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Abstract We review observations of several classes of neutron-star-powered outflows:
pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting
directly with interstellar medium (ISM), and magnetar-powered outflows. We describe ra-
dio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-
energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging
of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures.
Several of the 23 so far identified magnetars show evidence for continuous or sporadic emis-
sion of material, sometimes associated with giant flares, and a few “magnetar-wind nebula”
have been recently identified.

Keywords First keyword · Second keyword · More

1 Introduction

Pulsars emit relativistic winds in a variety of forms, not well understood at this time. The out-
flows consist of some combination of highly relativistic leptons (e+/e− pairs) and perhaps
ions as well, and magnetic field. The winds initially appear to be “dark” because they are
cold in the comoving frame, but become thermalized somehow at a wind termination shock,
which may or may not resemble a traditional perpendicular shock. Its location is fixed by
pressure balance between the outgoing wind and the local ambient medium, which is either
a shell supernova-remnant (SNR) interior (see Fig. 1), or for older pulsars that have outlived
their SNR, undisturbed interstellar medium (ISM). Beyond this point, radiation from the
outflows is apparent, and the observed object is known as a pulsar-wind nebula (PWN). [See
Gaensler and Slane (2006) and Kargaltsev and Pavlov (2008) for general reviews of PWNe.]
The broadband spatially integrated spectral-energy distribution (SED) appears to consist of
two parts: a lower-energy spectrum of synchrotron emission, responsible for emission from
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Fig. 1 Cartoon of PWN inside a
shell SNR. The SNR blast wave
is the outermost circle

low radio frequencies to X-rays and into the MeV range (in the few cases where it is de-
tectable at those energies), and a higher-energy spectrum in the GeV–TeV range, in most
cases attributed to inverse-Compton upscattering of any of various possible photon fields:
the PWN’s own synchrotron photons (“synchrotron self-Compton,” SSC), the cosmic mi-
crowave background (ICCMB), or local optical/IR radiation fields. In a few cases, it may
be that this emission is produced by relativistic ions colliding inelastically with thermal gas
and producing both charged and neutral pions. The π0 mesons decay to photons, producing
a continuum above the kinematic threshhold of about 150 MeV. But this hadronic process is
not thought to be a major contributor to most PWN GeV–TeV spectra.

We structure this review mainly from young to older objects. Pulsars live far longer
than their natal supernova remnant, so a relatively small fraction of PWNe should still be
found within a SNR. However, this subclass offers an excellent chance to understand pul-
sar outflows, as information from the SNR can add to what can be deduced from the PWN
alone. Other PWNe without clear evidence of a surrounding shell still have unmistakable
signs of youth. The first part of this review will focus on those two subclasses, on their
integrated SEDs and on their spatially resolved spectral properties. Pulsars older than the
typical lifetime of an SNR continue to emit winds, which interact directly with the sur-
rounding medium. The second part of this review deals with radio and X-ray emission from
these PWNe. Some of both young and older X-ray PWNe emit gamma-rays as well, but
the gamma-ray class is predominantly made up of much older objects which may be unpre-
possessing or undetectable at longer wavelengths. The third part of the review covers the
gamma-ray properties of PWNe of all ages. Finally, magnetars have unique characteristics
in terms of outflows; these characteristics are described in the last part of this chapter.

While the gross properties of PWNe (mean sizes, integrated spectra) provide one kind of
information on the basic physics, a great deal can also be learned from detailed morphologi-
cal investigations. The Chandra X-ray Observatory has provided a rich collection of imaging
information down to sub-arcsecond scales, and we review that collection as well. Many of
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these objects are also older, with the pulsar wind interacting directly with ISM, sometimes
in a well-defined bow shock, but in other cases in unusual and perplexing morphologies.
Finally, we describe evidence for outflows from magnetars, neutron stars with very strong
magnetic fields and a propensity to emit giant flares. Evidence for ejection of material seems
strong. While clear cases of steady outflows (“magnetar-wind nebulae”) have not yet been
firmly confirmed, candidates have been identified. We also mention gamma-ray binaries, in
which the relativistic pulsar wind interacts with a wind from the binary companion, but these
systems are described more fully elsewhere.

2 Synchrotron Emission from Young Pulsar-Wind Nebulae: Radio
to X-Rays

The synchrotron spectrum of PWNe contains the most specific information about the par-
ticle spectrum injected into the nebula at the wind termination shock (WTS), though the
unknown magnetic-field structure can complicate the extraction of that information. Fur-
thermore, the injected spectrum can change with time and location, due to evolutionary
effects and particle propagation, e.g., advection or diffusion. Disentangling these effects is
essential to understand the nature of particle energization at the WTS.

Figure 2 illustrates four PWN/SNR combinations, in which the pulsars are well studied.
The PWNe are asymmetric and structured, and for G292.0+1.8, not centered on the pulsar.
However, these systems are amenable to detailed interpretation based on analysis of both the
PWN nonthermal radiation and the properties of the surrounding SNR. In both B0540-693
(Williams et al. 2008) and G11.2-0.3 (Borkowski et al. 2016), the PWN’s interaction with
the SNR inner ejecta is important in the overall characterization of the object.

Young objects like the Crab or 3C 58 (unlikely to be the remnant of an event in 1181 AD,
but still only of order 2000 yr old; Chevalier 2005), without clear evidence of a shell, also
show properties consistent with expansion into a low-density medium which is probably
itself expanding. Simple 1-D models show that as long as the pulsar maintains its original
energy-loss rate, the PWN expands into uniformly expanding ejecta with radius R ∝ t6/5

(Reynolds and Chevalier 1984; van der Swaluw et al. 2001), producing a shock wave into
the inner ejecta that strengthens with time. (See Fig. 1).

These two classes of young PWNe, with and without SNR shells, will be the focus of
this section.

2.1 General Properties of the PWN Synchrotron Spectrum

Pulsar-wind nebulae were originally defined by radio properties: “flat” radio spectrum (that
is, energy spectral index α ∼ 0–0.4 where Sν ∝ ν−α is the energy flux), center-brightened
morphology, and high radio polarization (e.g., Weiler and Panagia 1978). The catalog re-
mained small, however, until the high spatial resolution of Chandra and XMM-Newton al-
lowed the identification of PWNe in shells and in confused regions, at which point a large
increase in identified PWNe began which continues to this day. The catalog by Kargaltsev
et al. (2013) lists 70 X-ray PWNe with known pulsars, and 6 more objects identified at
gamma-ray energies without currently known X-ray counterparts. Many of the PWNe dis-
covered at X-ray or gamma-ray energies have weak, poorly known, or undetectable radio
emission. In Green’s catalog of SNRs and PWNe (Green 2009), 26 PWNe in shells (for-
merly known as “composite” SNRs) and another 13 isolated PWNe (once called “plerions”)
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Fig. 2 Upper left: B0540-693 in the Large Magellanic Cloud (Williams et al. 2008). Red, Spitzer 8 µm;
green, Spitzer 3.6 µm; blue, Chandra 0.5–8 keV. The pulsar and surrounding PWN is barely resolved at
the center of the frame, just above and to the left of the bright foreground star. Upper right: G11.2-0.3 with
Chandra (Borkowski et al. 2016). Red: 0.6–1.2 keV; green, 1.2–3.3 keV; blue, 3.3–8 keV. The PWN is visible
in blue. Lower left: G292.0+1.8 with Chandra (Park et al. 2007). Red: 0.3–0.8 keV; green, 0.8–1.7 keV; blue,
1.7–8 keV. The PWN is the purplish region slightly SE of the center, and the pulsar (indicated by arrows) is
at its NE edge. Lower right: Kes 75 with Chandra (Gavriil et al. 2008). The pulsar is highly piled up, as the
readout streak indicates

Fig. 3 Distribution of radio
spectral indices α (Sν ∝ ν−α ) of
39 PWNe in shells (blue) and
isolated (red). Many of the
former have poorly known radio
spectral indices. Typical
uncertainties on α are ±0.1. The
three steep-spectrum PWNe
(α ≥ 0.6) are all anomalous in
other ways as well
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Fig. 4 Three PWNe with steep radio spectra. Upper left: DA 495 (G65.7+1.2) at 1.4 GHz. White contours:
a background H II region. Asterisk: a compact X-ray source (Kothes et al. 2008). Upper right: G76.9+1.0
(Arzoumanian et al. 2011) at 1.4 GHz. Almost invisible contours of extent about 40′′ near the center show
the X-ray nebula. Bottom: G141.2+5.0 at 1.4 GHz in polarized intensity (greyscale) with contours indicating
total intensity (Kothes et al. 2014), and the red cross indicating a pointlike X-ray source (Reynolds and
Borkowski 2016)

are listed. This catalog began as a listing of radio SNRs, and does not include pulsar bow-
shock nebulae or other manifestations of pulsar outflows without clear radio counterparts.
With the addition of two more recent discoveries, Fig. 3 shows the distribution of PWN ra-
dio spectral indices. Since there are a few good cases of steeper-spectrum PWNe (α > 0.4),
it is possible that more such objects exist but have been selected against. However, the three
steep-spectrum PWNe (α ≥ 0.6) are all anomalous in other ways as well. It is also possible
that some very flat-spectrum objects (α ∼ 0.1) have been mistaken for H II regions, since
strong radio polarization, the usual discriminator, is not found in all objects.

