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Abstract The Rosetta observations have greatly advanced our knowledge of the cometary
nucleus and its immediate environment. However, constraints on the mission (both planned
and unplanned), the only partially successful Philae lander, and other instrumental issues
have inevitably resulted in open questions. Surprising results from the many successful
Rosetta observations have also opened new questions, unimagined when Rosetta was first
planned. We discuss these and introduce several mission concepts that might address these
issues. It is apparent that a sample return mission as originally conceived in the 1980s dur-
ing the genesis of Rosetta would provide many answers but it is arguable whether it is
technically feasible even with today’s technology and knowledge. Less ambitious mission
concepts are described to address the suggested main outstanding scientific goals.
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1 Introduction

The original Rosetta mission was a comet-nucleus sample return and significant important
studies were carried out towards this goal. A mission definition study was performed by
Matra Espace and a final report issued in 1987. Two “nominal” missions were proposed
one of which was to comet 67P/Churyumov-Gerasimenko. The requirements on the mission
were [sic]

– Rendez-vous to an active and fresh comet with a large perihelion distance
– Characterise the surface of the nucleus into active and inactive regions, perform high

resolution mapping of the sampling site and provide in-situ characterisation thereof,
– Acquire three classes of samples: (1) one which preserves stratigraphy to a depth of at

least one metre and preferably three metres, (2) one containing the most volatile compo-
nents, (3) surface samples intended to provide a larger volume of non-volatile component

– Store the samples until return to Earth at the temperature ambient at the sampling site, but
in any case below 160 K.

In hindsight, these goals seem remarkably ambitious and it is arguable whether we are able
to achieve these objectives with the knowledge that we have now post-Rosetta.

The requirements on the sample acquisition and storage were equally severe.

– The core sample shall form a continuous sample from the nucleus surface down to a
desirable depth of 3 m, but not less than 1 m. It should be sub-divided and stored in several
segments of approximately 10 cm in diameter in a way that preserve coarse stratigraphy
[sic]. Nucleus material should not be significantly altered by the sampling process. Total
mass of the core sample should be about 10 kg.

– The volatile sample should preferably be obtained from a location where the most volatile
components can be expected, e.g. from the bottom of the core sample or below, down to
5 m depth. They should be stored in a totally sealed container holding 10 to 100 g.

– The bulk surface sample might be collected from the surface of the nucleus. Total mass is
1 to 5 kg.

Following the reconfiguration of Rosetta into a rendezvous mission with a landing element
in 1993 (with a somewhat similar profile to that proposed for NASA’s Comet Rendezvous
and Asteroid Flyby mission, CRAF), the ambitions were reined back. However, it is often
assumed that a sample return, recovering the science descoped from the original Rosetta,
would form the ultimate goal for the next phase of cometary investigation and indeed the
losing mission in the recent (2018) NASA selection for its New Frontiers programme, CAE-
SAR (Comet Astrobiology Exploration Sample Return), had the goal of returning a sample
(100–800 g) from 67P/Churyumov-Gerasimenko to Earth in 2038.

Other, perhaps less ambitious, missions to comets have been proposed in recent years.
The most notable was CHopper (Comet Hopper) that became one of three missions studied
in detail in the final selection round of NASA’s Discovery programme in 2011, eventually
losing out to the InSight mission to Mars. (There is relatively little published/refereed infor-
mation about CHopper. The web site https://nssdc.gsfc.nasa.gov/planetary/text/discovery_
pr_20110505.txt indicates its selection or see Hand 2012.)

The current planning for the European Space Agency science programme indicates that
large scale missions to planetary targets (beyond those already selected such as JUICE) are
unlikely to be feasible programmatically or financially until the late 2030s at the earliest.
However, smaller, lower cost, missions looking at very specific aspects of cometary science
may be possible if the technology proves feasible.

https://nssdc.gsfc.nasa.gov/planetary/text/discovery_pr_20110505.txt
https://nssdc.gsfc.nasa.gov/planetary/text/discovery_pr_20110505.txt
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Table 1 Rosetta’s comet related goals according to the Science Management Plan and a statement of achieve-
ment

Goal Achievement

1 Global characterisation of the nucleus,
determination of dynamic properties, surface
morphology and composition

Mostly, yes. The surface composition remains
poorly defined

2 Chemical, mineralogical and isotopic
compositions of volatiles and refractories in a
cometary nucleus

The chemical and isotopic composition of
volatiles has been well established. The
non-volatile material considerably less so

3 Physical properties and interrelation of volatiles
and refractories in a cometary nucleus

The density ratios of some gas species to bulk
species were observed to be near-invariant
indicating a fundamental relationship (although
detailed analysis is beginning to suggest that
this is too simplistic). However, this seems to be
the only progress towards this goal

4 Study the development of cometary activity and
the processes in the surface layer of the nucleus
and in the inner coma (dust-gas interaction)

The time series of cometary activity has been
reasonably well defined (with some exceptions)
and the dust-gas interaction in the coma is
probably close to being understood but the
processes in the surface layer were not
established

5 Origin of comets, relationship between
cometary and interstellar material. Implications
for the origin of the solar system

Compositionally, Rosetta achieved its goals for
the volatiles only. However, the discussion of
the shape of the nucleus and its origin/evolution
has provoked significant debate

Given the range of possibilities, it is worthwhile looking at what Rosetta actually
achieved, the questions that it left open, and what mission concepts could reasonably fill
those gaps in our knowledge. It is not the purpose of this paper to advocate one mission con-
cept but rather to identify possible future mission scenarios that directly address outstanding
scientific issues.

We begin by looking at the major questions that have been answered by Rosetta and
illustrating their importance for future missions. We then describe what Rosetta did not
achieve—even in scientific topics where we expected significant steps forward. The main
section follows where we look at key observations for the future. The final product from
this discussion is in Sect. 5 where mission concepts are compared against the scientific
return we would expect these mission concepts to achieve. It should be noted that while this
plasma interaction is an interesting physical problem and its historical importance (e.g. the
deduction of the existence of the solar wind through studies of cometary plasma tails by
Biermann 1951) cannot be underestimated, the balance of this work is tipped towards the
source of this material because it is the wish to access the “unprocessed” nucleus that forms
the driving goal in cometary physics today.

2 Review of Big Questions We Have Answered

The aims of the Rosetta mission that was finally implemented were described in the Rosetta
Science Management Plan (RO-EST-PL-001). The comet-related goals are listed in Table 1.

While these objectives are very broad, it is apparent that Rosetta has answered some of
these goals well but others not and that the deficits are important when trying to place comets
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in the more general framework of solar system formation and evolution. In the sub-sections
here, we look at a few of the major successes with respect to these goals.

2.1 Density and Bulk Properties

One of the major difficulties in designing the Rosetta mission, and the Philae lander in
particular, was that the bulk properties of cometary nuclei were essentially unknown. Fol-
lowing the rapid improvement in technology in the 1990s, the combination of visible and
thermal infrared measurements from Earth-orbit of cometary nuclei when remote from the
Sun has subsequently provided good measures of the sizes and rotation periods which are
key parameters in any rendezvous or landed mission. It might be argued that the three di-
mensional shape of 67P determined prior to rendezvous (Lamy et al. 2007; Lowry et al.
2012) was not really close to the remarkable bi-lobate structure actually observed. However,
the importance of non-gravitational torques on solutions for the rotation period were not
well recognised in advance and caution will certainly be exercised in future studies. The
change of spin period through the perihelion passage was measured with high accuracy and
the analysis of these data is proving to be an interesting means of analysing the total loss
rate and its distribution over the nucleus (Mottola et al. 2019). The precession seems to be
rather small and unlike that inferred for comet 1P/Halley, for example (Preusker et al. 2017;
Gutierrez et al. 2016). Given the torques required to spin up the comet, this is perhaps a little
surprising and might require some additional study. Associated work on the orbital dynam-
ics and the relationship to the activity distribution is in progress (Attree et al. 2019) but may
result in a non-unique solution. However, there is good reason to believe that the dynamical
properties have been well characterised by Rosetta.

While the case for comets having low densities was very strong and values in the range
of 200–600 kg m−3 were widely expected for 67P, the confirmation of a density in this range
was extremely useful, for both modelling of cometesimal growth and planning of future
exploration. The gravitational potential resulting from the bi-lobate structure and the density
is obviously complex close to the nucleus, with variations in surface gravity of >60%.

The low surface reflectance found at 1P/Halley, 9P/Tempel 1 and 19P/Borrelly was con-
firmed and also shown to be valid down to fairly small scales. Exposures of higher re-
flectance material were restricted to rather small blocks or chunks (Pommerol et al. 2015b)
and occasional small scale transient features (e.g. Fornasier et al. 2017).

2.2 Surface Morphology

The enormous diversity of morphology on the surface of 67P was unexpected and one of the
major contributions of Rosetta to cometary science (Thomas et al. 2015b, 2018) indicating
that no single process dominates the evolution of the surface.

At 67P, the evidence of airfall (also known as “dust hail” or simply “returning particles”)
was overwhelming (Möhlmann 1994; Thomas et al. 2015a). It is quite apparent from the
data that large areas of the surface in the northern hemisphere were covered by an almost
conformal coating of dust that originated from elsewhere on the comet. The depth of this
coating is unknown and almost certainly non-uniform. Much of the material in the coating
has probably originated from the southern hemisphere (Keller et al. 2017).

