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Abstract Time measured by an ideal clock crucially depends on the gravitational potential
and velocity of the clock according to general relativity. Technological advances in man-
ufacturing high-precision atomic clocks have rapidly improved their accuracy and stability
over the last decade that approached the level of 10−18. This notable achievement along with
the direct sensitivity of clocks to the strength of the gravitational field make them practically
important for various geodetic applications that are addressed in the present paper.

Based on a fully relativistic description of the background gravitational physics, we dis-
cuss the impact of those highly-precise clocks on the realization of reference frames and
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time scales used in geodesy. We discuss the current definitions of basic geodetic concepts
and come to the conclusion that the advances in clocks and other metrological technolo-
gies will soon require the re-definition of time scales or, at least, clarification to ensure their
continuity and consistent use in practice.

The relative frequency shift between two clocks is directly related to the difference in
the values of the gravity potential at the points of clock’s localization. According to general
relativity the relative accuracy of clocks in 10−18 is equivalent to measuring the gravitational
red shift effect between two clocks with the height difference amounting to 1 cm. This makes
the clocks an indispensable tool in high-precision geodesy in addition to laser ranging and
space geodetic techniques.

We show how clock measurements can provide geopotential numbers for the realiza-
tion of gravity-field-related height systems and can resolve discrepancies in classically-
determined height systems as well as between national height systems. Another applica-
tion of clocks is the direct use of observed potential differences for the improved recovery
of regional gravity field solutions. Finally, clock measurements for space-borne gravimetry
are analyzed along with closely-related deficiencies of this method like an extra-ordinary
knowledge of the spacecraft velocity, etc. For all these applications besides the near-future
prospects, we also discuss the challenges that are related to using those novel clock data in
geodesy.

Keywords General relativity · Relativistic geodesy · Reference frames · Time scales ·
High-precision time measurements · Height systems · Gravity field recovery

1 Introduction

The development of ultra-precise clocks opens the possibility for enhancing several geodetic
applications, including an improved definition of timescales, datum connecting and the ob-
servation of Earth’s gravity field. This paper addresses the possible impact of high-precision
clocks on these applications.

The definition of timescales has wide-ranging consequences for several applications. For
example, there are numerous questions associated with realizing a global reference closest
to the mean sea level, see e.g. a discussion in Sánchez (2012). Work is still under way in
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working groups of the International Association of Geodesy (IAG) to provide conventional
definitions and procedures for the realization of a Vertical Datum Standardization.

A major objective of geodesy is the determination of physical heights, i.e. those heights
related to the gravity field. The use of ultra-precise clocks to this aim has been addressed in
Mai and Müller (2013), indicating that clocks with an accuracy of 10−18 allow for example
datum connections at a level of 1 cm if combined with precise positioning by Global Navi-
gation Satellite Systems (GNSS). Combination of high-precision terrestrial clock and GNSS
data with, e.g., space-borne gravimetric data might enhance spatial resolution and accuracy
of existing global gravity field models and the associated definition of vertical datums.

Finally, this paper will address the possible use of high-precision space-borne clocks
for global gravimetry. This could be realized with clocks that have an ultra-high stability
at short integration times (Mayrhofer and Pail 2012). An assessment will be made of the
achievable gravity field retrieval performance by an efficient error propagation tool, where
the performance for ultra-precise clocks will be compared with other observation techniques
including the already proved techniques of low-low Satellite-to-Satellite Traking (ll-SST)
and Satellite Gravity Gradiometry (SGG).

This paper is organized as follows. After introducing the relevant background on rela-
tivistic reference systems (Sect. 2) and their relation to the commonly used International
Terrestrial Reference System (ITRS) in Sect. 3, a recap is provided of the required fun-
damental equations of time dilation (Sect. 4). The impact of high-precision clocks on the
definition of timescales will be addressed in Sect. 5. The expected benefit of using high-
precision clocks for terrestrial gravimetry will be discussed in Sect. 6, including their use
for datum connection and height comparison (Sect. 6.3) as well as for enhancing regional
gravity field solutions (Sect. 6.4). This will be followed by an assessment of using high-
precision clocks for space-borne gravimetry (Sect. 7). Finally, conclusions will be drawn in
Sect. 8.

2 Relativistic Celestial Reference Systems

Current theory of relativistic reference systems in the solar system has been formulated by
Kopejkin (1988) and Brumberg and Kopejkin (1989a,b) and further developed by Damour
et al. (1991, 1992, 1993). It was adopted by the IAU 2000 as a standard for processing
high-precise astronomical and geodetic observations (Soffel et al. 2003). This theory pro-
vides precise theoretical definitions of the barycentric celestial reference system (BCRS)
and the geocentric celestial reference system (GCRS) as well as the relations between them
(Kopeikin et al. 2011). The important distinction of the BCRS and GCRS from their New-
tonian counterparts comes from general relativity which predicts the effects of relativistic
contraction of (coordinate) spatial distances and time dilation caused by the relative orbital
motion of GCRS with respect to BCRS and the presence of the gravitational field of Sun,
Moon, and other planets. Because of these effects the spatial coordinates of the two reference
systems experience periodic relative variations due to the Lorentz and Einstein contractions
of the relative order of 10−8. The basic coordinate time scales for BCRS and GCRS (called
TCB and TCG respectively) are also different due to the time dilation and gravitational
redshift (Soffel et al. 2003).

In what follows the small letters refer to BCRS, whereas the capital letters do to GCRS.
The Greek letters α, β , . . . denote spacetime indices taking values 0, 1, 2, 3 with the in-
dex 0 belonging to time coordinate. Roman letters will denote the indices taking values
1, 2, 3 corresponding to the spatial coordinates only. Bold letters denote spatial vectors,
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x = {xi} = {x1, x2, x3}, X = {Xi} = {X1,X2,X3}, etc. The symbol O(c−n) means that all
residual terms of order c−n are neglected.

The theory of astronomical reference systems that is outlined below, is formulated in
the first post-Newtonian approximation (PNA) of Einstein’s theory of gravity though it can
be extended to high-order approximations if necessary. The PNA is a weak-field, slow-
motion approximation with three small parameters: ε = (GM/c2R)1/2 with M and R being
a characteristic mass and size of a body; εω = ωR/c with ω being a rotational angular
velocity of the body, and εv = v/c where v is the orbital velocity of the body. According
to the virial theorem of gravitational physics (Goldstein et al. 2002) these small parameters
in the solar system are ordered as follows: εω < εv < ε, and for simplicity one is using a
common denominator of the small parameters, c−1, as a book-keeping parameter for a post-
Newtonian expansion of the metric tensor, although it is not dimensionless. The first post-
Newtonian approximation neglects terms of the order of c−6 in the time-time component of
the metric tensor g00, terms of the order of c−5 in the time-space components g0i , and terms
of the order of c−4 in the space-space components gij .

In Einstein’s theory of gravity the gravitational field is described by a metric tensor de-
noted as gαβ = gαβ(xμ) in BCRS and Gαβ = Gαβ(Xμ) in CGRS, that also characterizes the
geometry of spacetime. The metric tensor is found by solving the Einstein field equations
which preserve their form irrespectively of the choice of coordinates. Thus, they can deter-
mine the components of the metric tensor only up to four degrees of freedom. This gauge
freedom of the metric tensor components corresponds to the free choice of the coordinate
system. We will use the harmonic gauge condition (Fock 1964) imposed on the metric tensor
in every coordinate system. The harmonic coordinates are convenient from a mathematical
point of view and are often used in other branches of gravitational physics. In particular, the
harmonic coordinates are a cornerstone of the IAU 2000 conventions on relativistic theory
of celestial reference coordinates and time scales (Soffel et al. 2003; Petit and Luzum 2010).

Post-Newtonian form of the metric tensor in harmonic coordinates reads (Brumberg and
Kopejkin 1989a,b; Damour et al. 1991)

g00 = −1 + 2w

c2
− 2w2

c4
+O

(
c−6

)
, G00 = −1 + 2V

c2
− 2V 2

c4
+O

(
c−6

)
,

g0i = −4wi

c3
+O

(
c−5

)
, G0i = −4V i

c3
O

(
c−5

)
, (1)

gij = δij

(
1 + 2w

c2

)
+O

(
c−4

)
, Gij = δij

(
1 + 2V

c2

)
+O

(
c−4

)
,

where the gravitational potentials are functions of time and spatial coordinates: w ≡ w(t,x),
wi ≡ wi(t,x) in BCRS, and V ≡ V (T ,X), V i ≡ V i(T ,X) in GCRS, respectively. Notice
that we have used a letter V to denote the gravitational potentials of the geocentric metric
tensor Gαβ . The paper by Damour et al. (1991) used W instead of V . However, the letter
W is ubiquitously used in geodesy to denote the potential of the gravity force in rotating
geocentric coordinates system and is represented as an algebraic sum of the gravitational
potential V and the centrifugal potential, Z = 1/2v2 where v = {vi} is velocity of observer
with respect to GCRS (see, for example, Eq. (51) below).

