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Abstract Tidal disruption events occur rarely in any individual galaxy. Over the last decade,
however, time-domain surveys have begun to accumulate statistical samples of these flares.
What dynamical processes are responsible for feeding stars to supermassive black holes? At
what rate are stars tidally disrupted in realistic galactic nuclei? What may we learn about
supermassive black holes and broader astrophysical questions by estimating tidal disruption
event rates from observational samples of flares? These are the questions we aim to address
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in this Chapter, which summarizes current theoretical knowledge about rates of stellar tidal
disruption, and compares theoretical predictions to the current state of observations.

1 Introduction

The discovery and characterization of quasars in the 1960s (Schmidt 1963) was rapidly
recognized as evidence for the existence of supermassive black holes (SMBHs) (Salpeter
1964). Shortly thereafter, the possibility of tidal disruption events (TDEs) was proposed by
Wheeler (1971), who hypothesized that the tidal disruption of a star by a massive black
hole could create a high energy transient by means of the disintegrational Penrose process.
If stars were consumed frequently enough by massive black holes, the resulting accretion
of their gas could, perhaps, explain the observed properties of quasars and active galactic
nuclei (Hills 1975).

By the mid-1970s, the importance of TDE rates was evident, and rapid theoretical
progress was made on understanding the dynamical processes that feed stars to SMBHs.
Early work envisaged this as a diffusive process in the space of orbital energy: an isotropic
distribution of stars living around a SMBH might be depleted by diffusion of stars onto more
tightly bound orbits (Bahcall and Wolf 1976). In reality, however, the process of diffusion
through energy space is slow and self-limiting; subsequent analytic (Frank and Rees 1976)
and numerical (Lightman and Shapiro 1977) works quickly demonstrated the greater im-
portance of velocity-space anisotropies in determining TDE rates. More precisely, the rate
of tidal disruptions in a dense star cluster is set by diffusion through angular momentum,
rather than energy, space. The stellar distribution function (DF) drains into the black hole
through a “loss cone,” named after the analogous phase space region in magnetic mirror
fusion reactors (Rosenbluth and Post 1965).

In this Chapter, we survey the dynamical physics of dense stellar systems containing
massive black holes, focusing particularly on the collisional evolution of stellar DFs in the
presence of a loss cone. Our presentation will, by necessity, be rather terse and without
proofs. A more detailed treatment of stellar orbits and kinetic theory can be found in several
textbooks. The reader interested in going beyond this chapter may wish to consult Chap. 7
of Binney and Tremaine (2008) or Chaps. 5 and 6 of Merritt (2013).

We begin in Sect. 2, by overviewing the basic physics of stellar tidal disruption. In Sect. 3,
we present the theoretical picture of the loss cone, describing both the orbital dynamics of
individual stars near supermassive black holes, and the ways in which two-body relaxation
and collisionless effects cause stellar populations to evolve over time. We provide both New-
tonian and general relativistic treatments of loss cone dynamics, and examine more exotic
types of tidal disruptions (e.g. disruption of evolved or binary stars). Next, we apply these
theoretical tools to realistic astrophysical environments. In Sect. 4, we examine past efforts
to estimate TDE rates by building dynamical models of nearby galactic nuclei, emphasizing
both the empirically-calibrated event rate predictions and the distributions of event proper-
ties. In Sect. 5, we compare these estimates to observational inferences of the volumetric
stellar disruption rate. Finally, in Sect. 6, we examine the broader importance of nuclear
stellar dynamics, and describe how well-measured TDE rates may determine the uncertain
bottom end of the supermassive black hole mass function, probe basic predictions of general
relativity, and calibrate rate estimates for extragalactic phenomena such as mHz gravitational
wave sources.
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2 On the Proper Care and Feeding of Supermassive Black Holes

Modern observations demonstrate that SMBHs are ubiquitous in the nuclei of sufficiently
large galaxies (e.g. Kormendy and Richstone 1995). While a minority of SMBHs live in
active galactic nuclei (AGN), where they accrete steadily from long-lived and large-scale
discs of interstellar gas, the majority of SMBHs are quiescent: accreting at very low rates
(Heckman et al. 2004). In these quiescent galactic nuclei, it is only in the aftermath of a
TDE that the SMBH may shine brightly. But what variables determine the rate of stellar
tidal disruption? We can break down the controlling variables into two categories: those
relevant to the hydrodynamic process of tidal disruption, and those related to the orbital
dynamics of stars in galactic nuclei.

The first set of variables—those governing hydrodynamic stellar disruption—are ex-
plored in greater detail in the Disruption Chapter, whereas in this Chapter, we focus on
the latter set, with the following philosophy. In quiescent galactic nuclei, hydrodynamic
forces are negligible and the orbits of stars will be shaped by (i) the smooth background
gravitational potential of the SMBH and the stellar population; (ii) discrete, pair-wise scat-
terings with other stellar-mass objects; (iii) coherent secular effects arising from correlations
between the orbits of multiple stars.1 In the continuum limit, the DF of a population of iden-
tical stars can be written in position space as f (�r, �v). In a sufficiently old galactic nucleus,
the DF will exist in a quasi-steady state, but two-body scatterings and collisionless effects
will cause it to evolve adiabatically. We call such an old nucleus “relaxed,” in contrast to a
nucleus with a younger stellar population that was born far from a quasi-steady state config-
uration; such a young nucleus would be “unrelaxed.”

A full knowledge of the DF f (�r, �v) and the gravitational potential Φ(�r) would allow
us to compute osculating stellar orbits, their temporal evolution, and the rate at which stars
pass near the SMBH. But in order to understand which orbits are doomed to disruption, we
must first introduce at least approximate hydrodynamic criteria for the disruption process.
Fortunately, these approximations are reasonably accurate.

Tidal forces increase as one approaches a black hole. The strength of the tidal field di-
verges as distance from the singularity r → 0, so interior to some critical distance Rt (the
tidal radius, Eq. (1)), any macroscopic object will be torn apart. By equating the Newtonian
tidal field to the victim star’s surface self-gravity, we find that a star of mass M� and radius
R� will be torn apart by tides if its pericenter Rp is roughly2 within a tidal radius,

Rt = R�

(
M•
M�

)1/3

, (1)

of an SMBH with mass M•. This Newtonian expression is reasonably accurate when
Rt � Rg, where the latter is the gravitational radius Rg ≡ GM•/c2. But, as we shall see
in Sect. 3.5, when Rt ∼ Rg, the tidal radius will depend significantly on SMBH spin χ•, and
the orbital inclination ι.

Until Sect. 3.5, however, we will treat Eq. (1) as exact. With this approximation, we can
immediately note one (slightly counter-intuitive) feature of tidal disruption. Any SMBH will
have an event horizon comparable in size to its gravitational radius, Rg. We may note that

1As we see later in Sect. 3.4, factor (iii) is generally unimportant for determining TDE rates.
2In reality, the exact criterion for tidal disruption of a main sequence star is that Rp < Rt/βcrit, where βcrit ≈
0.95–1.85 is a dimensionless constant dependent on the central concentration of the star, and can be measured
precisely with numerical hydrodynamics simulations (Guillochon and Ramirez-Ruiz 2013; Mainetti et al.
2017; see also the Disruption Chapter).
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Rt ∝ M1/3• , while Rg ∝ M1• . The weak power-law dependence of Rt on M• means that, for
any given stellar type, there is a maximum black hole mass capable of producing a TDE
outside the event horizon. TDEs from SMBHs above this critical mass, often called the
Hills mass (Hills 1975), will produce debris wholly swallowed by the horizon, and will fail
to produce an electromagnetically luminous flare. Approximating the event horizon size as
2Rg, we find that the Hills mass is

MH = M−1/2
�

(
c2R�

2G

)3/2

≈ 1 × 108M	
(

R�

R	

)3/2(
M�

M	

)−1/2

. (2)

Equations (1) and (2) are fundamentally Newtonian expressions that we generalize to a
relativistic context in Sect. 3.5. A relativistic treatment is necessary to account for the effects
of SMBH spin, which can sizeably alter MH (Beloborodov et al. 1992; Kesden 2012).

In both the Newtonian and relativistic regimes, it is clear that, so long as TDE rates
depend on Rt (the exact dependence is non-trivial and will be quantified in Sect. 3), they
will depend on the mass, radius, and (to a weaker extent) internal structure of the star. These
quantities evolve over the lifetime of a star, so that the tidal radius ultimately depends on
the star’s zero-age main sequence (ZAMS) mass, its metallicity, its age, its spin, and even
its binarity (see Sect. 3.6). In the general relativistic context (appropriate when Rp ∼ Rg),
SMBH spin χ• and spin-orbit misalignment ι may affect disruption rates as well.

If we care not only about intrinsic rates of tidal disruption (e.g. per-galaxy rates, volu-
metric rates, etc.), but rates of TDE detection in current or planned surveys, then we must
consider additional properties of these events. For example, we may define the strength of
the TDE with a dimensionless penetration parameter

β = Rt/Rp. (3)

When β ≈ 1, we have a relatively mild, grazing disruption; if β � 1, we have a more violent,
deeply plunging disruption; if β � 1, a partial disruption may ensue. The observational
properties of a TDE flare may depend in various ways on β (Carter and Luminet 1983; Stone
et al. 2013; Dai et al. 2015), meaning that distributions of this parameter are an important
prediction for event rate calculations.

As this discussion illustrates, TDE rates depend on a large number of variables related
to the participating stars and SMBHs themselves. Fortunately (for the sake of minimizing
astrophysical uncertainty), intrinsic TDE rates depend only weakly on stellar properties,
through Rt. However, the properties of host galaxies, and their SMBHs, matter a great deal
more in setting TDE rates. In the next section, we will compute first-principles rates of tidal
disruption in idealized galactic nuclei, providing the theoretical framework to understand
how TDE rates vary with host galaxy properties.

3 Loss-Cone Theory

In this section, we overview, from a theoretical perspective, the many ways in which stars
can be fed to massive black holes. As we shall see, the dynamical evolution of stellar orbits
from “safe” to “unsafe” trajectories is most easily visualized and quantified with the concept
of a loss cone, which we define in Sect. 3.1. We present the physics of loss cones in spherical
galactic nuclei, as well as their connections to TDE rates, in Sects. 3.2 and 3.3. The first of
these sections is focused on steady-state loss-cone physics, while the second focuses on the
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time-dependent problem. We consider more general (aspherical) geometries in Sect. 3.4,
which opens up new avenues for loss-cone repopulation. In Sect. 3.5, we generalize our
treatment of the loss cone from Newtonian to general relativistic gravity. Finally, in Sect. 3.6,
we briefly survey other types of SMBH loss cones, relevant for processes beyond main-
sequence stellar disruption.

3.1 The Loss Cone

In Newtonian gravity, a star on a nearly parabolic orbit (eccentricity e ≈ 1) with pericen-
ter Rp will have specific orbital angular momentum L ≈ √

2GM•Rp. This implies that
stars with specific orbital angular momentum below the critical value (or, equivalently, with
β > 1),

Lt =
√

2GM•Rt, (4)

will be disrupted when passing within Rt of the SMBH. One can define analogous “loss
regions” in angular momentum space for destructive processes other than tidal disruption,
and we will explore these later on, in Sect. 3.6.

We are generally interested in the evolution of the stellar DF in phase space on timescales
much longer than the orbital time Torb, and will therefore describe populations of stars in the
space of integrals of motion (“integral space”), rather than the phase space of �r and �v. It is
convenient to define a new variable R ≡ [L/Lcirc(E)]2 ∈ [0,1], where Lcirc(E) is the spe-
cific angular momentum of a circular orbit with the given specific energy E; in a Keplerian
potential, R = 1 − e2. The number N(E,R) of stars per unit interval of E and R is related
to the DF f (E,R) as (Merritt 2013, Equation 5.166)

N(E,R) = 4π2Torb(E,R)L2
circ(E)f (E,R). (5)

Since we are interested mainly in the low-R region, it is convenient to ignore the dependence
of orbital time on R (which is usually weak) and write N(E,R) ≈ g(E)f (E,R), where
g(E) is the density of states, defined more generally as:

g(E) ≡ 4π2L2
circ(E)

∫ 1

0
Torb(E,R)dR. (6)

The number of stars per unit energy is N(E) ≡ ∫ 1
0 N(E,R)dR. An isotropic distribution of

stars in velocity corresponds to a uniform distribution in R: N(E,R) ≈ N(E).
The region of phase space with L ≤ Lt is colloquially called the loss cone (a term bor-

rowed from plasma physics), which we illustrate in Fig. 1. If angular momentum were con-
served for every stellar orbit, the number of stars inside the loss cone would drop to zero
within one orbital period. However, L changes with time due to various processes: classical
two-body and resonant relaxation, and torques induced by an aspherical stellar potential.
Therefore, the time-averaged number of stars inside the loss cone is nonzero, and the tidal
disruption rate per unit energy is

Ft(E) ≡ 1

Torb(E)

∫ Rt(E)

0
N(E,R)dR,

Torb(E) ≡ Torb(E,R = 0), Rt ≡
(

Lt

Lcirc(E)

)2

.

(7)
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Fig. 1 Schematic representations of the loss cone in a spherical galactic nucleus. On the left (panel a, taken
with permission from Amaro-Seoane 2018), we see the conical velocity-space loss region at an instanta-
neous point along a star’s elliptical orbit around a supermassive black hole. The tidal radius (denoted rtid
in this image) will overlap with the star’s pericenter if its instantaneous velocity vector �v falls into the loss
cone. On the right (panel b, taken with permission from Milosavljević and Merritt 2003), an orbit-averaged
loss cone is depicted in the space of (negative) specific orbital energy E ≡ −E and angular momentum
j = R1/2 = L/Lcirc ≤ 1. The loss cone becomes larger and larger in the space of dimensionless angular
momentum as one moves to more tightly bound orbits (larger |E|).

Much of the remaining story revolves around estimating the equilibrium loss cone popula-
tion, which is set by the efficiency of those processes that change the angular momenta of
stars. As a useful benchmark, consider a situation where these processes are extremely rapid,
so that the angular momentum distribution is nearly uniform (isotropic). The corresponding
rate of disruptions is called the (isotropic) full loss cone flux:

Fiso(E) = N(E)Rt(E)

Torb(E)
. (8)

In a more complicated situation, the loss-cone population may be either smaller or larger
than this reference value, depending on both the initial conditions and the efficiency of
angular momentum mixing.

3.2 Two-Body Relaxation

A mechanism that operates in all stellar systems is two-body (or collisional) relaxation,
caused by the discreteness of the stellar distribution. In the classical, “Chandrasekhar,” the-
ory of two-body relaxation, the evolution of the stellar DF is driven by uncorrelated two-
body encounters. We will begin, for simplicity, with a spherically symmetric nuclear star
cluster surrounding a SMBH. The star cluster has local three-dimensional density n(r) and
velocity dispersion σ(r) in coordinate space (here r is the distance from the SMBH), but its
time evolution is most simply described by the Fokker–Planck equation in integral space,
i.e. for N(E,L, t). We may define a local relaxation time as

Trel ≡ σ 3

G2n〈m2
�〉 lnΛ

, (9)
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where lnΛ ≈ 10 is the Coulomb logarithm (Chandrasekhar 1942; Spitzer and Hart 1971).
This expression assumes a present-day mass function (PDMF) of stars, dN/dm�, defined
over the interval [mmin,mmax]. The first and second moments of the PDMF are defined as

〈m�〉 =
∫ mmax

mmin

m�

dN

dm�

dm�

〈
m2

�

〉 =
∫ mmax

mmin

m2
�

dN

dm�

dm�.