The surface texture also indicates significant variability even in areas that should have
seen the same temporal variation in insolation. This suggests that there are fundamental
differences in the structure of the surface layer over relatively small length scales.
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2.3 The Importance of Slow Moving, Large Particles

The presence of airfall deposits is related to a further important result. The presence of
“neck-lines” in ground-based observations of dust at 67P were thought to be caused by
particles, slow moving with respect to the nucleus and remaining in the vicinity of the nu-
cleus for one or more orbits around the Sun (Fulle et al. 2004). The true significance of
these observations was revealed by Rosetta. Large particles, moving at velocities close to
the escape velocity, were indeed detected (Thomas et al. 2015a, 2015b; Lin et al. 2015;
Agarwal et al. 2016; Ott et al. 2017) but the vast number of individual slow particles seen
had not been predicted. While their presence cannot be disputed, the means by which these
particles are lifted from the surface remains a subject of significant debate.

2.4 Importance and Distribution of Major Volatiles

The infrared spectrometer on Deep Impact at both 9P/Tempel 1 and 103P/Hartley 2 showed
that CO2 was strongly emitting from areas that were comparatively weak in H2O out-
gassing and vice versa (e.g. Feaga et al. 2007). Observations from VIRTIS-M at 67P showed
remarkably similar results considering the different objects involved (Fink et al. 2016;
Migliorini et al. 2016). The ROSINA DFMS system provided further evidence that the local
CO2 outgassing rates are not in simple relationships to the H2O outgassing rate (e.g. Gasc
et al. 2017). One should not expect a linear relationship between H2O and CO2 outgassing
simply from the thermodynamics. However, the complexity is evident from the difficulty in
fitting physically and chemically more complex models to the data. Nonetheless, it has been
established that both H2O and CO2 need to be accounted for in cometary models and that
dominance of one ice over the other is probably both position and season dependent.

2.5 The Volatile Composition

The ROSINA data set of chemical species has not yet been fully exploited. However, most
species previously identified in cometary comae through in situ and ground-based remote
sensing have been detected (Le Roy et al. 2015). The ROSINA observations should be con-
sidered as providing the baseline for composition studies for several decades to come. Iso-
topic abundances in the gas phase have been measured to high accuracy (e.g. Altwegg et al.
2015; Hässig et al. 2017; Marty et al. 2017; Calmonte et al. 2017). The presence of larger
than expected amounts of O2 in the coma (Bieler et al. 2015) provides further clues to the
surface formation and evolution and challenges associated models.

The ROSINA data indicates that, typically, minor species “follow” one of the bulk
molecules in that the density ratios are roughly invariant with respect to either H2O, CO2, or
O2 although detailed investigation suggests more subtle differences are present (M. Rubin,
pers. comm.). While this goes towards goal 3 in Table 1, the physical interrelationships have
not been addressed at this stage although there are good grounds to assume that this can be
derived from the existing data.

2.6 Thermal Inertia

Modelling of the surface temperatures of cometary nuclei were pointing towards low ther-
mal inertia although there was potential for misinterpretation in observations acquired dur-
ing fast flybys (Groussin et al. 2013; Davidsson et al. 2013). The 67P data clearly show that
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low values of thermal inertia are present and that it is probably varying across the object (At-
tree et al. 2018). To first order this variability ought to be unsurprising given the observed
morphology. Airfall should lead to relatively fluffy, porous, surfaces that should be ther-
mally insulating whereas the more rock-like appearance of other surface elements would be
consistent with a higher thermal conductivity. However, the low bulk density of the nucleus
suggests that even the consolidated material is highly porous (>70% perhaps) and thus, even
at shallow depths below the surface (e.g. >20 cm), diurnal temperature variations should be
very modest.

2.7 Tensile and Compressive Strength

All indications are that the larger scale tensile strength of nucleus material is very low and
probably below 20 Pa in most cases (Attree et al. 2018). However, it is not clear how this
value increases as the scale length is reduced. Local compressive strengths are potentially
much higher as indicated by the shallowness of the depressions in the surface made by
the Philae lander on first impact (Biele et al. 2015). The MUPUS results indicate a much
higher compressive strength material just below the surface (Spohn et al. 2015). There is
no universal relationship between the compressive and tensile strengths of materials but
the difference between them as measured at 67P is remarkable if confirmed. The low bulk
tensile strength of comets had been inferred from the break-up of comet Shoemaker-Levy 9
(Asphaug and Benz 1996) but the evidence of the stresses on the nucleus arising from the
rotation and spin-up, seen in the form of cracks in the neck region of the nucleus, has clearly
illustrated a mechanism for cometary splitting and other phenomena associated with comet
break-up (El-Maarry et al. 2017).

2.8 Seasonal Processes

The concept of cometary obliquity playing a role in coma and surface evolution was widely
discussed after the Giotto encounter with comet 1P/Halley when it was observed that the
major dust jet was not directed towards the Sun but roughly aligned with the pole of initially
derived rotation axis and around 60 degrees from the comet-Sun vector (e.g. Keller 1990).
The Rosetta observations have been instrumental in further demonstrating the importance
of seasonal processes. In addition to the importance of south-north dust transport, Fornasier
et al. (2015) demonstrated surface colour variations dependent upon the annual cycle. The
changes in the relative abundance of the major species when the Sun crossed the equator
(Gasc et al. 2017) also points to more complex relationships than heretofore discussed.

2.9 Some Knowledge of Depth Structure

While the internal structure of the comet beneath the visible surface remains largely un-
known (see below), some measurements have increased our knowledge. Brouet et al. (2016)
showed that CONSERT and SESAME-PP data indicate that the porosity increases with the
increasing depth in the small lobe of the nucleus (see also Ciarletti et al. 2017).

There is strong evidence of a layering in the uppermost parts of the nucleus from optical
remote sensing. A controversial aspect of this observation is whether this layering is a large-
scale property of the nucleus and related to its formation (Massironi et al. 2015) or whether
it is a shallow phenomenon produced through cometary evolutionary processes such as dust
sedimentation and thermal loading (Sunshine et al. 2016).
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Fig. 1 Schematic diagram
attempting to reconcile the
information we currently have of
the interiors of cometary nuclei

Combined with the MUPUS measurements and the absence of evidence of large scale
internal voids, obtained with the radio science experiment (Pätzold et al. 2016, 2019), we
obtain a picture of the shallow interior as seen in Fig. 1. There are many uncertainties in
this diagram but the key thing we have learnt is that more porous material with limited
thermal processing is close to the surface. Hence, the original Rosetta requirement of 3 metre
penetration into the interior to access “fresh” material is unlikely to be necessary. However,
the possible presence of a less porous and possibly icy sub-surface layer with considerable
compressive strength implies that the fundamental problem of anchoring a lander system
remains challenging.

2.10 The Relative Contributions of Quasi-Continuous and Outburst-Like
Activity

Outburst phenomena have been studied in detail by several authors (e.g. Agarwal et al.
2017) in several ways (e.g. Shi et al. 2017). However, it needs to be emphasised that
the most of the emission from the nucleus is quasi-continuous. The dust and gas emis-
sion is roughly reproduced on a diurnal cycle with smaller outbursts (with notable excep-
tions) superposed on this distribution. The similarity of the gas density measurements in
the coma to models of a purely insolation-driven coma (Bieler et al. 2015) served ini-
tially as a reasonable approximation showing that outburst phenomena are not dominant.
As details were more rigorously investigated, it became clear that this model was too sim-
plistic and that non-uniqueness in solutions to the distribution of production at the sur-
face itself was a major problem for the interpretation of the observations. Nonetheless,
the basic reproducibility, the consistency with analytical descriptions (Gerig et al. 2018;
Zakharov et al. 2018), and the agreement when linking space-based and ground-based mea-
surements of the dust emission (Gerig et al. 2018) gives considerable confidence that the
physics of the outflow beyond 5 km from the nucleus is broadly understood. Closer to the
surface, the situation is far less clear.

3 What Did We Not Get That We Should Have

Rosetta was a successful mission that collected about 220 GB of scientific data. However,
as indicated in Table 1, not all physical and chemical properties that would be essential for
the deep understanding of the comet could be derived. There are several reasons for this
situation.
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(a) Although there were 21 experiments onboard of Rosetta and its lander Philae (Glass-
meier et al. 2007) they did not cover all desirable measurements. For example, a thermal
IR detector or spectrometer, as has been flown on other planetary missions (e.g. Chris-
tensen et al. 2004) was not part of the Rosetta payload. (An instrument was proposed
but not flown because of budget constraints.) Therefore, low surface temperatures could
not be measured and well-resolved temperature and thermal inertia maps could not be
derived.

(b) Caution exercised because of the dust environment of the comet affecting the star track-
ers and the lack of suitable compromises between the different requirements of the in-
struments, limited the outcome of some experiments. Near perihelion distances of sev-
eral 100 km from the nucleus and near terminator orbits led to high phase angles and
poor resolution that was not optimal for most of the experiments onboard.