The gravitational potentials are expressed in terms of the integrals taken over three-
dimensional volumes occupied by matter of the bodies comprising the solar system. We sin-
gle out the gravitational potentials associated with Earth and those produced by the external
bodies (Moon, Sun, planets, etc.). In the post-Newtonian approximation this decomposition
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reads

w(t,x) = wE(t,x) + w̄(t,x), (2)

wi(t,x) = wi
E(t,x) + w̄i(t,x), (3)

and

V (T ,X) = VE(T ,X) + V̄ (T ,X), (4)

V i(T ,X) = V i
E(T ,X) + V̄ i(T ,X), (5)

where the potentials with sub-index E belong to Earth, and those with the bar to the external
bodies.

Explicit expressions of the geopotentials are given in the form of a particular solution of
the Poisson equations that are volume integrals,

wE(t,x) = G

∫

VE

σ (t,x ′)d3x ′

|x − x ′| +O
(
c−2

)
, (6)

wi
E(t,x) = G

∫

VE

σ i(t,x ′)d3x ′

|x − x ′| +O
(
c−2

)
, (7)

VE(T ,X) = G

∫

VE

Σ(T ,X′)d3X′

|X − X′| +O
(
c−2

)
, (8)

V i
E(T ,X) = G

∫

VE

Σi(T ,X′)d3X′

|X − X′| +O
(
c−2

)
, (9)

where σ(t,x), Σ(T ,X) and σ i(t,x), Σi(T ,X) are the post-Newtonian mass and mass-
current densities of Earth’s matter in the BCRS and GCRS respectively. The densities are
directly related to the model of the energy-momentum tensor of matter distribution inside
Earth. In most of the practical applications considered below it is sufficient to assume that
the mass densities are approximately equal

Σ(T ,X) = σ(t,x) = ρ(t,x) +O
(
c−2

)
, (10)

where ρ(t,x) is the baryon rest mass density. The current densities

Σi(T ,X) = Σ(T ,X)(ω × X)i , (11)

σ i(t,x) = ρ(t,x)
[
vi

E + (ω × x)i
]
, (12)

where vi
E = vi

E(t) and ω = {ωi(t)} are the orbital velocity of Earth and the instantaneous
angular velocity of Earth’s rotation, respectively, and the cross between two vectors denote
the standard Euclidean cross product.

Earth’s gravitational potentials VE and V i
E admit multipolar expansion in the exterior

space (outside the Earth),

VE(T ,X) = GME

r
+ GIi

EXi

r3
+ 3

2

GI
ij

E XiXj

r5
+O

(
R3

E

r4

)
, (13)

V i
E(T ,X) = Gİ i

E

r
+ G(SE × X)i

2r3
+ İ

ij

E Xj

2r3
+O

(
R3

E

r3

)
, (14)
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where r = |X| is the radial distance in GCRS, ME is the total (relativistic) mass of Earth,
SE = {Si

E} is the angular momentum (spin) of Earth, I i
E and I

ij

E are dipole and quadrupole
moments of Earth’s, and the overdot denotes a time derivative with respect to T =TCG. Usual
assumption is that the Earth’s center of mass is located at the origin of GCRS which makes
I i
E = 0, and all terms depending on the dipole moment I i

E vanish from equations. We prefer
to leave the dipole term explicitly in the equations because it is used as a vector parameter
in tracking down the motion of the geocenter with respect to the origin of the International
Terrestrial Reference System (ITRS)—for more details see Wu et al. (2012), Kuzin et al.
(2010), Rebischung et al. (2013).

Explicit expressions of the external gravitational potentials in BCRS are given in terms
of the integrals performed over the volumes of the external bodies,

w̄(t,x) = G
∑

A �=E

∫

VA

σ (t,x ′)d3x ′

|x − x ′| +O
(
c−2

)
, (15)

w̄i(t,x) = G
∑

A �=E

∫

VA

σ i(t,x ′)d3x ′

|x − x ′| +O
(
c−2

)
, (16)

where σ(t,x ′) and σ i(t,x ′) describe the distribution of mass and mass-current densities
inside the volume of the external body A.

External gravitational potentials in GCRS are found as general solutions of the Laplace
homogeneous equation that are given in terms of polynomials

V̄ (T ,X) = QiX
i + 1

2
QijX

iXj + 1

6
QijkX

iXjXk +O
(
X4

)
, (17)

V̄ i(T ,X) = CijX
j + 1

2
CijkX

jXk +O
(
X3

)
, (18)

where Qi = Qi(T ), Qij = Qij (T ) and Qijk = Qijk(T ) are the dipole, quadrupole and oc-
tupole moments of the tidal gravitoelectric field, Cij = C[ij ](T ), Cijk = C[ij ]k(T ) are the
quadrupole and octupole moments of the tidal gravitomagnetic field where the square paren-
theses around indices indicate the antisymmety.1 The external multipole moments can be
expressed in terms of the partial derivatives from the external gravitational potentials which
are found by making use of the asymptotic matching of the metric tensor in BCRS and
GCRS (Kopeikin et al. 2011)

Qij = w̄,ij (xE), (19)

Qijk = w̄,ijk(xE), (20)

Cijk = 4

3

[
v

[i
Ew̄,j ]k(xE) − w̄[i,j ]k(xE) − 1

2
δk[i ˙̄w,j ](xE)

]
, (21)

where the dot over a function denotes a total derivative with respect to time, and vi
E =

dxi
E/dt is the velocity of the geocenter with respect to BCRS. Notice that the derivatives

from the external potentials are calculated on the world line of the geocenter, xE = xE(t),
so that, for example, w̄,ij (xE) = w̄,ij (x)|x=xE

, etc.
Vector quantity Qi is a small acceleration of the geocenter’s world line with respect to

a geodesic world line that is caused by the coupling of the dipole, I i
E , and quadrupole, I

ij

E ,

1More precisely, we have C[ij ] = 1/2(Cij − Cji), and C[ij ]k = 1/2(Cijk − Cjik).
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moments of Earth’s gravitational field to the tidal gravitational field of the external bodies
(Kopeikin et al. 2011),

Qi = 1

ME

(
Ï i
E − Qij I

j

E − 1

2
QijkI

jk

E

)
. (22)

The quadrupole moment, Cik , is a post-Newtonian matrix of the dynamic rotation of the
GCRS spatial axes with respect to the BCRS ones which appears in the metric tensor be-
cause of the IAU 2000 resolution demanding to keep the spatial axes of the BCRS and
GCRS aligned to make both coordinate system kinematically-nonrotating (Brumberg and
Kopejkin 1989a; Damour et al. 1991). This demand, however, makes GCRS dynamically
rotating with the post-Newtonian angular velocity corresponding to the infinitesimal matrix
of rotation Cij . With a sufficient accuracy the mathematical expression for the matrix of the
post-Newtonian dynamic rotation reads (Kopeikin et al. 2011)

Cij = −4w̄[i,j ](xE) + 3v
[i
Ew̄,j ](xE) + v

[i
EQj ], (23)

where the first term on the right-hand side is the gravitomagnetic (Schiff or Lense-Thirring)
precession, the second term is the geodetic (de Sitter) precession, and the third term is the
Thomas precession caused by the non-geodesic motion of Earth’s geocenter with accelera-
tion Qi , the square brackets around a pair of indices again indicate the antisymmetrization.

The asymptotic matching technique allows us to derive the transformation law be-
tween time and spatial coordinates of BCRS and GCRS (Kopeikin et al. 2011). The post-
Newtonian transformation between the spatial coordinates of GCRS and BCRS reads (Soffel
et al. 2003; Petit and Luzum 2010)

Xi = ri + 1

c2

[
1

2
vi

E(vE · r) + w̄(xE)ri + ri(aE · r) − 1

2
ai

Er2

]
+O

(
c−4

)
, (24)

where r ≡ x − xE(t), and aE is the coordinate acceleration of the Earth’s geocenter, aE =
dvE/dt = d2xE/dt2.

Post-Newtonian transformation of time coordinates, TCG = T and TCB = t , is more
complicated. According to the IAU 2000 Resolutions it reads (Soffel et al. 2003; Petit and
Luzum 2010)

T = t − 1

c2

[
A(t) + v · r] + 1

c4

[
B(t) + Bi(t)ri + Bij (t)rirj + C(t,x)

] +O
(
c−5

)
, (25)

with

dA(t)

dt
= 1

2
v2

E + w̄(xE), (26)

dB(t)

dt
= −1

8
v4

E − 3

2
v2

Ew̄(xE) + 4vi
Ew̄i(xE) + 1

2
w̄2(xE), (27)

Bi(t) = −1

2
v2

Evi
E + 4w̄i(xE) − 3vi

Ew̄(xE), (28)

Bij (t) = −v
(i
EQj) + 2w̄(i,j)(xE) − v

(i
Ew̄,j)(xE) + 1

2
δij ˙̄w(xE), (29)

C(t,x) = − 1

10
r2

(
ȧi

Eri
)
. (30)
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Here, the dot stands for the total time derivative with respect to time t , i.e.,

˙̄w ≡ w̄,t + vi
Ew̄,i , (31)

and the round parentheses denote the symmetrization with respect to two spatial indices, for
example, B(ij) = 1/2(Bij + Bji).

