lies between the two
is the asteroid belt. Unsurprisingly, one of the most pertinent means of testing the bimodal
Solar System concept would be to collect samples from both CC and NC main-belt asteroids.
In theory, if enough samples were collected from different bodies with known locations, the
asteroid belt could potentially be mapped both mineralogically and isotopically. However,
there are clearly significant practical and economic difficulties in adopting such a global
sampling approach. In Sects. 6 and 7, we look at various scenarios aimed at addressing the
bimodal Solar System concept with sample return.

4 Asteroid Families
The asteroid belt is dominated by groupings of asteroids in which individual members share

similar proper orbital elements (Nesvorny et al. 2015). These clusterings are known as as-
teroidal families, with each family thought to be derived from the breakup of a single larger
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body or are derived from the debris ejected after a “large” impact on the parent body. With
estimated ages that rarely exceed 1 billion years (Spoto et al. 2015), currently recognized
families are significantly younger than the age of the Solar System and hence relatively
ephemeral features of the asteroid belt, albeit very long-lived ones.

The advantage of an asteroid family member as a target for a sample return mission is
that observations and samples collected at a single asteroid are relevant to a much larger
number of related bodies. In particular, close-up exploration and subsequent collection of
material from one member of a family would provide an independent verification of Earth-
based observations (e.g., reflectance spectra) made on the family as a whole. There may be a
huge scientific advantage in targeting a well-defined member of a well-constrained asteroid
family (e.g., Nesvorny et al. 2015). For the purpose of testing the bimodal Solar System
paradigm, amongst some of the most favourable targets could be C-complex and S-complex
asteroid families.

5 Meteorites and Their Relationship to Main-Belt Asteroids

Meteorites currently represent our principal source of extraterrestrial materials and so pro-
vide our best means of undertaking detailed mineralogical and isotopic studies of rocky
planetary and asteroidal bodies. While our collections do contain materials derived from
the Moon and Mars, most meteorites are asteroidal in origin. In terms of asteroidal sources,
the vast majority of samples are likely derived from main-belt objects, rather than near-
Earth asteroids. The cosmic-ray exposure ages of stony meteorites tend to be much longer
than the dynamical lifetimes of bodies delivered to near-Earth space by resonances. These
long cosmic-ray exposure ages for stony meteorites are consistent with entry into near-Earth
space through slow Yarkovsky drift of meter-sized bodies derived from objects located any-
where in the main belt and not derivation directly from near-Earth bodies (e.g., Farinella
et al. 1998; Bottke et al. 2002b). A cosmic-ray exposure age is the period of time that a
surface (up to approximately one meter in depth) has been exposed to cosmic rays (e.g.,
Eugster et al. 2006) and is calculated by measuring the abundances of isotopes produced by
cosmic-ray exposure. The Yarkovsky effect is the force acting on rotating objects due to the
anisotropic emission of photons from blackbody radiation due to differences in temperature
across the surface of the body.

There is a significant question mark about how representative the meteorites that arrive
on Earth are of the material present in the main belt. In particular, atmospheric entry cer-
tainly acts as a filter preferentially destroying weak, friable objects at the expense of tough,
strong meteoroids (Campbell-Brown 2019). That the meteorite flux is compositionally dis-
tinct from the micrometeorite flux is well established. Most micrometeorites have compo-
sitions that resemble CI and CM chondrites (Taylor et al. 2012) whereas these meteorite
groups comprise only about 2% of meteorite falls (Burbine 2017). While this discrepancy
is certainly not just a result of atmospheric entry processes, it serves to illustrate that major
differences exist in the composition and, by implication, the likely origin of the different
size fractions of extraterrestrial samples recovered on Earth.

Asteroids linked with “primitive” types of carbonaceous chondritic material predominate
in the outer portion of the asteroid belt and so are less likely to arrive on Earth as recoverable
samples. The Tagish Lake meteorite may be a notable exception due to its spectral similarity
to D-type asteroids (Hiroi et al. 2001), which are abundant among Jupiter Trojans (e.g.,
Bendjoya et al. 2004). However, Granvik and Brown (2018) find that the orbit of Tagish Lake
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is most consistent with originating from the inner main-belt and not the outer main-belt. D-
type asteroids are known to exist in the inner main-belt (DeMeo et al. 2014). Therefore, the
parent body of Tagish Lake may have been scattered from its most likely original formation
location in the outer belt to the inner main-belt.