(c) Not all scientific instruments worked as planned. VIRTIS-M failed in April 2015 (Cia-
rniello et al. 2016), before perihelion. Possibly more significant, however, was the mal-
function of the Philae lander. Unfortunately, when Philae first touched the comet surface
the anchoring harpoons did not fire and a cold gas system, intended to press the lander
to the surface, did not work. As a consequence, Philae lifted off again and only came
to rest after a “hop” of about 2 hours at a location almost 1 km from the originally tar-
geted site, “Agilkia”, at a place subsequently named Abydos (Biele et al. 2015). Philae
could be operated, telemetry was received, but the lander was not anchored and in an
undefined attitude relative to the local surface (Ulamec et al. 2016).

When looking in more detail the following topics have been compromised because of limits
on the available instrumentation or their performance.

3.1 Small-Scale Surface Temperature and Thermal Properties

Several Rosetta experiments were designed to measure surface and near surface tempera-
tures (VIRTIS, MIRO on the spacecraft, MUPUS and SESAME on the lander, see Table 2)
to derive thermal properties of the ground.

Generally, temperature measurements in space are challenging. With remote sensing one
detects the IR flux (or equivalently the brightness temperature) and has to retrieve kinetic
temperatures by model assumptions taking the emissivity and roughness of the surface into
account. This can result in considerable errors. Additionally, measurements in the near in-
frared (VIRTIS-M) are contaminated by reflected solar radiation (Keihm et al. 2012). Fur-
thermore, its ground resolution at a distance of 100 km was several tens of metres which
resulted in a nonlinear average of very different temperatures in the field of view with large
and small scale topographic features and compositional heterogeneities. The same is true
for MIRO measurements and, additionally here, both electrical and thermal properties con-
trol the signal in such a way as to make the interpretation even more challenging. MUPUS
results are limited since the penetration of PEN into the surface failed (Spohn et al. 2015)
and because the complex environment of the accidental landing site is not fully understood
(Groussin et al. 2019).

The kinetic temperature is a basic physical quantity that gives information on thermal
properties of a surface. But Rosetta did not provide precise high resolution maps of kinetic
temperature at the surface over a diurnal cycle. The absence of night time measurements, as
a consequence of the orbit and the lack of a thermal infrared instrument that could measure
both low temperatures and that was not affected by sunlight reflected from the surface,
contribute to this issue. Consequently, thermal conductivity or thermal inertia were derived
with large error bars and at low spatial resolution only (Groussin et al. 2019 and references
therein).
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Table 2 Rosetta instruments to measure temperatures on the comet

VIRTIS-M MIRO MUPUS-TM MUPUS-PEN MUPUS-ANC-T SESAME

Measurement
principle

IR spectral
flux from
surface

Microwave
flux

IR flux from
surface

16 sensors for
contact
temperature
up to 32 cm
depth

Contact
temperature
sensors in Philae
anchors up to
1.5 m depth

Contact
temperature
sensors in
Philae’s feet

Wavelength
range

0.95–5.0 µm 0.5 mm and
1.6 mm

5–25 µm – – –

Resolution 0.86 arcmin 7.5 arcmin
and
23.8 arcmin

40 deg – – –

Challenges/
Issues to
derive kinetic
temperatures

Instrument
failure in
03/2015,
Model
dependent
kinetic
temperature,
contamination
by reflected
light

Model
dependent
kinetic
temperature,
dependence
on
(unknown)
electrical soil
parameters

Model
dependent
kinetic
temperature

Failed to
penetrate

Failed due to
malfunction
of the
anchors

Limitation of
usable
temperature
range due to
HW issuesenvironmental

conditions
only partly
known

Range Global Global Local Local Local Local

References Coradini et al.
(2007)

Gulkis et al.
(2007)

Spohn et al. (2007) Groussin
et al. (2019)

3.2 Deep Interior

For the first time, a mission was able to collect first-hand information about the internal
structure of a comet nucleus. Unfortunately, Philae’s unfavourable landing site and attitude
strongly limited the quantity and quality of the data collected by the two instruments—the
CONSERT radar, see Kofman et al. (1998, 2007) and the permittivity probe SESAME-PP,
see Seidensticker et al. (2007)—designed to characterise the nucleus electrical properties at
depth (Groussin et al. 2019). Of the five electrodes of SESAME-PP (three in the lander’s
feet, one on MUPUS PEN, and one on APXS), only the ones in the feet could be used
because APXS did not reach the comet’s surface and there were operational constraints at
Abydos.

Only very few exploitable measurements were acquired at Abydos (Lethuillier et al.
2016) during the First Science Sequence (FSS) with only three electrodes and a question-
able contact of one of the lander feet with the nucleus surface. In addition, no absolute ref-
erence measurements were performed correctly during the SDL (Separation Descent Land-
ing) phase because of electromagnetic interference. Despite all these shortcomings, a lower
bound of the real permittivity value for the first metre below the lander was estimated that
provided a constraint on the porosity of the sounded area (Lethuillier et al. 2016). A compre-
hensive series of measurements performed for different electrode configurations would have
allowed characterisation and analysis of spatial variations of the electrical properties around
the lander down to 1 or 2 metres, possibly including the imaginary part of the permittivity
(linked to losses in the matter).
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The CONSERT radar was designed to perform tomography of the whole nucleus thanks
to a series of orbiter’s trajectories optimised with respect to the lander’s position. However,
this was not achieved during the FSS (First Science Sequence). Furthermore, even though
circular polarisation was used to minimise the mismatch between the orbiter’s and lander’s
antennae, the radiation pattern of Philae’s antennae was significantly modified by the non-
optimal attitude of Philae and the fact that one antenna was probably in contact with the
nucleus. Consequently, only part of the nucleus’s small lobe has been sounded and charac-
terised. On the detected signals, only the propagation delays and the shape of the received
pulses have been analysed and provided an average value for the real part of the permit-
tivity (Kofman et al. 2015) and some hints about the spatial variations (Brouet et al. 2016;
Ciarletti et al. 2015) and the limited heterogeneity inside the sounded area (Ciarletti et al.
2017). The interpretation of the received amplitudes would have brought further constraints
on the nucleus composition that have already been obtained (Herique et al. 2016) but would
require a better knowledge of the Philae’s antenna radiation pattern in the actual local envi-
ronment.

3.3 Activity

While outburst phenomena have been catalogued (Fornasier et al. 2018), there remains little
understanding of how the (dominant) quasi-continuous activity proceeds. It is this topic
above all that has been the subject of most frustration within the Rosetta community.

The “symptoms” of cometary activity could be observed by Rosetta over many months
but the microscopic observations to be achieved by Philae and designed to shed light on
the mechanisms of activity did not take place. Close-up images by CIVA and ROLIS show
the surface structure of Abydos and (although from a greater distance) Agilkia in great
detail. However, no direct sign of ongoing activity was found (Bibring et al. 2015; Mottola
et al. 2015; Schröder et al. 2016). In any case, all images taken by the lander cameras were
acquired from the time between November 12 and 14, 2014 at a heliocentric distance of 3
AU when activity was not expected to have been significant.

The absence of observations constraining the processes leading to activity is arguably
the biggest single issue left unaddressed by Rosetta. The uncertainty has, if anything, been
increased by the observations of particles, considered to be larger than liftable by gas drag
alone, above the surface and evidence that large (20 metre diameter) boulders have been
moved across the surface (Agarwal et al. 2017; El-Maarry et al. 2017). Concrete progress in
this area is totally absent and it appears that the only way to address this properly is to study
the microphysics of the active region/layer.

3.4 Innermost Gas and Dust Comae Properties and Surface Relationships

The proximity of the Rosetta spacecraft to the nucleus was expected to provide detailed
information on the gas and dust dynamics in the inner coma. Unlike previous fly-by mis-
sions, the rendezvous nature of the mission was expected to ensure a steady stream of data
at different positions in the coma leading to strong constraints on the gas and dust flow.
Indeed, significant steps forward were achieved. However, it has also become apparent that
interpretation of the acquired data is not entirely straightforward.

Three instruments were expected to make the most significant contributions to the defi-
nition of the neutral gas flow field of the major species. The COPS sensor on ROSINA de-
termined the gas density at the spacecraft and there remains some hope that velocities might
also be derived in the near future (Tzou 2017). The VIRTIS instrument, and particularly
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VIRTIS-M, obtained 2D maps of the H2O and CO2 distributions using IR imaging spec-
troscopy until the cryo-cooler failure in March 2015. The MIRO microwave spectrometry
obtained line-of-sight measurements of the H2O density, temperature, and velocity (Gulkis
et al. 2007, 2015).

In all cases, there are difficulties in inversion of the data to provide unambiguous de-
scriptions of the flow. COPS provides accurate measurements but only at the spacecraft and,
for much of the mission, the spacecraft was in near-terminator orbits. In the terminator ge-
ometry, the contribution to the gas flow field from lateral expansion of gas from the near
sub-solar regions is significant with strong gradients. Furthermore, it has been shown (Liao
2017) that lateral expansion will smooth out source inhomogeneities on scales up to the
mean free path and hence the COPS data cannot be used to infer surface source distributions
accurately. MIRO can make up for this deficiency, in principle (Marschall et al. 2019), but
the inversion of the measured lines is far more complicated than in a bound atmosphere
application and is compromised by the relatively broad beam width. One important aspect
that might yet be resolved is the temperature of the gas at source which may be higher than
the free sublimation temperature as a result of interaction between the gas and the surface
layer(s). The VIRTIS measurements were limited in number and do not give flow velocities.