(10)

Notably, the rate of two-body relaxation is controlled by the second moment, 〈m2
�〉, of the

PDMF, indicating that for realistic stellar mass functions, it is typically the heaviest surviv-
ing species (often stellar-mass black holes) which dominate relaxation rates, especially at
small radii where their relative fraction is higher due to mass segregation. For example, if
one adds a population of stellar-mass black holes to a truncated Kroupa PDMF, the TDE
rate can increase by up to a factor of ≈ 5 (Stone and Metzger 2016), depending on the as-
sumed metallicity (which determines the relation between zero-age main sequence masses
and compact remnant masses, e.g. Belczynski et al. 2010).

Over the characteristic relaxation timescale Trel � Torb, the typical change in energy is
O(E) and in angular momentum is O(Lcirc(E)). However, far smaller changes in angu-
lar momentum O(Lt) are needed to move stars on nearly radial orbits into or out of the
loss cone: the time needed to produce characteristic changes in dimensionless angular mo-
mentum ∼ R is ∼ RTrel. Because the relaxation of stars in angular momentum near the
loss-cone boundary occurs much faster than relaxation in energy (Frank and Rees 1976), in
the first approximation these types of relaxation can be considered separately. As we will
discuss shortly, this two-timescale decoupling establishes a (quasi-)steady-state distribution
of stars in L (or R) at fixed E, which remains quasi-isotropic even in the presence of a loss
cone (Lightman and Shapiro 1977; Cohn and Kulsrud 1978).

Over longer timescales, stellar diffusion in energy space gradually drives the stellar dis-
tribution towards a quasi-steady-state N(E) profile. If the gravitational potential is dom-
inated by the Φ ∝ 1/r potential of the SMBH, this steady-state solution is known as the
Bahcall–Wolf cusp, with f (E) ∝ |E|1/4. In coordinate space, the Bahcall and Wolf (1976)
distribution translates to a spherically symmetric density profile3 n(r) ∝ r−7/4, extending
out to some fraction of the SMBH influence radius rinf, which we define to be the radius en-
closing a total stellar mass equal to M•. Notably, this is a zero-flux solution in energy space:
in the limit as Rt/rinf → 0, the energy-space flux to the SMBH also goes to zero.

Accordingly, we will focus for now on the angular momentum diffusion,4 by considering
the one-dimensional, orbit-averaged Fokker–Planck equation for the evolution of the stellar
distribution N(R, t) in the space of dimensionless angular momentum R, at a fixed energy
E (the dependence of various quantities on E is implied in the rest of this section, but is not
explicitly marked):

∂

∂t
N(R, t) = ∂F

∂R
, F ≡ D(E,R)

∂N

∂R
, D(E,R) ≈ D(E)R. (11)

3If a broad spectrum of stellar masses exist, it is generally the heaviest species that relaxes to the n(r) ∝ r−7/4

profile, while lighter species will achieve shallower, n(r) ∝ r−3/2 distributions (Bahcall and Wolf 1977).
However, strong mass-segregation can give rise to steeper distributions, as in Alexander and Hopman (2009),
Preto and Amaro-Seoane (2010), Aharon and Perets (2016).
4For a less rigorous—but in some respects more intuitive—approach operating entirely in coordinate space,
see the work of Syer and Ulmer (1999), which obtains qualitatively similar results to those presented here.
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As before, F is the flux of stars through integral space in the direction of the inner boundary5

Rt, and the orbit-averaged diffusion coefficient D(E) ∼ T −1
rel depends on various moments

of the stellar DF (Merritt 2013, Equation 6.31)

D(E) = 64π2G2 lnΛ〈m2
�〉

3L2
circ(E)Torb(E)

∫ rmax(E)

0
dr

r2

√
2[E − Φ(r)] (2I0 + 3J1/2 − J3/2),

I0(E) =
∫ 0

E

f
(
E′)dE′, (12)

Jn(E, r) =
∫ E

Φ(r)

[
E′ − Φ(r)

E − Φ(r)

]n

f
(
E′)dE′.

Here rmax(E), the apocenter of a radial orbit with given specific energy, is the root of
Φ(rmax) = E. In a relatively shallow stellar density profile, or at high binding energies,
I0(E) is the dominant moment of the stellar DF, and diffusion is a quasi-local process in
energy space. In a relatively steep stellar density profile, or at large radii, Jn(E, r) will be-
come of greater importance, and diffusion may become strongly non-local in energy space,
with very tightly bound stars playing an important role in the evolution of more loosely
bound bins of E. Over long timescales, the 1D Fokker–Planck approach of Eq. (11) may
break down due to changes in the energy-space distribution of stars, N̄(E), and this break-
down will be hastened in bins of energy whose diffusion coefficients D(E) are dominated by
contributions from distant regions of energy-space with shorter relaxation times. In general,
however, the 1D approach is a self-consistent way to determine quasi-steady state conditions
near the loss cone boundary, since the time for orbits to experience a change in R ∼ Rt is
∼ Trel(E)Rt.

These equations are complemented with a no-flux, ∂N/∂R = 0 outer boundary condition
(at R = 1), and an inner boundary condition (at Rt) of the Robin type (a linear combination
of the function and its derivative):

N(Rt, t) − αRt
∂N

∂R

∣∣∣∣
R=Rt

= 0, α ≈ (
q2 + q4

)1/4
, q ≡ DTorb

Rt
. (13)

The dimensionless quantity q(E) describes the diffusivity of relaxational loss cone refilling.
If the typical change of angular momentum per orbital time is larger than the size of the
loss cone (q � 1, α ≈ q), the distribution of stars near and inside the loss cone is close to
uniform (its gradient is small; ∂N/∂R � N/R). In this case, we speak of a “full loss cone”
or a “pinhole” regime where the flux through the loss-cone boundary is

F ≈ Ffull ≡ N(Rt)Rt

Torb
. (14)

This flux is proportional to the size of the loss cone but independent of the relaxation rate.
Note that, unlike Eq. (8) for the isotropic full loss cone flux, the above expression assumes
only that the DF is locally well-mixed near the loss-cone boundary. In the opposite limit
(q � 1, α ≈ q1/2), we are in an “empty loss cone” or “diffusive” regime, where N(Rt) ≈ 0
and the flux is limited by the relaxation.

5With this definition, the flux is positive if the stars diffuse towards the loss cone, as they usually do. Note
that the sign convention is the opposite in some studies.
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We may consider a quasi-steady-state solution of Eq. (11) in which the shape of the DF
N(R, t) stays the same, but its overall normalization N ≡ ∫ 1

0 N(R)dR changes with time.
This solution has a nearly logarithmic profile (Cohn and Kulsrud 1978):

N(R) ≈ N
α + ln(R/Rt)

(α − 1)(1 −Rt) + ln(1/Rt)
, (15)

and the corresponding flux is

F = DN

(α − 1)(1 −Rt) + ln(1/Rt)
= qFfull

(α − 1)(1 −Rt) + ln(1/Rt)
. (16)

As expected, in the full-loss cone limit the DF is nearly uniform (N(R) ≈ N ), and the
flux approaches the isotropic full-loss-cone value (Eq. (8)), which coincides with Eq. (14)
for a steady-state solution (however, this is no longer true for a time-dependent solution
with strongly anisotropic initial conditions, as we will discuss in Sect. 3.3). In the opposite,
empty-loss cone limit, the DF falls sharply to zero for R�Rt, and the flux is

Fempty ≡ DN

ln(1/Rt) + Rt − 1
. (17)

This empty loss cone flux is proportional to the relaxation rate but only weakly dependent
on the size of the loss cone. The steep drop in the DF below Rt implies that the TDE rate
will be dominated by grazing encounters with β ≈ 1 in the empty loss-cone regime (see
Sect. 4.2).

The transition between empty and full loss cone regimes corresponds to F ≈ 1
2Ffull, or

q ≈ ln(1/Rt) ∼ O(10). This occurs at the “critical” energy Ecrit, or the corresponding radius
rcrit. The total TDE rate6

Ṅ ≡
∫ 0

−∞
F(E)dE (18)

will contain contributions from both empty- and full-loss cone regimes. If rcrit � rinfl, then
most of the total loss cone flux arises from E ∼ Ecrit, and both the empty- and full-loss cone
regimes contribute an O(1) fraction of the TDE rate.7 Conversely, if rcrit � rinfl, then most
of the integrated loss cone flux comes from E ∼ −GM•/(2rinfl), and is predominantly in
the empty loss cone regime (Syer and Ulmer 1999). Astrophysical galactic nuclei typically
possess rcrit ∼ rinfl (Wang and Merritt 2004), as we will discuss later in Sect. 4.1.

3.3 Anisotropic and Time-Dependent Loss Cones

So far, we have estimated the loss cone flux F(E) and TDE rate Ṅ in a relatively old
galactic nucleus, one which has reached a quasi-steady state, quasi-isotropic distribution of

6In general, closed-form expressions for the variables in this section do not exist. However, for the special

case of a singular isothermal sphere density profile, with n(r) ∝ r−2, Wang and Merritt (2004) provide
analytic expressions for q(E), F(E), and Ṅ .
7An interesting caveat to this discussion concerns extremely steep stellar cusps, i.e. those with density profiles

falling off faster than n(r) ∝ r−9/4. Such density profiles are not self-consistent, because they predict that, as
E → −∞, Fempty → ∞ (Syer and Ulmer 1999). Density profiles of this steepness are rarely seen in nature,
with the possible exception of post-starburst galaxies, which we discuss later Sect. 5.2.1.
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orbital angular momentum in each bin of orbital energy (i.e. Eq. (15)). This quasi-steady
state solution is attained on a timescale ∼ Trel. At earlier times, the angular momentum dis-
tribution may be quite anisotropic, and in this regime, the capture rate depends sensitively
on the initial conditions. In certain types of galactic nuclei, where phenomena other than
two-body relaxation are at work, it is not even clear that we can expect the angular momen-
tum distribution to converge to Eq. (15). For example, a galactic nucleus with a long-lived
SMBH binary will preferentially eject stars on radial orbits, continually pumping up the
tangential anisotropy of the star cluster (Milosavljević and Merritt 2003; Merritt and Wang
2005). The presence of a massive gas disc (i.e. an active galactic nucleus) will affect stel-
lar orbits in a more complicated way (Karas and Šubr 2007). The evolution of the nuclear
stellar cusp and its build-up through star formation and/or cluster infall will also affect TDE
rates (Aharon et al. 2016). In this section, we will ignore these complications, and focus on
DFs f (E,R, t) for spherical galactic nuclei evolving only due to two-body relaxation. We
consider more general loss-cone physics in aspherical potentials in Sect. 3.4.

In the limit of spherical symmetry and arbitrary initial conditions f (E,R,0), it is pos-
sible to use Fourier-Bessel synthesis techniques to derive exact, time-dependent solutions
to the Fokker–Planck equation in angular momentum space. These solutions can then be
converted into TDE rates via Eq. (11) (F ∝ ∂N/∂R). The semi-analytic Fourier-Bessel so-
lutions were first derived in the empty loss cone limit (Milosavljević and Merritt 2003), but
can also be applied for more general inner boundary conditions (Lezhnin and Vasiliev 2015).
While these solutions are useful, they are too lengthy to reproduce and explore in this re-
view, so we will focus instead on results from the numerical solution of the time-dependent
Fokker–Planck equation (Eq. (11)).

The anisotropy of a stellar distribution can be quantified with the parameter (usually
called β , but here we use b to avoid confusion with Eq. (3))

b(E) = 1 − T⊥(E)

2T‖(E)
, (19)

which is a function of the total radial (T‖) and tangential (T⊥) kinetic energies of stellar
orbits. This definition can be related to the DF as f (E,R) = fE(E)R−b(E), where fE(E) is
a function independent of angular momentum, although more complicated (non-separable)
DFs can have the same level of anisotropy. When b = 0, orbital velocities and angular mo-
menta are distributed isotropically; when b > 0, there is a radial orbit bias; when b < 0,
there is a tangential orbit bias. In the case of a purely isotropic initial distribution (b = 0; flat
in R), the initial TDE rates F(E) ≈ Fiso(E) (Eq. (8)), even at high binding energy where
q(E) � 1. In these energy bins, stars at R < Rt are removed on a timescale Torb, creat-
ing a steep gradient near the loss-cone boundary. As the angular momentum distribution is
progressively depleted at small but increasing R and approaches the Cohn–Kulsrud quasi-
steady state profile (Eq. (15)), the gradient (∂N/∂R)R=Rt will soften, and the rates will
decline and approach the steady-state value (Eq. (16)). Because the Cohn–Kulsrud quasi-
steady state is nearly isotropic (more specifically, a logarithmic function of R), isotropic
initial conditions produce time-dependent TDE rates that are not far from the steady-state
expectation of Eq. (16).

Larger deviations from Eq. (16) will occur if the initial conditions are strongly
anisotropic. For example, a galactic nucleus may inherit a strong tangential anisotropy in
the aftermath of a SMBH binary merger. As two SMBHs inspiral, they eject those stars
which pass within the orbit of the binary, scouring out a cavity in angular momentum space
and depleting radial orbits (Milosavljević and Merritt 2003). This creates a gap in the initial
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distribution N(R, t = 0) for R ≤ Rgap � Rt. After the SMBHs have merged, the TDE rate
will be suppressed until the angular momentum gap is refilled, typically over a timescale
∼ 10−2–10−1Trel (Merritt and Wang 2005; Lezhnin and Vasiliev 2015).

The opposite situation occurs when the initial distribution has an excess of stars with low
angular momentum (a radially-biased velocity distribution). This may occur naturally8 as a
result of nuclear cluster buildup through infalling globular clusters (Hartmann et al. 2011,
although many clusters are likely to disrupt far from the SMBH; Perets and Mastrobuono-
Battisti 2014). In the case of eccentric cluster infall, stars will be left behind on preferentially
radial orbits. If we assume an idealized, initial radial anisotropy of b across all bins of energy,
then the TDE rate will initially be elevated and then decline with time roughly as F(E) ≈
Ffull(E) × [t/Trel(E)]−b (Stone et al. 2018). Despite the initially high rates of this scenario,
this formula demonstrates (since b ≤ 1 definitionally) that the integrated total number of
TDEs will be dominated by late times, once the distribution has become quasi-isotropic.

3.4 Asphericity and Collisionless Loss Cone Refilling

The classical loss-cone theory of Sects. 3.2 and 3.3 was developed in the 1970s for globular
clusters, which are nearly spherical systems. However, galactic nuclei are, to some extent,
non-spherical (see e.g. Lauer et al. 2005), and stellar orbital angular momentum is, therefore,
not conserved even in the absence of two-body relaxation. Thus, even if the time-averaged
angular momentum L of a star on a given orbit is large, the minimum value of angular
momentum Lmin reachable by this orbit may be smaller than Lt, potentially bringing a much
larger reservoir of stars into the loss cone.

In perfectly axisymmetric systems, one component of angular momentum (Lz) is still
conserved, so Lmin ≥ Lz; however, in triaxial or even less symmetric potentials, Lmin may
be zero for a significant fraction of orbits; specifically, those in “centrophilic” orbit fami-
lies, such as box, pyramid or chaotic orbits (Poon and Merritt 2001). More generally, we
refer to all orbits with Lmin ≤ Lt as the “drain region,9” and denote the fraction of phase
space occupied by these orbits at a given energy as Rdrain(E). Most of these orbits have low
average angular momentum, i.e. L � Lcirc(E), although not all orbits with L � Lcirc(E)

are centrophilic. Nevertheless, for the sake of simplicity, we assume that the drain region is
simply R < Rdrain.