There is an assumption that C-complex bodies primarily represent carbonaceous chon-
dritic material and S-complex bodies primarily represent non-carbonaceous chondritic ma-
terial such as ordinary chondrites. This assumption was validated for one body by the
Hayabusa mission. The returned sample from S-complex NEA (25143) Itokawa has an LL-
chondrite composition (Nakamura et al. 2011). However, the ureilite Almahata Sitta, which
resides in the NC group (Qin et al. 2010b) of the Warren plot (Fig. 3), is derived from the
C-complex NEA 2008 TC; (Jenniskens et al. 2009), which was disrupted on impact with
the atmosphere over the Sudan. This event illustrates the fact that it cannot be assumed that
C-complex bodies will universally equate to the CC group. Targeting C-complex asteroids
to recover material related to the CC group clearly needs to be done with care and with the
benefit of significant input from remote sensing data (see Sect. 7 for further discussion).

Extraterrestrial samples that survive atmospheric entry will become altered to a variable
extent due to interaction with the terrestrial environment. Meteorites that contain a signif-
icant metallic iron content are particularly susceptible to terrestrial weathering (Lee and
Bland 2004; Greenwood et al. 2012). However, carbonaceous chondrites are also known to
be affected by terrestrial alteration processes (e.g., Alexander et al. 2018). The well-studied
CI chondrite Orgueil, which fell in France in 1864, has been noted to have been chemically
altered (e.g., disappearance of ammonium sulfates) during its residence on Earth (Gounelle
and Zolensky 2014). Direct collection and recovery of carbonaceous chondrite samples from
the asteroid belt would help mitigate these alteration issues and is also likely to provide ma-
terial that may not arrive on Earth as meteorites due to atmospheric entry processes.

6 Asteroid Sample Return

6.1 A Historical Perspective: Near-Earth Asteroid Sample Return (Hayabusa
Mission)

The Hayabusa mission to Itokawa was the first mission to return samples from a near-Earth
asteroid. Hayabusa was launched in May 2003 and rendezvoused with Itokawa in September
2005. In November 2005, Hayabusa landed on Itokawa to collect a sample. During the
touchdown, a small pellet was supposed to be fired at the surface to cause the ejection of
material into the sampling container; however, the pellet did not discharge. The hope was, as
later confirmed, that during the encounter with the surface, small particles would have been
ejected upward into the sampling container. In June 2010, the re-entry capsule returned to
Earth, landing in the Australian desert. Approximately 700 grains from Itokawa have been
catalogued (Okada et al. 2017). Hayabusa confirmed (Nakamura et al. 2011) the postulated
compositional (Binzel et al. 2001) and isotopic similarity of Itokawa to LL chondrites.

Bulk and grain-specific mineralogy can be studied in extreme detail using a wide range
of techniques, including scanning and analytical electron microscopy, electron probe analy-
sis, electron backscattered diffraction, transmission electron microscopy, and Raman spec-
troscopy. Mass spectrometry can be used to measure both radiogenic and stable isotopic
compositions. Such measurements provide information relevant to the formation region of
the samples and the formation age of their parent body.
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These studies returned a number of interesting results. Nakamura et al. (2011) deter-
mined that the fayalite and forsterite contents matched LL chondrites. Yurimoto et al. (2011)
found that the Itokawa grains had an oxygen isotopic composition similar to LL chondrites.
Noguchi et al. (2011) found that nanophase iron particles, the proposed cause of space
weathering, were present in the grains. Jin and Bose (2019) measured the hydrogen iso-
topic composition and water content of a number of “anhydrous” minerals found in Itokawa
grains and were able to derive the water content of the bulk silicate Itokawa parent body.