The three anomalous steep-spectrum PWNe are shown in Fig. 4. The first two, DA 495
and G76.9+1.0, with α = 0.87 ± 0.1 (Kothes et al. 2008) and 0.62 ± 0.04 (Landecker et al.
1993), have strikingly similar double-lobed morphology, with tiny extended X-ray sources
in the center of each. G141.2+5.0 (Reynolds and Borkowski 2016) shows a simple center-
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Fig. 5 Top: 3C 58 (Slane et al. 2008). (Upper: radio, VLA at 1.4 GHz, Reynolds and Aller 1988; lower,
IR, Spitzer at 4.5 µm.) Middle left: Crab Nebula (Temim et al. 2006). Red, 24 µm (mainly [O IV] at 26 µm);
green, 8 µm (mainly [Ar II] at 7 µm); blue, 3.6 µm (mainly synchrotron continuum). Middle right: G54.1+0.3
(Temim et al. 2010). Contours, X-ray. Red, radio. Green, 70 µm. Blue, 24 µm. Lower: G21.5-0.9 (Zajczyk
et al. 2012). Left: Chandra image. Right: Red, 24 µm; green, 8 µm
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Table 1 Spitzer observations of PWNe

Object Type Detectorsa Result Reference

Crab PWN I, M, S Images, spectrum Temim et al. (2006)

G21.5-0.9 PWN I, M Images Zajczyk et al. (2012)

3C58 PWN I, M Images Slane et al. (2008)

G54.1+0.3 PWN, IR shell I, M, S Images, spectrum Temim et al. (2010)

B0540-693 PWN, shell I, M, S Images, spectrum Williams et al. (2008)

aI: IRAC (3.6, 4.5, 5.8, & 8.0 µm). M: MIPS (24, 70, 160 µm). S: IR Spectrograph (5–35 µm)

Fig. 6 Left: SED of 3C 58 (Slane et al. 2008). The spatially integrated spectrum is above, and is roughly
describable by two power-laws of slopes α of 0.1 and ∼1, with a break near 100 GHz. (The small-scale
torus requires a considerably more complex spectrum.) Right: SED of B0540-693 in the Large Magellanic
Cloud (Williams et al. 2008). Triangles are Spitzer observations. The solid line is the Chandra spectrum
(Kaaret et al. 2001), which is affected by pileup in the pulsar. The PWN X-ray spectrum does not appear to
be consistent with the power-law extrapolation from the optical-IR (Serafimovich et al. 2004)

brightened morphology, but with a central X-ray source unresolved by Chandra. It is not
known how these objects fit into the overall PWN scheme; no data are available for any at
other wavelengths.

For many PWNe, no other observations are available at frequencies below the X-ray
regime. But a few have been imaged with Spitzer (see Fig. 5 and Table 1). Much of the
emission is thermal radiation from dust grains, or fine-structure spectral lines, but some
synchrotron continuum is evident in the Crab, 3C 58, and G21.5-0.9.

PWNe are often observed to be smaller at X-ray than at longer wavelengths, as is clearly
the case with the Crab Nebula. However, several other prominent PWNe show X-rays ex-
tending to the edges of the radio contours, though with greater center-to-edge brightness
contrast. Figures 7 and 8 show that both 3C 58 and G54.1+0.3 have X-ray extents compa-
rable to their radio extents.

2.2 Imaging PWNe Above 10 keV with NuSTAR

Spectral inhomogeneity in PWNe is commonly observed at X-ray energies, where energy
losses are becoming important. Spectra steepen with distance from the central pulsar, pre-



182 S.P. Reynolds et al.

Fig. 7 Top: VLA image of 3C
58 at 1.4 GHz (Reynolds and
Aller 1988). Bottom: Chandra
X-rays (Slane et al. 2008). Note
the close correspondence
between detailed features, and
the similar maximum extent in
radio and X-rays

Fig. 8 Images of G54.1+0.3 in radio (contours; VLA at 4.7 GHz) and X-ray (Chandra), with two different
stretches to emphasize the extent of faint X-ray emission (Lang et al. 2010)

sumably as higher-energy electrons are depleted. The steepening trend tends to begin im-
mediately, as shown in Fig. 9 for three PWNe (Bocchino and Bykov 2001). This behavior is
explored more fully below. This means, however, that integrated SEDs may hide important
spectral variations. Unfortunately, until recently true imaging at X-ray energies above about
10 keV was not available. However, the NuSTAR mission, launched in 2012 (Harrison et al.
2013), has brought that capability to the study of PWNe. Results of observations of three
PWNe with NuSTAR are summarized below; details are in the primary publications listed.
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Fig. 9 Steepening of the X-ray
spectrum with scaled distance
from the center, for three PWNe
(Bocchino and Bykov 2001). The
distance is in units of the distance
at which the surface brightness
has dropped a factor of 2 below
its peak. The line is a straight-line
fit to the IC 443 data only

Fig. 10 The Crab Nebula with NuSTAR (Madsen et al. 2015), after maximum-entropy deconvolution. The
nebula shrinks with increasing photon energy, at different rates in different directions

2.2.1 Crab Nebula

For PWNe with a bright pulsar, disentangling the PWN emission from the pulsar, and then
searching for spectral variations, requires good resolution in both time and space. Madsen
et al. (2015) describe this process in detail for the Crab. The observations were divided into
13 phase intervals of the pulsar rotation period, and only bins 10–12, where pulsar emission
was negligible, were used for the PWN spatial/spectral analysis (see Figs. 10 and 11). The
spatially and temporally integrated signal was calibrated to the accepted power-law shape
with Γ = 2.1 [F(E) ∝ E−Γ photons cm−2 s−1 keV−1]. But the spectrum is substantially
harder at smaller radii. This was known previously through Chandra observations (Mori
et al. 2004). However, NuSTAR has revealed another important feature: the spectrum of the
inner nebula (primarily the torus) appears to steepen by a substantial amount, �Γ ∼= 0.25,
above a break energy of about 9 keV. Figure 12 shows the low and high-energy Γ values,
based on the NuSTAR data.

The original spherical, steady-state MHD model of Kennel and Coroniti (1984a,b) pre-
dicted how the size of the Crab Nebula in the X-ray range should scale with photon en-
ergy E: R ∝ Em with m = −1/9. This prediction was consistent with results found by sev-
eral sounding-rocket measurements with lunar occultations in the 1970’s (Kestenbaum et al.
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Fig. 11 Left: Crab 50% peak intensity contours at different energies (Madsen et al. 2015). From outside in,
3–5, 5–6, 6–8, 8–12, 12–20, 20–35, and 35–78 keV. Right: Fits to the HWHM along different directions.
From top to bottom: NE torus plane, SW torus plane, NW jet axis, and SE jet axis

Fig. 12 Left: Crab photon index Γ below 6 keV; right: Γ above 10 keV (Madsen et al. 2015). Contours are
from Chandra (Mori et al. 2004)

1975; Ku et al. 1976) which obtained FWHM ∝ E−0.148±0.012, fitting Gaussians to the data.
This result was regarded as adequate agreement. The NuSTAR data show that the shrinkage
is spatially varying (Figs. 10 and 11). The fitted values of m are −0.086 ± 0.025 along the
NE direction and −0.073 ± 0.028 along the SW, or about −0.08 ± 0.03 along the torus
plane. For the SE, m is consistent with zero, but along the NW (“counter-jet” direction), the
rate is substantially larger: m = −0.218±0.040. The torus rate is consistent with the Kennel
and Coroniti (1984a,b) prediction, but the counter-jet clearly shrinks much more rapidly.

2.2.2 G21.5-0.9

This bright PWN was used for calibration by NuSTAR and other missions. It has been re-
ported as a TeV source (Djannati-Ataï et al. 2008, see Fig. 15); while those data appear to
lie roughly on an extrapolation from the measurements of NuSTAR and INTEGRAL, the
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TeV emission must be due to a separate process as normal synchrotron emission is limited
to photon energies below a few hudred MeV. However, the radio–X-ray spectrum appears
to be reasonably well described by two power-laws, requiring a steepening in mid-IR by
� ≡ α(high) − α(low) ∼ 1.0, where α(high) is the X-ray energy index (αX ≡ Γ − 1).

The fairly symmetric appearance of G21.5-0.9, and its similar size and morphology in
radio, IR, and X-rays, are unusual for PWNe. Figure 13 shows that the PWN sits in the
center of an apparent shell of diffuse X-rays. This diffuse emission shows some apparent
limb-brightening in the SE and irregular structures to the N which have thermal spectra and
appear to be the SNR shell (Bocchino 2005), but there is also a substantial X-ray halo due to
scattering by interstellar dust providing the symmetric component of diffuse emission that
drops with radius (Bandiera and Bocchino 2004).

NuSTAR observations (Nynka et al. 2014) show substantial shrinkage with X-ray energy
(Fig. 14, though the FWHM shrinkage is less dramatic than the drop in total flux). Figure 15
shows the FWHM shrinkage, well described by a power-law with m = −0.21±0.01, similar
to the value found for the Crab counter-jet. The northern part of the shell is detectable in
the images to at least 20 keV, suggesting that part of the emission may be nonthermal.
The NuSTAR spectrum shows, as for the Crab torus, a spectral softening that can be fit
with a broken power-law, with Γ steepening from 1.996 ± 0.013 below a break energy
Eb = 9.7+1.2

−1.4 keV to 2.093 ± 0.013 above that energy. (Dust scattering efficiency drops with
increasing photon energy and should not affect the spectrum in the NuSTAR energy range
above 3 keV.)

2.2.3 MSH 15-52

This complex object has almost no radio counterpart (Gaensler et al. 2002), but is bright at
X-ray wavelengths (Fig. 16). It contains a well-known 150 ms pulsar, PSR B1509-58, with
a 1600-yr spindown timescale (Seward and Harnden 1982). A bright, curved jet extends
to the SE, while long, straighter “fingers” reach to the NW to an H II region, RCW89,
which contains small knots of radio and X-ray emission. A TeV detection has been reported
(Aharonian et al. 2005). The full SED is shown in Fig. 17.

NuSTAR observations (An et al. 2014) show the same progressive steepening evident in
other PWNe. Combined fitting with Chandra and NuSTAR gives a rate that appears to slow
with distance, and can be described by two power-laws (Fig. 18). This steepening is reflected
in the broader measure of source extent as a function of photon energy (Fig. 19). Profiles
were created by summing transversely in a rectangular box of width 100′′ extended along the
jet axis. Again, combined data from Chandra and NuSTAR were used. Power-laws describe
the data fairly well, with m ∼ −0.2 (Fig. 19), a value similar to that found for G21.5-0.9 and
for the counterjet of the Crab.