3 International Terrestrial Reference System

The science of geodesy primarily deals with observations and measurements conducted by
terrestrial observers located on Earth. Therefore, it is practically convenient to work in the
rotating geocentric coordinate system—the international terrestrial reference system (ITRS)
which time coordinate is TCG coordinate time T (the same as the time coordinate in GCRS)
and the spatial coordinates are denoted Xi

ITRS = (X1
ITRS,X2

ITRS,X3
ITRS). Transformation from

GCRS to ITRS is given by the IERS Conventions (Petit and Luzum 2010; Kopeikin et al.
2011)

Xi
ITRS = ΛijXj , (32)

where Λij ≡ Λij (T ) is the orthogonal matrix of rotation depending on time T . Due to the
property of the orthogonal matrices the inverse matrix Λ−1 of the transformation coincides
with the transpose matrix (Λ−1)ij = Λji so that the inverse transformation between GCRS
and ITRS is

Xi = ΛjiX
j

ITRS. (33)

According to the IERS theory of the Earth rotation (Petit and Luzum 2010) the matrix
Λij can be represented in two equivalent forms corresponding to the, so called, CIO-based
transformation and equinox-based transformation (see Petit and Luzum 2010, Chap. 5.9 and
Kopeikin et al. 2011, Equation 9.75). For analytic consideration the equinox-based transfor-
mation is more convenient and therefore used in the following. The matrix of the equinox-
based transformation is represented as a product of four matrices

Λij = Wki(T )R
kp

3 (GAST)Npq(T )P ql(T )Blj , (34)

where the time T =TCG, Wki is the matrix of the polar wobble, R
kp

3 (GAST) is the matrix of
the diurnal rotation depending on the Greenwich Astronomical Sidereal Time (GAST) that
is a function of time T =TCG, Npq is the matrix of nutation, P ql is the matrix of precession,
and the constant matrix Blj describes the, so-called, frame bias.

These matrices have the following structure (Petit and Luzum 2010)

P ij = Rik
3 (χA)R

pk

1 (−ωA)R
qp

3 (−ψA)R
qj

1 (ε0), (35)

Nij = Rki
1 (−ε − �ε)R

pk

3 (−�ψ)R
pj

1 (ε), (36)

Wij = Rki
3

(−s ′)Rkp

2 (xp)R
pj

1 (yp), (37)

where ε0 and ε = ε(T ) are correspondingly a constant and instantaneous obliquity of the
celestial equator to ecliptic, χA = χA(T ), ωA = ωA(T ), ψA = ψA(T ) are secular variations
in precession, �ε = �ε(T ) and �ψ = �ψ(T ) are periodic variations in nutation, xp =
xp(T ) and yp = yp(T ) describe the polar wobble, and s ′ = s ′(T ) is the small secular variation
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describing the shift between the ITRS origin of longitude and the terrestrial intermediate
origin (TIO) (Kopeikin et al. 2011; Petit and Luzum 2010).

The components of the rotational matrix are used to calculate the GCRS velocity of
motion of a terrestrial observer (clocks) located on Earth’s surface,

vi
GCRS = εijkωjXk

ITRS + Ẋi
ITRS, (38)

where the overdot denotes a time derivative, εijk is a fully anti-symmetric symbol of Levi-
Civita with ε123 = +1, Xi

ITRS is the ITRS coordinate of the observer (clock), Ẋi
ITRS is the

residual velocity of the observer (clock) with respect to ITRS due to various geophysical
reasons or simply because the observer is moving in a car or aircraft, and ωi = ωi(T ) is the
instantaneous angular velocity of the rotation of the ITRS with respect to GCRS,

ωi = −εijkΛjp(T )
d

dT
Λkp(T ). (39)

In what follows it will be convenient to split the ITRS position of the observer (clock) in
two components

Xi
ITRS = Xi

geoid +
∫ H

0
ni(h)dh, (40)

where ni(h) is a unit vector along the direction of the plumb line passing through the point
of observation, Xi

ITRS is located on Earth surface, Xi
geoid is the point on the geoid connected

by the plumb line to the position of the observer on the surface, dh is the element of length
along the plumb line, and H is the orthometric height at the observer’s position (Torge and
Müller 2012).

Precise analytic expression for the angular velocity, ωi , is too complicated and we de-
velop it only up to a linear approximation with respect to the variations of the parameters
entering (35)–(37). For this purpose we use the following approximations

χA = δχA, (41)

ψA = δψA, (42)

ωA = ε0 + δωA, (43)

ε = ε0 + δε, (44)

GAST = T + �ψ cos ε0 + δT , (45)

where the very last δ-terms in (41)–(45) are functions of time, T =TCG, which are changing
due to the systematic (both periodic and secular) variations in the spatial orientation of the
Earth’s rotational axis, wobble, and tidal friction (Kopeikin et al. 2011; Petit and Luzum
2010).

Then, in the linear approximation the components of the angular velocity of Earth’s ro-
tation are

ω1 = ẋp + Ωyp − sin(ΩT )
d

dT
[δωA + �ε] − cos(ΩT ) sin ε0

d

dT
[δψA + �ψ], (46)

ω2 = ẏp − Ωxp + cos(ΩT )
d

dT
[δωA + �ε] − sin(ΩT ) sin ε0

d

dT
[δψA + �ψ], (47)

ω3 = Ω + d

dT
[δT + δχA − δψA cos ε0], (48)
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where Ω is a fixed value of the angular velocity of the Earth rotation adopted by IAU (Petit
and Luzum 2010).

4 Time Dilation Fundamental Equation

We consider a network of atomic clocks located on Earth’s surface at different geographic
positions. Each clock moves with respect to the GCRS along world line Xi ≡ Xi(T ). Ac-
cording to general relativity each clock measures its own proper time τ which is defined by
the equation −c2dτ 2 = ds2 where the interval ds must be calculated along the world line of
the clock. In terms of the GCRS metric tensor, the interval of the proper time reads

dτ 2 = −
(

G00 + 2

c
G0iv

i + 1

c2
Gijv

ivj

)
dT 2, (49)

where vi is velocity of clock with respect to GCRS, and T =TCG. In case of clocks in space
vi is the orbital velocity of the spacecraft carrying the clock. If the clock is located on Earth’s
surface, the GCRS velocity of the clock is given by (38).

After replacing the GCRS metric (2) in (49) and extracting the root square, we get the
fundamental time delay equation

dτ

dT
= 1 − W

c2
+O

(
c−5

)
, (50)

where time-dependent function W = W(T ) is given by (Kopejkin 1991; Kopeikin et al.
2016)

W = 1

2
v2 + V + 1

c2

(
1

8
v4 + 3

2
v2V − 4viV i − 1

2
V 2

)
. (51)

Function W is the post-Newtonian gravity potential taken at the point of localization of the
clock. Notice that it includes both the effects of the gravitational field of the Earth and the
external bodies (Sun, Moon, planets) in the form of the tidal terms as shown in equation (4)
of the present paper. Furthermore, it is worth emphasizing that the relativistic corrections
enter the right side of (51) not only explicitly but also implicitly through the Newtonian
part because the calculation of the velocity vi and the gravitational potential V must be
completed with the post-Newtonian precision. The clock’s proper time can be calculated by
integrating (50) along the world line of the clock,

τ =
T∫

T0

[
1 − W(T ′)

c2

]
dT ′ +O

(
c−5

)
, (52)

where T0 is the initial epoch of the integration.

5 Implications for the Definition of Timescales

The 13th General Conference on Weights and Measures (CGPM) decided in its Resolution
1 in 19672 that the second is the duration of 9,192,631,770 periods of the radiation corre-
sponding to the transition between two hyperfine levels of the ground state of the caesium

2The CGPM reports are available at http://www.bipm.org/fr/worldwide-metrology/cgpm/resolutions.html.

http://www.bipm.org/fr/worldwide-metrology/cgpm/resolutions.html
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133 atom. This definition of the time unit called for the adoption of a time scale built by
cumulating atomic seconds and International Atomic Time TAI was defined in 1970 by the
International Committee for Weights and Measures as the time reference established by the
BIH on the basis of the readings of atomic clocks operating in various establishments in
accordance with the definition of the second, a definition recognized by the 14th CGPM in
its Resolution 1 in 1971. In 1980 the definition of TAI was completed by the Consultative
Committee for the Definition of the Second, adding TAI is a coordinate time scale defined in
a geocentric reference frame with the SI second as realized on the rotating geoid as the scale
unit. This definition explicitly refers to TAI as a coordinate time, hence needing a relativistic
approach. In 1988 the responsibility of establishing TAI was transferred to the International
Bureau for Weights and Measures (BIPM) in Sèvres (France).