It is necessary to use these data sets together to constrain models (e.g. Marschall et al.
2019; Tenishev et al. 2016) of the surface activity distribution. However, from the work so
far, it is not obvious that a satisfactory unique solution can be obtained even for optimum
cases.

The dust distribution within the inner coma relies almost exclusively on the 2D imag-
ing of OSIRIS with models using the size distribution derived from GIADA and COSIMA
measurements (with OSIRIS looking at the largest particles). While the dust outflow has
been shown to be equivalent to a free-radial outflow at distances greater than 12 km from
the nucleus on average (Gerig et al. 2018), there are significant deviations in some cases
that remain to be investigated. Furthermore, the dominant factors influencing the deviations
from 1/r closer than 12 km to the surface are still unclear although acceleration is obviously
of major importance (Zakharov et al. 2018). The surface source relationship between the
gas and dust remains to be clarified although Tenishev et al. (2016) has suggested that the
dust source distribution is different from the gas source distribution on larger scales which
is clearly a significant problem for activity modelling.

3.5 Surface Composition

Rosetta included several instruments to analyse cometary matter. The ROSINA and
COSIMA instruments obtained numerous excellent mass spectra for both gas in the coma
and individual dust grains captured in the immediate vicinity of the nucleus (Altwegg et al.
2017; Hilchenbach et al. 2016). The imaging IR spectrometer, VIRTIS, mapped the entire
surface of 67P in the wavelength range 0.25 to 5 µm (Filacchione et al. 2019) and found de-
hydrated, refractory, and organic-rich material on the surface—something that had been ex-
pected on the basis of previous observations going back to the 1980s (e.g. Chyba and Sagan
1987; Chyba et al. 1989). However, the exact composition or geometry of the molecules
(notably any chiral inhomogeneity) could not be distinguished by remote IR spectroscopy
and remains undetermined. Furthermore, VIRTIS results characterise the surface. But this
is not necessarily representative of the bulk composition of the nucleus.

One of the main reasons leading to the proposal and development of a lander for Rosetta,
was the aim of analysing (quasi-)pristine material from the comet surface and sub-surface
(Ulamec et al. 1997; Wittmann et al. 1999; Biele and Ulamec 2008). The payload of Phi-
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lae included four instruments, dedicated to this aim: APXS (an alpha-particle fluorescence
spectrometer, Klingelhöfer et al. 2007), two evolved gas analysers (EGA’s), COSAC and
Ptolemy, each including a mass spectrometer and a gas-chromatograph (Goesmann et al.
2007, 2014; Wright et al. 2007), and SD2, a drill and sampling device, to feed the ovens
of the EGA’s (Ercoli-Finzi et al. 2007). The camera system CIVA included a visible and
IR microscope (CIVA-M), intended to image the sampled material in dedicated ovens with
windows (Bibring et al. 2007).

Immediately after the first touchdown at Agilkia, the Philae system started a pre-
programmed FSS, including measurements with the mass spectrometers of both evolved
gas analysers, COSAC and Ptolemy, in “sniffing mode”. As it appears, some surface ma-
terial was introduced into the venting systems of the instruments, where excellent mass
spectra could be obtained with both instruments (Goesmann et al. 2015; Wright et al. 2015).
However, no gas chromatography was performed in this phase.

During an adapted FSS, an attempt was made to sample surface material, deliver it into
a COSAC oven, and perform a measurement of the composition of the volatile fraction
matter close to the surface with the gas-chromatograph. Although the system worked well,
no sample could be obtained and the oven stayed empty as the SD2 drill penetrated into a
cavity and never touched ground (Di Lizia et al. 2016).

Ptolemy was operated after about 50 hours at the comet surface, using an oven designed
to capture cometary gas onto a cold molecular sieve reagent (Comet Atmosphere Sample
Experiment, CASE). The oven was heated to 200 ◦C, but unfortunately, the sample gas
pressure was too low to flow through the GC columns (Morse et al. 2016).

As the ovens stayed empty, no attempt was made to operate CIVA-M, so no close-up
IR imaging, which could have given information on the mineralogy of individual surface
grains, was performed. As with SD2, the APXS instrument did not touch the surface of the
comet and no useful alpha/x-ray spectra have been obtained.

Shortly after the FSS, Philae went into an unplanned hibernation. Despite “waking-up”
in June 2015, all attempts to command the instruments and start long term science investiga-
tions, turned out to be unsuccessful (Ulamec et al. 2016, 2017). Hence, the expected results
regarding analyses of the cometary surface composition failed to materialise.

3.6 Some of the Properties of Cometary Dust

Cometary dust particles have been analysed in the laboratory following the Stardust mis-
sion to comet Wild 2. The atomic composition has been established in situ on mission to
1P/Halley and by the COSIMA experiment on Rosetta. Hence the mineralogical composi-
tion of cometary material has been fairly well established and the mineral to organic ratio
(55:45) has been determined (Bardyn et al. 2017). However, the compositional studies have
not provided details on the molecular composition of the refractory component and it may
yet prove difficult to deduce complex molecules in the gas phase if the fracture patterns in
the mass spectrometers prove challenging to determine.

Perhaps more fundamentally, the Rosetta observations have opened issues that might
have been thought to be closed. The Giotto dust detection systems provided a complete set of
observations from around 10−20 kg, corresponding to radii of around 0.02 microns, upwards
(e.g. McDonnell et al. 1991). The Rosetta instrumentation provided no direct measurements
of particles densities for particle sizes less than about 14 microns but also indicated the
presence of non-escaping particles in the centimetre size range. This has led to enormous de-
bate on the size distribution of both escaping and non-escaping particles within the nucleus
and the relative significance of different particle regimes. Furthermore, the physical prop-
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erties (e.g. porosity and structure) remain issues of discussion. The in situ measurements
do suggest that large particles dominate the mass loss (Merouane et al. 2016) but there are
considerable uncertainties. And while in situ measurements are admittedly challenging, the
complete absence of more straightforward high phase angle (low scattering angle) remote
sensing data requested in proposals in 1994 is purely down to the implemented spacecraft
operational profile. This is not a moot point because the dust distribution function is a nec-
essary component of refractory to volatile ratio calculations.

3.7 Summary

With respect to the goals seen in Table 1, we can conclude that several have been broadly
met while others were compromised by various issues with the spacecraft and its instrumen-
tation. The nucleus of 67P has been characterised, much has been learnt of morphology and
the dynamical properties have been established. The surface composition, however, is not
well understood and one can only really say that organics are present—something that was
clearly established 30 years ago at 1P/Halley. It is improbable that the composition can be
accurately determined by remote sensing leaving a repeated attempt at in situ analysis or
sample return as the two operational techniques available to make further progress. The lack
of solid information on the mineralogical and chemical composition of refractories is also
present as part of goal 2 (Table 1) and similar statements apply. Here, however, the excellent
knowledge of the gas composition gives us confidence that the basic volatile composition is
known although the variability and the changing composition with illumination conditions
remains to be understood in detail. To a large extent, this is a consequence of the major
deficiency in Rosetta data—namely the absence of meaningful constraints on the physical
properties of the surface layer and the interrelationship of volatiles and refractories at depth.
This forms an important input to solar system formation models and is also directly related
to how cometary activity (and subsequent evolution) develops. Our knowledge of the pro-
cesses in the surface layer (goal 4) have not really been advanced by the mission and we
continue to suppose that effects such as sub-surface sublimation, recondensation in the in-
terior and amorphous-crystalline transitions could have significance without having major
additional input to the discussion. Hence, the physical structure and composition of the sur-
face layer to a depth of 1 metre and the inhomogeneity of this layer across the surface remain
key questions after the mission.

4 Key Observations for the Future

4.1 The Depth Profile (the First 2 Metres)

While the Rosetta observations have provided hints on the structure of surface layers and
specifically the porosity, the difficulties with Philae essentially compromised the goal of
looking at the interrelation of volatiles and refractories and their variation with depth at
intermediate scales. The primary goals would be

– to measure the density of cometary material with depth
– to establish the refractory to volatile ratio with depth
– to determine the volatile composition with depth

These three quantities would provide us with several pieces of information that are blocking
study of cometary activity, namely
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– the depth and density of the uppermost inert layer (if it exists)
– the changing volatile mixing ratio with depth and detection of a sub-surface recondensa-

tion layer
– the determination of the positions of species-specific sublimation fronts (should they ex-

ist)
– the depth at which internal properties are no longer influenced by the irradiation of the

surface

It should be noted that models have been developed that purport to derive these quantities
but none of these have actually been measured to confirm and/or constrain the models. It
is also notable that coring down to at least 1 metre and preferably 3 metres was the initial
target of the Rosetta mission when it was still a sample return mission in the 1980s. It is
perhaps telling that we have not been able to refine this significantly other than to confirm
what we already knew.

4.2 Microphysics of the Surface Layers

It is evident from the work on Rosetta data that our understanding of the microphysics of the
surface and sub-surface layers remains rudimentary. This has left two major uncertainties in
our understanding of comets.