There are two separate effects associated with the existence of a drain region. First,
the scalar angular momentum changes significantly (by O(εLcirc)) on a timescale Tang �
ε−1Tprec, where ε is the (dimensionless) degree of non-sphericity (the relative difference be-
tween the three principal axes). Here the period of pericenter precession Tprec ≡ 2π(Ωr −
Ωφ)−1 is given by the difference between the frequencies of the radial and azimuthal motion:
it is comparable to the orbital period Torb ≡ 2πΩ−1

r outside the SMBH radius of influence,
but is much longer than Torb in a nearly Keplerian potential (see Equation 4.88 in Merritt
2013). In the drain region, the timescale for the scalar angular momentum to change by
O(Lt) is typically shorter than Torb. Therefore, stars on drain orbits are in the full loss cone
regime (Merritt and Poon 2004), and their capture rate is given by Eq. (14). Note that this
does not imply that the capture rate is equal to the isotropic full loss cone rate of Eq. (8),

8But see also Arca-Sedda and Capuzzo-Dolcetta (2017) for counterexample simulations, where star cluster
infall leads to a tangential bias. Ultimately, the final b(E) profile is likely sensitive to the orbital properties of
infalling star clusters.
9The drain region is often called the “loss wedge” in the axisymmetric case—e.g. Magorrian and Tremaine
(1999).
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Fig. 2 Illustration of the quasi-steady-state DF in spherical (solid blue) and non-spherical (dotted red)
galactic nuclei, for the case of an empty loss cone (q = 0 in Eq. (13)) with a fairly large loss-cone size
(Rt = 3 × 10−4). In the spherical case, the DF has a logarithmic profile (Eq. (15)), and the slope of this pro-
file in the semi-log-scaled coordinates determines the flux. In the non-spherical case, the profile flattens out
at R�Rdrain ( = 0.1 in this example), because the angular momenta of stars are shuffled by non-spherical
torques. At the same time, the profile at R�Rdrain remains nearly logarithmic, as it is still determined by
relaxation-driven diffusion, but it has a steeper slope (roughly a factor of two in this example), producing a
correspondingly larger flux. Adapted from Fig. 5 of Vasiliev and Merritt (2013).

because the density of stars in the drain region N(E,R < Rdrain) may be different from
the angular momentum-averaged density of stars N(E). We may now define the “drain
timescale” needed to remove the stars from this region: Tdrain ≡ TorbRdrain/Rt. It turns out
that in axisymmetric systems, this time is still much shorter than the Hubble time, at least
in those galactic nuclei with M• � 108M	 that are the main sources of TDEs. However, in
triaxial systems, the fraction of centrophilic orbits, Rdrain, could be � 0.1 (it is proportional
to the degree of non-sphericity ε), making the draining time longer than the Hubble time for
most orbits (see Equations 6, 7 and Fig. 4 in Vasiliev 2014). During this time, the capture
rate is determined by the initial conditions. In the “most neutral” case of a (nearly-)isotropic
distribution in angular momentum, the TDE rate is of order the isotropic full loss cone rate
of Eq. (8), which could be much higher than the relaxation-limited capture rate in purely
spherical nuclei (Magorrian and Tremaine 1999).

After the initial population of stars in the drain region has been depleted, two-body re-
laxation again becomes the rate-limiting step. However, relaxation will still be aided by the
existence of the drain region, which acts as an “extended” loss cone: one with a much larger
surface area in phase space. After a star has diffused into the drain region via collisional
relaxation, it will collisionlessly wander into the actual loss cone in a time � Tdrain (unless
it is scattered back into the higher-L region of phase space). The TDE rate from the loss
wedge is technically still set by the full loss-cone rate of Eq. (14), but the phase-space den-
sity of stars in this region, N(Rt) � N(Rdrain), may be much lower than N , if the supply
rate is diffusion-limited. In this case, the steady-state flux is given by the expression for the
empty-loss cone regime of Eq. (17), but replacing ln(1/Rt) with ln(1/Rdrain). Because of
this logarithmic dependence, the actual enhancement of capture rate is at most a factor of
few, as is illustrated by Fig. 2.

A different type of transient asphericity can occur in special, “degenerate” potentials
where frequencies of motion are rationally commensurate with each other and orbits close.
For example, in the Kepler potential of the SMBH, all three frequencies of motion are ex-
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actly equal for an individual star (so long as we neglect precession from the background
stellar potential and relativistic effects). Because the stellar cusp is made of a finite number
of stars, the combination of discreteness and closed orbits will create a statistical excess of
time-averaged stellar mass in one direction: a temporary asphericity. An alternative view of
this process is that pairwise encounters between nearby stars will be correlated over time,
and therefore may coherently torque stellar orbits much more efficiently than do the uncor-
related effects from two-body relaxation. The resulting orbital evolution, known as resonant
relaxation (Rauch and Tremaine 1996), has been proposed as a way to more efficiently refill
empty loss cones (Hopman and Alexander 2006). However, general relativistic precession
often prevents resonant relaxation from exciting stars to the high eccentricities needed to
enter the loss cone (Merritt et al. 2011; Brem et al. 2014), and recent calculations suggest
that its impact on the loss-cone flux is fairly minor in realistic galactic nuclei (e.g., Merritt
2015a, or Fig. 17 in Bar-Or and Alexander 2016).

To summarize, the TDE rate in non-spherical systems is larger than in spherical ones, if
most of the flux in the latter is delivered in the diffusion-limited (empty loss cone) regime. In
Sect. 4.1, we will see that in denser galactic nuclei, with M• � 106M	, this enhancement is
small, while for M• � 108M	 it could be more than an order of magnitude. However, these
larger galaxies are (i) rarer and (ii) have difficulty producing luminous TDEs (M• ∼ MH),
and so do not dominate the cosmic TDE rate of main-sequence stars.

3.5 General Relativistic Loss Cone Theory

Einstein’s theory of general relativity (GR) differs from Newtonian gravity in several re-
spects that may carry important observational consequences for TDEs. The first of these
differences concerns the nature of gravity itself in the two theories. In Newtonian gravity,
the SMBH exerts an inverse-square-law force on the star, pulling more strongly on the side
of the star facing the SMBH than on the stellar center of mass. Equating the difference in the
acceleration experienced by the stellar center of mass and surface (i.e. the tidal acceleration)
to the star’s self gravity and solving for the distance from the SMBH yields the Newtonian
tidal radius Rt (Eq. (1)).

General relativistic gravity is interpreted instead as a non-vanishing spacetime curvature
that determines the geodesics along which test particles travel. This spacetime curvature can
cause initially parallel geodesics to deviate, leading to tidal disruption if the rate of geodesic
deviation exceeds the star’s self-gravity. The relativistic geodesic-deviation equation is most
conveniently expressed in Fermi normal coordinates {τ,X(i)} (Manasse and Misner 1963;
Marck 1983; Luminet and Marck 1983). Here τ is the proper time along the central timelike
geodesic on which the star’s center of mass travels, and X(i) are Cartesian spatial coordi-
nates in a spatial hypersurface orthogonal to this central geodesic. In these coordinates, the
geodesic-deviation equation becomes

d2X(i)

dτ 2
= −C

(i)

(j)X
(j), (20)

where

C
(i)

(j) = Rβ
μανλ

(i)
β λ

μ

(0)λ
α
(j)λ

ν
(0) (21)

is the tidal tensor, Rβ
μαν is the Riemann curvature tensor, and {λμ

(0), λ
μ

(i)} is the orthonormal
tetrad of 4-vectors with respect to which the Fermi normal coordinates {τ,X(i)} are defined.
The symmetries of the Riemann tensor imply that the tidal tensor is a real, symmetric 3 × 3
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matrix with three real eigenvalues and orthogonal eigenvectors. Equation (20) implies that
the star will be stretched along the eigenvector corresponding to the tidal tensor’s sole nega-
tive eigenvalue, V−; equating the tidal acceleration in this direction at pericenter to the star’s
self-gravity yields the relativistic generalization of the tidal radius (Kesden 2012)

Rt,GR =
[( |V−|

2GM•/r3

)(
M•
M�

)]1/3

R�. (22)

As in the Newtonian case (Eq. (1)), the exact criterion for tidal disruption is Rp < Rt,GR/βcrit,
where βcrit ≈ 1 − 2 depends on the internal structure of the star. In the non-relativistic limit
(v � c, r � Rg), Rt,GR reduces to Rt.

Although there is a superficial similarity between the Newtonian and relativistic tidal
radii of Eqs. (1) and (22), there are also important differences. Because the tidal tensor
C

(i)

(j) and thus its negative eigenvalue V− depend on both the Riemann tensor and the stellar
geodesic, the relativistic tidal radius depends on both the spacetime metric of the SMBH and
the stellar 4-position and 4-velocity at pericenter, not just the distance from the SMBH. The
spacetime near SMBHs is described in GR by the Kerr metric (Kerr 1963), which depends
not just on the SMBH mass M•, but also on its dimensionless spin, 0 ≤ χ• ≤ 1 (Carter 1971).

The spin dependence of the SMBH’s gravity is the second important difference between
Newtonian gravity and GR. The SMBH spin breaks the spherical symmetry present in New-
tonian point potentials, implying that, in the commonly used Boyer-Lindquist coordinate
system (Boyer and Lindquist 1967), the Riemann tensor depends on both the radial coor-
dinate r and the polar coordinate θ . The Kerr metric is stationary and axisymmetric, im-
plying the existence of a specific energy E and angular momentum Lz that are conserved
along geodesics. In addition, the Kerr metric has a Killing tensor that provides a conserved
Carter constant Q (Carter 1968; Walker and Penrose 1970). In the non-relativistic limit, the
Carter constant corresponds to the square of the magnitude of the component of the orbital
angular momentum in the equatorial plane of the SMBH. This allows us to define an (ef-
fective) specific orbital angular momentum L ≡ √

L2
z + Q, and an (effective) inclination

ι = cos−1(Lz/
√

L2
z + Q) that are conserved along all Kerr geodesics. These considerations

indicate that the relativistic tidal radius Rt,GR can, in principle, depend on the SMBH mass
M• and spin χ•, but also on the stellar orbital energy E, inclination ι, and argument of
pericenter ω. In practice, the dependence on E and ω can be neglected to high accuracy,
allowing us to define the threshold for tidal disruption Lt,GR(χ•, ι) as the value of L for
which

V−(M•, χ•,L, ι) = −2GM�

R3
�

(23)

when evaluated at pericenter.10

A third significant difference between Newtonian gravity and GR is that, in the latter
theory, a black hole is defined as an object possessing an event horizon, a hypersurface from
within which even light cannot escape (Wald 1984). The tidal force exerted by a Newto-
nian point mass scales ∝ r−3 and can therefore become arbitrarily large. This implies that
any Newtonian point mass is capable of tidal disruption, given a small enough pericenter.
However, to produce an observable TDE in GR, a SMBH’s tides must overcome the star’s
self gravity while avoiding direct capture of the tidal debris by the event horizon. Stars on

10The right-hand side of Eq. (23) should be multiplied by β3
crit to account for stellar structure.
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parabolic orbits (and their resulting debris) will be captured when their specific orbital an-
gular momentum L falls below a threshold Lcap(χ•, ι) that depends on both the SMBH spin
and orbital inclination. The rate of observable TDEs in GR will therefore be given by the
rate at which two-body relaxation or other processes described above drive stars onto orbits
with Lcap(χ•, ι) < L < Lt,GR(χ•, ι). The hierarchy of distance scales, Rg � rinfl, between
the gravitational radius and the radius of influence (from which most tidally disrupted stars
are scattered into the loss cone) ensures that GR only modifies the boundaries of the loss
cone, but does not otherwise affect the process responsible for refilling it.

The capture threshold Lcap(χ•, ι) scales linearly with M• on dimensional grounds, while
to lowest order in M�/M• � 1, the threshold for tidal disruption Lt,GR(χ•, ι) ∝ M2/3• , like its
Newtonian counterpart

√
2GM•Rt. This implies that SMBHs more massive than the rela-

tivistic Hills mass MH,GR(χ•), defined such that Lcap(χ•, ι) > Lt,GR(χ•, ι) for all inclinations
ι, will be incapable of producing observable TDEs. For Schwarzschild SMBHs (χ• = 0),
spherical symmetry is restored and the disruption and capture thresholds are inclination-
independent. The relativistic Hills mass for a Schwarzschild SMBH is

MH,GR =
(

5c6R3
�

128β3
critG

3M�

)1/2

=
(

5

16β3
crit

)1/2

MH = 107.8β
−3/2
crit M	, (24)

where βcrit is the minimum penetration factor for tidal disruption and MH is the Newtonian
Hills mass given by Eq. (2). For high-mass stars like our Sun whose equation of state can be
approximated by a polytropic index γ = 4/3, Newtonian hydrodynamic simulations suggest
that βcrit � 1.85 (Guillochon and Ramirez-Ruiz 2013) implying MH,GR � 107.4M	 (Servin
and Kesden 2017). For Kerr SMBHs (χ• > 0), both Lt,GR(χ•, ι) and Lcap(χ•, ι) are mono-
tonically increasing functions of inclination ι, but the direct capture threshold has a steeper
dependence. This implies that the Hills mass MH,GR(χ•) will be determined by the con-
dition Lcap(χ•, ι = 0◦) = Lt,GR(χ•, ι = 0◦). For maximally spinning SMBHs (χ• = 1), this
limit can be as large as ∼ 109M	 (Sponholz 1994; Ivanov and Chernyakova 2006; Kesden
2012).

We show the reduction in the observable TDE rate due to direct capture by the event
horizon in Fig. 3 (Kesden 2012). The dashed black curve shows the TDE rate as a function
of SMBH mass M• for galaxies with a singular isothermal sphere (ρ ∝ r−2) stellar den-
sity profile and velocity dispersions σ set by the M• − σ relation (Ferrarese and Merritt
2000; Gebhardt et al. 2000). These rates were calculated with a Newtonian loss cone re-
filled by two-body relaxation as described in Sect. 3.2 (Wang and Merritt 2004). The solid
colored curves (corresponding to different SMBH spins as indicated in the caption) show
the suppression of this TDE rate from the fraction of stars in the tidal disruption loss cone,
L < Lt,GR(χ•, ι), that also lie within the direct capture loss cone,11 L < Lcap(χ•, ι). We
see that the event horizon has a negligible effect for M• � 106M	, and that SMBHs with
M• ≈ 5 × 108M	 can still produce observable TDEs provided their spins are large enough.
The predicted suppression of the TDE rate by direct capture for M• � 107.5M	 shown in
Fig. 3 is consistent with the super-exponential cutoff in the TDE rate observed in a limited
sample of twelve optically-selected TDE candidates (van Velzen 2018).

Calculating observable TDE rates in a fully self-consistent manner with the asymmetric,
relativistic loss cones described above remains an open problem, but we can anticipate sev-
eral qualitative features of the results. For Schwarzschild SMBHs, the tidal acceleration is

11This calculation assumes the full loss-cone limit, in computing the relativistic correction factor, although
the per-galaxy TDE rates shown in Fig. 3 are based on loss-cone calculations using contributions from both
the full and empty regions.
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Fig. 3 The TDE rate Γ in an
idealized singular isothermal
sphere (ρ ∝ r−2) galactic
nucleus, shown as a function of
SMBH mass M . The black
dashed line shows the analytic
estimate from Wang and Merritt
(2004) which neglects direct
capture of stars by the event
horizon. Colored lines show TDE
rate curves corrected for this
general relativistic effect, with
the red, orange, green, blue and
purple curves corresponding to
SMBH spin magnitudes χ• with
values of 0.0, 0.5, 0.9, 0.99, and
0.999, respectively. These
calculations average over an
isotropic distribution of incoming
stellar orbits and assume all
disrupted stars are of solar mass
and radius with βcrit = 2−1/3.
Taken with permission from
Kesden (2012).

stronger in GR than on Newtonian orbits with the same angular momentum L (Servin and
Kesden 2017). Equation (14) thus implies that, in the full loss-cone regime, the TDE rate will
be enhanced by a factor of (Lt,GR/Lt)

2 in the absence of direct capture by the event horizon.
This factor is a monotonically increasing function of SMBH mass that reaches ≈ 2.7 for
M• = MH,GR(χ• = 0), though by definition direct capture cannot be neglected for SMBHs
near the Hills mass. In the empty loss cone regime, direct capture can be generally neglected
so long as Lt,GR(χ•, ι) > Lcap,GR(χ•, ι), but in this case the TDE rate enhancement is only by
a factor ≈ ln(Lt,GR/Lt), as in Eq. (17). However, according to Eq. (13), the dimensionless
factor q(E) will be suppressed in GR by the same factor (Lt,GR/Lt)

2, pushing more of the
phase space into the empty loss-cone regime where the TDE rate is suppressed with respect
to the full loss-cone regime by this factor. In either loss cone regime, these effects will be
small when M• � MH,GR.