Studying returned particles has a number of advantages compared to studying whole me-
teorites. The particles would not have been exposed to the atmosphere during re-entry and
would have a much more limited exposure to the terrestrial atmosphere. Individual grains
from an asteroid’s surface can also be studied. Different grains may have distinct “personal
histories” (a term coined by Tomoki Nakamura) on the asteroid due to experiencing differ-
ent shock effects, space weathering, and/or thermal heating. The Hayabusa mission clearly
demonstrates the benefit that sample return can have in providing extraterrestrial particles
that would not otherwise have survived atmospheric entry without experiencing significant
modification at best or, more likely, complete destruction.

6.2 The Benefits of Combining Sample Return with Detailed Spacecraft
Characterization Studies

Sample return from an asteroid would allow extraterrestrial material to be studied within a
geologic context. When a meteorite is recovered on Earth, there is essentially no information
available on where the sample originated, apart from some fireball trajectory information for
a few relatively limited events (e.g., Spurny et al. 2012). However, when a sample is recov-
ered directly from an asteroid, the location of the obtained material from the particular object
is “known.” Prior to retrieval of the sample, the spacecraft undertakes detailed analysis and
observations of the asteroid’s surface. These measurements provide critical geologic con-
text and help to define the optimal sampling location. The terrain of the recovered sample
and its relationship to different geologic features (e.g., craters, plains) on the surface can be
established. The contextual information provided by the spacecraft’s remote sensing mea-
surements, coupled with the subsequent results of detailed laboratory studies once material
has been returned to Earth, constitutes a very powerful approach likely to yield important
scientific results.

Sample return from main-belt asteroids is also important because it allows extraterrestrial
material to be studied that may sample the surfaces of meteorite parent bodies and/or the
oldest surviving planetesimals in the Solar System. Morbidelli et al. (2009) has argued that
the minimum size of the initial planetesimals in our Solar System was ~100 km, which
would mean that ~200 original planetesimals are possibly currently intact in the main belt.

The capabilities of Earth-based laboratory equipment still dwarf the capabilities of space-
craft instruments. Meteoritic material can often be analysed at scales of tens of nanometers
(e.g., Kebukawa et al. 2019) to sub-nanometer (e.g., Parman et al. 2019), depending on the
technique. Isotopic measurements of presolar grains of one micron or smaller can routinely
be made in the laboratory (e.g., Davis 2011). Only bulk elemental compositions and esti-
mated silicate mineralogies have currently been determined remotely for main-belt asteroids
using spacecrafts (Burbine 2016). The use of well-calibrated standards allows a wide range
of high-precision measurements to be obtained in the laboratory that are simply impossible
using spacecraft-based techniques. So while sample-return missions may be expensive, the
scientific yield from such missions more than offsets the cost.
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6.3 How to Return a Sample from a Main-Belt Asteroid

A number of studies have been done to investigate scenarios for main-belt sample return.
Turtle et al. (1999) proposed the AMBASSADOR (A Main-Belt Asteroid Seismic study and
Sample Acquisition to Determine meteorite ORigins) mission to study and return a sample
from S-complex body (7) Iris (e.g., Gaffey et al. 1993; Noonan et al. 2019). The mission
would consist of an orbiter and a lander. Material would be collected by two different meth-
ods. One would be a chipping device able to collect regolith using two circular blades that
would drive material into a collection basket. Another would involve coring devices that
are fired downward into the surface where recoil would return the cored material within the
coring device back to the lander.

Sukhanov et al. (2001) proposed a low-cost sample-return mission to a main-belt aster-
oid. The spacecraft would eject a projectile that would strike the asteroid and then fly through
the resulting dust cloud. Fragments would then be picked up by a collector on the spacecraft.
This type of mission is a combination of the primary components of two cometary mis-
sions: Deep Impact and Stardust. Deep Impact sent an impactor to strike a comet Tempel 1
(9P/Tempel) and study the resulting crater and debris, while Stardust collected fragments of
a comet’s (Wild 2) coma as it flew through it. Sukhanov et al. (2001) predicts that the col-
lected mass would be ~0.1-1 mg of material for their postulated sample-return mission to
M-type (16) Psyche. Psyche is the current target of the Psyche mission (Elkins-Tanton et al.
2020), which will be launched in 2022. The orbiting spacecraft will determine the shape, the
geology, the elemental composition, and the magnetic field of Psyche.