TAI is not disseminated directly and Coordinated Universal Time UTC, which was de-
signed to approximate UT1 (a timescale derived from the rotation of the Earth), was chosen
as the practical world time reference. Since 1972, UTC differs from TAI by an integral
number of seconds, changed when necessary by insertion of a leap second, as predicted and
announced by the International Earth Rotation and Reference System Service (IERS). It is
not the purpose of this paper to discuss this issue; the point is just to remind that changes in
the definition of timescales may have wide-ranging consequences irrespective of the practi-
cal implications.

As mentioned in previous sections, TCB and TCG are the time coordinates of the BCRS
and GCRS, respectively. The 1991 Recommendation 3 of Resolution A4 of the International
Astronomical Union (IAU)3 defined the scale unit of TCB and TCG to be consistent with
the SI second. This means that if readings of the proper time of an observer, expressed in
SI seconds, are recomputed into TCB or TCG using the formulas from the IAU Resolu-
tions, without any additional scaling, one gets corresponding values of TCB or TCG in the
intended units. The Recommendation also defines the origin of TCB and TCG by the fol-
lowing relation to TAI: TCB (resp. TCG) = TAI + 32.184 s on 1977 January 1st, 0 h TAI,
at the geocenter.

In the following, we assume that the temporal variations in the physical quantities (e.g.
potential, equipotential surface) due to tides are taken into account through appropriate re-
ductions so that the quantities are considered as quasi-static, i.e. constant or with a slowly
varying secular change. For a clock at rest on the Earth’s surface, the relation between proper
time and coordinate time is given by Eq. (50) that is

dτ

dTCG
= 1 − W

c2
, (53)

where for practical purposes, it is sufficient to retain in W only the first two terms of the
gravity potential (rotational plus gravitational) given by Eq. (51). Any time differing from
TCG by a constant rate may also be chosen as a coordinate time in the geocentric system,
and this is the case of Terrestrial Time TT which differs from TCG by a constant rate:

dTT

dTCG
= 1 − LG. (54)

In the original definition (IAU’1991 Recommendation 4 of Resolution A4), LG is such
as the unit of measurement of TT is chosen so that it agrees with the SI second on the geoid,
i.e. LG = W0/c

2, where W0 is the latest estimate of the gravity potential on the geoid. By

3The IAU Resolutions are available at http://www.iau.org/administration/resolutions/general_assemblies/.

http://www.iau.org/administration/resolutions/general_assemblies/
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IAU Resolution B9 (2000) TT is explicitly re-defined with respect to TCG by turning LG in
Eq. (54) into a defining constant where LG = 6.969290134 × 10−10. This constant has been
computed as LG = W0/c

2 by taking for W0 the value 62636856 m2/s2 recommended by
Special Commission 3 of the International Association of Geodesy (IAG) in the year 1999,
before the new definition. This value will be noted below W0(2000), so that

dτ

dTT
= 1 − W − W0(2000)

c2
. (55)

TAI is viewed as a realization of coordinate time TT, to within the constant offset of
32.184 s and subject to uncertainties in the realization. However there is presently a con-
ceptual difference between the two timescales because TAI is defined with respect to the
rotating geoid while TT is not, we’ll come back to this later on. In principle, the transfor-
mation from proper time to TAI requires the value W0 of the gravity potential on the actual
geoid. Relation (55) transforms to

dτ

dTAI
= 1 − W − W0

c2
. (56)

In practice, the potential W is expanded in the Taylor series around its value on the geoid
(Torge and Müller 2012)

W = W0 − ḡH +O
(
H 2

)
, (57)

so that Eq. (56) is generally applied as

dτ

dTAI
= 1 + ḡH

c2
, (58)

where H is the orthometric height of the clock and ḡ the average value of the acceleration
of gravity between the geoid and the clock.

Because a change in height of one meter causes a change in rate of about 1 × 10−16,
Eq. (58) can be somewhat loosely applied for present-day Caesium primary frequency stan-
dards which have an accuracy of order 1 × 10−16, assuming that the geoid, the reference
level of the height system and the height are all correctly realized or measured with an un-
certainty well below one metre. This is no more the case when considering a clock accuracy
of the order 1 × 10−17 and below for which an uncertainty of order 1 cm is needed. For
better accuracy, with validity about 5 × 10−19, Eq. (53) must include tidal terms Vtide ≡ V̄

given in (17) to obtain

dτ

dTCG
= 1 − 1

c2

(
1

2
v2 + VE + Vtide

)
(59)

and

dτ

dTT
= 1 − 1

c2

(
1

2
v2 + VE + Vtide − W0(2000)

)
. (60)

The tidal potential has been considered in full detail, for example, in Agnew (2007). In the
quadrupole gravitational field approximations it reads Vtide ≡ V2, i.e., we take into account
in (17) merely the term depending on the external quadrupole moment Qij . This expression
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is well known in scientific literature (see, for example, Agnew 2007; Torge and Müller 2012;
Simon et al. 2013), and can be presented in the form

V2 = V zonal
2 + V tesseral

2 + V sectorial
2 , (61)

where

V zonal
2 =

∑

A �=E

DA

(
r̄EA

rEA

)3(1

3
− sin2 ϕ

)(
1 − 3 sin2 δA

)
, (62)

V tesseral
2 =

∑

A �=E

DA

(
r̄EA

rEA

)3

sin 2ϕ sin 2δA coshA, (63)

V sectorial
2 =

∑

A �=E

DA

(
r̄EA

rEA

)3

cos2 ϕ cos2 δA cos 2hA, (64)

where

DA = 3

4
GMA

r2

r̄3
EA

(65)

is the Doodson’s constant for the body A, r̄EA is the reference (mean) value of the distance
rEA during one revolution of the body A around Earth, δA, hA are respectively the declination
and the hour angle of the external body A in the ITRS, and the summation goes over all the
external bodies of the solar system but Earth.

Note that all developments in this section are valid to an accuracy level of order 1×10−18

and should be re-examined to reach an accuracy level of order 10−19 (≡ mm in height).
Then, e.g., the full post-Newtonian gravity potential given in Eq. (51) as well as the geoid
in its relativistic definition should be considered, cf. Kopeikin et al. (2011).

Consider the transformation to TCG (the case of TAI will be considered further below)
with Eq. (59), one needs to determine the gravity potential at the location of the clocks.
This used to be a difficult task at the 10−17 level worldwide (Petit and Wolf 1997), however
recent global satellite geopotential models allow this determination at the level of a few
parts in 1018 (Denker 2013). On the other hand the centrifugal potential as well as other
time-varying tidal effects due to external masses (direct effect and indirect effect from Earth
and ocean tides) can reach a few 10−17 but can be computed at the 1 × 10−18 accuracy level
(Voigt et al. 2016). In addition, other non-tidal effects due to mass redistributions in the
Earth, the hydrosphere or the atmosphere are to be considered at the 10−18 accuracy level.
It is not the purpose of this paper to study these effects but, contrary to tidal effects, it is not
straightforward to model them and to define a conventional reference for these effects. Such
10−18 accuracy in the computation of the relativistic frequency shift will be necessary for
the realization of timescales when new clocks with such frequency accuracy will provide
the definition of the second.

Considering that the best Caesium primary frequency standards have an accuracy of order
1 − 2 × 10−16, the present requirements are less stringent. In past years, it was claimed an
uncertainty for the relativistic frequency shift of 2 − 3 × 10−17 for the location of the NIST
in Boulder (Colorado, USA) (Pavlis and Weiss 2003) and of 1 × 10−17 for the INRIM in
Torino (Italy) (Calonico et al. 2007). A review of the frequency standards contributing to
TAI in 20154 shows that a good fraction adopts a conservative approach in evaluating the

4BIPM report on Time activities available at http://www.bipm.org/en/bipm/tai/annual-report.html.

http://www.bipm.org/en/bipm/tai/annual-report.html
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relativistic frequency shift e.g. 1 × 10−16 is used for the LNE-SYRTE in Paris (France)
and for the NIM in Beijing (China), 0.5 × 10−16 for the NPL in Teddington (UK) and for
the VNIIFTRI in Mendeleevo (Russia), while the NIST adopts 0.3 × 10−16 as mentioned
above. Some metrological centers, however, like the INRIM or the PTB in Braunschweig
(Germany) report an uncertainty at or slightly below 0.1 × 10−16.

The geoid appearing in the definition of TAI is classically defined as the level surface
of the gravity potential closest to the topographic mean sea level. Therefore the value of
the potential on the geoid W0 depends on the global ocean level which changes with time
due to geophysical reasons. Several authors have considered the time variation of W0, see
e.g. (Burša et al. 2007; Dayoub et al. 2012), but there is some uncertainty in what is ac-
counted for in such a linear model. A recent estimate (Dayoub et al. 2012) over 1993–2009 is
dW0/dt = −2.7 × 10−2 m2 s−2 yr−1, mostly driven by the sea level change of +2.9 mm/yr.
The rate of change of the global ocean level could vary during the next decades, nevertheless,
to state an order of magnitude, considering a systematic variation in the sea level of order 3
mm/yr, different definitions of a reference surface for the gravity potential could yield differ-
ences in frequency of order 3 × 10−18 in a decade. In addition, there are numerous questions
associated with realizing a global reference closest to the mean sea level, see e.g. a discus-
sion in (Sánchez 2012), so that work is still under way in IAG working groups to provide
conventional definitions and procedures of realization for a Vertical Datum Standardization.