SMBH spin further complicates TDE rate predictions. The thresholds Lt,GR(χ•, ι) and
Lcap(χ•, ι) are smaller for Kerr SMBHs than their Schwarzschild values when orbits are
prograde (ι < 90◦), and are larger when orbits are retrograde (ι > 90◦). For isotropic dis-
tributions (flat in cos ι), even large spins have a modest � 10% effect on the M•-integrated
TDE and capture rates in the full loss-cone regime (Young et al. 1977). However, we have
already seen that spin can have dramatic effects on rates of observable TDEs from individual
bins of SMBH mass when M• ∼ 108M	 (Fig. 3). Furthermore, spin can have a significant
effect on the inclination distributions of tidally disrupted and captured stars, with important
observational consequences that we discuss further in Sect. 4.2, and in greater detail in the
Formation of the Accretion Flow Chapter.

3.6 Other Loss Cones

So far, we have focused our attention on the loss cone relevant for standard TDEs: one
centered on a massive black hole, with a boundary defined by the complete tidal disrup-
tion of a main sequence star. But the concept of a loss cone can be applied more generally
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to compute rates of other types of tidal disruptions. Some, such as the disruptions of bi-
nary or giant-branch stars by SMBHs, have event rates set by loss cone considerations not
too dissimilar from those discussed already. More exotic types of tidal disruptions, such as
“micro-TDEs” involving hyperbolic flybys of stars and stellar-mass black holes (Perets et al.
2016), or the short gamma-ray bursts produced by the quasi-circular inspiral of a neutron
star into a stellar-mass black hole, are produced by quite different dynamical processes, and
are therefore outside the purview of this Chapter. In this section, we briefly overview how
loss cone physics is altered for different types of tidal disruptions: partial rather than full
(Sect. 3.6.1), giant-branch rather than main sequence (Sect. 3.6.2), and binary rather than
single (Sect. 3.6.3). Stars may also be tidally disrupted by binary SMBHs, but the underly-
ing dynamics here are sufficiently complicated that they are left to the Binaries Chapter.

3.6.1 Partial Disruptions

Partial disruptions will occur when stars approach the central SMBH with β < βcrit. As
discussed previously, the exact value of βcrit is a number O(1) that depends on the internal
structure of the victim star. For simple polytropic models, βcrit ranges from ≈ 0.92 (for a rel-
atively fluffy, n = 3/2 polytrope, representative of lower main sequence stars) to 2.01 (for a
more centrally concentrated n = 3 polytrope, representative of Sun-like stars). While these
thresholds for full disruption are well-established for polytropic stellar models (Guillochon
and Ramirez-Ruiz 2013; Mainetti et al. 2017), the corresponding βcrit values for more real-
istic stellar structures have yet to be determined. The exact threshold below which no mass
loss occurs is also a function of stellar structure; for polytropic models, mass loss typically
requires β > βmin ≈ 0.5 (Guillochon and Ramirez-Ruiz 2013).

Because the cross-section for partial disruption is substantially larger than that for full
disruption, partial disruptions should be more common. This is clearly true in the empty
loss-cone limit; when q(E) � 1, higher β values are exponentially suppressed.12 In the
full loss-cone regime, the number of stars N(R) is roughly independent of R deep into the
loss cone, meaning that the differential rate of disruptions dṄ/dR ∝ dṄ/drp ∝ const. By a
change of variables, this gives the differential rate dṄ/dβ ∝ β−2. The ratio of partial to full
tidal disruptions will, in the q(E) � 1 limit, be

Ṅpartial

Ṅfull
= β−1

min − β−1
crit

β−1
crit − β−1

max

, (25)

where βmax is the maximum penetration parameter that can avoid direct capture by the hori-
zon. In Newtonian gravity, where the horizon may be approximated as an absorbing bound-
ary at 2Rg,

βN
max = R�c

2

2GM
2/3• M

1/3
�

. (26)

In GR, βmax = βGR
max(χ•, ι), and can be computed by determining both Lt,GR and Lcap, al-

though it is important to note that the definition of β becomes more ambiguous in relativistic
gravity (Servin and Kesden 2017). For simplicity, we have so far discussed differential rates
dṄ/dβ in the two extreme limits of loss cone repopulation; a more sophisticated treatment
of the intermediate, q ∼ 1 case can be found in Strubbe (2011).

12Although we note that a power-law tail of high-β TDEs will occur, even when q � 1, due to the effects of
strong scattering (Weissbein and Sari 2017).
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3.6.2 Giant Stars

After a sufficient fraction of their hydrogen has been burnt, most stars will evolve off the
main sequence and become giants, increasing their radial size by at least one order of mag-
nitude. Stars with initial mass M� ∼ 1–8M	 will spend most of their post-main sequence
evolution on the red giant branch (RGB), with RRG ∼ 10R	, and a smaller but dynamically
important portion on the AGB branch with RAGB ∼ 100R	.

Giant-branch stars are, consequently, much more vulnerable to partial tidal disruption:
while their cores are no less dense than those of main sequence stars, their envelopes are
distended and only weakly bound. If we reapply the results of Sect. 3.2, we therefore ex-
pect that per-star TDE rates of giants should be larger by a factor ∼ RG/R� in the full loss
cone regime, but by a more modest factor ∼ ln(RG/R�) in the empty loss cone regime.
Because the total TDE rate Ṅ is an integral across these two regimes, it will typically fol-
low a sublinear power law as shallow as Ṅ ∝ (RG/R�)

1/4 (MacLeod et al. 2012). While
these arguments show that the per-star rate of giant disruption is higher than that for main
sequence stars, this enhancement competes unsuccessfully with the much smaller number
of giant-branch stars. As a result, the ratio between giant-branch and main sequence TDE
rates is ṄG/ṄMS ∼ 0.1 (Magorrian and Tremaine 1999; MacLeod et al. 2012). This ratio
holds across a wide range of SMBH masses but breaks down above the main sequence Hills
mass, when M• � MH. Schwarzschild SMBHs with 108M	 � M• � 109M	 are generally
unable to disrupt main sequence stars, and only produce luminous flares from giant dis-
ruptions. When M• � 109M	, Schwarzschild SMBHs will become incapable of disrupting
most giant-branch stars as well, and their only luminous flares will come from the small
population of stars at the tips of the RGB and AGB (MacLeod et al. 2012).

The time-dependent radii of giants gives these stars a non-diffusive way to enter the loss
cone, one that is inaccessible to main sequence stars: expanding in size until their loss cone
grows to intersect their current orbit. “Growth into the loss cone” was first investigated by
Syer and Ulmer (1999), who argued that this will be the dominant source of TDEs from
evolved stars. However, this early work assumed that every giant disruption would be a full
and highly luminous one. In reality, stars that grow onto the loss cone will, very likely, be
“spoon-fed” to the SMBH in a series of tens to hundreds of very weak partial disruptions
(MacLeod et al. 2013), making these events quite challenging to detect.

We note, however, that various dynamical processes can shorten relaxation times outside
the influence radius (Perets et al. 2007; Hamers and Perets 2017). At these regions MS stars
are typically already in the full loss cone regime and are not significantly affected by such
processes. However, the empty loss cone for objects with larger tidal radii such as binary
stars and giant stars extend to larger distances (as we discuss in the next section). Such
processes can therefore increase the TDE rates of giants, and change the above-mentioned
ratio, leading to a greater contribution of TDEs from giant stars.

3.6.3 Binary Stars

Binary stars—especially massive ones—can be as common as single stars. Their fate, when
plunging along highly eccentric orbits towards a SMBH, can be richer than that of single
stars. A binary star passing near a SMBH can be tidally separated with no tidal disrup-
tion of the single-star components. In this case, the individual stars may either recombine
to reform a binary after pericenter passage, or undergo a three-body exchange interaction,
with one star being captured around the black hole and the other being ejected with ve-
locity in excess of the bulge escape speed (Hills 1988, 1991; Sari et al. 2010). These es-
capers may have already been observed as hypervelocity stars (HVSs) in the halo of our
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Galaxy (e.g. Brown et al. 2018). Such outcomes most likely occur for binaries with inter-
nal semimajor axes abin � R�, with a center-of-mass orbit just grazing the tidal separation
radius Rsep = a(M•/mbin)

1/3 (here mbin is the binary mass). Tidal disruption, or tidally-
induced mergers, may result from either deeper encounters that cross the stellar tidal radius,
Rt ≈ (R�/abin)Rsep, or near-contact binaries for which abin ∼ R� (Mandel and Levin 2015;
Bradnick et al. 2017). For details on how the disruption and accretion processes are altered
by binarity, we refer the reader to the Disruption Chapter and the Formation of the Accretion
Flow Chapter. Here we will discuss properties of the stellar binaries’ loss cone, the ensuing
event rates, and their connections with HVSs.

As discussed in Sect. 3.2, the critical radius measures the size of the region that is in the
empty loss cone regime, and it depends on the tidal radius of the system under considera-
tion (and, strictly speaking, can be more precisely defined in energy space, a detail we ne-
glect in this section). When the critical radius is smaller than the sphere of influence radius,
rcrit ∝ Rt, but in the opposite case, when rcrit > rinf, rcrit ∝ R

1/(4−γ )
t , where γ is the power-law

slope of the nuclear stellar density profile (e.g. Eqs. 9–10 in Syer and Ulmer 1999). Empiri-
cally, observed nuclear density profiles typically have 0 � γ � 2 (Lauer et al. 2005); in the
Milky Way specifically, the central cusp appears shallower than a Bahcall–Wolf steady-state
(Alexander and Hopman 2009), and recent measurements indicate γ ≈ 1.13 (Schödel et al.
2018). The typical tidal separation radius of stellar binaries is larger than the single-star
disruption radius by a factor abin/R� ∼ O(10), so we expect the critical radius for binary
separation in the Milky Way to exist at several tens of parsecs (instead of the few parsecs
expected for tidal disruption by Sgr A* in our Galactic Centre).

As sketched in Fig. 4, when two-body stellar relaxation is dominant and γ < 9/4, the
empty loss cone (for binary separation) flux per unit bin of logarithmic radius increases out-
wards within the sphere of influence of the SMBH (rinfl). On the other hand, it decreases
outwards when r > rinfl (Lightman and Shapiro 1977). This implies that the loss cone flux
for stellar binaries may peak around rinfl, with a long tail out to ∼ 100 pc. As described ear-
lier, the peak of the loss cone flux for single-star disruption comes from min(rcrit, rinfl), where
typically rcrit ∼ rinfl. Moreover, the empty loss cone flux is only logarithmically dependent
on the loss cone size. These facts together might suggest that observational measurements of
the rate of Galactic HVSs could be directly translated into constraints on TDE rates here.13

This moment in time is especially propitious because of the ongoing data releases by the as-
trometric Galactic survey Gaia that have intensified searches for HVSs (e.g. Marchetti et al.
2017, 2018; Boubert et al. 2018; Bromley et al. 2018). Likewise, a comparison between rates
of single and double TDE in other galaxies could provide an extra consistency check on the
relationship between single and binary star loss cones. This comparison, however, requires
more theoretical work in order to observationally distinguish these two types of transients
(e.g. by the presence of a precursor in a double TDE, as in Bonnerot and Rossi 2019). In
general, both comparisons need to account for the fraction of binaries being separated versus
disrupted (Bradnick et al. 2017).

In principle, this is very exciting, but there are other physical ingredients—irrelevant for
single-star disruption—that complicate the loss cone dynamics of binary stars. The high
stellar density inside the sphere of influence means that most soft binaries will not survive
“ionization” (or “evaporation”) from continuous gravitational interactions with field stars
around them (Perets et al. 2007; Hopman 2009; Perets 2009; Generozov et al. 2018). Hard
binaries (progenitors of the fastest HVSs) can instead be driven to merger by magnetic brak-
ing. The overall result is a binary to single ratio of less than 10% at 1 pc for low mass

13We note that since the counterparts of HVSs can be captured around the MBH, the distribution of such
stars could also reflect the processes leading to, and the rates of, TDEs (Perets and Gualandris 2010).
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Fig. 4 A schematic representation of the local contribution to the loss-cone flux, for both binary and single
stars. Top: the loss-cone flux for binary stars due to 2-body stellar relaxation (bottom dashed line) and due
to massive perturbers (MP, top dashed line). Empty and full loss-cone regimes are denoted by “E” and “F”,
respectively. The radius rmp corresponds to the region where such perturbers exist, likely just outside the
innermost region of the nucleus. The critical radius for binaries and the sphere of influence radius are denoted
respectively rb

c and rh. Bottom: the disruption rate of single stars. Here the presence of MPs coincides with
the full loss cone regime and therefore little flux increase is expected. The critical radius for single stars is
rs
c ∼ rh. Taken with permission from Perets et al. (2007), Fig. 3.

stars (≤ 1M	). For more massive (but typically more rare) stars, the main sequence life-
time can be shorter than the evaporation timescale and the binary fraction would remain
close to its birth value. Evaporation might therefore drastically suppress the HVS rate from
r � rinfl, limiting our ability to directly calibrate TDE rates from HVS or double disrup-
tion rates, with the partial exception of massive stars. On the other hand, outside the sphere
of influence, dynamical relaxation can be dominated by “massive perturbers”, such as gi-
ant molecular clouds, greatly shortening the relaxation timescale over that from two-body
scatterings off stars. Since binary stars on loss cone orbits come from distances as far as
∼ 100 × rinfl and, unlike single stars, are in the empty loss cone regime (i.e. their flux can
be increased), the presence of giant molecular clouds would enhance the HVS rate by a few
orders of magnitude while leaving unaffected the predictions for TDEs (Perets et al. 2007;
Hamers and Perets 2017). In summary, constraining the TDE rate by observing HVSs in our
Galaxy or double TDEs in external galaxies is in principle possible, but not straightforward.

4 Applied Loss Cone Theory

By changing the underlying density profile ρ(r) or DF f (ε) in a spherical, isotropic galactic
nucleus, a motivated theorist can tune the TDE rate to any desired value. Asphericities and
anisotropies offer further levers with which to change TDE rates. In order to produce astro-
physically realistic TDE rate estimates, the underlying galaxy model must, in some way, be
calibrated off observations. In this section, we will outline approximate but practical pro-
cedures for doing so. More specifically, we review how the theoretical loss cone physics of
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Sect. 3 may be combined with observations to make empirically-calibrated TDE rate esti-
mates in nearby galaxies (Sect. 4.1). We will then examine the implications that past rate
estimates along these lines have for distributions of TDE observables (Sect. 4.2).