First, we do not know how the volatile component is associated with the refractory com-
ponent of cometary material. This is vital to understanding how comets formed and may
ultimately provide key information on the solar system formation process. One can envisage
ices surrounding or encapsulating the dust component, ices within dust matrices, ices as a
component isolated from the refractories and so on. There is no strong evidence supporting
any of these models.

Second, the thermophysical behaviour of the surface and sub-surface layers remain in-
adequately constrained. We have values for the thermal inertia but the thermal conductivity
and heat capacity are unknown, the importance of gas transport and re-condensation are
unknown, and the refractory to volatile ratio inside the nucleus remains a subject of fierce
debate. Without these, models of cometary evolution are, at best, poorly constrained.

Hence, one of the primary objectives for future missions must be improved knowl-
edge of thermophysical parameters since data interpretation and our understanding of
cometary activity heavily depends on the output of thermophysical computer simula-
tions of the upper cometary surface layers (≤ 1 m). These parameters strongly depend
on microphysical details of the cometary surface, such as e.g., the material composi-
tion, the morphology of the material (structure, arrangement of the particles, coordina-
tion number, void space) and the mixing of the different components (silicates, organ-
ics and ices). Besides the thermal modelling aspect, also the macroscopic behaviour of
the cometary surface is influenced by the microphysical properties of the material, such
as the tensile strength (Gundlach et al. 2018), compressive strength (Lorek et al. 2016;
Schräpler et al. 2015), and the thermal conductivity (Gundlach and Blum 2012). However,
the degree to which we can provide data on these topics needs to be traded against the
complexity of method required to get that data.

Possible scenarios aiming to investigate the microphysical properties of cometary sur-
faces are illustrated in Fig. 2. The concepts are given in increasing order of complexity.
Level A aims at measuring the material composition and improving upon Rosetta (Bardyn
et al. 2017) and could dramatically reduce the number of free parameters of thermophysical
models. In level B, the morphology of the upper surface layers (0.25 m) could be investigated
by carefully acquiring samples without destruction. Mechanical alteration can be avoided by
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Fig. 2 Possible concepts designed to study the microphysical properties of cometary surfaces. Level A and B
could be conducted without cooling of the sample and would therefore be simplest to implement. In contrast,
the aim to study the microphysical properties of the volatile components (levels C and D) requires cooling of
the samples during sampling, transport and measurements

careful and slow drilling. Levels A and B could be performed without the need for cryogenic
sampling, whereas sampling the cometary surface (0.5 m) at low temperatures (≤ 130 K) to
avoid thermal alteration is a further step in complexity. Because of the relatively high tem-
perature, this scenario would only enable the investigation of the non-volatile components
and water ice. The final sample acquisition level, level D requires very low temperatures
(≤ 90 K) to provide material from a depth of >1 m. This scenario provides the possibility
to study the location of CO2 ice beneath the surface and the existence of amorphous water
ice.

The microphysical properties of the cometary surface to be studied can be summarised
as follows:

(1) Composition1 of the material (level A)
(2) Size distribution of the grains (level A)
(3) Shape of the grains (level A)
(4) Morphology of the material, i.e., porosity, coordination number and void space (level B)
(5) Bulk properties of the building blocks, e.g., specific surface energy, Poisson’s ratio,

Young’s modulus (level B)
(6) Mixing of the different components (non-volatile materials and water ice) (level C)
(7) Location of carbon-dioxide ice (level D)
(8) Existence of amorphous water ice (level D)

These properties and the difficulty of determining them illustrate the challenges that face
surface landed missions.

1Knowledge of the material composition can be used to infer the bulk properties of the material, such as the
specific surface energy, the Poisson’s ratio and the Young’s modulus by laboratory experiments conducted
with analogue materials.
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Fig. 3 The region definition on 67P with general areas of major local interest marked as polygons

4.3 Local Inhomogeneity: Comparisons at Several Local Sites

It is apparent from the surface morphology of 67P and the variations in activity (both in
magnitude and composition) with position that inhomogeneity in longitude and latitude on
the nucleus are present. The variability evident at 9P/Tempel 1 was perhaps less extreme but
nonetheless present. There remains considerable doubt whether this inhomogeneity is pri-
mordial or evolutionary. Hence comparisons of areas of different morphology and/or mor-
phological context are highly desirable.

For 67P, the diversity is so large that selecting a limited number of regions of interest
becomes a challenge in itself. In Fig. 3, 10 sites have been marked that could justify mobility.
A comparison of the surface layers of the smooth, relatively inactive, Imhotep region (site F)
with the smooth, highly active, Hapi region (A) would clearly be of interest while comparing
the dust-covered plains areas of the north (site B) with the dust-poor region of the southern
hemisphere (sites G and J) would also have considerable scientific merit. Site B is near a
region now known to have become strongly active for multiple rotations of the nucleus.
Site C is the Aswan area where a cleaving and collapse of a cliff was seen (Pajola et al.
2017). Site D is in Anubis and is an area that showed surface changes similar to those
seen in Imhotep and would therefore provide a comparison with site F. The Anhur region
(site E) shows multiple morphologies and activity that can be compared with the adjacent
Bes region (site H). H is where ices/bright material was exposed (Fornasier et al. 2017)
during the approach to perihelion while G is an area that shows circular structures similar to
those observed on Tempel 1 and is very different from the adjacent smooth site F.
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All of these sites can provide a good case for in situ investigation because one must
expect that there are physico-chemical reasons to explain their morphological diversity. The
conclusion here is that mobility or the use of multiple-landed assets would have a strong
scientific rationale.

4.4 The Deep Interior

The results obtained by the CONSERT radar (even if operated in very unfavourable condi-
tions) demonstrate the unique capability of radars to provide information about the internal
structure of a comet nucleus. CONSERT was operating at low frequency (90 MHz) to max-
imise the penetration inside the nucleus at good spatial resolution while still keeping the an-
tennas size reasonable. This frequency range allowed analysis of potential structures larger
than 10 metres in size. The use of higher frequencies would give access to smaller structures
and thus provide better constraints on the nucleus building blocks sizes. Since the data col-
lected by Rosetta indicate a contrast in physical properties between the shallow subsurface
at Abydos and Agilkia, and the deeper internal structure, it would be quite interesting to
get a global description of the shallow subsurface (over a few metres/tens of metres) which
could be provided by a monostatic radar operating in reflection from orbit with no need of a
lander (see, for example, Herique et al. 2018).

4.5 The Nature of Complex Organics and Maintaining Integrity

The isotopic, elemental, chemical, and chiral composition of non-volatile material, including
complex organic material was not established. The elemental composition of ejected dust
was found with COSIMA but the composition of complex organics, for example, remains
unknown. Clearly, any discussion of comets bringing complex organics to the inner solar
system and their participation in the evolution of life requires knowledge of the composition
of these organics and it is fully apparent that the optimum way to address composition is
by using the power of Earth-based analytical laboratories. Remote-sensing approaches are
totally inadequate whereas in situ analysis remains technically challenging and limited by
spacecraft resources. It is this aspect that forms the strongest argument for sample return.

Analytically, we are in a far better position now than 20 years ago with recent decades
having seen both progressive increases in performance of instrumentation, huge increases in
computer power and ease of use, and breakthroughs such as the introduction of nano-SIMS
technology, the spread of con-focal microscopy and sub-micron resolution X-ray micro-
scopes as well as the greater availability of synchrotron-based techniques.

Laboratory analysis (especially of the mineralogy, chemistry and isotopic composition)
of solar-system and extra-solar material has been enormously important in furthering our
understanding of the origin and evolution of the solar system, as well as shedding light on the
nucleosynthetic processes in several types of star. Using samples returned from the Moon, as
well as meteorites likely to have come from a variety of parent bodies (including Mars and
perhaps the asteroid Vesta), we have been able to determine the age of the Earth and the solar
system, the timescales for the dynamic evolution of the solar system, and the timescale over
which liquid water existed on early planetesimals. The power of laboratory instrumentation,
and the advantage of having samples on Earth, is shown by the way in which lunar samples
returned almost 50 years ago are still leading to fresh insights. If we had instead relied
solely on in situ analysis of the Moon with 1960’s technology, our understanding would be
a fraction of what it is today.
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The two major issues with returning to Earth are connected to evolution of the sample
during the sampling process and the return trip and the effects on the sample during reentry.
The latter in particular is a significant problem for attempts to acquire undisturbed cores. The
forces due to deceleration on re-entry will undoubtedly compromise the sample’s integrity
structurally, leading to mixing between products from different depths. It seems apposite
to conclude that, for the foreseeable future at least, an ambition to return to Earth, a cored
cometary sample is highly challenging and possibly untenable. Perhaps in the future some
aspects of the problem would be overcome if there was a working “Deep Space Gateway”
or “Lunar Orbital Platform” of some description that would allow the sampling to be carried
out in an off-world environment (where conditions of low pressures, low temperatures and
low gravity would be available for exploitation). But for now, such a possibility is certainly
not feasible and the original Rosetta definition team, in considering a return to the Space
Station, concluded that such a scenario was potentially even more complex than return to
Earth. The CAESAR approach, of sample grabbing and limiting evolution by cooling and
removal of the gaseous component, was a valid compromise.