2.3 Spectral Breaks in PWNe

The integrated synchrotron spectrum of all known PWNe steepens sharply between radio
and X-rays. Steepening due to radiative losses is expected, but steepening can also be caused
by evolutionary effects, such as the dropoff of pulsar luminosity after a few hundred years
(e.g., Pacini and Salvati 1973), or by intrinsic structure in the spectrum of particles injected
into the nebula at the wind termination shock. It is important to be able to characterize
the injected spectrum to understand the physics of particle acceleration, so determining the
cause of spectral structure is a necessary part of using PWNe as laboratories for the study of
astrophysical particle energization.
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Fig. 13 G21.5-0.9 in radio and X-rays (Matheson and Safi-Harb 2010). Upper left: radio (greyscale; 22.3
GHz from the Nobeyama Millimeter-Wave Array, resolution 8′′ (Fuerst et al. 1988) and X-rays (Chandra
contours; Matheson and Safi-Harb 2010). Upper right: 22.3 GHz data in red, Chandra in blue. Center: 4.75
GHz radio (VLA; Bietenholz and Bartel 2008) in red, same X-rays in blue. Bottom: Chandra (Matheson and
Safi-Harb 2010)
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Fig. 14 (a): Chandra image of G21.5-0.9 between 3 and 6 keV (Matheson and Safi-Harb 2005). (b)–(f):
Deconvolved NuSTAR images in various bands: (b) 3–6 keV; (c) 6–10 keV; (d) 10–15 keV; (e) 15–20 keV;
and (f) 20–25 keV. The green circles in panels (b) through (f) have radii of 165′′

Fig. 15 Left: G21.5-0.9 SED (PWN only). Radio–mm points from Salter et al. (1989); IR point from Zajczyk
et al. (2012); blue bowtie, NuSTAR (Nynka et al. 2014); magenta bowtie, INTEGRAL (de Rosa et al. 2009);
TeV bowtie in cyan, H.E.S.S. (Djannati-Ataï et al. 2008). Right: Shrinkage of G21.5-0.9 with photon energy
(Nynka et al. 2014)

While the small-scale torus of a PWN often has a complex, non-monotonic SED (see, for
example, Figs. 6 and 20 for the cases of 3C 58 and G292.0+1.8), the larger-scale PWN often
has simpler spectral behavior. The spectrum of an initially straight power-law distribution
of electrons subject to synchrotron losses steepens at an energy at which the source age
equals the synchrotron-loss time (Kardashev 1962). The amount of spectral steepening � ≡
α(high) − α(low) is 0.5 in the case of a uniform source with constant particle injection, but
for inhomogeneous sources, naturally arising from outflow, � can differ from 0.5 (Kennel
and Coroniti 1984b; Reynolds 2009). Since � > 0.5 is far more common than � = 0.5 (see
Table 2, and Fig. 6 for the examples of 3C58 and 0540-693, both with � ∼ 1), either these
breaks are not due to losses (in which case the absence of loss breaks poses serious modeling
problems), or PWNe are significantly inhomogeneous. Outflow models, however, predict
spatial dependence of steepening which is at odds with observations (uniform spectra until
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Fig. 16 MSH 15-52 with Chandra and NuSTAR (An et al. 2014). From left to right, top to bottom: Chan-
dra+NuSTAR, 0.5–40 keV; Chandra, 0.5–2 keV; Chandra, 2–4 keV; Chandra, 4–7 keV; NuSTAR, 3–7 keV;
NuSTAR, 7–12 keV; NuSTAR, 12–25 keV; NuSTAR, 25–40 keV; NuSTAR exposure map. All frames except
the last are 10′ × 12′

sudden steepening near the edge, clearly at variance with observed behaviors, e.g., Figs. 9
and 18).

Simple PWN models offer two possibilities for spectral steepening, both based on ra-
diative losses of electrons, but invoking different pictures of particle transport from the
wind shock through the nebula. In pure-advection models like those of Kennel and Coro-
niti (1984a) and Reynolds (2009), steepening can be thought of as due to the shrinkage of
effective source size with increasing photon energy, as energy losses deplete electrons with
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Fig. 17 Left: Radio image of MSH 15-52 at 1.3 GHz with ATCA (Gaensler et al. 1999). The bright horseshoe
to the N is RCW 89. There is little evidence of the PWN; the cross marks the pulsar location. Right: SED
for MSH 15-52. Radio: Gaensler et al. (2002). IR upper limits are from Koo et al. (2011). X-rays: An et al.
(2014). TeV: Aharonian et al. (2005)

Fig. 18 Left (panel (a)): Regions of MSH 15-52 used for spatially resolved spectroscopy. Panel (b): Photon
index as a function of distance to the NW (in the partial annuli). Panel (c): Photon index along the jet to the
SE. Panels (d) and (e) give fitted column densities NH from Chandra data as a function of distance from the
pulsar, for the northern nebula and the jet, respectively. Figures from An et al. (2014)

higher energies at smaller radii. However, such models all share one important failing: they
predict that the PWN spectral index should be constant throughout the source until a sudden
steepening at the (energy-dependent) edge radius (Fig. 21).

However, advection models in inhomogeneous sources can produce the frequently ob-
served steepenings by values � greater than 0.5. The models can be tested because they
achieve such values of � by source shrinkage at related rates; that is, the source size R

obeys R ∝ Em with m and � related by the model. The Kennel–Coroniti model predicts
� = (4 + α)/9, where α = 0.6 characterizes the assumed injected spectrum, explaining op-
tical and higher-energy emission. A triumph of this model was the successful explanation
(m = −1/9) of the rocket observations of the Crab in the 1970’s, as described above.
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Fig. 19 Left: Box used to extract profiles from NuSTAR image of MSH 15-52. Profiles were summed along
the minor dimension (100′′), and extents as a function of energy displayed in panels to the right. Panel (a):
FWHM of profiles centered on the pulsar extending in both directions. (b): Extending from the pulsar to the
NW. (c) Extending from the pulsar to the SE (along the jet). (d) Energy shrinkage (“decay”) indices m (with
extents ∝ Em). Plots from An et al. (2014)

Fig. 20 Left: The shell SNR G292.0+1.8, with the pulsar indicated and the PWN in blue (Park et al. 2007).
Right: SEDs of the entire PWN and of the torus [seen in VLT images at H and Ks bands; Zharikov et al.
(2013)]. The torus spectrum is complex, but the PWN could be described by a double power-law with a single
spectral break around 100 GHz. However, the steepening � is almost 1

More extreme source gradients are required to produce � significantly in excess of 0.5,
however. Reynolds (2009) considered ad-hoc source gradients in flow-tube radius, magnetic
field, density, and velocity, and connected them to predicted values of �. The large pa-
rameter space is significantly constrained if the source shrinkage with size can actually be
measured. If magnetic-field strength varies as rmB and density as rmρ , conical flows (jets or
spherical winds) with α = 0 (for simplicity) satisfy

�

−m
= 3 + mB + mρ. (1)
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Table 2 Spectral breaks in PWNe

Object αradio αX-ray � Reference

Crab 0.3 1.1 0.8 Manchester et al. (1993)

G11.2-0.3 ∼0 0.9 0.9 Roberts et al. (2003)

Kes 75 0.2 0.9 0.7 Blanton and Helfand (1996)

G54.1+0.3 0.28 0.8 0.5 Lu et al. (2002)

3C 58 0.1 1.1 1.0 Green and Scheuer (1992)

B0540-693 0.25 1.2 0.95 Manchester et al. (1993)

G21.5-0.9 ∼0 1.0 1.0 Salter et al. (1989), Nynka et al. (2014)

MSH 15-52 0.2 1.1 0.9 Gaensler et al. (2002)

G292.0+1.8 0.05 0.9 0.85 Gaensler and Wallace (2003)

Fig. 21 Left: Observed photon index Γ as a function of radius in 3C 58 (Slane et al. 2004). Curve: Prediction
from Kennel–Coroniti pure-MHD spherical advection model (Reynolds 2003). Right: Diffusion model for
G21.5-0.9 (Tang and Chevalier 2012, data from Slane et al. (2000))

For G21.5-0.9, �/(−m) = 4.29 so mB + mρ = 1.3, requiring that either magnetic field B

or gas density ρ, or both, rise with radius. This could conceivably happen due to turbulent
amplification of magnetic field and/or mass loading of the PWN outflow (Lyutikov 2003),
but seems unlikely. A similar result holds for MSH 15-52, requiring mB + mρ ∼ 1. While a
value for m can be determined for the Crab’s counter-jet, an independent value of � for that
region alone is difficult to obtain, since that feature is embedded in the radio nebula and is
not morphologically distinct.

Alternatively, particle transport may occur through diffusion. Purely diffusive models
(Gratton 1972; Reynolds and Jones 1991; Tang and Chevalier 2012) can produce fairly
linear increases in spectal index with radius (Fig. 21). However, they do not predict a change
of source size with photon energy, and the spectral breaks must be intrinsic. Combination
models of diffusion and advection (Tang and Chevalier 2012) offer more flexibility, but
are not amenable to analytic investigation and have not yet been explored in great detail.
These models all remain quite simple, with spherical or simple one-dimensional outflow
geometries. The gradual increase of spectral index with radius probably requires a mix of
particles of different ages at each radius; such a mix can be achieved by diffusion, but also
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by more complicated flow geometries, such as the backflows found in relativistic-MHD
simulations such as those of Komissarov and Lyubarsky (2004) or Del Zanna et al. (2004).

The question of the origin of the full SED of the synchrotron spectrum from PWNe is
thus still unsettled, so the observations cannot yet be brought to bear directly on theories
of particle energization in PWNe. Even the fundamental origin of the radio-emitting parti-
cles is still mysterious. Relativistic-MHD simulations still lack the ability to make detailed
spectral predictions, as these require propagating the full particle spectrum with each fluid
element, and are computationally prohibitive at this time. It is most likely, however, that
further progress will require the development of this capability. In the meantime, the ob-
servational characterization of PWN SEDs and spatially resolved spectra remain important
tools for constraining models, and may ultimately contribute essential clues to solutions of
these basic problems.

All three PWNe observed with NuSTAR have been detected at TeV wavelengths. Gamma-
ray observations hold out the promise of further constraining the particle distributions of
PWNe known at other wavelengths, but also of discovering new types of object that are
predominantly TeV emitters. Both cases are discussed in Sect. 4.