Deep Impact’s impactor was ~360 kg in mass at impact. The impactor’s payload in-
cluded a copper “cratering mass,” an Impactor Targeting Sensor (ITS), thrusters, a high-
precision star tracker, and a radio receiver (Henderson and Blume 2015). Impactors pro-
posed for main-belt asteroid sample-return missions are much smaller with masses of 10 kg
or less (e.g., Morimoto et al. 2004). Stardust (Brownlee 2014) used a two-sided collector
(~0.1 m?) with containers filled with aerogel to slow down the fragments so they would not
be vaporized on impact, plus aluminum foil where the fragments would actually vaporize.
Besides fragments from the coma, Stardust also collected interstellar dust as it flew through
the interstellar dust stream. However, collected grains may have experienced a short period
of intense heating due to their high velocity when entering the aerogel (Roskosz et al. 2008).
Approximately 1 mg of material was returned by Stardust. Stardust collected thousands of
cometary dust particles plus a few chondrule fragments and CAls (Westphal et al. 2017).

Morimoto et al. (2004) studied sample-return missions from main-belt asteroid families.
Their proposed missions to the primarily S-complex Koronis family (Rivkin et al. 2011)
and the multi-taxonomic Nysa-Polana complex (Walsh et al. 2013; Dykhuis and Greenberg
2015), respectively, also uses projectiles to impact each asteroid’s surface with the spacecraft
flying through the resulting dust cloud. They propose that ~10 kg projectiles would be
released. Their target bodies have a wide variety of interpreted mineralogies.

Dachwald et al. (2008) studied whether a sample-return mission to C-complex (19) For-
tuna using solar electric propulsion was feasible. The missions proposed by Dachwald et al.
(2008) consist either of a lander with a sample-return vehicle powered by chemical propul-
sion or employ a spacecraft that samples the asteroid itself with a re-entry capsule to return
the collected material to Earth by electric propulsion.

Sample-return missions to the C-complex dwarf planet (1) Ceres has also been the subject
of a number of studies. Based on the discovery of active volatile-rich ejecta plumes on Ceres
by the Herschel Space Observatory, Poncy et al. (2014) proposed a “low-cost” flyby mis-
sion to sample the plumes and return material to Earth. Fisher and Graham (2019) pointed
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out that Ceres represents a prime target for sample return and also advocated a “low-cost”
option by utilizing a modified version of the OSIRIS-REXx spacecraft configuration. GAUSS
(Genesis of Asteroids and evolUtion of the Solar System) is a joint Chinese-European con-
cept sample-return mission to Ceres, and the subject of a white paper (Shi et al. 2020)
submitted to the European Space Agency’s Voyage 2050 initiative. Their study highlights
the importance of returning samples from Ceres for our understanding of early Solar System
processes and identifies various sampling sites and spacecraft configurations that might be
used to accomplish this task. GAUSS is named after mathematician Johann Carl Friedrich
Gauss (1777-1855) who was able to predict the position of Ceres after this body was “lost”
(Cunningham 2016). Gauss’ technique to determine the preliminary orbit of a body using at
least three observations is now called the Gauss method (Marsden 1985).

Not including the launch vehicle, the cost for the Stardust mission (launched in 1999) was
approximately 200 million dollars, while the cost for OSIRIS-REx (launched in 2016) was
approximately 800 million dollars. The cost of a main-belt sample-return mission is likely
to be significantly more expensive than for OSIRIS-REx and so would probably exceed one
billion dollars. However, as discussed in earlier sections, the scientific return from such a
mission would be extremely high.

6.4 What Objects Should We Sample?

A successful sample-return mission to any main-belt asteroid would represent a major engi-
neering triumph with a huge scientific return. To investigate the isotopic bimodality of the
Solar System, a number of bodies, expected to have different isotopic compositions, could
be sampled. From our current knowledge, our best guess is that the C-complex bodies are
the best analogues for CC material and that S-complex bodies are the best analogues for NC
material. But what objects should be prioritized? Here we review potential target asteroids
before setting out in Sect. 7 our preferred mission scenario for investigating the bimodal
Solar System.