4.1 Simple Phase Space Modeling

In this subsection, we present a simple procedure for estimating TDE rates in individ-
ual galactic nuclei. The key assumptions of this procedure, which was first developed by
Magorrian and Tremaine (1999) and Wang and Merritt (2004), are (i) spherical symmetry
and (ii) nearly isotropic velocities, and this will be our starting point. Later on, we will
also discuss more general prescriptions to account for geometrical asphericities or velocity
anisotropies.14 We begin with the observed 2D surface brightness profile, I (R), which can
be deprojected into a 3D luminosity density profile j (r) using an Abel integral:

j (r) = −1

π

∫ ∞

r

dI

dR

dR√
R2 − r2

. (27)

Note that R is a projected 2D radius and r a 3D radius. We then use a mass-to-light ratio,
Υ , to compute the 3D mass density ρ(r) = Υj (r).

This mass density profile can be used to compute other quantities of relevance to us, such
as the period of a radial orbit, Torb(E), the stellar mass enclosed M�(r), and the gravitational
potential Φ(r):

M�(r) =
∫ r

0
4π

(
r ′)2

ρ
(
r ′)dr ′ (28)

Φ(r) = − GM•
r

− GM�(r)

r
− 4πG

∫ ∞

r

ρ
(
r ′)r ′dr ′ (29)

Torb(E) = 2
∫ rmax

0

dr√
2(E − Φ(r))

. (30)

Here we have also used the apocenter of a radial orbit, rmax(E). Next, under the assumption
of (nearly) isotropic velocities,15 we use Eddington’s formula to compute a one-integral DF:

f (E) = −1

π2
√

8

d

dE

∫ 0

E

dn

dΦ

dΦ√
Φ − E

. (31)

In this integral, we convert stellar mass density to stellar number density n(r) ≡ ρ(r)/〈m�〉.
The difference between these two mass functions is merely the average stellar mass 〈m�〉,
which is determined by the stellar PDMF as in Eq. (10).

With the isotropic DF f (E) in hand, we may now apply the formalism of Sect. 3.2
to obtain the TDE rate, Ṅ , of the galaxy in question. More specifically, we calculate the
orbit-averaged diffusion coefficient D(E) using Eq. (12), use this to calculate the diffusivity

14The assumptions of spherical symmetry and quasi-isotropy are relaxed in Magorrian and Tremaine (1999),
but for brevity we focus primarily on the simplest case.
15If the stellar density profile n(r) is too shallow, the DF f (E) obtained from Eq. (31) will have negative
values, which is an unphysical outcome. In the limit of a Kepler potential, the shallowest self-consistently
isotropic power-law density profile is n(r) ∝ r−1/2; shallower density profiles require some degree of tan-
gential anisotropy to remain positive-definite in f (E,R).



35 Page 22 of 48 N.C. Stone et al.

parameter q(E) using Eq. (13), and then compute the loss cone flux F(E) as in Eq. (16).
Integrating F(E) across all energies E gives the total TDE rate Ṅ (Eq. (18)).

In order to apply the above formalism to photometric observations of real galactic nuclei,
we must consider a number of astrophysical uncertainties, including:

– The functional form of I (R): ideally, one would operate with nonparametric data, al-
though some smoothing may be necessary to ensure positivity of f (E). However, in
low-mass galaxies (M• ∼ 106M	), the influence and critical radii are at best marginally
resolved, so some degree of inward extrapolation in I (R) is often necessary. Past works
have typically employed power-law fits to the innermost isophotes (Wang and Merritt
2004; Stone and Metzger 2016), and the uncertainty produced by this extrapolation is in
need of greater quantification.

– Choice of mass-to-light ratio Υ : past efforts to predict TDE rates through dynamical
modeling of large samples of galaxies have made crude estimates for Υ . For example,
Magorrian and Tremaine (1999) employed the scaling relationship for V-band luminosi-
ties ΥV = 4.9(M	/L	)(LV/1010L	)0.18 (Magorrian et al. 1998). Later works made virial
estimates, starting with a galaxy’s velocity dispersion σ , effective radius Reff, and lu-
minosity L, then computing Υvir = 2σ 2Reff/(GL) (Wang and Merritt 2004; Stone and
Metzger 2016). Both of these methods make the large assumption that Υ is constant
throughout the galaxy; a more self-consistent method would apply simple stellar popu-
lation models to multiband photometry of the galactic nucleus to estimate Υ (R), as was
done by Stone and van Velzen (2016).

– Choice of PDMF, dN/dm�: as we have seen, both the first and second moments of the
PDMF enter into TDE rate calculations. Since the diffusion coefficients 〈(�R)2〉 ∝ 〈m2

�〉,
the heaviest surviving stellar species will generally dominate rates of two-body relaxation.
For very young stellar populations this may be O stars, but for more typical stellar popula-
tions, it will be stellar-mass black holes. Depending on the mass function of stellar-mass
black holes considered (Belczynski et al. 2010), their inclusion in dN/dm� will enhance
TDE rates by factors of ≈ 1.3–4.9 (Stone and Metzger 2016).

– Determination of SMBH mass M•: all the studies described so far relied on galaxy scaling
relations to estimate M•, due to scarcity of direct SMBH mass determinations. As such,
they may be biased to various extents, depending on the assumed form of these relations,
for which numerous and often incompatible versions have been produced over the last two
decades. See, for example, the comparison between different calibrations of the M• − σ

relation in the rate estimates of Wang and Merritt (2004).

Aside from these astrophysical uncertainties, the simplifying assumptions introduce more
fundamental limitations to the validity of this formalism. So far, we have outlined a proce-
dure for computing a one-integral, isotropic DF given only photometric information (i.e. the
galaxy’s surface brightness profile). If additional kinematic information is available, a two-
integral DF f (E,Lz) may be computed instead (Magorrian and Tremaine 1999), which will
self-consistently account for the impact of flattening and orbital anisotropy on TDE rates.

The simple procedure outlined above has repeatedly been used to compute TDE rates in
large galaxy samples, and at this point can be performed with the publicly available Fokker–
Planck code PHASEFLOW (Vasiliev 2017), as was done in, e.g. Pfister et al. (2019). This
basic procedure was first used, however, by Syer and Ulmer (1999), who employed an even
simpler formalism (one operating in coordinate space, not integral space) to a sample of 25
galaxies with surface brightness profiles I (R) taken from Byun et al. (1996) and SMBH
masses taken from Magorrian et al. (1998). The computed TDE rates were very low, with
10−7 yr−1 � Ṅ � 10−4 yr−1 across most of the sample, although only 6 out of the 25 galax-
ies had SMBHs smaller than the Newtonian Hills mass. Almost simultaneously, Magorrian



Rates of Stellar Tidal Disruption Page 23 of 48 35

and Tremaine (1999) used a more sophisticated, two-integral version of the loss cone for-
malism to analyze a sample of 29 galaxies, taking into account multiple sources of loss
cone flux: standard two-body relaxation, the draining of a loss wedge region in an axisym-
metric potential, and two-body repopulation of the loss wedge. Two-integral DFs f (E,Lz)

were taken from Magorrian et al. (1998). This work found relatively low rates of disruption
from two-body relaxation (albeit a factor of a few higher than what was found in Syer and
Ulmer 1999), but once again, focused primarily on the largest galactic nuclei, with only 3
out of the 29 galaxies possessing SMBHs below the Schwarzschild Hills mass. This study
was the first to point out that the observed dichotomy in nuclear density profiles n(r)—
between steeply declining “cusp” galaxies and relatively shallow “core” galaxies (Lauer
et al. 1995)—implies that the highest TDE rates will occur in lower-mass, “cuspy” galaxies.
We reproduce many of the derived quantities, such as q(E) and F(E), from Magorrian and
Tremaine (1999) in Fig. 5.

A larger sample of 41 galaxies was modeled using one-integral DFs f (E) by Wang and
Merritt (2004), following almost exactly the procedure of this subsection. These authors
estimated SMBH masses using the M• − σ relationship of Merritt and Ferrarese (2001).
This scaling relationship predicts systematically lower M• values than that of Magorrian
et al. (1998), and as a result this study found much higher TDE rates, with typical Ṅ ∼
10−4 yr−1 in sub-Hills mass nuclei. This sample, which took I (R) profiles from Faber et al.
(1997), was more applicable to realistic TDE hosts than past studies, with 21 out of 41
galaxies possessing SMBHs below the Schwarzschild Hills mass. Wang and Merritt (2004)
established much more firmly that the volumetric rate of TDEs, ṅ, should be dominated by
the lowest-mass galaxy bin with a high SMBH occupation fraction. The reasons for this are
(i) the greater abundance of low-mass galaxies in the Universe, (ii) the empirical preference
of low-mass galaxies to have steep central stellar density cusps, which produce higher per-
galaxy TDE rates Ṅ , and (iii) the anticorrelation between Ṅ and SMBH mass M• in a cuspy
profile (see Fig. 6 for the identification of this trend in Wang and Merritt 2004).

More recently, empirically calibrated TDE rates were re-examined by Stone and Metzger
(2016), who used the one-integral formalism of this section to model a sample of 144 galax-
ies (Lauer et al. 2007a,b), of which 42 contain SMBHs with M• below the Schwarzschild
Hills mass. This work was the first to estimate the fraction, fpin, of TDEs from a given
galaxy in the q(E) > 1 (pinhole) regime of disruption. Empirically, fpin is O(1) in galaxies
with M• � 107M	, but exhibits broad scatter (10−2 < fpin < 1) at higher SMBH masses.
In any given bin of M•, the pinhole fraction is much higher in core galaxies than in cusp
galaxies. Stone and Metzger (2016) reproduced earlier findings that per-galaxy TDE rates Ṅ

are highest in smaller galaxies, and fit power-laws to their sample of dynamically modeled
nuclei:

Ṅ = Ṅ8

(
M•

108M	

)B

. (32)

Here Ṅ8 = 2.9 × 10−5 yr and B = −0.404 when considering the entire sample of 144 mod-
eled galaxies. For a subsample of exclusively core (cusp) galactic nuclei, Ṅ8 = 1.2×10−5 yr
and B = −0.247 (Ṅ8 = 6.5 × 10−5 yr and B = −0.223). These results were combined with
a Schechter function, the Faber–Jackson law, a recent calibration of the M• − σ relation
(McConnell and Ma 2013), and various parametrizations of the SMBH occupation fraction
to estimate the volumetric TDE rate, ṅ(M•), which is presented here in Fig. 7. These results
indicate that a volume-complete sample of TDEs will be a powerful probe of the unknown
bottom end of the SMBH mass function.
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Fig. 5 Dynamically modeled photometry of two nearby galaxies, M32 (left) and M87 (right). Figures show
intermediate quantities and the final product of the modeling prescription described in Sect. 4, plotted in bins
of (negative) specific orbital energy E ≡ −E > 0. The top two rows show apocentric radius rapo(E) and
orbital period P(E) for radial orbits. The next two rows show the one-integral DF f (E) (computed with an
Eddington integral under the assumption of isotropic velocities) and the dimensionless size of the loss cone in
angular momentum space, Rt (labeled here as Rlc). The second-to-last row shows the diffusivity parameter
q(E) (for two-body loss cone repopulation), and the final row shows several different estimates for differential
loss cone flux F(E). In the final row, the full loss cone flux is shown with a dotted line, the loss cone flux
due to (spherical) two-body relaxation is a light solid line, the rate of draining of a full (axisymmetric) loss
wedge is shown as a dot-dashed line, and the flux from a (axisymmetric) loss wedge being repopulated by
two-body relaxation is shown as a dashed line. The thick solid line represents the total TDE rate. Taken with
permission from Magorrian and Tremaine (1999).

Several astrophysical uncertainties apply to existing empirically-calibrated TDE rate es-
timates, as we have listed above. Aside from these caveats, it is notable that no loss cone
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Fig. 6 The dependence of stellar consumption rates Ṅ on assumed SMBH mass M• in a sample of
41 galaxies modeled with HST photometry (note that main-sequence stars will not produce TDEs for
M• > MH ∼ 108M	). The rates were computed assuming spherical symmetry and two-body relaxation,
using the prescriptions of Sect. 4, but allowing SMBH mass to float. An interesting dichotomy emerges: for
cusp (“power-law”) stellar distributions, TDE rates increase with decreasing M•, while TDE rates are roughly
independent of M• in flatter, core-like nuclei. Taken with permission from Wang and Merritt (2004).

Fig. 7 The volumetric TDE rate per dex, dṅ/d lnM•, plotted as a function of SMBH mass M•. Per-galaxy
TDE rates are estimated by power-law fits to the results of a large, dynamically modeled galaxy sample,
and are then coupled to a Schechter function that is populated with SMBHs using the M• − σ relation and
five different models for the SMBH occupation fraction in low-mass nuclei. Specifically, the SMBH occupa-
tion fraction is assumed to resemble a step function, with SMBHs largely absent below a cutoff host stellar
mass Mcut/M	 of 109 (gray solid), 108.5 (brown dashed), 108 (green dot-dashed), 107.5 (blue dot-dot–
dashed), and a final scenario in which every dwarf galaxy has massive black holes down to a limiting mass
of M• = 104M	 (purple dotted). Volumetric TDE rates are dominated by the smallest galaxies that typically
host SMBHs. Mass-integrated rates ṅ are labeled for each of these five models. Taken with permission from
Stone and Metzger (2016).
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calculations have yet been performed using the richer dynamical information available from
Jeans or Schwarzschild modeling of a large sample of galaxies with (i) resolved kinematics
and (ii) M• < MH. The pioneering work of Magorrian and Tremaine (1999) established the
basic theoretical framework for this effort, but was applied almost exclusively to SMBHs
too large to produce luminous TDEs. Applying loss cone theory to galaxies with directly
measured SMBH masses and anisotropy profiles would enhance the precision of TDE rate
estimates substantially, and is a logical next step forward.

4.2 Synthetic Observables

In the previous subsection, we surveyed existing efforts to empirically calibrate volumetric
(ṅ) and per-galaxy (Ṅ ) TDE rates. However, the observable properties of TDE flares are not
uniform, and can depend strongly on event parameters such as SMBH mass M• or pene-
tration parameter β . If one knows the differential distribution of TDE rates with respect to
controlling parameters such as these, then it is straightforward to compute distributions of
observable parameters of interest. Some of these parameters, such as the peak mass fallback
rate Ṁpeak (or its Eddington ratio, Ṁpeak/ṀEdd), are very well-understood theoretically. Oth-
ers, such as peak optical luminosity, are much less well-understood. Much more detailed
theoretical treatments of TDE observables are offered in later Chapters of this Volume. In
this section, we do not provide detailed models for TDE observables, but advise the inter-
ested reader to consult the Disruption Chapter, Formation of the Accretion Flow Chapter,
Accretion Disc Chapter, and Emission Mechanisms Chapter.

Dynamical modeling of nearby galactic nuclei has already allowed us to estimate the
M•-dependence of TDE rates, dṅ/dM• (e.g. Fig. 7). The β-dependence, dṅ/dβ , is a little
more complicated, but at least in the limit of spherical loss cone repopulation, it can be
estimated approximately. In the pinhole regime (q � 1), the differential distribution of pen-
etration parameters goes as dṅ/dβ ∝ β−2, while in the diffusive regime (q � 1), β ≈ 1, and
higher β values are exponentially suppressed (see also the discussion surrounding Eq. (25)).
Stone and Metzger (2016) find that low-mass galactic nuclei (M• � 107M	) typically pro-
duce most of their TDEs from the pinhole regime, while there is much more scatter in the
“pinhole fraction” of high-mass galactic nuclei (although it is rarely less than 10%, for
M• < MH). For any given bin of M•, the pinhole fraction is lower in cusp and higher in core
nuclei.