3 X-Ray Pulsar Wind Nebulae Outside Supernova Remnants

3.1 Expected General Properties of PWNe of Supersonically Moving Pulsars

For the first 500–1000 years after the SN explosion, the SNR’s radius Rsnr almost linearly
increases with time with a typical speed of ∼10,000 km s−1, much faster than the typi-
cal puslar speed of a few hundred km s−1. At larger ages the SNR expansion slows down
(Rsnr ∝ t2/5 and t3/10 in the Sedov and pressure-driven snowplow stages, respectively), while
the pulsar keeps moving with about the same velocity and eventually leaves the SNR at an
age of ∼20–200 kyr (see Fig. 4 in Arzoumanian et al. 2002). This means that most of the
known pulsars are moving in the ISM with the speed Vpsr considerably exceeding the speed
of sound in the ambient medium, cs = (γadkT /μmH)1/2 ∼ 3–30 km s−1, where γad is the
adiabatic index (γad = 5/3 for monoatomic gases), T is the temperature, and μ is the molec-
ular weight. The supersonic motion of the pulsar drastically changes the PWN morphology
(see van der Swaluw et al. 2004, Gaensler and Slane 2006, and references therein). Since
the ram pressure pram = ρambV

2
psr = 1.5 × 10−9nb(Vpsr/300 km s−1)2 dyn cm−2 (where nb is

the ambient baryon number density in units of cm−3) exceeds the ambient pressure pamb,

pram/pamb = γadM2 � 1 , (2)

(M = Vpsr/cs is the Mach number), the PWN acquires a cometary shape with a compact
head around the pulsar and a long tail behind it (Fig. 22). In an idealized picture, the interac-
tion of the pulsar wind (PW) with the ambient (circumpulsar) medium creates three distinct
regions. The bullet-shaped cavity around the pulsar is filled with the unshocked relativistic
PW confined within the termination shock (TS). The shocked PW, which is the main source
of synchrotron radiation in X-rays, is flowing away between the TS and the contact dis-
continuity (CD) that separates the shocked PW from the shocked ambient medium. Finally,
the compressed and heated shocked ambient medium between the CD and the forward bow
shock (FS) is expected to emit IR-optical-UV radiation in spectral lines and continuum.

For an isotropic pulsar wind, a characteristic distance from the pulsar at which the ram
pressure of the unshocked PW, Ėw/(4πcr2), balances the ram pressure of the ambient
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Fig. 22 Cartoon of a head-tail
PWN created by a supersonically
moving pulsar. A synchrotron
(e.g., X-ray) PWN is produced
by the shocked PW flowing
between the TS and CD surfaces,
while the shocked circumstellar
medium between the FS and CD
surfaces is expected to be the
source of IR-optical-UV
radiation

medium (the so-called stagnation point) is

R0 =
(

Ėw

4πcpram

)1/2

= 1.3 × 1016Ė
1/2
w,35n

−1/2
b

(
Vpsr/300 km s−1

)−1
cm, (3)

where Ėw = ξwĖ = 1035Ėw,35 erg s−1, Ė is the pulsar’s spin-down power, and ξw < 1 is the
fraction of Ė that powers the PW. For an unmagnetized PW, R0 is approximately equal to
the distance of the CD apex ahead of the pulsar, Rcd ≈ R0 (van der Swaluw et al. 2004).
The characteristic angular separation between the pulsar and the sky projection of the CD
surface is

θ0 ≈ R0/d = 0.′′89d−1
1.0 Ė

1/2
w,35n

−1/2
b

(
V⊥/300 km s−1

)−1
sin i, (4)

where d = 1.0d1.0 kpc is the distance,1 i is the angle between the line of sight and the pulsar
velocity,2 and V⊥ = Vpsr sin i. The small value of θ0 implies that subarcsecond resolution
(provided only by Chandra among the currently active X-ray observatories) is required to
resolve the PWN head from the pulsar even for nearby pulsars.

The unshocked PW consists of relativistic particles (likely electrons and positrons) and
a magnetic field. The magnetization parameter σ , defined as the ratio of the Poynting flux,
B2c/(4π), to the particle enthalpy flux, is unknown. Pulsar models predict σ � 1 immedi-
ately outside the pulsar magnetosphere, while PWN models require σ � 1 (or even σ 
 1;
Kennel and Coroniti 1984a) just upstream of the TS. The decrease of σ with distance from
the pulsar could be due to transfer of the magnetic field energy to the particles, e.g., by mag-
netic field reconnection in the striped PW (see Kirk et al. 2009, and references therein). For
a given magnetization, the magnetic field upstream of the TS at the stagnation point can be
estimated as

B ∼
[

Ėwσ

cR2
0(σ + 1)

]1/2

=
(

4πpramσ

σ + 1

)1/2

≈ 140

(
nbσ

σ + 1

)1/2
Vpsr

300 km s−1
µG. (5)

The magnetic field can be somewhat higher in the shocked PW, up to a factor of 3 immedi-
ately downstream of TS, at σ 
 1 (Kennel and Coroniti 1984a). Thus, characteristic PWN
magnetic field values are expected to be of the order of 10–100 µG.

1In this Section the subscript of d means the scaling distance in kpc.
2Equation (4) is applicable at not too small sin i; see Romani et al. (2010).
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Typical energies of synchrotron photons emitted in such fields can be estimated as

E = ζ
heB⊥γ 2

2πmec
= 1.16ζB−5γ

2
8 keV = 4.43ηB−5(Ee/100 TeV)2 keV (6)

where B⊥ = 10−5B−5 G is the magnetic field component perpendicular to the electron ve-
locity, γ = Ee/(mec

2) = 108γ8 is the electron Lorentz factor, and ζ ∼ 1 is a numerical
factor. The synchrotron emission spectum is determined by the electron spectrum, which
depends on the still poorly understood acceleration mechanism. The commonly considered
Fermi acceleration mechanism at fronts of relativistic shocks (e.g, the TS) gives a power-
law (PL) electron spectrum, dNe/dγ ∝ γ −p in the range γmin < γ < γmax, with p � 2
(see, e.g., Chap. 6 of the review by Bykov et al. 2012). Such an electron spectrum pro-
duces a PL photon spectrum, dN/dE ∝ E−Γ in the Emin < E < Emax range, with the pho-
ton index Γ = (p + 1)/2 � 1.5. The maximum Lorentz factor of accelerated electrons,3

γmax � (e/mec
2)[Ėσ/c(σ + 1)]1/2 ≈ 1.1 × 109Ė

1/2
35 [σ/(σ + 1)]1/2, can be estimated from

the condition Rg < R0, where Rg = γmec
2/(eB) = 1.7 × 1016γ8B

−1
−5 cm is the gyration

radius. This corresponds to the maximum synchrotron photon energy

Emax � 130ζ Ė35B−5σ/(σ + 1) keV. (7)

This equation shows that one should not expect X-ray PWNe from very old, low-power
pulsars, but head-tail PWNe could be expected at UV-optical-IR wavelengths.

The qualitative head-tail PWN picture is generally confirmed by analytical estimates
(e.g., Romanova et al. 2005) and numerical simulations. For instance, Bucciantini et al.
(2005) presented relativistic MHD axisymmetric simulations for M = 30 and three values
of the PW magnetization σ upstream of the TS. Figure 1 of that paper shows that for an
isotropic PW with a toroidal magnetic field the TS, CD and FS apices are at distances of
≈ R0, 1.3R0 and 1.7R0, respectively, at σ = 0.002, while the radius of the cylindrical tail
(confined by the CD surface behind the pulsar) is rcd ≈ 4R0, almost independent of magneti-
zation. The bulk flow velocity in the tail reaches 0.8–0.9c at its periphery (closer to the CD),
being 0.1–0.3c in the central channel (behind the TS bullet). Simulated maps of synchrotron
brightness (Figs. 4 and 5 in Bucciantini et al. 2005) show that the brightness is maximal at
the PWN head, gradually decreasing with distance from the pulsar in the PWN tail.

The inner and outer channels of the tail flow should mix with each other at larger dis-
tances from the pulsar due to shear instability. At even larger distances the flow should slow
down due to mass-loading of the ambient matter, which leads to additional tail broadening
(e.g., Morlino et al. 2015).

As the outflowing electrons lose their energy to synchrotron radiation, we can expect
spectral softening with increasing distance from the pulsar, which means the observed tail’s
length should increase with decreasing photon energy (e.g., it should be larger in the radio
than in the X-rays). The length scale of the tail at photon energy E (in keV) can be estimated
as

ltail ∼ Vflowτsyn ∼ 18
(
Vflow/10,000 km s−1

)
ζ 1/2E−1/2B

−3/2
−5 pc (8)

3Note that γmaxmec
2 ∼ eΦσ/(σ + 1), where Φ = BLCRLC ∼ BNSR3

NSΩ2/c2 is the potential drop across
the pulsar’s polar cap, RLC = c/Ω is the light cylinder radius, Ω = 2π/P , BLC and BNS are the mag-
netic field values at the light cylinder and the neutron star surface. The maximum electron energies in other
acceleration models (e.g., Romanova et al. 2005) are also fractions of eΦ .
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where Vflow is a typical flow velocity and τsyn = 1.6γ −1
8 B−2

−5 kyr ∼ 1.7ζ 1/2E−1/2B
−3/2
−5 kyr is

the synchrotron cooling time. We should note that such an estimate is very crude because
both the flow velocity and the magnetic field vary with the distance from the pulsar.

The simulations by Bucciantini et al. (2005) were done for an isotropic PW. We, how-
ever, know that at least in some young pulsars the PW is mostly concentrated around the
equatorial plane, perpendicular to the spin axis, and the PWN has equatorial and polar com-
ponents (e.g., the torus and jets in the Crab pulsar; Weisskopf et al. 2000). In this case the
ram pressure of the unshocked PW becomes anisotropic, which changes not only the dis-
tance to the stagnation point but also the overall PWN appearance. In particular, the PWN
shape strongly depends on the angle between the pulsar’s velocity and spin vectors, as well
as on the angle between the spin vector and the line of sight. Three-dimensional simula-
tions for several cases of anisotropic PW were presented by Vigelius et al. (2007), assuming
nonrelativistic, unmagnetized flows (see also Wilkin 2000 and Romani et al. 2010 for an-
alytical approximations). The PW anisotropy should strongly affect the shape of the PWN
head, which may become substantially different from the bullet-like one. On the other hand,
the shape of tail should not be so strongly affected, especially at large distances behind the
pulsar.