4.6 Non-local Thermal Equilibrium in the Immediate Proximity of the Nucleus
and Coma Structure

Rosetta has demonstrated that constraining the spatial distribution of gas and dust sources
uniquely is vastly more challenging than originally thought. And yet this remains a key
question in the efforts to relate surface structure (thermal, mechanical, chemical) to activ-
ity and evolution. The observational requirements for future missions needed to break the
degeneracy and relate coma gas and dust densities to surface properties are challenging.

The single point density measurements by COPS have shown the importance of this
type of measurement. Local gas density measurements at multiple positions within the inner
coma would have provided far more rigorous constraints on the gas flow field. In particular,
continuous measurements near the sub-solar point (over periods greater than the rotation
period at a cadence of <1/min) would have been particularly valuable. When coupled with
a local velocity and temperature measurement (and we note here the additional importance
of determining the temperature anisotropy as a constraint on the energy distributions)

Remote sensing observations of the gas distribution were obtained by Rosetta but their
interpretation remains complex. In a future mission concept, the inversion of density, tem-
perature, and velocity from remote sensing should be traded against local direct multipoint
measurements to establish the optimum strategy. The critical aspect is whether the gas flow
field can be inverted to produce global maps of source strength at a resolution that is suffi-
cient to relate the production rate to surface morphologies and properties. Given the varia-
tion in surface morphology seen on the surface of 67P, the required resolution is potentially
<100 m and comparable to the mean free path for modest activity cases.

The composition of evolving gases and their interaction is not widely discussed in the lit-
erature. Finklenburg (2013) looked at CO2-H2O interactions in highly simplified geometries
and showed the importance of understanding effects in terms of the Knudsen penetration
number and the momentum transfer between CO2 and H2O. Where simultaneous remote
sensing observations of multiple species in proximity to the nucleus have been obtained,
the different spatial distributions of the different parent molecules are clearly evident (Feaga
et al. 2007; Filacchione et al. 2019). The relative dominance of CO2 at some points in the
coma of 67P in local measurements was also apparent (Hässig et al. 2015). As a result, ob-
taining density, temperature, and velocity of the major species (H2O, CO2 and CO) will be
important in most cases.
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It is usually assumed that the dust has no influence on the gas flow field when the dust
optical depth is low (as was usually the case at 67P—outburst phenomena produced excep-
tions). Reports of sublimation above the surface have been made (Gicquel et al. 2016) and
evidence of significant ice particles in an inner coma have been reported for 103P/Hartley 2
(Hermalyn et al. 2013) and hence this may not be an accurate assumption—at least in some
cases. The lifetimes of pure water ice particles in the innermost coma are quite long (Lien
1990) and this may explain the evidence of sublimating grains seen in ground-based ob-
servations of C/1996 B2 (Harris et al. 1997). Consequently the volatile content of the dust
within a few kilometres of the source is a key parameter for future measurements.

There are several properties of the dust that affect the dust flow field pattern in addition
to the source. It is well known that particle size and shape are important. The dust size dis-
tribution remains a critical parameter in all studies of the dust flow field and its brightness at
all wavelengths. The absence of direct (unambiguous) measurements of small (<14 micron)
particles is a significant source of concern in establishing accurate models for 67P and it can
be argued that the size distributions of larger particles are biased as a consequence of the
spacecraft being almost always in a terminator orbit configuration. It is almost mandatory to
resolve this problem in future missions.

Individual scattering properties of particles are also important for extrapolating local
measurements to 3D distributions using remote sensing instrument. One could envisage
some form of measurement that would constrain this property and provide information on
the refractive index. Ivanovski et al. (2014) have shown that the rotation of particles can
influence the direction of motion but it is hard to envisage experiments to establish mean
rotation rates and their influence on the bulk flow.

4.7 Cross-Comet Calibration

While we have so far considered the questions that need to be answered to better under-
stand individual comets, the wider context of using comets to understand planet formation
requires comparison between comets. We need to understand what the average comet is like,
which properties are the results of the unique history of individual objects, and what can be
attributed to conditions in their formation regions.

The comets that we see today come from three reservoirs: The Oort cloud is the
most distant, and the source of long period and dynamically new comets, while short
period Jupiter family comets (JFCs) come from the scattered disc of the Kuiper Belt.
The modern distinction is based on the comet’s orbit (specifically its Tisserand param-
eter with respect to Jupiter), and splits comets into “ecliptic” comets from the trans-
Neptunian region and “nearly isotropic comets” (NICs) from the Oort cloud, the latter in-
cluding both long period and high inclination short period comets of the Halley type (Lev-
ison 1996). The third reservoir is the main asteroid belt, which has recently been recog-
nised to contain a significant population of icy bodies, including the so-called “Main Belt
Comets” (MBCs), whose relatively circular orbits stay within the belt (Jewitt et al. 2015;
Snodgrass et al. 2017b). The MBCs have stable orbits over the age of the Solar System, and
likely formed in the same region they are found now, or at least were emplaced in the belt as
the giant planets were forming. We note here that China is currently working on a mission
to 2016 HO3 and 133P/Elst-Pizarro that may provide further data on this somewhat bizarre
class of objects (Zhang et al. 2019).

Kuiper Belt objects also likely formed close to their current distance from the Sun, al-
though the scattered disc (as the name implies) has a mixed origin, while the Oort cloud
is populated by bodies scattered out of the original Solar System proto-planetary disc. It
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was thought that Oort cloud objects (and therefore long period comets) had their origin in
the giant planet region, and therefore formed closer to the Sun than JFCs from the Kuiper
Belt (e.g. Dones et al. 2004), but the latest dynamical models suggest a greater mixing and
less clear distinctions between the original source region for different comet classes (e.g.
Nesvorny et al. 2017).

The isotopic ratios of various elements, and especially the Deuterium to Hydrogen ratio
(D/H), can be used as a tracer of the original formation location of a comet, as it is expected
that these ratios were set by the temperature when their ices condensed out of the gas in the
protoplanetary disc, and therefore their location within this disc (Robert 2006). Measure-
ment of the isotopic ratios in a number of common elements (e.g. H, C, O, N, S) for a given
comet can more uniquely constrain models (Bockelée-Morvan et al. 2015). To date we only
have in situ measurements of D/H in 1P and 67P (Altwegg et al. 2015), and a few other ra-
tios from Rosetta. Instead most isotopic measurements, and indeed nearly all compositional
information on cometary comae, come from remote observations with telescopes on Earth
and in space. D/H measurements via high-resolution spectroscopy have been limited to the
brightest comets, which are nearly all NICs, as they tend to be more active than returning
short period comets. Remote D/H measurements were possible for the JFC 103P during
a close approach to Earth at perihelion, using the ESA Herschel space telescope (Hartogh
et al. 2011). The D/H measured in this JFC and that found by Rosetta at 67P are very differ-
ent, implying a wide range within the same comet type, or possibly systematic differences
between remote and in situ observation. Measurements at a larger number of comets, and at
different types of comet, would be highly desirable. Lis et al. (2019) have proposed an ex-
planation based on their observation that hyperactive comets, such as 46P/Wirtanen, require
an additional source of water vapour in their comae, explained by the presence of subliming
icy grains expelled from the nucleus and that these particular objects have D/H ratios in
water consistent with the terrestrial value. They propose that the isotopic properties of water
outgassed from the nucleus and that of icy grains may be different because of fractionation
effects during the sublimation process. There clearly remain issues of interpretation here
that need to be resolved.

So far we have only visited short period comets: one NIC (1P) and five JFCs (not in-
cluding the spacecraft that interacted only with the distant ion tails of comets; see e.g.
Neugebauer et al. 2007). It would be very interesting to visit a long period comet, espe-
cially a dynamically new one entering the inner Solar System for the first time since it was
scattered to the Oort cloud, to see a more ‘pristine’ surface, but these comets pass through
the accessible region of the Solar System on much shorter timescales than missions can be
planned and launched. One concept that may overcome this difficulty is to have a space-
craft launched to a suitable ‘parking’ orbit, from where it can then be sent to intercept a
newly discovered comet (e.g. Hewagama et al. 2018), which becomes more feasible with
the expected early discoveries of inbound objects by next generation sky surveys like the
Large Synoptic Survey Telescope (LSST). An implementation of this concept, Comet Inter-
ceptor, has recently been proposed to ESA as a ‘fast’ mission (a relatively low budget class
of mission, launched as a secondary payload), and was selected for a 2028 launch in June
2019.2 The other unexplored population, the MBCs, are far more accessible, with relatively
circular orbits and low activity levels. Concepts to visit one of these objects have been pro-
posed to various space agencies (e.g. Meech and Castillo-Rogez 2015; Snodgrass et al. 2018;
Jones et al. 2018), but have not yet been selected for flight.