The distribution of fallback times tfall and the closely related peak fallback rate Ṁpeak

may be estimated using the approximate analytic formulae (Rees 1988; Stone et al. 2013):

tfall ≈ 3.5 × 106 s

(
M•

106M	

)1/2(
M�

M	

)−1(
R�

R	

)3/2

(33)

Ṁpeak

ṀEdd
≈ 130

(
η

0.1

)(
M•

106M	

)−3/2(
M�

M	

)2(
R�

R	

)−3/2

. (34)

Here we have defined the Eddington-limited mass accretion rate, ṀEdd ≡ LEdd/(ηc2),
in terms of a radiative efficiency η < 1 and the Eddington luminosity LEdd ≈ 1.5 ×
1046 erg s−1 (M•/108M	). While these observables can be computed more precisely using
hydrodynamical disruption simulations (Guillochon and Ramirez-Ruiz 2013), these analytic
expressions were combined with TDE rate computations to predict distributions of peak
fallback rates and rise times in Stone and Metzger (2016) and Kochanek (2016). We present
the results of the latter paper in Fig. 8, which plots dṅ/d lnM• in different bins of peak



Rates of Stellar Tidal Disruption Page 27 of 48 35

Fig. 8 The differential distribution of volumetric TDE rates (top panels) dṅ/d lnM• and observed rates per
dex dṄ /d lnM• (bottom panels). Because these TDE rates are integrated over PDMFs, they depend on as-
sumed star formation histories; the left panels assume a single burst of star formation 10 Gyr ago, while the
right panels assume a constant star formation rate over a Hubble time. Dashed black lines show total TDE
rates dṅ/d lnM• and dṄ /d lnM•, while the other lines break up the rates into bins of ṁpeak ≡ Ṁpeak/ṀEdd.

The red dotted lines correspond to super-Eddington peak fallback rate regimes of 100.0 < ṁpeak < 100.5,

100.5 < ṁpeak < 101.0, and 101.0 > ṁpeak, while the black solid lines correspond to sub-Eddington peak

fallback rate regimes of 10−0.5 < ṁpeak < 100.0, 10−1.0 < ṁpeak < 10−0.5, 10−1.5 < ṁpeak < 10−1.0, and

ṁpeak < 10−1.5. In translating from intrinsic rates to observed rates, the calculation assumes a flux-limited
survey and that TDE peak luminosities are determined by either the peak mass fallback rate or the Edding-
ton-limited accretion rate, whichever is smaller. Taken with permission from Kochanek (2016)

Eddington ratio Ṁpeak/ṀEdd. These distributions (which are integrated over different stellar
PDMFs, corresponding to different star formation histories) highlight that for M• � 107M	,
the large majority of TDEs have initially super-Eddington fallback rates, while the reverse
is true for M• � 107.5M	.

Figure 8 also presents the TDE rates that will be observed in a flux-limited survey,
Ṅ (M•). These results assume a simple model relating peak luminosity to M•; more compli-
cated models are explored in Stone and Metzger (2016) and Mageshwaran and Mangalam
(2015). Generally, if super-Eddington fallback rates can be translated linearly into super-
Eddington luminosities, then Ṅ (M•) is dominated by the smallest values of M• that exist
with a high occupation fraction. Conversely, if TDE emission mechanisms are Eddington-
limited, then Ṅ (M•) is dominated by M• ∼ 107M	, the characteristic SMBH mass where
Ṁpeak/ṀEdd ∼ 1. A more recent estimate of the volumetric detection rate, using a simple
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phenomenological model for TDE luminosities, is available in Thorp et al. (2018), which
also compares standard TDE rates to those from binary SMBHs.

Other notable conclusions of efforts to produce synthetic observable distributions in-
clude: (i) regardless of star formation history, both intrinsic and observed TDE rates are
dominated by the bottom end of the stellar IMF, except when M• ∼ MH (Stone and Metzger
2016; Kochanek 2016); (ii) under the assumption that galactic nuclei have similar dynamical
properties at all redshifts,16 comoving volumetric TDE rates will decline by a factor ≈ 10
from their z = 0 value as one moves to z = 2 (Kochanek 2016), largely due to the decreasing
volume density of SMBHs at high z (Shankar et al. 2009); (iii) k-corrections generally aid
the detectability of TDEs at cosmological distances (Strubbe and Quataert 2009). Unfortu-
nately, the current lack of accurate, first-principles models for TDE emission mechanisms
has, at the time of writing, hampered the calculation of more specific distributions of ob-
servables (e.g. emission line strengths, X-ray to optical ratios, etc.).

So far we have only discussed the observable properties of main sequence TDEs, but
detailed distributions of red giant disruption properties (such as stage of post-main sequence
evolution) are available in MacLeod et al. (2012). Synthetic distributions of fallback times
for helium white dwarf and brown dwarf disruptions were, likewise, computed in Law-Smith
et al. (2017a).

5 Comparing to Observed Rates of Tidal Disruption

For over two decades, tidal disruptions were studied from purely theoretical grounds. This
situation changed in the 1990s with the discovery, in soft X-ray energies, of the first strong
TDE candidates (Bade et al. 1996; Komossa and Greiner 1999, see also the X-ray Chapter).
Later, wide-field ultraviolet (Gezari et al. 2006) and optical (van Velzen et al. 2011, see also
the Optical Chapter) surveys discovered other classes of TDE candidates. At the time of
writing, the current rate of TDE discovery stands at ≈ 1–3 new TDE candidates per year, and
a few dozen TDE candidates are known (see e.g. the compilations of Auchettl et al. 2017;
Hung et al. 2017). New and upcoming time domain surveys are poised to expand our sample
by orders of magnitude (van Velzen et al. 2011; Khabibullin et al. 2014; Mageshwaran and
Mangalam 2015). Clearly, it is important to assess what scientific goals can be achieved
with the statistical analysis of large near-future TDE samples. A key component of any such
analysis is understanding the rate of tidal disruption.

In this section, we compare the theoretical rate estimates of Sect. 4 to those inferred
from the existing sample of tidal disruption flares. This type of comparison has, so far,
found two interesting puzzles, which we outline in Sect. 5.1. First, there may be a broad
rate discrepancy, with fewer TDEs detected than are predicted by stellar dynamics (Stone
and Metzger 2016). Second, there is a more specific and definitive discrepancy related to
the overproduction of observed TDEs in a rare galaxy subclass: so-called “E+A,” or post-
starburst, galaxies (Arcavi et al. 2014). We discuss these puzzles in Sect. 5.2.

16This assumption is unlikely to be generically true. The clearest caveat here concerns the strong preference
among observed TDE flares to reside in rare E+A and, more generally, post-starburst galaxies (see discussion
in Sect. 5.2.1). Because E+A and post-starburst galaxies make up very small fractions of the low-z galaxy
population (∼ 0.2% and 2.3%, respectively; French et al. 2016), this implies the presence of unusual stellar
dynamics enhancing TDE rates in these galaxies by at least an order of magnitude. However, the fraction
of all galaxies that have a post-starburst nature increases steeply as a function of redshift. For example,
going from z ≈ 0.5 to z ≈ 2 increases the fraction of post-starburst galaxies by a factor of ≈ 5 (Wild et al.
2016), suggesting that at high z, the decline in ṅ due to the decreasing volume density of SMBHs may be
overwhelmed by the growing abundance of this rare galaxy type.



Rates of Stellar Tidal Disruption Page 29 of 48 35

5.1 Observationally Inferred Rates

The first TDE candidates were discovered via soft X-ray emission (Bade et al. 1996), and
the first observational rate inferences were based off of these events. The pioneering work
of Donley et al. (2002) analyzed three TDE candidates from the ROSAT All-Sky Survey and
inferred a per-galaxy disruption rate Ṅ ≈ 9 × 10−6 yr−1. Subsequent analysis of two TDE
candidates from the XMM-Newton slew survey inferred a volumetric TDE rate ṅ ≈ 5.4 ×
10−6 yr−1 Mpc−3, and a per-galaxy rate Ṅ ≈ 2.3×10−4 yr−1 (Esquej et al. 2008). Later, one
soft X-ray TDE candidate was found by reanalysis of archival Chandra and XMM-Newton
observations of galaxy clusters (Maksym et al. 2010); three more were discovered by cross-
correlating ROSAT archives with serendipitous XMM-Newton pointings (Khabibullin and
Sazonov 2014). The per-galaxy event rates computed from these samples were Ṅ ≈ 1.2 ×
10−4 yr−1 and Ṅ ≈ 3 × 10−5 yr−1, respectively. The sample of Khabibullin and Sazonov
(2014) implies a volumetric event rate ṅ ≈ 4–8 × 10−7 yr−1 Mpc−3.

The range of inferred X-ray TDE rates spans roughly 1.5 orders of magnitude. This
spread can be attributed to a number of factors. Obviously, small-number statistics play a
role. Due to the poor temporal resolution of all wide-field soft X-ray surveys to date, these
samples are both flux- and cadence-limited, and rate inference therefore requires assump-
tions about (i) the X-ray luminosity function of TDEs, and (ii) the characteristic decay time
of TDEs. With these assumptions, one may estimate survey completeness as a function of
source distance, and therefore infer a volumetric event rate ṅ. As a simplified but illustra-
tive example, consider a high-cadence survey operating at low redshifts for a duration T ,
covering an angular area �Ω . In this limit, the number of detected TDEs

NTDE =
∫

dṅ

dL
× 4π

3
D3

max(L) × �Ω

4π
× T dL. (35)

Here Dmax(L) is the maximum distance out to which a TDE can be detected in a flux-
limited survey, and dṅ/dL is the volumetric TDE luminosity function (Hung et al. 2018). By
assuming approximate functional forms for the luminosity function, one may use a measured
NTDE to estimate ṅ ≡ ∫

(dṅ/dL)dL. Translating this ṅ into a per-galaxy rate Ṅ requires
further assumptions about which galaxies may produce TDEs (e.g. down to what limiting
mass do dwarf galaxies still possess SMBHs?). Given these many uncertainties, it is perhaps
unsurprising to see substantial scatter in observationally inferred X-ray event rates.

More recently, the discovery rate of TDEs has been dominated by wide-field optical/UV
surveys. The first TDE candidates discovered from their thermal UV emission were found
with the GALEX satellite (Gezari et al. 2006). The rate of TDE discovery by GALEX was
found to be consistent (Gezari et al. 2008) with the empirical predictions of Wang and Mer-
ritt (2004). Soon afterwards, TDE candidates began to be discovered through their thermal
optical emission—at first archivally (van Velzen et al. 2011), and soon afterwards in real-
time surveys (Gezari et al. 2012). As the optically-selected TDE sample has grown, sev-
eral groups have attempted to infer the TDE rates Ṅ and ṅ associated with optically-bright
flares. One advantage that rate inferences from optically-selected TDEs have over those
from X-ray-selected TDEs is the much higher cadence of optical time-domain surveys. This
means that rate estimates will be less sensitive to assumptions about the temporal evolution
of TDE light curves.

Initially, rates estimated from optically-selected TDEs were low. For example, the dis-
covery of two TDE candidates in SDSS archival data was used to compute a per-galaxy rate
Ṅ ≈ (1.5–2.0)+2.7

−1.3 ×10−5 yr−1, and a volumetric rate ṅ ≈ (4–8)×10−8±0.4 yr−1 Mpc−3 (van
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Velzen and Farrar 2014).17 The later discovery of two TDE candidates by the ASAS-SN sur-
vey implied a somewhat higher per-galaxy rate of Ṅ ≈ 4.1+12.9

−1.9 × 10−5 yr−1 (Holoien et al.
2016). More recent calculations that use an empirical TDE luminosity function find higher
event rates. For example, van Velzen (2018) analyze a sample of thirteen TDE candidates
found in optical/UV surveys and find ṅ = (8 ± 4)× 10−7 Mpc−3 yr−1, consistent with a per-
galaxy rate Ṅ ≈ 1 × 10−4 yr−1. Comparably high-per galaxy rates are also inferred from
two TDE candidates found by iPTF (Ṅ ≈ 1.7+2.9

−1.3 × 10−4 yr−1; Hung et al. 2018).
One particularly intriguing observational finding is an apparent overabundance of TDE

candidates in quiescent galaxies with no ongoing star formation and prominent Balmer ab-
sorption features. These absorption features are generally produced by a large population of
young A stars, indicating that this type of galaxy (in its extreme form, sometimes known
as an “E+A” or “K+A” galaxy) recently underwent a major star formation episode, that
has since ceased. Although this post-starburst preference was first noted among optically-
selected TDEs (Arcavi et al. 2014), it appears to be generic across most classes of candidate
TDE flares (Graur et al. 2018). While the absolute rate density of TDEs in post-starburst
galaxies, ṅPS, is subject to the same uncertainties discussed above, the relative rate enhance-
ment factor R ≡ ṅPS/ṅ, may be computed with much less uncertainty (provided that the
TDE luminosity function is nearly the same in normal and post-starburst galaxies).

Interestingly, the rate enhancement seems to depend strongly on the strength of the
Balmer absorption features. The first detailed analysis of post-starburst TDE hosts found
that, in the most Balmer-strong post-starbursts (classical E+As), R = 190+191

−100, while in less
extreme Balmer-strong post-starbursts, R = 33+7

−11 (French et al. 2016, for a sample of 8
TDE hosts). The strength of the Balmer absorption feature represents a weighted combina-
tion of post-starburst age, fraction of the galaxy starlight produced in the starburst, and the
detailed shape of star formation history during and after the starburst (French et al. 2017).
A subsequent analysis (Graur et al. 2018) of a larger TDE host sample found somewhat
smaller but still significant rate enhancements (R = 35+21

−17 and R = 18+8
−7 for the same cate-

gories of Balmer-line strength). The Graur et al. (2018) rate enhancements were computed
from a larger but more heterogeneous sample of 33 TDE host galaxies, and vary significantly
if one examines different sub-samples. TDE host galaxies display some other peculiarities
as well, such as an unusually high surface brightness on ∼ kpc scales (Law-Smith et al.
2017b). The properties of TDE hosts are not yet fully understood, and our empirical knowl-
edge of this subject is evolving rapidly. The interested reader is advised to consult the Host
Galaxies Chapter for a more comprehensive picture.

As TDE samples grow, it will become possible to make more refined comparisons be-
tween theory and observation. For example, in Fig. 7, we can see that the predicted, volu-
metric TDE rate is expected to significantly depend on M•. Observational evidence testing
this prediction is mixed, although still limited by small-number statistics. Early work by
Stone and Metzger (2016) used galaxy scaling relations to find that an optical/UV selected
TDE sample (consisting of 11) had a mass distribution sharply peaked near 106.8M	, with
little evidence for optical/UV TDE hosts possessing SMBHs below 106M	. Subsequent
work by Wevers et al. (2019) improved on this by using a larger TDE sample (15 flares)
and also using a more homogeneous set of SMBH mass estimates. The Wevers et al. (2019)
histogram shows a more broadly peaked distribution centered on somewhat lower masses
(≈ 106.2M	), but with a qualitatively similar shape. In contrast, both of these analyses find

17Note that in the results of van Velzen and Farrar (2014), statistical uncertainties are denoted in super-
script/subscript error ranges, while systematic uncertainties (associated with the uncertain choice of model
light curve used to back out true rates from flux-limited samples) are denoted in prefactor error ranges.
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a much broader distribution of host masses for TDEs selected through soft X-ray emission.
In comparison to the optical/UV selected sample, the distribution of inferred SMBH masses
in X-ray TDEs is less sharply peaked, with a greater fraction of these events occurring in
galaxies with very high-mass (M• � 107.5M	) or very low-mass (M• � 105M	) SMBHs.