In addition to synchrotron (and inverse Compton—see Sect. 4) emission from the
shocked PW, one can expect emission from the shocked ISM between the FS and the CD.
While passing through the FS, it is compressed and heated up to temperatures

T ≈ (3/16)(μmp/k)V 2
psr = 1.2 × 106(μ/0.6)

(
Vpsr/300 km s−1

)2
K, (9)

where μmp is the mean mass per particle (including electrons; see Bykov et al. 2008 for
details). The shocked ISM emits in both continuum and spectral lines in the optical, UV, and
even soft X-ray ranges. If there are neutral hydrogen atoms in the ambient medium ahead
of the pulsar, they can be excited at the FS and emit spectral lines in the course of radiative
de-excitation.

Thus, a rotation-powered pulsar that has left its parent SNR should be accompanied by a
nebula that consists of a head-tail synchrotron component, emitting in a broad energy range,
perhaps from the radio to soft γ -rays, enveloped by a (forward) bow-shock component ob-
servable in the optical-UV (particularly, in the Balmer lines). Below we will see, however,
that observational results do not always coincide with the predictions of the current simple
models.

3.2 Observational Results

Although most of the known rotation-powered pulsars have left their SNRs and are moving
with supersonic velocities, their spin-down powers (and the PWN luminosities) have signif-
icantly decreased with age. Therefore, the number of detected head-tail (bow-shock) PWNe
is relatively small. Among over 70 PWNe and PWN candidates detected in X-rays (Kar-
galtsev et al. 2013), only about 15 PWNe are certainly created by old (and/or fast) enough
pulsars that have left their parent SNRs. These have spin-down powers 0.01 � Ė35 � 30 and
characteristic (spin-down) pulsar ages τsd � 20 kyr. Of the remainder, about 25–30 are still
inside SNRs, and the rest are ambiguous, or not yet confirmed as PWNe. An even smaller
number of head-tail PWNe were observed with exposures deep enough to accurately mea-
sure the X-ray PWN properties. Below we present a few examples of such observations.
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Fig. 23 Left: Merged image from 5 Chandra ACIS observations of the Mouse (0.5–8 keV, 154 ks exposure).
Right: Chandra HRC image of the Mouse (58 ks exposure). The cross in the right image marks the pulsar
position; the arrows show the direction of proper motion

Fig. 24 Left: Composite X-ray (red; ACIS) and radio (blue; VLA, 1.′′07 beam) image of the Mouse PWN.
The pulsar position is shown by the white cross. Right: VLA radio images (top: 11′′ beam, bottom: 32′′ beam)
showing the extended tail of the Mouse. The field of view of the left image is shown by the dashed white box
in the lower right panel. The radio images were obtained from the NRAO VLA Archive

3.2.1 The Mouse: A Textbook Example?

The Mouse PWN was discovered in a radio survey of the Galactic center region (Yusef-
Zadeh and Bally 1987). The VLA image showed a bright compact head (“snout”), a bul-
bous ∼ 2′ long “body”, and a remarkably long, ∼ 12′, narrow “tail” (see the right pan-
els in Fig. 24). Camilo et al. (2002) discovered a 98 ms pulsar, J1747-2958, within the
Mouse’s head, with a spin-down power Ė = 2.5 × 1036 erg s−1 and a characteristic age
τsd = 25 kyr. Hales et al. (2009) measured the proper motion of the radio PWN head,4 μ =
12.9 ± 1.8 mas yr−1, which corresponds to a transverse velocity V⊥ = (306 ± 43)d5 km s−1,
where d5 = d/5 kpc. Based on the projected tail length, ∼17d5 pc, and the lack of an SNR
that could possibly be associated with the pulsar (see, however, Yusef-Zadeh and Gaensler
2005), Hales et al. (2009) argue that the true age of the pulsar is �160 kyr.

The Mouse PWN was observed with Chandra by Gaensler et al. (2004) and Klingler et
al. (2017, in preparation), with 36 ks and 120 ks exposures, respectively. These observations
have shown an X-ray nebula with a compact bright head and a tail of ∼ 45′′ length, a factor
of 16 shorter than the radio tail (see Fig. 23). The X-ray luminosity of the PWN, L0.5–8 keV ≈
4It can differ from the pulsar’s proper motion if the pulsar moves in a non-uniform ambient medium, but we
will neglect this difference here.
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Fig. 25 Photon index Γ as a
function of distance from the
pulsar along the tail of the Mouse
(Klingler et al. 2017, in
preparation)

3.3 × 1034d2
5 erg s−1, is about 0.013d2

5 of the pulsar’s spin-down power, unusually high
compared to other PWNe (Kargaltsev and Pavlov 2008). The distance from the pulsar to
the projected leading edge of the head, θ0 ≈ 1′′, corresponds to nb ∼ 0.8ξwd−4

5 sin2 i cm−3

(see Eq. (4)), typical for a warm phase of the ISM (e.g., Bykov et al. 2008). For a sound
speed of ∼10 km s−1, expected for this phase, the pulsar’s Mach number can be estimated
as M ∼ 30d5/ sin i. The spatially-resolved X-ray spectrum showed a significant increase of
the photon index with increasing distance from the pulsar, from Γ ≈ 1.6 in the immediate
vicinity of the pulsar to Γ ≈ 3.0 at ∼40′′ from the pulsar (see Fig. 25). The spectral softening
could be caused by synchrotron cooling. Assuming equipartition between the magnetic field
energy and the kinetic energy of relativistic electrons, the magnetic field strength estimated
from the observed X-ray emission is a few hundred µG, substantially higher than in other
head-tail PWNe.5 For such a magnetic field the projected length of the X-ray tail, ltail ∼
1d5 kpc, corresponds to a flow velocity Vflow ∼ 20,000B

3/2
−4 d5/ sin i km s−1, much higher

than Vpsr but significantly lower than the mildly relativistic speeds predicted by Bucciantini
et al. (2005). Moreover, the comparison of the X-ray and high-resolution radio images (see
the left panel of Fig. 24) suggests that the flow is faster in the middle of the tail, contrary to
the model predictions.

The radio tail of the Mouse is longer than in any other known PWN. Just behind the
pulsar, the radio image looks like a cone with an ≈25◦ half-opening angle (much broader
than the Mach cone at the above-estimated M ∼ 30) and a vertex at the pulsar position.
The cone abruptly narrows at ∼1′ from the pulsar. Such behavior is not explained by the
current PWN models. The Mouse is one of the few PWNe with a mapped radio polarization.
Polarization mesurements by Yusef-Zadeh and Gaensler (2005) suggest that the magnetic
field wraps around the bow shock structure near the apex of the system, but runs parallel
to the direction of the pulsar’s motion in the tail behind the pulsar. Such a magnetic field
distribution is different from the toroidal one assumed in the models by Bucciantini et al.
(2005). Thus, the Mouse has a few features consistent with the model predictions, but the
models do not fully agree with the observations, particularly in the radio.

3.2.2 Geminga: An Odd “Three-Tail” PWN

The X-ray PWN created by the radio-quiet γ -ray pulsar Geminga (P = 237 ms, Ė =
3.3 × 1034 erg s−1, τsd = 340 kyr, d = 0.25+0.23

−0.08 kpc) looks quite different from the

5We should note, however, that such estimates assume that the magnetic field strength is about the same
throughout the emitting volume, which may be far from reality.
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Fig. 26 Combined Chandra
ACIS image of the Geminga
PWN (0.5–8 keV, 540 ks). The
arrow shows the direction of the
pulsar’s proper motion

Fig. 27 Images of the central tail of the Geminga PWN in separate Chandra observations, in the 0.5–8 keV
band

Mouse6 and from the predictions of PWN models. The proper motion of this pulsar,
μ = 178.2 ± 1.8 mas yr−1 (Faherty et al. 2007), corresponds to the transverse velocity
V⊥ = (211 ± 2)d0.25 km s−1. Observations with XMM-Newton revealed two bent “tails” be-

6One should bear in mind, however, that much smaller spatial scales can be probed in the nearby Geminga
PWN than in the Mouse.
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hind the pulsar, on both sides of its sky trajectory (Caraveo et al. 2003), while Chandra ob-
servations with higher spatial resolution showed a shorter third tail between the two lateral
tails (Pavlov et al. 2006, 2010). The most detailed data on the Geminga PWN were provided
by a series of 12 Chandra observations carried out in 2012–2013, with a total exposure of
about 580 ks (Posselt et al. 2016). Figure 26 shows a summed image from these observa-
tions, where we see two lateral tails of ∼3′ (0.2d0.25 pc) length and one ∼0.45′′ (0.05d0.25 pc)
long central tail. Surprisingly, there is only a hint of bow-like emission ahead of the pulsar
and no bright, filled ‘bullet’ predicted by the PWN models assuming an isotropic PW. The
0.3–8 keV luminosities of the northern and southern lateral tails, and the central tail are 1.6,
2.6, and 0.9 × 1029d2

0.25 erg s−1, respectively, i.e., the total PWN luminosity is a fraction of
1.5 × 10−5d2

0.25 of the pulsar’s spin-down power, three orders of magnitude smaller than for
the Mouse. Images from separate exposures show that the central tail is formed by isolated
“blobs” seen at different distances from the pulsar in different observations (see Fig. 27).
However, there is no evidence of constant or decelerated motion of the blobs. The spectra
of the lateral tails are very hard, Γ ≈ 0.7–1.0, much harder than the spectrum of the central
tail, Γ ≈ 1.6, and they do not show significant changes with increasing distance from the
pulsar.