Therefore, there is evidence of inconsistency in the present set of concepts and/or def-
initions as summarized hereafter. On the geodetic side, there is inconsistency between the
three propositions:

– The geoid is the equipotential surface closest to the mean sea level;
– The value of the gravity potential on the geoid is W0;
– W0 is a defining (fixed) constant.

On the time metrology side, there is inconsistency between the three propositions:

– TT is a coordinate time defined by IAU Recommendation B9 (2000);
– TAI is a coordinate time with the SI second as realized on the rotating geoid as the scale

unit;
– TAI is a realization of TT.

The inconsistency is at a level of 10−17 (equivalent to 9 cm in height) when considering that
such fundamental concepts should be valid for decades.

The choice of the value W0(2000) provides a formal definition of a surface where clocks
run at the same rate as TT, which has been named the chronometric geoid (Wolf and Petit
1995). As the classical geoid remains linked to the mean sea level, these two surfaces dif-
fer and the difference evolves with time. One possible solution on the geodetic side is to
update the W0 value as necessary to reflect the actual mean sea level as well as improve-
ments in the determination of W0, so that W0 is no more used as a constant but is varying
with time. On the time metrology side, one solution is to explicitly define TAI as a real-
ization of TT so that it is no more linked to the time-varying geoid. Indeed, if the adopted
value of the gravity potential on the geoid W0 is updated, this has no implication on the LG

value which remains a fixed conventional value relating TCG and TT. The W0 value and
the definition of the geoid are the responsibility of the IAG which addressed the issue in its
Resolution 1 (2015) for the definition and realization of an International Height Reference
System (IHRS). As mentioned in Ihde et al. (2015), For a global height reference system,
any value W0 within a range of a few decimeters can be defined as conventional without
affecting the task of defining and realizing a global height reference system. Nevertheless,
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IAG Resolution 1 (2015) recommends both a new value of the gravity potential at the geoid
W0 = 62636853.4 m2 s−2, here noted W0(2015), and to use this value a reference for the
IHRS. Should such IHRS-compatible geopotential values become available for vertical ref-
erence points, the difference between W0(2015) and W0(2000), equivalent to 2.9 × 10−17 in
rate shift, has to be noted when realizing TT from an atomic clock. The reformulation of
the TAI definition as well as its procedure of realization is under the responsibility of the
Consultative Committee for Time and Frequency (CCTF) which has formed a task group
proposing, at its 2017 meeting, a new definition of TAI to be adopted by the CGPM in 2018.
Changing the wording in the definition of TAI will be one task but it may be the easy one.
Applying Eq. (60) will still be a difficult task on a global scale at the 10−18 level. E.g. while
height networks can be directly linked when on the same continent, larger uncertainties per-
sist in the global determination of the geoid and of vertical references from effects affecting
the sea surface topography (Fu 2010).

Placing ultra-accurate clocks on Earth is inconvenient, because of the large number of
small geophysical effects that have to be taken into account to compute the relativistic fre-
quency shift. However it is also an opportunity because their accuracy gives access to study
these effects. As has long been realized and dreamed of, it might be an optimal solution to
have some ultra-accurate clocks in space, to be used as a reference to generate TAI and to
which Earth-based clocks could be compared. Comparisons of ultra-accurate clocks could
therefore help in the future to establish a worldwide vertical datum.

6 Height Systems and Terrestrial Gravimetry with Clocks

Here, we discuss a novel method of the direct use of clock measurements to derive physical
heights and to resolve discrepancies in classical height systems. We address time-variable
effects that have to be considered when using clock data in practice. These effects include
both temporal variations of the gravity field and instabilities in the rotation of the Earth.
A particular application is the direct use of observed potential differences for the improved
recovery of the regional gravity field in the Massif Central region in the middle of southern
France.

6.1 Height Systems and Clock Measurements

To the major objectives of geodesy belong the determination of physical heights (i.e. those
heights related to the gravity field) and the determination of the corresponding height refer-
ence surface (i.e. the geoid or quasi-geoid) (Torge and Müller 2012), see Fig. 1. For example,
the orthometric height is defined by

H = CP

ḡ
, (66)

where CP is the so-called geopotential number which is the difference of the gravity poten-
tial between the geoid and the surface point P , and ḡ is mean gravity along the (curved)
plumbline. A similar relation holds for normal height HN (where the geopotential number
CP has to be divided by a mean normal gravity value γ̄ ) and quasi-geoid. Geopotential
numbers CP are classically obtained via geometrical levelling and terrestrial gravimetry.
The latter is required to correct the raw levelling results to consider the non-parallelism of
the equipotential surfaces of which the geoid is just that one surface corresponding to the
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Fig. 1 Physical heights and geoid

mean ocean surface at rest. This classical approach has some drawbacks such as increasing
errors with the length of the levelling loops or systematic errors by combining data from dif-
ferent measurement periods. This method is very time consuming, especially if large areas
have to be covered. For detecting vertical deformations, repeated levelling measurements
are required which further increases the mentioned complexity.

When establishing a physical height system, normally one refers to a datum point like
a selected tide gauge, e.g. NAP (Normaal Amsterdams Peil), and then only differences of
potential numbers �CP are used further on. The basic network of physical heights for a
certain area, like a country, is then computed at the level of geopotential numbers before
they are converted into physical heights by dividing the CP values by ḡ or γ̄ .

If the geoid (or quasi-geoid) shall be determined point-wisely, one can use the physical
heights together with ellipsoidal GNSS (Global Navigation Satellite System) heights

N = h − H, (67)

where N is the geoid height above the ellipsoid, h is the ellipsoidal height of the surface
point P . Similar relations hold for the quasi-geoid height: ζ = h − HN . Alternatively, one
could apply the Bruns formula

N = T0

γ0
, (68)

where the geoid height N is derived from the disturbing potential T0 at the geoid and the
normal gravity value γ0 taken at the ellipsoid. A similar expression holds again for the quasi-
geoid height ζ = TP /γQ, now the disturbing potential is needed at the surface point P and
the normal gravity value at the telluroid point Q.5 The disturbing potential TP is defined
as difference between the gravity potential of the Earth WP and the normal potential UP

which is computed from the values of a mean rotational ellipsoid approximating the Earth:
TP = WP − UP , cf. Torge and Müller (2012). The disturbing potential can be computed by
solving a boundary-value problem where various variants exist. Often the long-wavelength
contributions of the gravity field are taken from satellite solutions that are combined with
terrestrial gravity and topographic data for the shorter wavelengths, cf. Denker (2013).

As briefly re-called from geodesy textbooks, the gravity potential and mostly differences
of the gravity potential are the central quantities to derive physical heights and the geoid.

5The telluroid is an approximation to the Earth surface that is consistent to the theory of Molodensky (Heiska-
nen and Moritz 1967).
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Fig. 2 Physical heights and clock measurements

In Sect. 4, the dependency of proper time to the gravity potential W is given. Now we con-
sider the relation between physical heights and clock measurements. Two clocks in remote
locations can be compared by different methods, in practice all relying on the transmission
of electromagnetic signals between the two clocks (see e.g. Petit et al. 2014 and Gersl et al.
2015). We consider two clocks at locations 1 and 2 with proper times τ1 and τ2 (see also
Fig. 2). If f1 is the proper frequency of an electromagnetic signal measured by clock 1 at the
time of emission of the electromagnetic signal, and f2 is the proper frequency of the same
electromagnetic signal measured by clock 2 at the time of reception of the signal, then

f2

f1
= �τ1

�τ2
, (69)

where �τ1 and �τ2 are the increments of the proper time being reciprocal to the frequencies
f1 and f2, respectively. By introducing Eq. (50) in Eq. (69) and assuming that �τ = dτ , the
corresponding proper frequency difference �f21 = f2 − f1 is

�f21

f1
= �W21

c2
. (70)

It is directly related to the difference of the gravity potential �W21 between these locations
which again corresponds to the difference of the geopotential numbers �C21 = −�W21.
Thus, in future, those gravity potential values derived from clock comparisons can straight-
forwardly be used in physical geodesy. For example, the difference between two orthometric
heights can be obtained as (see also Müller 2016)

�H21 = H2 − H1 = H1
�ḡ12

ḡ2
+ �C21

ḡ2
(71)

with the difference of the mean gravity values along the plumbline at both locations �ḡ12 =
ḡ1 − ḡ2 and the difference of the geopotential numbers �C21 = C2 − C1 = W1 − W2, which
can now be derived from the clock comparisons according to Eq. (70):

�H21 = H1
�ḡ12

ḡ2
− c2

ḡ2

�f21

f1
. (72)

6.2 Time-Variable Effects on Clock Measurements

In the following, we want to discuss some properties that have to be considered when using
clock measurements and we will give a few examples for potential applications where clock
data might especially be beneficial.
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At the accuracy level of mm to cm, it is not sufficient anymore to consider gravity poten-
tial values as constant in time. They are affected by deformations (up to 40 cm due to tidal
effects) and mass variations. In the following, we always indicate the combined effect for
both contributions (deformation plus mass effect) as sensed by the clocks. And to make the
effect more illustrative, the gravity potential value is converted into a height value by divid-
ing it by some mean gravity value of about 9.81 m/s2. Even if only potential differences are
considered, there are remarkable effects of up to 8 cm between PTB in Braunschweig and
NPL in London caused by relative perturbations of the solid Earth tides (Voigt et al. 2015,
2016). Those variations with changing amplitudes have periods of 12 hours and longer.
In addition, many smaller effects have to be considered: periodic effects due to ocean tides
(a few cm), non-tidal oceanic and atmospheric effects (1 cm) or episodic effects, e.g., caused
by storm surges or droughts (1 cm). Further effects comprise pole tides, variations due to
land hydrology, tectonic and GIA-induced processes, etc., see Voigt et al. (2016). Another
class of time-variable effects on the gravity potential are variations in Earth orientation.