As discussed earlier, observations and samples collected from a member of an asteroid
family will be relevant to a much larger number of related bodies. Two possible candidate
C-complex families are the Nemesis (Carruba and Barletta 2019) and Adeona families (Car-
ruba et al. 2003). Also of interest would be samples from members of a ~4 billion year old
family identified by Delbé et al. (2017) extending across the inner main-belt. Objects in this
family tend to have very low albedos. Two possible S-complex family candidates are the
Flora (Vernazza et al. 2008) and Koronis families (e.g., Rivkin et al. 2011).

A number of relatively large well-studied bodies could also be possible targets. Dwarf
planet Ceres (a &~ 2.8 AU), the second target of the Dawn mission (Fig. 5), has an inter-
preted mineralogy broadly consistent with carbonaceous chondrites (McSween et al. 2018)
but no specific carbonaceous chondrite meteorite analogue has been identified. The inter-
preted presence of ammoniated hydrated silicates (King et al. 1992; Ammannito et al. 2016)
may indicate Ceres’ formation in the outer Solar System where ammonia would have been
stable. Isotopic analyses of material from Ceres would give considerable insight on possible
formation locations. Another possible target could be (19) Fortuna (a ~ 2.4 AU). Fortuna
has been proposed to be a possible parent body (Burbine 1998) for the CM2 chondrites due
to spectral similarities in the visible and near-infrared and its location near the 3:1 mean-
motion resonance.

Relatively large bodies that are expected to have non-carbonaceous isotopic composi-
tions include (4) Vesta, (6) Hebe, and (16) Psyche. Vesta (a ~ 2.4 AU) has been studied
in detail by the Dawn mission (Russell et al. 2013). Vesta has been linked with most HED
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Fig.5 Orthographic projection of Ceres as seen by NASA’s Dawn spacecraft. The bright features in Occator
crater are called faculae and appear to be due to hydrated magnesium sulfates (Nathues et al. 2015). Image
credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

(howardite, eucrite, diogenite) meteorites (McCord et al. 1970; Consolmagno and Drake
1977; McSween et al. 2013) due to spectral similarities. Vesta is the only large (~525 km
in diameter) body with an HED-like spectrum. However, a number of eucrites (e.g., NWA
011) have oxygen isotopic compositions that are anomalous compared to the values for most
HEDs (Scott et al. 2009), implying multiple HED parent bodies. Sample return from Vesta
could also “confirm” which HEDs are fragments of Vesta and whether it has the expected
NC isotopic composition.

Asteroid (6) Hebe (a &~ 2.4 AU) would be another interesting target since it has been
linked with both the H chondrites and IIE irons (Gaffey and Gilbert 1998) due to spec-
tral similarities and Hebe’s location near the meteorite-supplying 3:1 resonance. However,
Vernazza et al. (2014) has indicated from spectral studies that a number of bodies with inter-
preted mineralogies similar to H chondrites exist in the main belt. Sample return from Hebe
would help us decipher whether Hebe is the parent body of the H chondrites and IIE irons.

Psyche (a &~ 2.9 AU) is commonly thought to be the core of a disrupted differentiated
body (e.g., Ostro et al. 1985). Absorption features due to silicates have also been identi-
fied on the surface of Psyche (e.g., Hardersen et al. 2005). Fragments of Psyche could test
whether Psyche is a core of a fragmented differentiated body and whether it has a NC or CC
isotopic composition.