Neither of these analyses, however, accounted for survey selection effects, such as
volume-correcting flux-limited samples. To date, the most thorough effort to back out vol-
umetric rates ṅ(M•) from observations comes from van Velzen (2018), who find an effec-
tively constant TDE rate for bins of SMBH mass between 106M	 and 107.5M	. At present,
the two biggest obstacles to drawing inferences about the bottom end of the SMBH mass
function from observed TDEs are (i) small, inhomogenous TDE samples and (ii) the uncer-
tain luminosity function of TDEs, particularly those from smaller SMBHs where Eddington
considerations may be more important.

5.2 Rate Discrepancies

As we saw in Sect. 4, there are many uncertainties associated with dynamical modeling of
nearby galactic nuclei. However, a few general conclusions stand out:

1. TDE rates Ṅ are generally higher in smaller galaxies, if we consider only two-body
relaxation in spherical potentials.18 This is primarily due to the higher central densities
and steeper density profiles associated with low-mass galactic nuclei.

2. The differential volumetric TDE rate dṅ/d lnM• varies across host galaxy mass, but the
integrated rate ṅ is likely dominated by the lowest-mass range galaxies that have a high
SMBH occupation fraction.

3. Averaged over the set of galaxies with a high black hole occupation fraction, per-galaxy
TDE rates are Ṅ � 1 × 10−4 yr−1.

4. Main sequence TDE rates should robustly cut off at the main sequence Hills mass, which,
depending on the SMBH spin distribution, lies in a range 108 �M•/M	 � 109.

Conclusion (3) exists in tension with a number of the lower empirical TDE rate estimates
discussed in Sect. 5.1, such as those of Donley et al. (2002), Khabibullin and Sazonov
(2014), and van Velzen and Farrar (2014). Another interesting, observationally motivated
puzzle is the large rate enhancement seen in post-starburst galaxies (Sect. 5.1), which was
not directly predicted by any pre-existing dynamical studies.

It seems, therefore, that potential tensions exist between the inferred TDE rates and those
predicted from (empirically calibrated) dynamical theory. These tensions can be divided
into two types: too many TDEs observed in post-starburst galaxies, and too few observed
in “normal” galaxies. In the following subsections, we discuss both of these tensions. First,
however, we must note one important caveat in the comparison of theory to observation:
the necessity of having observed TDE samples that are both flux-complete and pure (i.e.
not contaminated by a significant number of TDE impostors, such as nuclear supernovae,
AGN variability, or more exotic transients). A large presence of TDE impostors in an ob-
served sample will skew inferred event rates upwards, while a flux-incomplete TDE sample
will skew inferred rates downwards. The first of these issues is discussed at length in the
Imposters Chapter, while we cover the latter in some detail below.

18The situation becomes more complicated if galactic nuclei are significantly triaxial, in which case larger
galaxies may have larger individual TDE rates Ṅ . From an observational point of view, the prevalence of
nuclear triaxiality remains uncertain.
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5.2.1 Elevated TDE Rates in Post-Starburst Galaxies

The post-starburst preference of optical (Arcavi et al. 2014) and X-ray (Graur et al. 2018)
TDEs is an interesting observational puzzle that was not predicted by theory. The tension be-
tween dynamically predicted rates and the higher rates inferred from observations is a prob-
lem that has many possible solutions. The simple (spherically symmetric, quasi-isotropic)
models of Sect. 4 neglect many proposed dynamical mechanisms for increasing per-galaxy
TDE rates above Ṅ ∼ 10−4 yr−1, such as binary SMBHs (Ivanov et al. 2005; Chen et al.
2011), radial anisotropies (b > 0; Stone et al. 2018), nuclear triaxiality (Merritt and Poon
2004), secular instabilities in stellar discs (Madigan et al. 2018), overdense central star clus-
ters (Stone and Metzger 2016; Stone and van Velzen 2016), and rate enhancements from
massive perturbers (Perets et al. 2007; Perets and Alexander 2008; Mastrobuono-Battisti
et al. 2014) and/or nuclear spiral arms (Hamers and Perets 2017). In this subsection, we
discuss each of these potential solutions to the discrepancy.

The first proposed explanation for the post-starburst preference invoked the correlation
between starbursts and galaxy mergers (Arcavi et al. 2014). If many post-starburst galaxies
are also post-merger galaxies, their nuclei may contain SMBH binaries which can increase
TDE rates by many orders of magnitude (relative to galactic nuclei with solitary SMBHs)
through a combination of Kozai cycles (Ivanov et al. 2005) and chaotic three-body scatter-
ings (Chen et al. 2011; Wegg and Bode 2011). However, even though SMBH binaries may
temporarily enhance TDE rates by multiple orders of magnitude, the short timescales for
such enhancements (typically ∼ 105 yr, e.g. Wegg and Bode 2011) may make it challenging
for this mechanism to explain the global fraction of all TDEs seen in post-starburst galaxies
(see also discussions in Stone and Metzger 2016; Saxton et al. 2018).

Prior to the discovery of the post-starburst preference, Perets et al. (2007), Perets and
Alexander (2008) suggested that massive perturbers, such as giant molecular clouds, can
greatly shorten the two-body relaxation times (since Trel ∝ 〈M2

� 〉−1) and enhance TDE rates
as a result. Nuclear spiral arms would have a similar effect (Hamers and Perets 2017). Such
enhanced rates would occur preferentially in gas-rich galaxies and, in particular, in post-
merger galaxies, and would last for long timescales. However, because massive perturbers
are unlikely to exist at radial scales r � rcrit, these processes could possibly enhance TDE
rates by a factor of two or less, and are thus unlikely explanations for the extreme, 1–2 orders
of magnitude enhancements inferred for post-starburst galaxies.

Nuclear starbursts sometimes produce eccentric stellar discs in which secular effects can
dramatically increase TDE rates (Madigan et al. 2018; Wernke and Madigan 2019). How-
ever, for such secular processes to operate, the nuclear cluster mass should be relatively
small, so as not to give rise to mass precession that quenches coherent secular evolution.
This may be problematic for this explanation of the post-starburst preference, as most low-
mass SMBHs coexist with a sizeable nuclear star cluster. The more favorable environment
of a disc-dominated nuclear stellar population likely exists only for more massive galaxies,
which host SMBHs with M• � 108 M	 (Antonini et al. 2015) above the Hills mass MH that
are unable to tidally disrupt main sequence stars.

If star formation in starbursts is centrally concentrated,19 then post-starbursts may have
unusually overdense galactic nuclei. Such overdensities would result in short two-body re-
laxation times and high TDE rates (Stone and Metzger 2016). Nevertheless, it is not yet clear
whether such extreme density nuclear clusters form in most post-starbursts (most nuclei can
not be spatially resolved to assess the stellar density there, although the results of Stone and

19This seems to be indicated by resolved color gradients in nearby E+A galaxies, see e.g. Pracy et al. (2012).
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van Velzen 2016 lend tentative support to this hypothesis in one nearby, highly overdense
E+A).

A final class of dynamical explanations relies on asymmetries in stellar position and/or
velocity fields. If nuclear star formation produces highly triaxial potentials (Merritt and Poon
2004) or radially anisotropic velocity distributions (Stone et al. 2018), these effects can
increase TDE rates by an order of magnitude. However, both of these types of asymmetries
tend to “wash out” over time due to the effects of two-body relaxation, which may pose a
problem in the low-mass galaxies with short relaxation times that host most TDEs.

With so many theoretical explanations to choose from, it is important to find observa-
tional tests that can discriminate between different mechanisms. The total TDE rates from
the mechanisms suggested above are sensitive to a wide variety of assumptions regarding
the host galaxies and their nuclei. The statistical properties of post-starburst TDE hosts
might therefore be a more useful diagnostic. For example, the observed distribution of post-
starburst host masses is biased towards smaller galaxies, in agreement with the overdensity
and radial orbit hypotheses, but in notable disagreement with the top-heavy distribution of
host masses expected for SMBH binary-triggered TDEs (Stone et al. 2018). Likewise, the
delay time distribution of TDEs in post-starbursts is highly discrepant with that of the SMBH
binary explanation, generally compatible with the overdensity hypothesis, and compatible
with the radial orbit hypothesis provided fairly extreme20 (b � 0.5) anisotropy parameters
are chosen (Stone et al. 2018). See, for example, Fig. 9 for a comparison between observa-
tions and theoretical delay time distributions in these latter two models. Dynamical modeling
of HST photometry of the nearby E+A galaxy NGC 3156 lends further support to the over-
density explanation, as this galaxy appears to have both an unusually steep central density
profile (ρ(r) ∝ r−2.25, formally in the “ultrasteep” regime) with an unusually small SMBH
influence radius (Stone and van Velzen 2016).

Finally, many of the suggested scenarios—such as SMBH binaries, eccentric nuclear
discs, radial anisotropies and nuclear triaxiality—produce TDEs predominantly in the full
loss-cone regime (or at the very least, with a β distribution matching that of the full loss-
cone regime). TDE flares produced via these channels21 should preferentially have a lower
fraction of grazing TDEs than will TDEs arising from stellar two-body relaxation processes.

While the true explanation of the post-starburst preference remains an open question, it
seems likely that (i) larger statistical samples of TDE hosts and (ii) dynamical modeling
of more nearby post-starburst nuclei will allow rapid progress on this question in the near
future.

5.2.2 A Possible Dearth of TDEs in “Normal” Galaxies

Very few dynamical mechanisms exist to lower TDE rates below the conservative floor set
by two-body relaxation in a spherical and isotropic nucleus. The only mechanism that seems
clearly able to do this is the presence of a strong tangential anisotropy in the stellar velocity
field, which is capable of producing arbitrarily large reductions in Ṅ (b < 0; Merritt and
Wang 2005). However, such tangential anisotropies will wash out due to two-body relax-
ation on a small fraction of the energy relaxation time (Lezhnin and Vasiliev 2015). The
small galaxies that dominate the volumetric TDE rate (and whose relaxation times are less
than tH), are therefore unlikely to have large tangential anisotropies in their nuclei unless

20Such large anisotropies may be vulnerable to the radial orbit instability (Polyachenko and Shukhman 1981).
21A notable exception to this trend is the overdensity scenario; ultrasteep density cusps will produce almost
all their TDEs in the empty loss cone regime.
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Fig. 9 Theoretical delay time distributions as functions of time t since a burst of nuclear star formation.
Top panel: the average rate enhancement 〈Rρ 〉 in overdense galactic nuclei, in comparison to TDE rates
from a population of “normal” galaxies. The enhancement factor 〈Rρ 〉 is computed by integrating across
an empirical SMBH mass function (the boundaries of the shaded error regions correspond to assuming that
astrophysical SMBH masses cut off either at 105M	 or 106M	). Theoretical models assume a range of
different post-starburst density profiles ρ(r) ∝ r−γ , and circular data points are taken from a sample of eight
TDE candidates with well-characterized host galaxies (French et al. 2016, 2017). Bottom panel: same as
before, but now considering the average rate enhancement 〈Rβ 〉 in radially biased galactic nuclei, with a
range of different initial anisotropy parameters β0. Taken with permission from Stone et al. (2018).

an exotic dynamical mechanism exists to pump b < 0 in small galactic nuclei. Long-lived
SMBH binaries are expected to produce this type of tangential anisotropy (Merritt and Wang
2005), but as small galactic nuclei are the environments most favorable for solving the final
parsec problem through collisional mechanisms (Begelman et al. 1980), this does not seem
promising.

The lack of clear mechanisms available to decrease dynamically-predicted TDE rates led
Stone and Metzger (2016) to identify a “rate discrepancy” between (empirically-calibrated)
theory and observation.22 Subsequent analysis of observed TDEs has identified a plausi-
ble resolution to this discrepancy: a very steep TDE luminosity function. In particular, van
Velzen (2018) find that, for optically-selected TDE candidates, dṄ/dL ∝ L−2.5, with an un-
certain lower luminosity limit. This suggests that current, flux-limited TDE samples are see-

22Although it is worth noting that some observational rate inferences, such as Esquej et al. (2008), would not
be in tension with conservative theoretical rate estimates.
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Fig. 10 Observationally inferred TDE rates from six different (but, in some cases, overlapping) TDE sam-
ples: Donley et al. (2002, brown), Esquej et al. (2008, pink), van Velzen and Farrar (2014, blue), Holoien et al.
(2016, red), van Velzen (2018, purple), and Hung et al. (2018, green). Rate estimates using TDEs selected by
their soft X-ray emission are indicated with “X” symbols, while rate estimates using optically-selected TDEs
are shown with circles. The x-axis indicates the maximum redshift z out to which the underlying surveys
would detect flares with peak g-band luminosities of Lg = 1043 erg s−1 (for the X-ray samples, the equiva-

lent condition is a 0.2–2.4 keV luminosity LX = 1043 erg s−1). The dotted black line shows an approximate
theoretical lower limit on per-galaxy TDE rates due to 2-body relaxation in isotropic galactic nuclei (Wang
and Merritt 2004). Taken with permission from Hung et al. (2018).

ing only “the tip of the iceberg,” in comparison to the much larger number of very dim TDEs
that exist in the local Universe. While it is important to test the shape of the TDE luminosity
function further, both with larger near-future TDE samples and with better first-principles
modeling of flare emission mechanisms, this seems like a promising resolution of tensions
between theoretical and observational rate estimates. The origin of the luminosity function
is theoretically uncertain, and depends on the complicated physics of debris circularization
(Formation of the Accretion Flow Chapter) and optical emission (Emission Mechanisms
Chapter). Specific hypotheses could be tested with larger TDE samples; for example, rapid
disc formation is probably disfavored for β ≈ 1 TDEs around small SMBHs (Dai et al.
2015), so the smaller SMBHs that dominate volumetric event rates ṅ might preferentially be
associated with lower peak luminosities. We illustrate the current state of this rate discrep-
ancy in Fig. 10, which shows that the most recent rate inferences from optically-selected
TDE samples appear compatible with the conservative side of theoretical rate estimates.

6 Broader Implications

In the final section of this Chapter, we focus on the broader scientific importance of TDE
rates. We have already explored one major astrophysical motivation for studying statistical
samples of TDEs: SMBH demographic measurements. In Sect. 3.5, we saw that the statisti-
cal distribution of SMBH spins is imprinted into the mass distribution of TDE host galaxies
(at least for 107.5 � M•/M	 � 108.5). Likewise, in Sect. 4.1, we saw that the volumetric
TDE rate contains information on the uncertain bottom end of the SMBH mass function.
Because these motivations have already been described in depth, we will not belabor them
in this section, but instead focus on alternative applications and implications of TDE rates.
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In Sect. 6.1, we discuss the potential importance of TDEs for SMBH mass, spin, and lumi-
nosity evolution. Next, in Sect. 6.2, we draw on the general relativistic analysis of Sect. 3.5
to explore how SMBH spin distributions may be encoded in volumetric disruption rates. In
Sect. 6.3, we explore how TDE rates and inferences may be used to calibrate our under-
standing of extreme mass ratio inspirals, a related byproduct of loss cone physics in galactic
nuclei. Finally, in Sect. 6.4, we offer a few speculations for what the future may hold for
tidal disruption science.

6.1 Black Hole Demographics and Growth

As SMBHs feast on debris from tidally disrupted stars, they accrete both mass and angular
momentum. Over a Hubble time, tH ≈ 1.4 × 1010 yr, the cumulative effect of many TDEs is
to increase the SMBH mass, M•. The net effect on SMBH angular momentum, χ•, is less
obvious, as individual TDEs may either spin it up or spin it down. Because TDEs usually
produce transient accretion flares, the stochastic background of TDEs in otherwise quies-
cent (inactive) galactic nuclei produces a baseline level of accretion luminosity that may
contribute in an interesting way to the bottom end of the AGN luminosity function.