The Earth orientation effects affect the rate of clocks located on the Earth surface as
they are produced by the time-dependent changes in the velocity-dependent potential of the
centrifugal force (Fateev et al. 2015). The centrifugal force potential consists of three terms
as a direct consequence of the velocity decomposition equation (38)

1

2
v2 = 1

2
v2

GCRS = 1

2
(ω × XITRS)2 + (ω × XITRS) · ẊITRS + 1

2
Ẋ

2
ITRS. (73)

The first term on the right hand side of (73) is the centrifugal potential caused by the rotation
of ITRS in space. We shall denote it as

Z ≡ 1

2
(ω × XITRS)2, (74)

and decompose it in several components corresponding to secular changes in the rotational
velocity, precesssion, nutation, and the polar wobble. It is convenient to write down the
decomposition in terms of geocentric spherical coordinates associated with ITRS,

X1
ITRS = r cosϕ cosλ, X2

ITRS = r cosϕ sinλ, X3
ITRS = r sinϕ. (75)

The centrifugal potential can be represented as a superposition

Z = Z⊕ + Zsec + Zprec + Znut + Zwob, (76)

where

Z⊕ = 1

2
Ω2r2 cos2 ϕ, (77)

Zsec = Ωr2 cos2 ϕ
d

dt
[δT + δχA − δψA cos ε0], (78)

Zprec = 1

2
Ωr2 sin 2ϕ

[
cos(Ωt − λ) sin ε0

dδψA

dt
+ sin(Ωt − λ)

dδωA

dt

]
, (79)

Znut = 1

2
Ωr2 sin 2ϕ

[
cos(Ωt − λ) sin ε0

d�ψ

dt
+ sin(Ωt − λ)

d�ε

dt

]
, (80)

Zwob = 1

2
Ω2r2 sin 2ϕ(xp sinλ + yp cosλ). (81)
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The second term in (73) describes the coupling of the rotational velocity of ITRS and the
residual velocity ẊITRS of clocks due to their motion with respect to ITRS. Taking the time
derivative from the ITRS coordinates (75) of clocks, substituting it to the second term in the
right hand side of (73) and calculating, we get

Zc ≡ (ω × XITRS) · ẊITRS = Ωr2 cos2 φλ̇ = 2Z⊕
λ̇

Ω
. (82)

We can observe that the vertical speed of clocks and the motion of the clocks along the
meridian does not contribute to Zc, only the longitudinal component of the velocity matters.
The term Zc exceeds 10−18 if the tangential residual velocity of clocks on the Earth’s equator
exceeds 0.2 mm/s. We shall assume that clocks are at rest which allows us to neglect the
contribution of Zc to the velocity-dependent potential along with the third term in (73). In
important cases of clock transportations on cars or aircrafts the term Zc must be retained.
All rotational effects can well be modelled. In future, some of those time-variable effects
might even be measured in clock networks.

6.3 Clocks for Datum Connection and Resolving Uncertainties in Height Systems

What is the major benefit of highly-precise clock measurements? Clocks can connect distant
areas, i.e. they deliver physical height differences for the observed points without being
affected by levelling errors or by some smoothing effect when combined global gravity
field models, e.g., from GOCE are used. No (good) ground gravity data from terrestrial
gravimetry is needed to fill-in regional to local gravity variations. This might especially
be interesting in (relatively) unsurveyed countries where no gravity data are available at
all, where terrestrial data are difficult to obtain (e.g. in rain forests) or in areas with rough
environment (e.g. in mountain areas).

Clock measurements can be used as independent observations to resolve discrepancies
in (classical) realisations of height systems and geoid solutions, see example in the Alps
(Denker et al. 2015). Even in Germany between north and south over only 700 km, there
is a 4 cm discrepancy when determining the quasi-geoid difference by different methods,
such as GNSS/levelling versus gravimetric solutions. A similar comparison between NPL,
London and PTB, Braunschweig showed differences between the classical methods of up to
15 cm (Denker 2016). These differences are most probably caused by geometric levelling
that accumulates measurement errors with increasing distance.

Nevertheless in Europe, the connection of national height systems (i.e. of the specific ver-
tical datums of each country) might be possible by applying standard geodetic methods—
with the above mentioned uncertainties. But in regions like South America, large differ-
ences with large error bars are present when comparing various tide gauges, especially in
the southern part (see Fig. 3 taken from Sánchez 2015) where differences in the decimeter
level are present. Here, immediate improvements could be achieved, even with recent clock
technology at the few cm level of accuracy, assuming that these clocks could be placed at
those tide gauges and be connected by dedicated fiber links. Besides just taking raw differ-
ence measurements, one could carry out a new adjustment for the height differences where
clock, GNSS and altimetry data are used as joined input.

Another application could be running clocks on ships to independently control altimet-
ric measurements. The ocean surface roughly approximates an equipotential surface in the
Earth gravity field (then clock rates would not vary), but deviate from it because of ocean
currents like the gulf stream. These deviations reach up to 1 to 2 m and are observed by
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Fig. 3 Difference of regional vertical reference levels to a global one (related to W0) in South America
derived from geodetic measurements (gravity, GNSS, levelling, satellite altimetry), unit: cm (figure is taken
from Sánchez 2015)

satellite altimetry together with the marine geoid, e.g., derived from GOCE data (Pail et al.
2010). One idea now is to use combined clock and GNSS measurements along selected pro-
files that can be compared to the results of altimetric measurements. Once again, possible
systematics might be revealed by the clock measurements. Running a clock on a moving
platform without interruption, however, is another challenge that is not discussed here. And,
it might even be more challenging when the moving clock has to be (frequently) compared
to a remote clock with the same accuracy.

6.4 Clocks for High Resolution Geopotential Recovery

To illustrate what could be the benefit of clocks for high-resolution geopotential recovery,
beyond the resolution of the satellites and as complement to near-surface gravity data, we
follow the work by Lion (2017) and perform simple simulations where we compare the qual-
ity of the geopotential reconstruction with and without adding clock data. We consider the
Massif Central area, marked by smooth, moderate altitude mountains and volcanic plateaus,
see Fig. 4 (left), which leads to variations of the gravitational field over a range of spatial
scales, as illustrated in Fig. 4 (middle and right).

For the tests, we proceed as follows. We sample synthetic gravity and potential data from
a spherical harmonics geopotential model, and we build a geopotential control grid. We esti-
mate the gravity potential by least-squares collocation from the synthetic data. We compare
the recovered potential on the control grid, to the reference one to assess the improvements
that can be obtained using clock data. In this process, different parameters of the problem
can be varied, as the spatial density of clock data for instance, studied hereafter.

In more details, the main steps of this methodology are thus:

1. High spatial resolution 5-km step grids of gravity anomalies δg and the disturbing po-
tential T are generated with the program GEOPOT (Smith 1998), which allows to com-
pute the gravity field related quantities at given locations by using mainly a geopotential
model. These reference solutions, see Fig. 4, are obtained by using a state of the art
geopotential model (Förste et al. 2014, EIGEN-6C4) up to degree and order 2000 (10 km
resolution). The long wavelengths of the gravity field covered by the satellites and longer
than the extent of the local area are removed up to 200 km resolution, providing centered
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Fig. 4 Topography and reference grids of the synthetic field δg and T in Massif Central area. Anomalies are
computed at the Earth’s surface from the EIGEN-6C4 model up to d/o 2000. Topography is obtained from
the 30 m digital elevation model over France by IGN (Institut National de l’Information Géographique et
Forestière), completed with Smith and Sandwell (1997) bathymetry and SRTM (Shuttle Radar Topography
Mission) data

data or close to zero for the determination of local covariance function. The terrain ef-
fects are removed with the help of the topographic potential model dV_ELL_RET2012
(Claessens and Hirt 2013);

2. The distribution of gravimetric data is chosen to be the same than the control grid and
contains 6989 location points. Several spatial distributions of clocks, more and less dense,
are generated by randomly sampling points from this regular grid, see Fig. 5 (top); and
synthetic measurements δg∗ and T ∗ are simulated on these points as previously;

3. A white noise is added to the simulated data δg∗ and T ∗, with a standard deviation of
0.1 m2 s−2 (i.e. 1 cm on the geoid) for clocks and 1 mGal for gravimetric measurements;

4. The disturbing potential T̃ is estimated from the 6989 synthetic measurements δg only,
and from the combination T ∗ and δg∗ on the 5-km step grid using the Least-Square Col-
location (LSC) method (Moritz 1980). In this step, we make an assumption on the gravity
field regularity in the target area, using a logarithmic 3D covariance function (Forsberg
1987). This model has the advantage to provide the auto-covariances (ACF) and cross-
covariances (CCF) of the potential T ∗ and its derivatives in closed-form expressions.
Parameters of this model are adjusted on the empirical ACF of δg∗ with the program
GPFIT (Forsberg and Tscherning 2008). Note that this covariance function contains low
frequencies that we have removed from the data in step 1;

5. Finally, the potential recovery quality is evaluated for all the data distribution sets and
types of data by comparing the statistics of the residuals between T̃ and T .