There are also a number of possible targets that have mineralogies that have perplexed
ground-based researchers and may provide interesting insights on the history of the early
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Solar System. For example, asteroids such as (387) Aquitania (@ ~ 2.7 AU) and (980) Ana-
costia (a & 2.7 AU) have long been known to have unusual spectral properties (Burbine et al.
1992). Their spectra appear consistent with a surface enriched in spinel-rich CAls (Burbine
et al. 1992; Sunshine et al. 2008). CAls are the oldest dated material in the Solar System
with the oldest CAI currently having an age of 4,568.22 + 0.17 Ma (Bouvier and Wadhwa
2010). However, the implied CAI abundances for their surfaces are much higher than those
found in chondrites. Sunshine et al. (2008) argues that these bodies are prime candidates
for sample return since these objects might be some of the oldest bodies still existing today
since they may have formed before the injection of radiogenic 2°Al into the Solar System.
The presence of significant concentrations of 2°Al in these inclusions would be expected
to have resulted in the melting of these bodies. Sample return from such bodies may allow
CAlIs that are older than currently known refractory inclusions to be studied. The implied
high CAI abundances are consistent with a CC isotopic composition for these bodies.

7 Preferred Mission Scenario: Return to Ceres

In the previous section, we looked at a wide range of potential target asteroids that could
be sampled to investigate in further detail the bimodal Solar System concept. But as this
is likely to be a relatively costly and technically-challenging mission, a coherent and well-
defined strategy will be needed. Here we set out our preferred option for a sample-return
mission to the main belt.

7.1 Defining the Mission Strategy and Target Body

Based on the experience gained from previous sample-return missions, there are two distinct
strategies that could be employed to successfully collect and return samples from the aster-
oid belt. These we term: (1) flyby and (2) direct sampling strategies. The flyby approach
would involve visiting either a single, or preferably multiple asteroids with a spacecraft
equipped with Deep Impact-style impactors. The impactors would be used to create a debris
cloud that would be sampled by the spacecraft. By keeping the instrumentation to a min-
imum, costs could be reduced, thus enhancing the financial viability of such an approach.
Visiting multiple target asteroids should provide a range of materials that hopefully would
be representative of both the NC and CC groups.

However, there are also some downsides to the flyby approach. From past experience,
the amount of material collected is likely to be limited and the complexity of visiting mul-
tiple targets increases the inherent risks of this type of mission. One particular problem, as
exemplified by the Almahata Sitta meteorite (Sect. 5), is that not all C-complex asteroids
are members of the CC group. Targeting smaller, less well-characterized C-complex main-
belt asteroids leaves open the possibility that a flyby mission might fail to return CC group
material.

While it would appear to be advantageous for a main-belt sample return mission inves-
tigating Solar System bimodality to return material from both NC- and CC-related bodies
this concept may not stand up to more detailed scrutiny during the proposal review process.
We already have a very large selection of NC-related materials and we actually live on the
largest NC parent body. Rather than obtaining material from the asteroid belt to investigate
inner Solar System evolution, we argue that a more fruitful approach and a better use of
resources (time and money) would be to sample another large, inner Solar System body,
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such as Venus (Greenwood and Anand 2020). Venus would be expected to fall within the
NC group.

In terms of the bimodal Solar System, we have a much poorer understanding of the CC
group than the NC group. The amount of CC-related material delivered to Earth is highly
biased and it is likely that friable and unconsolidated lithologies do not survive transit from
the asteroid belt, for reasons already discussed. As a consequence, and paradoxically, rather
than returning multiple samples from the main belt, the more targeted approach would be
to return an unambiguous example of CC-related material. While returning material from
the regions of Jupiter and beyond is unlikely to be feasible for the foreseeable future, one
candidate body in the asteroid belt stands out as an exemplar of an outer Solar System icy-
world. That object is Ceres, the largest body in the main belt. Ceres comprises one-third
of the total mass of the main-belt region and is a possible refugee from the outer Solar
System. Our preferred approach for investigating the bimodal Solar System would be direct
sampling of a well-characterized location on Ceres. In the next section, we look in further
detail at why sample return from Ceres would provide a first order scientific return capable
of significantly improving our understanding of early Solar System evolution.

7.2 Ceres After Dawn: An Icy World from the Outer Solar System

As a result of the Dawn mission, we now have a significant body of detailed topographic,
geologic and compositional data for Ceres (Williams et al. 2018). A sample-return mission
to Ceres would be visiting an already well characterized object, rather than a relatively
unknown main-belt asteroid requiring detailed orbital observations prior to any attempt to
collect material from its surface. The observations already completed by Dawn means that
a sample-return mission to Ceres would need to carry a far less comprehensive suite of
instruments than required for other main-belt bodies, thus ensuring significant cost savings.