The nature of the three tails is not certain yet. One could assume that the lateral tails
represent a limb-brightened paraboloid shell of shocked PW downstream of the TS and
their unusually hard spectrum is emitted by electrons accelerated by the Fermi mechanism
at the shocks that form in two colliding flows (in the reference frame of CD)—the PW and
the oncoming ambient medium. However, a lack of diffuse emission in between the lateral
tails strongly suggests that the shell emissivity is not azimuthally symmetric with respect
to the shell axis (i.e., the direction of motion). Such an asymmetry could be caused by
a strong asymmetry of the PW (e.g., because the equatorial plane around the pulsar spin
axis, where the PW is presumbly concentrated, is strongly misaligned with the direction of
motion) or an azumuthally asymmetric magnetic field in the shell (see Posselt et al. 2016
for details). Alternatively, the lateral tails could be interpreted as strongly collimated polar
outflows (jets) bent by the ram pressure of the oncoming ambient medium. The blobs in
the central tail could be short-lived plasmoids formed by magnetic field reconnection in
the relativistic plasma behind the moving pulsar, resembling the magnetotails of the Solar
system planets. Observations at different wavelengths could clarify the PWN nature, but the
Geminga PWN was not detected in the radio or Hα. For any interpretation, we can conclude
that the Geminga’s PW is strongly anisotropic, and new models are required to explain the
morphologies and spectra of such PWNe.

3.2.3 The Guitar: First Example of a Misaligned Outflow

The Guitar nebula is produced by the relatively old, low-power pulsar B2224+65 (P =
683 ms, Ė = 1.2 × 1033 erg s−1, τsd = 1.12 Myr). The pulsar is among the highest velocity
neutron stars known; its proper motion, μ = 182 ± 3 mas yr−1, corresponds to the trans-
verse velocity V⊥ = 860–1730 km s−1 (the uncertainty is caused by the uncertain distance,
d = 1–2 kpc). The guitar-shaped Hα nebula was discovered by Cordes et al. (1993) and
further studied in several papers (see Dolch et al. 2016 and references therein). One could
expect a head-tail X-ray PWN within the Hα bow shock, but a high-resolution observation
with Chandra showed instead a straight 2′ (0.3d1 pc) long feature inclined by 118◦ to the
direction of the pulsar’s proper motion (Wong et al. 2003; Hui and Becker 2007; see Figs. 28
and 29). A second Chandra observation 6 years later showed that the sharp leading edge of
the jet-like feature had the same proper motion as the pulsar, and it provided evidence for
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Fig. 28 Combined Chandra
ACIS image (0.5–8 keV, 195 ks
total exposure) of PSR
B2224+65 and its misaligned
outflow, in a coordinate frame
moving with the pulsar. The
image is a combination of two
images separated by an interval
of 6 years, during which the
pulsar moved 1′′ on the sky

Fig. 29 Smoothed X-ray image
from Fig. 28 overlaid onto the
Hα image showing the Guitar.
The Hα image is taken from
http://chandra.harvard.edu/
photo/2015/archives/

the presence of a counter-feature, albeit substantially shorter and fainter than the main one
(Johnson and Wang 2010). The feature shows a power-law spectrum with Γ ≈ 1.6, compa-
rable to that of the point-like source (the pulsar plus an unresolved PWN?). The luminosity
of the feature, L0.3–7 keV ∼ 7 × 1030d2

1 erg s−1, exceeds that of the point-like source by a
factor of 3–4, and is a fraction of ∼6 × 10−3d2

1 of the pulsar’s spin-down power.
The lack of a resolved X-ray head-tail PWN could be explained by the very high pulsar

velocity and low spin-down power. Indeed, according to Eq. (3), the characteristic PWN
size ahead of the pulsar, R0 ∼ 5×1014ξ 1/2

w n
−1/2
b d−1

1 cm, correponds to the angular distance7

as small as θ0 ∼ 0.′′03(ξw/nb)
1/2d−2

1 , much smaller than the angular resolution of Chandra.
The lack (shortness) of the X-ray tail could be due to a high magnetic field (hence fast
synchrotron cooling) in the shocked PW associated with the small stand-off distance (see
Eq. (5)). Another reason could be a low maximum energy of accelerated electrons at the low
spin-down power of B2224+65 (see Eq. (7)).

The nature of the elongated feature remains unclear. It might be a pulsar jet, but such a
jet should be bent by the ram pressure of the oncoming ambient medium while no bending

7Chatterjee and Cordes (2002) estimated θ0 = 0.′′06 ± 0.′′02 from modeling an Hα image obtained with the
Hubble Space Telecope.

http://chandra.harvard.edu/photo/2015/archives/
http://chandra.harvard.edu/photo/2015/archives/
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Fig. 30 Left: Chandra ACIS
image of the J1509-5850 PWN
(0.5–8 keV, 374 ks) showing the
southwest tail and the misaligned
outflow toward the north. Right:
Combined Chandra ACIS (red)
and VLA (blue) image of the
same PWN. The arrows show an
assumed direction of proper
motion

is observed. Bandiera (2008) suggested that the feature is produced by synchrotron radiation
of highest energy electrons (γ ∼ 108) accelerated at the TS and leaked into the ISM along
its magnetic field. This scenario, however, requires a rather high ambient magnetic field
(∼45 µG, according to Bandiera 2008) and it remains unclear why the counter-feature is so
much fainter than the main one. Since the true nature of the feature is not certain yet, we will
call it simply a misaligned outflow. It should be emphasized that, most likely, the misaligned
outflow is not a (magneto)hydrodynamical flow but rather a stream of high-energy particles
not interacting with each other and with the ISM gas.

3.2.4 J1509-5850: Another Misaligned Outflow, a “Three-Tail” Compact Nebula, and
a Long Tail

PSR J1509-5850 is a middle-aged (τsd = 154 kyr) pulsar with P = 89 ms, Ė = 5.1 ×
1035 erg s−1, and a dispersion-measure distance d ≈ 3.8 kpc. Its X-ray PWN, consisting
of a compact “head” and a long “tail” southwest of the pulsar, was discovered in a Chandra
observation by Kargaltsev et al. (2008). Deep follow-up Chandra observations (374 ks to-
tal exposure) are described by Klingler et al. (2016a). In addition to the previously detected
southwest tail extending up to 7′ (7.7d3.8 pc), these observations revealed similarly long (but
fainter) diffuse emission stretched toward the north and the fine structure of the PWN “head”
(see Fig. 30). The “head” (dubbed the Compact Nebula [CN] by Klingler et al. 2016a) is re-
solved into two lateral tails and one short central tail (Fig. 31), remarkably similar to the
Geminga PWN. Although the pulsar’s proper motion has not been measured, the overall CN
and southwest tail morphology provides strong evidence that the pulsar is moving northeast.
In this case the northern structure is another example of a misaligned outflow.

Klingler et al. (2016a) estimated upper and lower limits for the transverse velocity,
V⊥ � 640d3.8 km s−1 and V⊥ � 160n

−1/2
b d−1

3.8 km s−1, using upper limits on the pulsar’s
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Fig. 31 Left: Compact X-ray nebula in the vicinty of PSR J1509-5850. Right: ACIS image demonstrating
the transition from the compact nebula to the southwest tail

proper motion and stand-off distance (the latter estimate assumes an isotropic PW). Being
morphologically similar to the Geminga PWN, the CN of J1509-5850 is a factor of ∼200
more luminous (e.g., L0.5–8keV ≈ 7.5×1031d2

3.8 erg s−1 for the CN lateral tails) and a factor
of ∼10 more X-ray efficient (η0.5–8keV ≡ L0.5–8keV/Ė ≈ 1.5×10−4d2

3.8 vs. 1.5×10−5d2
0.25

for Geminga). In addition, the spectra of the lateral tails are much softer in the CN than in
the Geminga PWN (Γ ≈ 1.8 vs. Γ ≈ 1, respectively). The reason of these differences is
currently unclear.

Being aligned with the CN symmetry axis, the extended tail southwest of the pulsar
is obviously composed of a shocked PW collimated by ram pressure. Its luminosity is
L0.5–8 keV ≈ 1 × 1033d2

3.8 erg s−1, and its spectral slope, Γ ≈ 1.9, does not show any increase
(rather a hint of decrease) with increasing distance from the pulsar. The lack of spectral
softening suggests a very high speed of the outflowing matter. Alternatively, there could be
some “reheating” due to in situ conversion of magnetic field energy into particle energy,
e.g., via turbulent processes and accompanying reconnection, which might explain the hint
of spectral hardening at large distances from the pulsar. The tail is also seen in radio up to
about 10′ from the pulsar (Ng et al. 2010). Surprisingly, the radio emission brightens with
distance from the pulsar (contrary to the Mouse tail), becomes broader than the X-ray emis-
sion beyond ≈3′, and then narrows again beyond ≈5′ (see Fig. 30). Another difference from
the Mouse tail is the predominant magnetic field orientation, stretched along the tail in the
Mouse and helical, with the helix axis parallel to the pulsar’s direction of motion, in the
J1509 tail. The different magnetic field geometries possibly reflect different spin-velocity
alignments of the parent pulsars.

The median of the 7′ long wedge-like northern structure is inclined to the CN symmetry
axis (alleged direction of proper motion) by ≈33◦. Its luminosity, L0.5–8 keV ≈ 4 × 1032d2

3.8,
is a factor of 2.5 lower than that of the southwest tail, while the spectral slope is about the
same, with a slight hint of softening with increasing distance from the pulsar.

3.2.5 The Complex PWN Created by PSR B0355+54

PSR B0355+54, located at a parallax distance of d = 1.0 ± 0.2 kpc, is a middle-aged ra-
dio pulsar (τsd = 560 kyr) with a spin-down power Ė = 4.5 × 1034 erg s−1 and a period
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Fig. 32 Chandra ACIS images of the B0355+54 PWN (0.5–8 keV, 395 ks). Left: The compact PWN in the
pulsar vicinity (the Mushroom). Right: The large-scale PWN, including the diffuse tail and the “whiskers”.
The arrows show the direcion of the proper motion

P = 156 ms. Its transverse velocity, V⊥ = 61+12
−9 d1 km′, s−1 towards the northeast, is among

the lowest observed. Observations with Chandra and XMM-Newton revealed the presence
of a PWN (dubbed the Mushroom by Kargaltsev and Pavlov 2008) consisting of a com-
pact “cap” and a dimmer “stem”, with a hint of extended emission visible up to ∼7′ (2 pc)
southwest of the pulsar (McGowan et al. 2006). A series of 8 Chandra observations, per-
formed over an 8-month period in 2012–2013 (total exposure of 395 ks) revealed the detailed
structure of the B0355+54 PWN (see Fig. 32) and allowed us to measure the spectra of its
elements (Klingler et al. 2016b). In particular, they showed a “filled” morphology of the cap,
in contrast with the “hollow” morphologies of the Geminga PWN and the CN of the J1509-
5850 PWN. The cap has a sharp trailing edge behind the pulsar and is brightened along the
axis; its spectral slope is Γ ≈ 1.5, a typical value for a PWN head. The stem is split into
two structures that apparently originate from the pulsar and slightly diverge from each other
further away. Klingler et al. (2016b) speculate that these structures could be pulsar’s jets
swept back by the ram pressure, which could also explain the brightening along the cap’s
axis. Overall, the “mushroom” morphology suggests a small angle between the pulsar’s spin
axis and our line of sight, in agreement with the lack of γ -ray pulsations. The cap and stem
luminosities are 1.8 × 1031 and 2.6 × 1030 erg s−1, respectively.