Figure 5(b) shows the residuals between the original and the reconstructed potential for
denser and denser distributions of clocks. Clock number zero means that only gravity data
have been used.

With no clock, the geoid is reconstructed with an accuracy of 3 cm in rms (or 0.3 m2 s−2

in term of potential variations). When clocks with an accuracy of 1-cm for geoid height
differences (or 0.1 m2 s−2) are added to the network, they improve the rms by several factors
and reduce the bias up to 2–3 orders of magnitude. Also, we can see that it is not necessary
to have a dense clock coverage, beyond 10 percent of the clock number of gravity points,
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Fig. 5 Contribution of clocks to the reconstruction of the disturbing potential in the Massif Central area

to improve the determination of the disturbing potential. In this test, a coverage of around
1–3 percent of the gravity data could be sufficient to reach the centimeter-level precision
and improve greatly the bias.

This simple example shows that clock-based geodetic observables provide useful infor-
mation at spatial scales beyond those of the satellites for geopotential determination. The
gain would be even larger in areas of higher relief. A more detailed study discussing the
role of different parameters, such as the noise level in the data, effects of the resolution of
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gravity measurements and modeling errors can be found in Lion et al. (2017), in which they
consider realistic spatial samplings. The addition of gravimetric data outside the modeling
target area could also be considered in future works.

7 Space-Borne Gravimetry with Clocks

Sustained observation of the time varying gravity field of the Earth with the highest possible
precision and spatio-temporal resolution is crucial for understanding mass transport in the
Earth system, which contributes to a better understanding of all kinds of geophysical pro-
cesses and their relation to climate change, geohazards, etc. (ESA 2015). The US/German
Gravity Recovery and Climate Experiment (GRACE) has shown the tremendous potential of
observing mass changes due to all kinds of processes, including continental hydrology (Ta-
pley et al. 2004), ice melt in Greenland and West-Antarctica (Velicogna and Wahr 2006a,b),
and depletion of huge aquifer systems (Richey et al. 2015). The importance of sustained ob-
servation is reflected by the realization of the upcoming GRACE Follow-On mission (Sheard
et al. 2012).

GRACE-type missions rely predominantly on so-called low-low satellite-to-satellite
tracking (ll-SST), where the distance between two trailing satellites, typically with a dis-
tance of the order of 100–200 km, is measured with a precision of a few microns for mi-
crowave systems (Dunn et al. 2003). This technique is especially suitable for observing mass
changes with a temporal resolution of the order of weeks to months at spatial resolutions of
at best a few hundreds of kms. The European Space Agency (ESA) Gravity field and steady-
state Ocean Circulation Explorer (GOCE) used the concept of satellite gravity gradiometry
(SGG), where minute acceleration differences between adjacent capacitive accelerometers
(baseline ≈ 0.5 m) are observed (Drinkwater et al. 2007). This concepts allows the observa-
tion of the gravity field with a spatial resolution of around 70–100 km, but is not well-suited
for observing temporal gravity field changes.

Sustaining and at the same time improving the observation of mass transport through
space-borne gravimetry has led to the selection of GRACE Follow-on. This mission will
not only carry a radiowave instrument, but also a laser link for providing range observations
with a precision that is claimed to be a factor 20 better than the GRACE microwave system
(Jet Propulsion Laboratory 2017). In addition, studies have been carried out that demonstrate
a great potential for enhancing both the temporal and spatial resolution of flying multiple
ll-SST missions in parallel, and at the same time also enhancing the global isotropy and
homogeneity of gravity field solutions (Thales Alenia Spazio 2010). However, there is a
limit of what will be possible in terms of spatial and temporal resolution when using ll-SST
or GOCE-type SGG. Therefore, new concepts are under study, including the use of cold
atom interferometry (Carraz et al. 2015), and the use of ultra-precise space-borne atomic
clocks (Mayrhofer and Pail 2012).

7.1 Space-Borne High-Precision Clocks

Here, we analyze the use of clock comparison between a LEO satellite and terrestrial ground
stations for the purpose of determining the Earth’s gravity field. The frequency of an electro-
magnetic signal transmitted from the ground and observed at the spacecraft will be shifted
because of both the relative velocity and the difference in gravitational potential between the
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transmitter and receiver. By combining the measured frequencies, the following observable
is obtained (Kopeikin et al. 2011):

f1

f2
= dτ2

dτ1
=

(
dτ

dT

)

2

dT2

dT1

(
dT

dτ

)

1

, (83)

where T and τ denote the TCG coordinate time and observer proper time, respectively. The
2 and 1 subscripts denote the receiver (spacecraft) and transmitter (ground station). The
terms dτ/dT are given to post-Newtonian order by Eq. (50). The ratio of coordinate times
(in TCG) can, to first order, be expressed as follows:

dT2

dT1
= 1 − k̂·v2

c

1 − k̂·v1
c

≈ 1 − k̂ · v21

c
, (84)

where v2 and v1 denote the velocity vectors of receiver and transmitter (evaluated at T2 and
T1), and v21 = v2 − v1. In the above, k̂ denotes the unit vector from transmitter position r1

to receiver position r2, so:

k̂ = r2(T2) − r1(T1)

|r2(T2) − r1(T1)| . (85)

The relation in Eq. (84) is the so-called radial (or first-order) Doppler effect: the direct
result of a change in transmission coordinate time on the reception coordinate time. In the
following, we will assume that dτ/dT at the ground station can be modelled/measured to an
uncertainty that is much better than for the space segment. The influence on the velocity of
the spacecraft on its local dτ/dT is termed the quadratic (or second-order) Doppler effect.

For this application, we wish to retrieve the information on the Earth’s gravitational po-
tential VE from measurements of f2/f1. However, the measured frequency ratio encodes
both velocity and potential differences. To map the influence of both spacecraft velocity
uncertainties and the strength of the potential signature to uncertainties in the model for
�(f2/f1), we write for the first-order errors:
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, (88)

where the �(∗) denotes the uncertainty in the parameter/measurement ∗. By combining
Eq. (88), with Eqs. (86), and (87), respectively, we obtain the uncertainty in the potential de-
termination �(VE) induced by the velocity uncertainty as a result of the radial and quadratic
Doppler effect, due to �(k̂ · v21) and �(v2), respectively.

The influence of the radial Doppler effect is by far the greatest. The maximum allowable
error in �(k̂ · v21) needed to obtain a given uncertainty �VE for the potential is obtained
from Eqs. (86) and (88):

�(k̂ · v21) = �VE

c
. (89)
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A potential height error �hg corresponds to a potential error of �hg · g, with g the gravita-
tional acceleration. Consequently, for �hg=1 cm, we get �(k̂ ·v21) = 0.01g

c
≈ 3×10−10 m/s

or 0.3 nm/s (assuming a LEO satellite flying at 7.5 km/s with g ≈ 9 m/s2). This value is
well below the orbit uncertainty of state-of-the-art orbit determination. However, it is pos-
sible to largely eliminate the radial Doppler shift by using a coherent two-way optical link
(Djerroud et al. 2010; Blanchet et al. 2001). It is not possible, however, to eliminate the in-
fluence of the quadratic Doppler effect, since we cannot separate the influence of v and VE

in the equation for (dτ/dT )2 by combining a one- and two-way link. Again assuming an
influence of maximum 1 cm on the geoid determination, the quadratic Doppler term results
in a required spacecraft velocity uncertainty of better than 0.01×g

7.5×103 ≈ 12 μm/s.
In light of the influence of the radial Doppler effect, it will be crucial to have a two-way

link, in addition to the one-way frequency comparison. In the error simulations below, it is
therefore assumed that such a two-way link is available.

7.2 Accuracy Assessment

A hypothetical mission is defined where a satellite is flying in a low Earth orbit carrying
an ultra-precise clock that can be compared continuously with perfect reference clocks. It
is assumed that this satellite flies in a circular orbit, where its projection on the surface of
the Earth (the so-called ground track) repeats after a certain number of nodal days. For such
an observation geometry, use can be made of an efficient error propagation method that was
introduced in Colombo (1984). This error propagation tool has been compared and validated
by comparison with robust numerical integration methods and end-to-end simulations for
several observation types, including orbit perturbations, SGG and ll-SST (Schrama 1991;
Visser et al. 2001).