The importance of all three of these effects—SMBH mass growth, SMBH spin evolu-
tion, and accretion luminosity in quiescent galaxies—depends strongly on TDE rates. These
effects will be of little importance in galaxies with very low TDE rates, but can be of crucial
importance in galaxies, or classes of galaxies, with higher TDE rates. Indeed, it is possible
that some types of galaxies may accumulate most of their SMBH mass and/or spin angular
momentum through stellar tidal disruption.

In the simplest picture, where loss cone repopulation is governed by two-body relaxation,
TDE rates are decreasing functions of SMBH mass (Sect. 4), indicating that TDEs will be
of the greatest importance for the growth of low-mass SMBHs (Milosavljević et al. 2006).
We may compute the typical SMBH mass below which TDEs are important for growth23

by equating M• = 1
2 〈M�〉Ṅ(M•)tH. We solve this equation using the empirically calibrated

scaling of Eq. (32), and find MTDE ≈ 5 × 105M	 to be the characteristic mass below which
SMBH growth should be dominated by TDEs. Larger SMBHs acquire most of their mass
from other sources, primarily radiatively efficient gas accretion (Soltan 1982).

Because two-body relaxation delivers stars to the SMBH from a quasi-isotropic distribu-
tion of directions,24 the net effect of mass growth through TDEs is to spin the SMBH down,
in analogy to “chaotic accretion” of gas clouds by AGN (King and Pringle 2006), and small
SMBHs that have grown primarily through tidal disruption should be spinning slowly. Inter-
estingly, even if TDEs are a subdominant contributor to SMBH mass growth, they may still
play an important role in the evolution of SMBH spin. SMBHs that grow through prolonged
AGN episodes, or through short episodes with the same direction of disc angular momen-
tum will, over a handful of mass-doubling times, spin up to very high values of χ• (Berti
and Volonteri 2008). If it is only these AGN episodes that supply angular momentum to
the SMBH, χ• will saturate at a value dictated by accretion physics—for example, growth
through standard thin disc accretion saturates at χ• = 0.998 (Thorne 1974). Because this

23In this calculation, we have assumed that half of the disrupted star accretes onto the SMBH. For nearly-
parabolic stellar orbits, precisely half of the disrupted star is dynamically bound to the SMBH, although we
caution that hydrodynamic shocks and radiation pressure in super-Eddington accretion may unbind a portion
of this dynamically bound half (see the Formation of the Accretion Flow Chapter and the Accretion Disc
Chapter for more discussion of these uncertainties).
24In principle, if TDE rates are dominated by mechanisms (such as nuclear triaxiality, or eccentric stellar
discs) that preferentially supply stars from a specific orbital orientation, TDEs may act to spin up SMBHs.
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dimensionless spin is so large, even a very small fraction of mass growth from (isotropically
distributed) TDEs will place a lower cap on SMBH spin (Metzger and Stone 2016).

Even though TDEs are rare events, they occur in all galaxies with M• < MH, and there-
fore produce a minimum time-averaged accretion rate onto SMBHs in quiescent galactic
nuclei. While the peak luminosity of a TDE (up to ∼ 1044−45 erg s−1) is typically main-
tained for a period of weeks to months, there is a long, slow decay period in which the
galactic nucleus may resemble a low-luminosity AGN. Recent UV observations indicate
that most TDEs continue to radiate at ∼ 1042 erg s−1 at times ∼ 10 yr post-peak (van Velzen
et al. 2018). Based on simple models for TDE light curves, Milosavljević et al. (2006) esti-
mated that main sequence TDEs could be responsible for a majority of the lowest-luminosity
X-ray AGN (although it is important to note that the “AGN” produced by late stages of TDEs
would probably lack standard narrow-line regions). More recent work suggests that episodic
partial disruptions of giant-branch stars may be the most important type of tidal disruption
for setting a floor on accretion rates in galactic nuclei (MacLeod et al. 2013). The actual
luminosity floor set by the late stages of tidal disruption flares remains somewhat ambigu-
ous, as it depends on (i) the still uncertain volumetric TDE rate, (ii) the presence (Shen and
Matzner 2014) or absence (van Velzen et al. 2018) of thermal instability in late-time TDE
discs, and (iii) the ability of TDE debris from red giant disruptions to efficiently accrete onto
the SMBH (Bonnerot et al. 2016).

6.2 The Shadow of the Horizon

As we have seen in Sect. 3.5, the Hills mass depends sensitively on SMBH spin, and can
vary by almost an order of magnitude (for prograde equatorial orbits) as one varies χ• from
0 to 1. While this has exciting astrophysical applications for measuring the distribution of
SMBH spins in a mass range 107.5 � M•/M	 � 108.5, the hard upper limit on MH (for
lower main sequence stars) imposed by the Kerr bound (χ• ≤ 1) raises the prospect of using
TDE distributions as probes of general relativity. For example, Lu et al. (2017) demonstrate
that samples of TDEs may rule out exotic alternatives to Kerr black holes, such as boson
stars, which possess hard surfaces and would therefore be capable of producing limited
electromagnetic emission from stellar impacts onto central massive objects with super-Hills
masses. More generally, we may say that the hypothetical discovery of TDE flares from
galaxies with SMBH masses M• � 109M	 by future time-domain surveys would strongly
motivate consideration of exotic SMBH alternatives.

It is interesting to note that even in a limited sample of twelve optically-selected TDE
candidates, there is already statistical evidence for a super-exponential cutoff in the TDE
rate near M• ∼ 108M	 (van Velzen 2018) as discussed in Sect. 3.5. This tentative evidence
for the Hills mass may provide support for the identification of observed TDE candidates
as bona-fide stellar tidal disruption events; it likewise demonstrates how much larger near-
future TDE samples may statistically test the existence of event horizons.

6.3 EMRI Rates

If a star approaching the SMBH is compact enough, the differential gravitational pull ex-
erted on points which are diametrically separated will not lead to dangerously large tidal
stresses. A compact object such as a neutron star, a white dwarf, or a stellar-mass black hole
can therefore safely pass through pericenters with Rp � Rmb

25 many times until it plunges

25The marginally bound radius Rmb is the minimum pericenter that avoids capture by the event horizon and
is of order Rg (Bardeen et al. 1972).
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through the SMBH event horizon due to energy loss via gravitational radiation. This chain
of events is referred to as an “extreme mass-ratio inspiral” (EMRI, see the review of Amaro-
Seoane 2018 and references therein). The number of passages is roughly proportional to the
mass ratio, so that for a 10M	 stellar-mass black hole and a SMBH of mass 106M	, the
EMRI will complete some ∼ 105 orbits before plunging.

This source of gravitational waves represents a unique probe of gravity in the strong-
field regime. Generic EMRI orbits are both eccentric and inclined, and apsidal and nodal
precession imply that the compact object explores the full torus between the radial and polar
turning points as it inspirals towards the black hole. At every pericenter passage there is a
strong burst of radiation, and with a typical total of ∼ 105 such bursts, an EMRI can be used
to map spacetime around SMBHs. With EMRIs one can probe the geometry of SMBHs in
a regime of non-linear, strong-field and dynamical gravity. This means that one can test GR
and alternative theories of gravity, but also test different questions related to stellar dynamics
in galactic nuclei. The gravitational-wave radiation from these systems allows one to extract
qualitative information from a regime which is inaccessible to the photon, the surface of the
central supermassive dark object, and to investigate if spacetime around it differs from Kerr.
In particular, in GR the Kerr solution is the unique end state of gravitational collapse. The
Kerr metric depends on the mass and spin of the object only, and all higher multiple moments
are related to the gravitational radiation emitted by the compact object on its orbits towards
the SMBH. This can be used to test the no-hair theorem, as first put forward by Ryan (1995).
Moreover, they can be used as standard sirens to measure the luminosity of the source and to
test the cosmological expansion history of the Universe (Schutz 1986). See Amaro-Seoane
et al. (2007, 2015) for a general description of the implications of EMRIs on cosmology and
fundamental physics.

EMRIs are formed via two-body relaxation in dense stellar systems, and the theory that
allows us to derive their event rate is heavily based on the concept of a loss cone. This
is so because of the many similarities of the two problems. However, as we mentioned
before, the compact object needs to revolve for tens or hundreds of thousands of orbits
around the SMBH before disappearing into the horizon, not just one orbit, as is the case for
TDEs. When an orbit’s pericenter approaches Rp ∼ few × Rg, even if its semimajor axis is
a � Rg, it starts to rapidly lose energy and progress towards smaller a while remaining at a
nearly constant Rp, until it is finally captured at a ∼ few × Rg (see e.g. Fig. 43 of Amaro-
Seoane 2018). However, for this process to be successful, the inspiralling object should not
be disturbed by the two-body relaxation. This places an upper limit on the initial values of a

for EMRIs at around 10−2 pc, meaning that EMRIs constitute a small fraction of all compact
object capture events (� 1%, see Fig. 17 in Bar-Or and Alexander 2016). The accumulation
of a long number of orbits means that relativistic effects at pericenter must be taken into
account.

Analogous but even stricter considerations limit the parameter space for “stellar EMRIs,”
which are main-sequence stars inspiraling on quasi-circular orbits. These systems are poten-
tially interesting because of their long lives: stable Roche lobe overflow can last for millions
of years, and power a weak accretion disk (Dai and Blandford 2013), though the arrival of
a second stellar EMRI during the lifetime of the first may lead to a TDE impostor due to
mass loss in a hypersonic stellar collision (Metzger and Stone 2017). However, such systems
require fairly fine-tuned initial conditions in order to circularize through gravitational wave
emission (as opposed to tidal circularization, which would destroy the star), and the most
promising formation scenario may use the bound star left over after the Hills mechanism
breaks up a pre-existing binary (Amaro-Seoane et al. 2012).

Unless the SMBH is Schwarzschild, the spin plays a fundamental role in the fate of
a compact object EMRI (Amaro-Seoane et al. 2013), controlling the required number of
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pericenter passages before crossing the event horizon. Resonant relaxation can also allow
EMRIs to form closer to the SMBH, where the stellar density decreases, and two-body
relaxation is not efficient enough (Hopman and Alexander 2006). While the dynamics of
resonant relaxation are much more complicated than that of two-body relaxation, recent
studies indicate that its ultimate contribution to steady-state EMRI rates is modest (Merritt
2015b; Bar-Or and Alexander 2016; Alexander 2017).

Even though a consensus about the cusp at the Galactic Centre has recently emerged in
which theory, numerical calculations and observations agree on the existence of the sub-
pc stellar cusp (Gallego-Cano et al. 2018; Schödel et al. 2018; Baumgardt et al. 2018),
the dynamics of distant galactic nuclei on sub-pc scales are less clear, making it challeng-
ing to predict generic EMRI rates. The first major astrophysical uncertainty concerns the
massive black hole occupation fraction. If many intermediate-mass black holes exist in the
nuclei of dwarf galaxies, their contribution to the volumetric EMRI rate could dominate over
larger SMBHs (Babak et al. 2017). A second major uncertainty comes from the unknown
distribution of stellar profiles; if cored galactic nuclei are more common than is expected,
volumetric EMRI rates will be low. Finally, as noted before, the magnitude of SMBH spin
is crucial in the derivation of EMRI rates (Amaro-Seoane et al. 2013), as rapidly spinning
Kerr SMBHs will convert many “direct plunges” into observable EMRIs. Upcoming obser-
vations of TDEs in nuclei which harbor SMBHs in the mass range of 105–107M	 may help
to at least partially clear up these uncertainties; using large samples of TDEs to constrain
the low-mass black hole occupation fraction will be particularly valuable.

6.4 Future Prospects

Over the next five years, our sample of TDEs will expand by multiple orders of magnitude.
At the time of writing, a few dozen strong TDE candidates have been discovered, primarily
through thermal emission in either the soft X-ray (e.g. the compilations of Komossa 2015
and Auchettl et al. 2017, and the X-ray Chapter) or optical/UV (e.g. the compilation of Hung
et al. 2017 and the Optical Chapter) bands.26 For most of the last decade, the time-averaged
TDE detection rate has been a handful of strong candidate flares per year. This situation is
already starting to change in 2019, as the wide-field optical survey ZTF (Bellm et al. 2019)
has begun harvesting TDE candidates, with an expected detection rate of 32+41

−25 TDEs per
year (Hung et al. 2018).

While the ongoing ZTF survey is expected to increase today’s TDE sample by one order
of magnitude, near-future optical and X-ray time domain surveys may increase our TDE
inventory even further, into the thousands and possibly tens of thousands. Two upcoming
space-based X-ray surveys, eROSITA (Merloni et al. 2012, launched during the writing of
this Chapter) and Einstein Probe (Yuan et al. 2015, launch date note yet determined), hold
particular promise. The Einstein Probe is expected to detect tens to hundreds of X-ray bright
TDEs per year (Yuan et al. 2015), while eROSITA predictions give a per-year detection rate
≈ 1000 (Khabibullin et al. 2014). On the ground, the wide-field LSST optical survey (Abell
et al. 2009) has long been recognized for its ability to detect thousands of TDEs per year
(Strubbe and Quataert 2009; van Velzen et al. 2011); the true detection rate depends on
survey strategy, but one recent estimate predicted ≈ 3–6 × 103 TDEs per year.

It is important to consider the many science goals that can be accomplished with such
large, near-future samples of TDEs. Advance planning is important both (i) to develop rel-
evant theoretical predictions that can be tested and falsified by statistical samples of TDEs,

26The online “Open TDE Catalog” https://tde.space/ is a useful resource for the observationally-curious
reader.

https://tde.space/
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and (ii) to aid future observers in prioritizing scarce spectroscopic or multiwavelength fol-
lowup resources, which will certainly be inadequate to fully characterize every TDE candi-
date found by the surveys described above. In the list below, we offer a brief (and, unavoid-
ably, subjective) selection of important questions in physics and astrophysics that may be
partially addressed by large samples of TDEs. In assembling this list, we have purposefully
avoided questions focused entirely on the process and consequences of stellar tidal disrup-
tion. While this arena features many interesting open questions, they are discussed in much
greater detail in the other Chapters of this Volume, and here our aim is to examine the utility
of TDEs as a tool for answering broader questions.

– What is the distribution of SMBH masses in the Universe?
– How did SMBH seeds form at high redshift?
– What is the distribution of SMBH spins in the Universe?
– Are the “SMBHs” observed in galactic nuclei true Kerr metric black holes, or more exotic,

horizonless compact objects?
– What is the rate of other processes involving loss cone physics in galactic nuclei (e.g.

hypervelocity star and EMRI production)?
– What fraction of galactic nuclei host unresolved binary SMBHs?
– What exotic dynamical processes are common to post-starburst galactic nuclei?
– Are there other subclasses of galaxies with anomalous nuclear stellar dynamics?

In this Chapter, we have discussed how each of these questions may be probed—at least to
some extent—with a statistical sample of TDEs. But in almost all cases, directly answering
these questions with TDEs will require a firmer grasp on rates of tidal disruption, and how
they depend on astrophysical variables like SMBH mass, host galaxy mass, redshift, and
so on. Over the next few years, we expect progress on TDE rates to arise from three paral-
lel channels. Better theoretical models for non-standard loss cone repopulation mechanisms
(e.g. nuclear triaxiality, eccentric stellar discs) will help solidify our understanding of under-
lying dynamical theory. Better dynamical modeling of nearby galactic nuclei will improve
our understanding of TDE rates in astrophysically realistic galaxies. And better samples of
observed TDE flares—samples that are both larger and more homogeneously selected—will
provide firmer observational estimates of the real volumetric TDE rate in the Universe.
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M. Milosavljević, D. Merritt, Long-term evolution of massive black hole binaries. Astrophys. J. 596, 860–878
(2003). https://doi.org/10.1086/378086
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