2Comet Interceptor is not yet described in the literature, but more details can be found at http://www.
cometinterceptor.space.

http://www.cometinterceptor.space
http://www.cometinterceptor.space
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There is also significant diversity within the same population of comets. Vincent et al.
(2017) suggest different evolutionary ages for the JFC nuclei that have been imaged by
spacecraft, but, as pointed out by Kokotanekova et al. (2018), the comets visited by space-
craft so far are all most likely ‘young’, as younger comets are more active and therefore
brighter and easier to discover. Very evolved comets are expected to lose their volatiles
and/or build up an insulating mantle, and it would also be interesting to visit a much lower
activity comet, or even one of the population of ‘asteroids in cometary orbits’ (ACOs),
which are thought to be extinct comets at the end of their evolution. As survey telescopes
are becoming more sensitive, more of these faint targets are being discovered.

Modern astronomical surveys are a powerful tool in understanding comets, as they al-
low us to study them in very large numbers. While it is clear that spacecraft encounters
provide much more detailed information, we can only ever hope to visit a tiny fraction
of the total population, while telescopes can provide a broad overview. Survey telescopes
themselves provide useful information on orbits of very large numbers (LSST expects to
discover > 104 comets; LSST Science Collaboration 2009), allowing their dynamics to be
studied, and some information on sizes and activity levels to be derived. Surveys also dis-
cover unusual objects that tell us about the variety within the population. Targeted surveys
of large numbers of comets tell us about the variation in composition, through either nar-
rowband photometry or spectroscopy, and have allowed some taxonomic descriptions to
be created (e.g. carbon-depleted vs. normal abundance—A’Hearn et al. 1995). Surveys of
inactive nuclei have produced size distributions (e.g. Fernandez et al. 2013) and constrain
strength and density (see Kokotanekova et al. 2017, Groussin et al. 2019, this issue). The
occasional appearance of a particularly bright comet allows further detail to be extracted
from telescopic observations, as a variety of techniques can be employed over a wide range
of wavelengths, including higher resolution spectroscopy to study gas species or investiga-
tion of the thermal emission from dust. Bright comets can also be studied for a larger part
of their orbit, allowing the evolution with changing solar heating to be investigated, for ex-
ample looking at the changing relative abundance of coma species (the famous ‘Christmas
tree’ plot for Hale-Bopp; Biver et al. 1997). While much of our knowledge comes from a few
particularly bright comets, which tend to be dynamically new NICs, advances in telescope
technology mean that similar studies are now possible for more typical objects, especially
with the anticipated launch of JWST (Kelley et al. 2016). Other well-studied comets include
those visited by spacecraft, as the opportunity to make simultaneous telescopic and in situ
measurements meant that large observing campaigns could be justified (Meech et al. 2011;
Snodgrass et al. 2017a). Although there is still some work to do to join the details returned by
spacecraft to the very large-scale view from telescopes, these observations provide the link
between the focussed spacecraft results and the general properties of the broader population
of comets.

4.8 Analogue Materials for Testing

It is interesting that the measurements during the KOSI experiments (Kochan et al. 1998)
are still occasionally referred to. This is in part a consequence of the rather limited amount
of high quality analogue testing performed in the 15–20 years that followed KOSI. This
is however changing. Groups in Braunschweig (e.g. Gundlach et al. 2011), Graz and Bern
(e.g. Pommerol et al. 2015a) have been particularly active in the past 10 years in looking at
cometary analogues. The behaviour of analogues is sometimes rather surprising. For exam-
ple, there are significant differences in the opto-mechanical behaviour of dust encapsulated
in water ice as opposed to dust mixed with water ice. Analogue testing can be used to look
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at the release of material from a surface, how volatiles diffuse through a surface layer, how
the surface texture evolves, and how different chemical species behave with respect to water
ice and its outgassing. The difference between CO2 and H2O as a driving volatile can also
be investigated.

Constructing laboratory models in a 1 g environment applicable for low g cometary cases
remains challenging and may ultimately be limited in applicability. However, these labora-
tory models do show that the physics can be far more complicated that the simplified as-
sumptions used in even the most sophisticated numerical studies (e.g. Marboeuf et al. 2012).

A further use of laboratory models is in evaluating sample integrity. Even if analysis is
conducted in situ, the sampling process itself may affect the sample before it reaches the
analytical instrument. The maintenance of sample integrity before measurement is there-
fore potential of importance in constructing an accurate result. Hence, analogue testing is
required and should be a component of any future comet mission.

5 Cross-Table of Missions v. Goals

We refer here to the summary in Table 3.

5.1 The Coma Swarm

One of the major issues with the Rosetta mission profile as flown was the persistent use of
terminator orbits combined with the large cometocentric distances flown during the peri-
helion passage. This has resulted in limited information in several specific areas associated
with the gas and dust dynamics of the outflow and subsequent controversy.

While single point measurements of the gas density and composition by the ROSINA
instrument provided a constraint on the gas flow field and composition, the non-uniqueness
of the results when extending them to 3 dimensions around the nucleus has been shown to
be extreme. Incorporation of other data (from the MIRO experiment for example) has been
shown to be difficult because of the non-LTE nature of the flow (Marschall et al. 2019). The
observations of VIRTIS-M were of insufficient resolution to provide meaningful constraints.

One approach to addressing these issues is to use a swarm of small satellites to surround
the nucleus and make multi-point simultaneous measurements of the coma. The aim would
be to fully characterise the 3D distribution of gas and dust including density, temperature,
and composition. Each small satellite could also carry low resolution camera systems (vis-
ible and/or infrared) to support the 3D analyses. Such a mission would also allow higher
accuracy measurements of production rates.

Swarms could also be useful in resolving the dust production rate issues encountered
by Rosetta. It would remain to be seen how much payload could be incorporated onto each
element of any one member of a swarm but the need for further investigations of dust particle
properties in situ remains paramount after Rosetta. It should also be noted that sample return
may lead to further information but transfer to and re-entry into the Earth’s atmosphere will
have influence on potentially delicate particles including thermal evolution.

5.2 The Surface Network

Inhomogeneity of the nucleus in morphology and (probably) chemistry is evident. Further-
more, there are seasonal variations that require considerably more investigation than Rosetta
could afford. Hence, the scientific need to investigate and compare several areas on a comet
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is still there. One approach is use a surface “network”. Here, multiple static landers are
placed on the surface and conduct several experiments in a coordinated manner. The ad-
vantage of the network is that sounding can be conducted from one network element to
another and seismic studies can also be carried out to determine the internal properties of
the object. A CONSERT style system would still have advantages, however, in providing a
moving element on an orbiter. However, the experiment package for each landed element
might also include instruments dedicated to comparisons of the physical properties between
the landing sites. Instrumentation could include microscopic imaging, miniaturised mass
spectrometers and/or Raman spectrometers and penetrating thermal sensors. The technical
challenges would include the anchoring to the surface and the need to study the seasonal
variations by ensuring network element lifetimes are adequate to perform observations for
extended periods in darkness at high latitudes.

5.3 The Surface “Rover”

In the early phase of the conceptual design of the Rosetta Lander (RoLand), the possibility
of mobility by hopping was investigated (RoLand Proposal 1995; Ulamec et al. 1997). The
idea was given up though, as any movement from a safe landing site was considered an
unnecessary risk and mobility is difficult to combine with firm anchoring. However, any high
precision landing at a specific site (e.g. within proposed active areas) is highly attractive.
Consequently, mobile comet landers have been proposed. One particular concept studied in
detail was the Comet Hopper, CHopper, proposed for the opportunity #12 within the NASA
Discovery Program, selected as one of the three finalists but eventually not selected for
implementation in 2012.

The CHopper mission would have attempted to measure cometary activity of comet
46P/Wirtanen at several (up to six) locations and various heliocentric distances. CHopper
would have been a flexible spacecraft, powered by two Advanced Stirling Radioisotope Gen-
erators, ASRG’s, rendezvousing comet 46P/Wirtanen and investigating several surface areas
at various heliocentric distances using a propulsion system based “hopping” (Clark et al.
2008). Another Discovery proposal to investigate cometary activity was CHagall, based on
ideas as proposed for CHopper. As neither CHopper nor CHagall have been selected, and
Philae hardly contributed to this particular aspect of cometary science, these measurements
are still to be done in the course of future missions. It is worth noting that comet sample re-
turn missions will not necessarily allow new results regarding the mechanisms of cometary
activity. For this, long term high-resolution in-situ observations with cameras, mass spec-
trometers/pressure sensors and possibly drills are almost certainly the best approach.

Generally, mobility strategies as considered or designed for other low gravity bodies like
asteroids or the Martian moon Phobos, are relevant also for comets. An overview of small
bodies hoppers, including the Soviet Phobos Hopper from 1988 (PROP-F) is given e.g. by
Ulamec et al. (2011); a description of MASCOT, a small mobile surface package which has
been delivered by the Japanese Hayabusa 2 spacecraft to asteroid (162173) Ryugu is given
by Ho et al. (2017).