The satellite is assumed to fly in a polar orbit (inclination i = 90◦) for which the ground
track repeats every month (31 days) in which the satellite completes 497 orbital revolutions.
The height above the Earth’s surface of the satellite is about 250 km. The space-borne clock
is assumed to have a frequency dependent instability equal to 30 × 10−18/

√
τ , where τ

represents the clock integration time. This instability is about equivalent to a stability of 1018

for an integration time τ of 1000 s, cf. Giorgetta et al. (2013). Assuming the clock instability
to be the only source of measurement error �(f2/f1), Eq. (88) leads to the following error
for the observation of the gravity potential:

�VE,σ(clock)

g
≈ 30 cm/

√
τ . (90)

According to Eq. (87), the velocity then has to be known with a precision of about:

�v = 360 μm/s/
√

τ . (91)

Determining the LEO satellite velocity with such a precision is very challenging, but might
be feasible with future optical links (Chiodo et al. 2013). The requirement for the velocity
determination is based on the assumption that the velocity uncertainty causes an error in the
potential that is equal or smaller than the measurement error due to clock instability.

The gravitational potential is expanded in terms of spherical harmonics. The uncertainty
in the gravity field coefficients is then written as follows, where we neglect the uncertainty
in r , λ and φ:

�VE

g
= 1

g
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r
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r

)l

(�C̄lm cosmλ + �S̄lm sinmλ)P̄lm(sinφ)

}

, (92)
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Fig. 6 Predicted gravity field retrieval errors for a LEO satellite in a 250-km altitude circular orbit with
monthly repeating ground track. The satellite is equipped with a GPS receiver allowing 1-cm precision orbit
determination (GPS), a 3-dimensional gradiometer based on Cold Atom Interferometry with flat noise of 0.4
mE (CAI), an ultra-precise clock (clock 30 cm/τ1/2), instrumentation for determining the 3-dimensional
velocity (velocity 360 μm/s/τ1/2), and an ultra-precise clock resulting in 1 cm potential height flat noise
(clock 1 cm flat). A typical curve for the claimed GRACE performance (GRACE Cal Sep. 2007), and based
on a typical monthly gravity change due to continental hydrological mass transport (HYDROLOGY) are
included for reference

where μ is the gravity parameter (the product of the universal gravitational constant G and
Earth’s mass M), ae is the mean equatorial radius, r , φ, λ are the spherical coordinates
(radius, geocentric latitude, longitude) denoting the location of the space-borne clock, P̄lm

is the normalized Legendre polynomial of spherical harmonic degree l and order m, and
�C̄lm, �S̄lm represent the estimated gravity field coefficients.

For a circular satellite orbit with repeating ground track, Eq. (92) can be represented by
a Fourier series (Visser et al. 2003) and the method outlined in Colombo (1984) can be used
for predicting the gravity field retrieval performance. The gravity field can be determined
from time series of observed or determined satellite velocities as well. In that case, use
is made of a linear orbit perturbation theory, where the associated equations can also be
represented by a Fourier series (Schrama 1991). Then also the method in Colombo (1984)
can be used for a gravity field retrieval accuracy assessment. Please note that in case of
deriving gravity from satellite velocity perturbations, it is assumed that non-gravitational
accelerations are known through e.g. observation by precise accelerometers or absent due to
a drag-free control system.

The predicted gravity field retrieval performances according to the error spectra in
Eqs. (90) and (91) are included in Fig. 6. It can be observed that the very precise knowledge
of the satellite velocity leads to better gravity field retrieval performance through classical
orbit perturbation analysis as compared to the post-Newtonian derivation of potential height
from clock observations. For comparison, the predicted gravity field performances for the
same LEO satellite are included if equipped with a high-quality Global Navigation Satellite
System (GNSS) receiver allowing observation of orbit position perturbations with 1 cm pre-
cision, and a gradiometer based on cold atom interferometry (0.4 mE flat noise). We note
that this assumption on the uncertainty is optimistic and does not reflect the state of the art
for a space instrument, which is about one order of magnitude worse. With the used assump-
tions, the ultra-stable clock does show a much better gravity field performance than the GPS
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receiver, and also the gradiometer based on cold atom inferometry up to spherical harmonic
degree 30. Figure 6 also includes a performance prediction for a clock that would have a flat
error spectrum with a stability of 1018 leading to 1 cm error in potential height. Such a—
highly speculative—performance would allow the observation of time variable gravity with
a precision that is relatively close to the currently claimed performance level for GRACE
Release 5 Level-2 products (Dahle et al. 2013, see also Fig. 6).

Being able to determine the 3-dimensional velocity of the LEO satellite with a precision
according to Eq. (91) leads to a performance that is starting to become competitive with the
currently claimed GRACE performance and allows the observation of, for example, grav-
ity field changes due to continental hydrology (signal magnitude also indicated in Fig. 6,
(Gruber et al. 2011)). In this preliminary analysis, we have not analyzed the possibilities to
decouple the signature of the spacecraft’s velocity and gravitational potential from the fre-
quency comparison measurements. Such an approach, as is discussed by Dirkx et al. (2016)
for planetary laser ranging data, could be used to quantify more robustly the influence of
velocity uncertainties on potential measurements using clocks. Conversely, such an analysis
would quantify the degree to which the relativistic Doppler shift can be used to dynamically
determine the spacecraft’s state when making use of clock comparisons.

8 Discussion and Conclusions

Various geodetic applications of highly accurate and stable clocks at the 10−18 level for the
relative frequency shift (corresponding to 1 cm in height) have been addressed. We discussed
both the prospects of implementing in practice the new clock-based measurement concepts
and their challenges. Our firm conclusion is that the quantum clocks and time metrology will
provide us with unique opportunities to support and largely extend the tools for gravity field
measurements and physical height determination based on the direct access to the gravity
potential differences.

We revisited the relevant time scales used in geodesy and showed the existence of grow-
ing inconsistencies in their definition and realization at a 10−18 accuracy level. This mainly
concerns the use of the (non-constant) gravity potential value W0 on the geoid, and its re-
lation to the international time scales TT and TAI. In a foreseeable future, clarification and
re-definition of the currently-used time concepts will be required to make them consistent
with the highly-precise clock measurements.

We have provided a set of formulas to directly use the observed frequency shifts for the
determination of physical height differences, where the relative clock measurements replace
the differences of geopotential numbers. Applying this conceptually-new approach can fa-
cilitate or even fully resolve the problem of the systematic discrepancies existing between
various height systems on the regional, national and intercontinental level. Clocks can con-
nect tide gauges through satellite and/or fiber links providing the vertical datum of national
height systems and help to determine the present offsets between them. Even discrepancies
between independent geoid solutions stemmed from applying different classical techniques
(GNSS/levelling versus gravimetric methods) can be determined and eliminated by making
use of the precise chronometric measurements. These discrepancies are known to reach-
ing centimeters to decimeters and can well be recovered already with the present-day clock
technology. At the envisaged cm level of accuracy, time-variable parts affecting the clock
measurements due to observer’s height, position or Earth’s density variations have to be
considered. The most prominent effect is caused by the solid Earth tides but smaller varia-
tions, such as ocean tides or inaccurate knowledge of the Earth rotation parameters, play a
significant role and are to be taken into consideration in the data processing algorithms.
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The direct use of observed gravity potential values for regional gravity field recovery
has been studied as a test case in the Massif Central region crossing a number of mountain
ranges. We have clearly demonstrated in our simulation scenario that adding the clock-based
potential values to the existing data set would notably improve the final gravity field solution.
The bias to a reference solution and total rms error could be reduced remarkably well, up to
a few orders of magnitude. Another important conclusion stemming from our simulations is
that in solving the problem of gravity field recovery it is not required to have a dense clock
network, only a very few percent of clock measurements compared to the number of needed
gravity data is sufficient.

The possible use of ultra-precise space-borne clocks has been revisited for deriving po-
tential height differences at satellite altitude and using these satellite data for recovering the
global gravity field. It has been shown that extremely challenging requirements have to be
met in order to use space-borne clocks to successfully fulfill this task. In order to be able to
exploit the gravity field information content of clocks with a stability of 10−18, precise refer-
ence clocks are needed along with two-way frequency transfer for eliminating the Doppler
effect correction errors. In addition, the position and velocity of the clock need to be known
with a very high precision. The current technological level of GNSS receivers allow for de-
termining the position with the required cm-level precision. However, the velocity needs to
be determined with such a high precision, that the associated velocity perturbations caused
by the gravity field anomalies might be used as well as a fundamental observable for deter-
mining Earth’s gravity field. Finally, the 10−18 clock stability needs to be achievable for very
short integration times of the order of seconds. Even if this would be possible and achieved,
the existing space geodesy concepts such as GRACE-type ll-SST lead to a better observ-
ability of Earth’s time variable gravity. However, our study does show that the frequency
transfer may be used to improve the determination of the spacecraft velocity.
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