A long diffuse tail behind the “mushroom” is likely due to synchrotron emission of the
shocked PW behind the pulsar. Its luminosity is about 3.8 × 1031 erg s−1, more than a half
of the total PWN luminosity, L0.5–8 keV ≈ 6.4 × 1031 erg s−1 that corresponds to a total PWN
efficiency η0.5–8 keV ≈ 1.4×10−3. The spectrum of the tail, with a slope Γ ∼ 1.7–1.8, shows
only a slight hint of cooling with increasing distance from the pulsar. This implies either a
fast flow speed (or a very low magnetic field), or particle re-acceleration within the tail.

The deep observation also allowed Klingler et al. (2016b) to detect two additional very
faint, extended features (dubbed “whiskers”) on either side of the compact nebula, likely
another example of a misaligned outflow.

Thus, the B0355+54 PWN shows a particularly rich structure, which remains to be ex-
plained by PWN models. Radio and Hα observations could shed light on its nature, but the
PWN has not been detected at these wavelengths.
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Fig. 33 Summed 0.3–6 keV Chandra ACIS images of the entire J1741-2054 PWN (left) and the leading
bright component (right) from 5 observations in 2013 (282 ks total exposure). Black crosses show the pulsar
position, white arrows show the direction of proper motion

3.2.6 J1741-2054: Another Tail Behind a Nearby Middle-aged Pulsar

Another example of a tail-like structure behind a moving pulsar is shown in Fig. 33. This
PWN was discovered by Romani et al. (2010) and investigated in detail by Auchettl et al.
(2015) using results from 6 Chandra observations carried out in 2013 (282 ks total expo-
sure). It is created by the nearby (d ∼ 0.38 kpc) middle-aged (τsd = 390 kyr) pulsar J1741-
2044 (P = 413 ms, Ė = 9.5 × 1033). The pulsar’s proper motion μ = 109 ± 10 mas yr−1,
measured by Auchettl et al. (2015) from the X-ray images, corresponds to the transverse ve-
locity V⊥ = (196±18)d0.38 km s−1. In Fig. 33 we can see a tail-like structure in the direction
opposite to that of the proper motion. The structure consists of a compact elongated nebula
of ∼15′′ length and a fainter diffuse tail seen up to ∼1.′7 (∼0.2d0.38 pc) from the pulsar. The
tail is slightly bent and apparently consists of two “lobes”. No small-scale structure (PWN
head) is resolved around the pulsar. The 0.5–10 keV luminosities of the compact nebula and
the entire PWN, about 5 × 1029 and 3 × 1030 erg s−1 at d = 0.38 kpc, are ∼5 × 10−5 and
∼3 × 10−4 of the pulsar’s spin-down power. The spectra of the PWN elements are described
by a PL model with Γ ≈ 1.5–1.7, with only a hint of spectral softening with increasing
distance from the pulsar.

For an isotropic PW, one could expect a PWN head with a leading edge at an angular
distance θ0 ≈ 1′′d−2

0.38n
−1/2
b sin i ahead of the pulsar, too small to resolve separately from the

pulsar’s PSF. The actual distance to the stagnation point is likely even smaller, as seen from
the Hα image (see Fig. 34). The flat front of the Hα bow shock allows one to assume that
the wind of this pulsar is originally concentrated in the plane perpendicular to the pulsar’s
velocity, presumably the equatorial plane, which implies that the pulsar’s rotational axis is
parallel to the velocity vector. Being deflected by the ram pressure, the shocked PW forms
the tail seen as a brighter compact component (Fig. 33, right). The matter flowing in the tail is
likely decelerated by the ISM entrainment, which leads to the broadening seen in the diffuse
longer tail. To confirm this interpretation, flow velocities in the compact and extended tail
components should be measured, but it was not possible with the data available.
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Fig. 34 The Hα nebula (red)
and the leading tail component of
the X-ray PWN created by PSR
J1741-2051 (Auchettl et al. 2015)

Fig. 35 Left: Merged Chandra ACIS image of the tail behind PSR J0357+3205 (0.5–6 keV, 4 observations,
136 ks total exposure). Right: Zoomed-in part of the same image showing the lack of tail emission in the
pulsar vicinity

3.2.7 J0357+3205: A Tail Detached from the Pulsar

An interesting X-ray nebula created by a radio-quiet γ -ray pulsar J0357+3205 (P =
444 ms, τsd = 540 kyr, Ė = 5.9×1033 erg s−1) is shown in Fig. 35 (De Luca et al. 2011). The
pulsar’s proper motion is μ = 164 ± 20 mas yr−1 (De Luca et al. 2013), but the distance is
unknown. For an assumed d = 0.5 kpc, its transverse velocity is V⊥ = (389±47)d0.5 km s−1.
The Chandra and XMM-Newton images show a 9′ (1.3d0.5 pc) long, relatively straight tail
behind the pulsar, but no PWN head is seen. Moreover, the tail is detached from the pulsar
(not seen up to 50′′), and its brightness increases with increasing distance from the pul-
sar, reaching a maximum at about 4′. Another unusual property of the tail is the asymmetric
brightness profile across the tail, with a sharp northeastern edge, resembling the “misaligned
outflow” in the Gutar nebula. The tail’s luminosity, L0.5–10 keV ≈ 8.8 × 1030d2

0.5 erg s−1, is a
fraction of ∼1.5 × 10−3 of the pulsar’s spin-down power.
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The tail’s spectrum fits a PL model with a photon index Γ ≈ 2, without a significant de-
pendence on the distance from the pulsar. Such a spectrum is consistent with the synchrotron
emission from relativistic electrons in a shocked PW, but the lack of a PWN head is chal-
lenging for such an interpretation. Another potential problem is the relatively low value for
the maximum synchrotron photon energy, Emax � 30ησB−5 keV (see Eq. (7)), which is be-
low 1 keV if ησB−5 � 0.03. To circumvent these problems, Marelli et al. (2013) suggest
that the tail’s emission is in fact thermal bremsstrahlung from the shocked ISM material
with a temperature of about 4 keV. To heat the ISM up to such a high temperature, a very
high pulsar velocity, Vpsr ∼ 1900 km s−1, is required (see Eq. (9)), larger than observed for
any other pulsar, which would also imply a small angle, i < 20◦, between the velocity vector
and the line of sight. The lack of diffuse emission at small distances from the pulsar could
then be caused by the considerable time required for the energy transfer from ions, heated
by the shock, to radiating electrons. If this scenario is confirmed by future observations, the
J0357+3205 nebula would be the first example of a new class of thermally emitting nebulae
associated with high-velocity pulsars.

3.2.8 Unexpectedly Faint X-Ray PWNe

From the above examples one could expect that any sufficiently powerful pulsar that has
left its parent SNR produces a head-tail PWN, possibly with some misaligned outflows.
However, observations of several nearby pulsars show either very faint extended emission
around the pulsar or no extended emission at all. The most convincing examples of very
faint (or undetected) PWNe were provided by observations of nearby pulsars B1055-52 and
B0656+14.

PSR B1055-52 (P = 197 ms, Ė = 3.0 × 1034 erg s−1, τsd = 535 kyr) is a bright γ -ray
pulsar at an estimated distance of ∼350 pc (Mignani et al. 2010). Its proper motion, μ =
42 ± 5 mas yr−1, corresponds to the tranverse pulsar velocity V⊥ ≈ 70d0.35 km s−1. A dedi-
cated 56 ks Chandra ACIS observation by Posselt et al. (2015) showed some enhancement
(with respect to the model PSF) in radial count distribution from 2′′ to 20′′, better seen in
the soft X-ray band (0.3–1 keV), corresponding to the luminosity of 1–2 × 1029d2

0.35 erg s−1,
which is (3–6) × 10−6d3

0.35 of the pulsar’s spindown power. The alleged extended emission
showed only a hint of azimuthal asymmetry (an excess in the quadrant that includes the
proper motion direction), at a 3σ level. This extended emission (if real) could be, at least
partly, a dust scattering halo, but a very faint X-ray PWN cannot be excluded. Posselt et al.
(2015) speculate that such a faint, nearly round PWN could be produced if the pulsar is
moving away from us almost along the line of sight, i.e., Vpsr � V⊥. It, however, remains
unclear whether this interpretation is correct.

Very similar results were obtained by Bîrzan et al. (2016) for PSR B0656+14 (P =
385 ms, Ė = 3.8 × 1034 erg s−1, τsd = 111 kyr, and d = 0.29 ± 0.03 kpc from parallax mea-
surements). This pulsar also has a low transverse velocity, V⊥ = (60 ± 7)d0.29 km s−1. From
the analysis of archival Chandra ACIS and HRC data, Bîrzan et al. (2016) found a slight
enhancement over the model PSF in an annulus of about 3′′–15′′ around the pulsar, with a
luminosity of ∼8 × 1028d2

0.29 erg s−1. This luminosity is ∼2 × 10−6d2
0.29 of the pulsar’s spin-

down power, a factor of ∼7 lower than the X-ray efficiency of the PWN of Geminga that has
a similar (slightly higher) spindown power and is a factor of 3 older than PSR B0656+14.
No azimuthal asymmetry was detected in the images. The spectrum of the enhancement is
apparently very soft, Γ ∼ 8, but its uncertainty is very large because the imaging ACIS ob-
servation was very short, about 5 ks. As in the case of B1055-52, the extended emission (if
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real) could be a combination of a dust scattering halo and a PWN created by the pulsar mov-
ing almost along the line of sight. The PWN and halo contributions could be disentangled
from a longer ACIS observation.