The Dawn mission began orbiting Ceres in March 2015 (Russell et al. 2016) following its
earlier phase of activity studying Vesta (Russell et al. 2013). Dawn continued to make orbital
observations of Ceres until November 2018 when it ran out of fuel. Dawn’s observations
resulted in a remarkable amount of information being learnt about the asteroid belt’s largest
object. The surface was mapped at a resolution of 35 m/pixel during the LAMO (Low-
Altitude Mapping Orbit) phase of operations (Williams et al. 2018). Compositional and
mineralogical information was obtained with three instruments: the Framing Camera (FC),
the Visible and InfraRed mapping spectrometer (VIR), and the Gamma Ray and Neutron
Detector (GRaND) (Russell et al. 2006).

The results from the Dawn mission present a relatively coherent picture of Ceres as a
carbonaceous chondrite-related, differentiated icy-world that has experienced a protracted
history of water/rock interaction and alteration (McCord and Castillo-Rogez 2018). There
is clear evidence on its surface in the form of bright deposits indicating geologically re-
cent hydrothermal brine deposition (Scully et al. 2019). The possible presence of ammo-
niated phyllosilicates on its surface have been interpreted as indicating that Ceres may
not have formed in its present location, but possibly further out in the trans-Neptunian
disk (De Sanctis et al. 2015). This scenario is supported by the presence of ammonia ice
on a number of trans-Neptunian objects, including (134340) Pluto, Pluto’s moon Charon,
and (90482) Orcus (Brown and Calvin 2000; Barucci et al. 2008; DeMeo et al. 2015;
Dalle Ore et al. 2019). De Sanctis et al. (2015) speculates that Ceres may have been im-
planted into the main belt during the “Grand Tack” migration (Walsh et al. 2011). On the
basis of Dawn observations and our present understanding of the Solar System, there is cur-
rently very little doubt that Ceres is a bona fide representative of the CC group and as such
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dedicated sample-return mission 6
to Ceres. 1: Spacecraft arrives
and is slowed during the landing
phase by chemical propulsion.

2: Lander collects sample
material. 3: Small reconnaissance
rover has the ability to collect
small amounts of additional
material. 4 and 5: Two-stage
rocket leaves base unit with
samples once operations are
complete. 6: For communication
and imaging of the surface, a
small orbiter would be required
but would take no part in the
return of samples to Earth

Fig. 6 Schematic of a possible i z

would represent a target that is clearly relevant to the investigation of the bimodal Solar
System concept.

Ceres bears some compositional resemblance to carbonaceous chondrites (CI/CM), but
the match is not perfect (Castillo-Rogez et al. 2020). Ceres potentially contains more wa-
ter and organics than CIs and CMs and the latter do not contain significant ammoniated
phyllosilicates. The carbonate mineralogy detected on Ceres is significantly more diverse
than found in CIs. In particular, sodium carbonate has never been found in a CI, but ap-
pears to be present on Ceres (Castillo-Rogez et al. 2020). The clear implication of these
observations is that we do not have samples in our meteorite collections that are good
matches to the mineralogy of Ceres. The high water content estimates for Ceres have been
disputed by Zolotov (2020) who suggests instead that the body may have a high organic
content of between 12 and 29 vol%. Based on the detection of ammoniated phyllosilicates
and a potentially high organic content, it has been suggested that Ceres may be derived
from further out in the Solar System than either the CIs or CMs (De Sanctis et al. 2015;
Zolotov 2020).

7.3 How and Where Would Samples Be Collected on Ceres?

While it is beyond the scope of this study to identify a specific spacecraft configuration for
returning a sample from Ceres, we do make some suggestions concerning a possible mission
scenario. A flyby mission would not seem appropriate for the reasons discussed earlier. An
orbiter/lander rendezvous maneuver following collection of material on the surface would
also be a risky option. We would advocate a single lander approach to a well-scoped landing
site (Fig. 6). Significant research has been done in developing strategies and equipment for
returning both volatiles and non-volatiles from an ice-rich body back to Earth (e.g., Glavin
et al. 2019). A small rover for reconnaissance studies could also be employed. Once the
samples have been collected, a portion of the lander would then return to Earth without
involving any transfer of material to another orbiting spacecraft. However, a small orbiter
would be used for communication and imaging of the surface.