5.4 The Multi-Object Fly-by

The diversity of comets has been demonstrated by imaging of nuclei during fly-bys. Com-
parison of Hartley 2, Wild 2, and 67P is sufficient to show this clearly. However, chemical
differences are also evident. This suggests that there remains substantial justification for
multi-object studies.
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The juxtaposition of broad surveys versus detailed investigations of individual bright
comets is analogous to the arguments for missions to fly-by many comets versus a Rosetta-
like rendezvous mission. While many of the questions discussed herein require another ren-
dezvous mission, there is also a strong desire to increase the breadth of our understanding of
the comet population by visiting a larger number. The ill-fated CONTOUR mission would
have visited three or four comets (Cochran et al. 2002), but failed shortly after launch. Mul-
tiple asteroid fly-by tours within the main belt have been proposed (Rivkin et al. 2015;
Bowles et al. 2018), which could potentially visit MBCs, while the extended missions of the
Giotto (1P/Halley, 26P/Grigg-Skjellerup), Stardust (82P/Wild 2, 9P/Tempel 2), and Deep
Impact (9P/Tempel 2, 103P/Hartley 2) spacecraft show that it is also quite feasible to en-
counter multiple comets in near-Earth space although none of these concepts have been
selected at the time of writing. Fly-by missions can address nucleus science through remote
sensing, even if they return only a snap-shot at a single time, and have the potential to return
compositional information on the more abundant coma species if they pass close enough
with suitable mass spectrometer instrumentation. Fly-by missions necessarily trade the sci-
entific value of a closer approach against the safety of the spacecraft making a high-speed
pass through a dusty environment, but with careful orbit planning and a payload designed
to return results from a safe distance, many comets could potentially be studied by the same
spacecraft. The common instrumentation for each fly-by would be extremely beneficial in
making detailed comparisons. Sensitive instruments are increasingly being designed to be
small enough for use in micro-satellites (particularly ‘CubeSats’), raising the possibility of
deployable probes designed to get much closer during a fly-by, taking a higher risk but
probing the inner coma. The Comet Interceptor concept (see above) makes use of such de-
ployable probes to enable close approach investigation during a potentially very-high speed
fly-by of a long period comet, while keeping the ‘mothership’ at a safer distance.

5.5 Advanced Impact Exhumation

The Deep Impact experiment demonstrated a method to gain access to the interior of a
comet without the complexity of drilling. Impactor technologies are being further advanced
through the Asteroid Impact and Deflection Assessment (AIDA) mission studies. As part
of AIDA (Cheng et al. 2015), two independent spacecraft would be sent to the asteroid,
Didymos. An asteroid impactor—the NASA Double Asteroid Redirection Test (DART)
spacecraft—would be sent to the target and a follow-up asteroid rendezvous spacecraft,
Hera (Michel et al. 2018), would observe the consequence of the impact.

The Deep Impact mission was not able to assess the impact crater accurately and while
much was learnt about the impact itself and the surface of the comet target (9P/Tempel 1),
there was relatively little learnt of the exposed interior. However, it is apparent that this
is a means of accessing primitive material in a cost effective manner. It is also apparent
that the exposure of the interior results in a relative slow change in the new surface layer
properties (as shown by Pajola et al. 2017 following the Aswan cleaving event). Hence, this
approach is of significant scientific interest. It would need to be established, however, how
much the exposed material is modified by the impact itself and whether the properties we
are most interested in (e.g. the volatile-refractory inter-relationship) are influenced by the
impact process.

5.6 Sample Return

Sample return from a comet has been a “Holy Grail” for more than 30 years. Early concepts
were discussed in Eberhardt et al. (1986). This is now being studied in detail with a modern
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approach (although coincidentally using the same acronym) through the CAESAR mission
that was recently pre-selected by NASA as part of its New Frontiers programme but which
lost out in the final down-selection in July 2019. The concept proposed therein was focussed
very strongly on returning the sample with only additional observations that are necessary
to complete the task.

The sampling approach differs significantly from the original (1980s) Rosetta concept
and illustrates that “sample return” can mean many different things. In the case of CAESAR,
the approach was strongly focussed on the chemistry. The sampling system is currently
intended to get a sample from the surface, if necessary, by using a rotational grinding-like
system. This would reduce the integrity of any sample for studies of the physical nature of
the surface layer and its structure with depth. The volatile component is then allowed to
outgas with the gaseous products being captured and analysed. The refractory materials are
maintained at low temperature and returned to Earth.

This clearly answers one of the main outstanding issues from previous comet missions in
that it determines the surface composition (under the obvious assumption that post-sampling
reactions are of no importance) while the volatile composition (about which we have rather
accurate knowledge already) is also assessed. However, it is not obvious that such an ap-
proach can place further constraints on the structural and physical nature of the surface
layer. Hence, there will remain considerable scope for future sample return missions even
if CAESAR is eventually completed successfully. On the other hand, as noted above, the
maintenance of sample integrity in a physical sense through the return to Earth is likely to
be extremely challenging.

For completeness, we should also note that Albee et al. (1994) proposed a coma sample
return mission called Soccer as a joint NASA-ISAS mission which indirectly led to the
successful STARDUST coma sample return mission within NASA’s Discovery programme.

5.7 Other Targets of Relevance

While focussing on missions to active comets, there are other objects that are of relevance for
cometary research that deserve some level of attention. The existence of “main-belt comets”
has provoked proposals for future missions because they are easier to get to and it is clear
that understanding their outgassing would contribute to cometary science although the exact
relationship may not be completely obvious.

Investigation of the surface layers of “dead” comets (3200 Phaethon and 2015 TB145
have been discussed as possible examples with Phaethon now being the target of JAXA’s
Destiny+) would provide an important description of how activity eventually ceases. Our
observations at 67P would suggest that, in some of these objects, transport and airfall of
material has finally choked all activity but that relatively pristine material is close to the
surface. This hypothesis could be tested. The absence of activity would make the mission
far simpler if there is concern about outgassing and large dust particles in the vicinity of the
object. Hence, getting at pristine material in these objects may be more straightforward than
for active comets.

Observations of Centaurs, which could be objects in transition from the Kuiper Belt to
the inner Solar System, would also be of major interest in view of their limited thermal
evolution. 2060 Chiron is a remarkable object that could easily yield significant scientific
knowledge of primitive materials. It is, of course, also known to outgas. The major drawback
is that Centaurs are challenging objects to study in situ, requiring an energy source beyond
solar power and significant delta-V to reach.

Trojan asteroids may also be relevant and are now the subject of NASA’s Discovery
mission, Lucy. Their relationship to cometary objects is, however, unclear.
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Table 3 Comparison table

Mission concept Description Goals Comments

The coma
swarm

Multiple small satellites
or cube-sats orbiting or
manoeuvering around
the nucleus making
local measurements of
the gas and dust coma

– Detailed evaluation of the gas
and dust dynamics in 3D

– Dust size distributions and
their variation within the coma

– Simultaneous multi-directional
remote-sensing of the nucleus
to monitor activity

The surface
network

Multiple small landed
packages placed on the
surface of the nucleus

– Determination of the interior
structure through low frequency
tomography

It is assumed that this
concept would not
allow a drilling
system– Seismic sensing of the interior

– Local investigation of
the surface layer structure at
sub-centimetre scales

The surface
rover

Single mobile station
traversing the cometary
nucleus

– Determination of the diversity
of cometary material within
one object

It is assumed that this
concept would carry
a drilling system

– Local investigation of the
surface layer structure at
sub-metre scales

The multi-
object fly-by

Single spacecraft
making multiple fast
fly-bys of cometary
and/or comet-like
objects

– Characterisation of the
diversity of comet-like objects

– Imaging and detailed
measurements of composition

Advanced
impact
exhumation

Dual spacecraft system
with an impactor and a
monitoring spacecraft.
Improved version of
Deep Impact to view in
detail the exhumed
material through a
rendezvous

– Evaluation of the internal
properties of the target

AIDA: DART/Hera
concept might be
considered– Determination of the layer

structure (if present)

– Determination of the internal
composition

Sample return Spacecraft rendezvous
and acquisition of
cometary material
followed by return to
Earth

– Detailed laboratory analysis of
cometary material

Studies through
Phase A in the
CAESAR New
Frontiers mission but
subsequently
rejected. Good
chemical and isotopic
studies but perhaps
limited physical
knowledge of the
material

Finally, New Horizons’s observations of 2014 MU69 (Stern et al. 2019) have illustrated
the importance of visiting pristine objects outside the orbit of Neptune although travel times
and power sources remain challenging.

As noted in the introduction, we have effectively ignored the physics of a comet’s in-
teraction with the solar wind herein. While the study of this interaction is interesting and,
for example, multi-point observations of the interaction would undoubtedly be of benefit in
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constraining details, it seems unlikely to us that the next mission(s) to comets will be driven
by this sub-topic.

6 Conclusion

The in situ investigation of comets has taken a giant leap forward with Rosetta. On the
other hand, the mission did not constrain well the activity mechanism and our knowledge of
the physical properties of the surface layer remain somewhat limited. We also have major
questions about the localisation of activity and the gas and dust comae within 2–3 kilometres
of the surface.

It is arguable whether the original comet nucleus sample return objectives laid out in
the early studies for what became Rosetta could be achieved today—even with improved
technology and knowledge of the target properties. Hence, the more limited focus of NASA’s
CAESAR, was undoubtedly a wise approach. However, in its current form, there will still
remain unaddressed issues such as the relationship between volatile and refractory material
in the nucleus interior and the variability between different objects.

Various mission profiles can be considered to answer the outstanding questions. It is
not the purpose of this paper to propose one over the rest (something that would be best
addressed by requesting full proposals) but it is evident that several mission concepts could
be competed against each other leading to optimised scientific return.
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