In terms of specific locations on Ceres for the recovery of material, potential sampling
sites would clearly need to be the subject of detailed evaluation. However, the Occator crater
(Fig. 7), which has been the subject of a large number of detailed studies (e.g., Scully et al.
2019), does appear to be a particularly attractive possibility (Shi et al. 2020).
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Fig. 7 Close-up view of Occator crater on Ceres. The crater is approximately ~90.5 km in diame-
ter (Nathues et al. 2015) and is located at a latitude of 20°N and a longitude of 239°E. Image credit:
NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

7.4 Sample Analysis Strategy Back on Earth

A full suite of mineralogical and isotopic analyses would need to be undertaken on the re-
turned material and consequently a Sample Analysis Plan (SAP) similar to that developed
for the OSIRIS-REx mission (Lauretta et al. 2017) would need to be formulated and imple-
mented. Material returned from Ceres would be expected to be hydrated and organic-rich
(Raponi et al. 2018; Marchi et al. 2019; Zolotov 2020). Consequently, such samples would
have major astrobiological implications (Castillo-Rogez et al. 2020). Although water ice is
not expected to be close to the surface at equatorial latitudes, GRaND measurements sug-
gests it is present in significant amounts at mid- to high-latitudes (Prettyman et al. 2017).
Organic material appears to be particularly abundant on the surface of Ceres and likely to
be of endogenous origin and not the result of meteorite infall, although this remains an issue
of current debate (De Sanctis et al. 2019). Hydrogen isotopic analysis of organics and water
(derived from hydrated silicates and possibly also ices) would provide additional constraints
relevant to the origin of Ceres (Alexander et al. 2012).

In this study, we have focused on the bimodal variation in Solar System materials as
exemplified by the range of isotopic systems (Fig. 3). However, there is an additional sce-
nario raised by the study of Brasser and Mojzsis (2020), namely that the early Solar System
was not just divided into two regions, but multiple ring-like regions were present (Fig. 4).
It is possible that we now view the early Solar System as bimodal because we only receive
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samples from its two inner zones. If Ceres really did form much further out in the disk than
anything we have so far in our meteorite collections, we could be in for an unexpected sur-
prise. There is a real chance that Ceres is formed from material that we have never hitherto
been able to sample. It is a tantalizing possibility.

8 Conclusions

Sample return from the main belt is the logical next step in exploring the dichotomy present
in Solar System materials. Isotopic studies indicate that a dichotomy existed in the early
Solar System, with material from the inner region (NC group) being separated from outer
region material (CC group) by a clear compositional gap on relevant variation diagrams. The
interface between the NC and CC regions appears to be broadly coincident with the present
location of the asteroid belt, which contains material derived from both groups. A significant
range of compositionally diverse asteroids are available as targets of such a mission. A flyby
mission using “Deep Impact”-style impactors to collect material from multiple targets has
merits as a potential collection scenario. However, there are a number of downsides to this
approach, not least of which is its potential complexity and consequent failure risks.

We argue that a sample-return mission to the asteroid belt does not necessarily have to
return material from both the NC and CC groups to viably test the bimodal Solar System
paradigm as the NC group is already abundantly available for study. Instead, there is over-
whelming evidence that we have a very incomplete suite of CC-related samples. Based on
our analysis, we advocate a dedicated sample-return mission to the dwarf planet Ceres as
the best means of further exploring inherent Solar System variation. Ceres is an ice-rich
world that may be a displaced trans-Neptunian object. We almost certainly do not have any
samples in our current collections that would resemble material that could be brought back
from Ceres. The rich heritage of data acquired by the Dawn mission makes a sample-return
mission from Ceres logistically feasible at a realistic cost. No other potential target appears
capable of providing as much insight into the early Solar System as Ceres. It should be given
the highest priority by the international scientific community.
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