Thus, a plausible explanation for the lack of the expected head-tail morphology and a
very low PWN luminosity might be due to smallness of the angle between the pulsar ve-
locity direction and the line of sight, which is also indicated by the small values of V⊥.
However, the transverse velocity of PSR B0355+54 is similarly low, but that pulsar is ac-
companied by a PWN with a rich structure (see Fig. 32). Moreover, the spindown power of
PSR B0355+54 is similar to those of B1055-52 and B0656+14, but its PWN luminosity is
at least a factor of 300 higher. Obviously, there must be some other factors that affect the
X-ray efficiency and appearance of PWNe created by pulsars moving in the ISM. A possi-
ble reason for these differences could be different orientations of the pulsar rotational axes
(hence the equatorial planes) with respect to their velocities. Another parameter on which
the PWN properties should depend is the angle between the spin and magnetic axes, which
affects the conversion of the PW magnetic energy into kinetic energy and particle accelera-
tion. In particular, the very low efficiencies of some PWNe could be associated with nearly
aligned spin and magnetic axes. To check these hypotheses, it would be useful to look for a
correlation between the PWN properties and multiwavelength pulsations.

3.2.9 General Overview of the X-Ray PWNe Created by Supersonically Moving
Pulsars

About 15 X-ray PWNe created by pulsars moving through the ISM have been detected.
The spindown powers Ė of these pulsars are in the range from 1.2 × 1033 erg s−1 (PSR
B2224+65, the Guitar PWN) to 2.5 × 1036 erg s−1 (PSR J1747-2958, the Mouse PWN).
Electrons/positrons of PWs of less powerful pulsars, which consitute the majority of
rotation-powered pulsars, apparently cannot be accelerated to energies high enough to emit
X-ray synchrotron radiation, and even if the energy is sufficient, the PWN luminosity may
be too low to detect it, even from nearby sources.

The examples presented here show that most supersonically moving pulsars are accom-
panied by tails, with typical lengths of a few parsecs. However, the appearances of PWN
heads vary considerably in different sources. Some of the well-resolved PWNe have a
filled PWN head morphology (e.g., the Mouse, B0355+54, J1741-2044) while others show
“hollow” morphologies (Geminga, J1509-5850). Moreover, there is at least one example,
J0357+3205, which shows a long tail but no resolved PWN head around the pulsar. The
diversity of PWN heads suggests that PWs of old pulsars are anisotropic, perhaps concen-
trated around the equatorial plane (as in the Crab and some other young pulsars) in many
cases. The different appearances of the compact PWN components could be due to differ-
ent orientations of the pulsar’s spin axis with respect to the velocity direction and the line
of sight. A particularly puzzling morphology is seen in the Geminga PWN, with its three
“tails”, which can be considered as a hollow-morphology compact PWN component ob-
served from a close distance (it might have a much longer tail that is perhaps too faint to be
detected by the current instruments).

Quite unexpected was the discovery of “misaligned outflows” in X-ray observations
of several pulsars: B2224+65 (the Guitar), J1509-5850, B0355+54, described above, and
likely the spectacular Lighthouse nebula created by PSR J1101-6101 (Pavan et al. 2016 and
references therein; see Fig. 36). Their nature still remains puzzling. A hypothesis was sug-
gested by Bandiera (2008) that these features are produced by synchrotron radiation of very
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Fig. 36 Chandra ACIS image of the Lighthouse PWN (0.5–8 keV, 300 ks) created by PSR J1101-6101
(Ė = 1.4 × 1036 erg s−1, τsd = 116 kyr) moving from the SNR MSH 11-61A (Pavan et al. 2016). The image
shows a bright tail behind the fast-moving pulsar (V⊥ ∼ 1000d7 km s−1) and an 11d7 pc long jet-like feature,
possibly another example of a “misaligned outflow”

high energy particles leaked from the TSs into the ambient ISM along the ISM magnetic
field, but this interpretation remains to be confirmed by quantitative modeling.

Although the flow speeds along the tails or misaligned outflows have not been directly
measured, they have been crudely estimated for some tails based on circumstantial argu-
ments. These estimates show that flow speeds considerably exceed the pulsar speeds, but
they are well below the mildly relativistic speeds predicted by the numerical simulations.

The X-ray efficiencies, ηX = LX/Ė, of the observed PWNe vary between � 2 × 10−6

(the alleged PWN around PSR B0656+14) and ∼10−2 (the Mouse). The reason for such
a huge scatter remains unclear. At least partly, it can be due to different orientations of the
pulsar equatorial planes, where the PWs are presumably concentrated, with respect to the
pulsar velocities. It also may be that the fraction ξw of the spindown power lost to the PW is
different in different pulsars (because the fraction of Ė radiated from pulsar magnetospheres
depends on pulsar parameters). Another likely reason for different PWN efficiencies is asso-
ciated with conversion of the magnetic PW energy into the kinetic energy of particles, which
should increase with increasing angle between the magnetic and spin axes.

The X-ray spectra of PWNe created by supersonically moving pulsars are usually well
described by a PL model, which supports their synchrotron interpretation. Typical spectral
slopes Γ in the compact nebula components (PWN heads) are in the range of 1.5–2.0, but
the lateral tails of the Geminga PWN are much harder, Γ ∼ 0.7–1.0. Some of the PWN tails
(e.g., in the Mouse and Lighthouse) show a substantial softening with increasing distance
from the pulsar, up to �Γ ≈ 1.0–1.5, while others show no softening at all, sometimes even
a hint of hardening. The fast softening is an indication of a relatively high magnetic field
(e.g., up to a few hundreds of µG in the Mouse, the highest value found so far, which is a
factor of 10 higher than typical magnetic fields).

A few head-tail PWNe have been detected in the radio. The radio tails are usually longer
than the X-ray ones, as expected from the synchrotron cooling. The additional radio data
allow one to examine a broad-band PWN spectrum, which is usually harder in the radio
than in the X-rays, and get an idea about the spectrum of emitting particles. Measuring the
spatially resolved radio polarization makes it possible to map the directions of the magnetic
field within the PWN, but the two PWNe for which such mapping was done (the Mouse and
J1509-5850) show very different distributions.

The X-ray spectral slopes Γ < 2 suggest that the main contribution to the total syn-
chrotron PWN luminosities are provided by photons with energies above the observed X-ray
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range, i.e., above ∼10 keV. However, none of the head-tail PWNe has been detected at hard
X-rays or γ -rays, perhaps because the current detectors are not sensitive enough.

3.3 Open Questions

Although many of the observed properties of PWNe produced by supesonically moving
pulsars are qualitatively understood, there remain several problems that require further in-
vestigations, both observational and theoretical.

First of all, we should understand the reason(s) for the the great diversity of PWN shapes.
Although elongated X-ray tails behind the moving pulsars have been observed in many of
them, it is not quite clear which parameters determine the tail properties (shape, length,
collimation and divergence, separation from the pulsar in some cases). Even less clear is
the origin of the divesrity of PWN heads (e.g., filled vs. hollow morphology). One of such
parameters is obviously the angle between the velocity vector and the line of sight, but other
parameters, such as the angle between the spin and magnetic axes, and between the spin
axis and the pulsar velocity, can play an important role. It is also possible that the direction
and strength of the ambient ISM magnetic field can affect the observed surface brightness
distribution. To assess the contribution of the different factors, a study of correlation of
the PWN shape with the shapes and phases of pulsar pulses at different wavelengths (e.g.,
radio and γ -rays), supplemented by PWN modeling in the case of anisotropic PW, would
be particularly useful.

The most puzzling features among the recently discovered PWN components are the
“misaligned outflows”, whose directions are strongly misaligned with respect to the pulsar
velocities. It is tempting to interpret them as jets along the pulsar spin axes, similar to those
observed in PWNe of young pulsars, but such jets are expected to be bent by the ram pressure
on much smaller scales than the observed lengths of these nearly straight, elongated features.
Only qualitative interpretations of such features have been suggested so far, which remain
to be confirmed by quantitative modeling.

It remains unclear whether “ordinary” jets along the spin axes have been detected in old
PWNe outside SNRs. May it be that the outflows along the spin axis are less powerful (at
least, less luminous) in old pulsars than in young ones? To answer this question, we should
obtain independent information on the spin axis directions, which could be done with the
aid of multiwavelength polarimetry, in addition to the pulse analysis.

Since the X-ray PWN emission is synchrotron radiation from relativistic electrons and/or
positrons, one should expect softening of the PWN spectrum with increasing distance from
the pulsar due to synchrotron cooling. Such softening has indeed been observed in some of
the tails, but other tails, as well as the misaligned outflows, show no spectral softening at
all, but hints of hardening. What is the reason for such behavior? Is it an indication of an
additional (re)acceleration (heating) along the tails? What is the acceleration mechanism? Is
it the same mechanism that is responsible for the unusually hard spectra of the Geminga’s
lateral tail? Why does it operate only in some tails? To answer these questions, deep high-
resolution X-ray observations are required, which would allow spatially resolved spectral
analysis to accurately measure the spectral changes. If the lack of softening (or even spectral
hardening) is confirmed, possible acceleration mechanisms (e.g., the Fermi acceleration at
fronts of oblique shocks or magnetic turbulence) should be studied.

Another puzzling problem is the very low X-ray efficiency (or even the absence) of PWNe
around some nearby pulsars that are powerful enough to create an observable X-ray PWN.
While it might be partly expained by closeness of the pulsar velocity direction to the line of
sight, it is certainly not a full explanation. Are these PWNe so faint because the conversion
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of the PW magnetic energy into the particle energy (e.g., via magnetic field reconnection in
the striped wind zone) is inefficient, as expected for pulsars with nearly aligned magnetic
and spin axes? Are there other mechanisms that suppress the production and acceleration of
the particle component of PWs? To understand the true reason, more nearby pulsars should
be observed, and the absence or presence of PWNe should be confronted with the observed
pulsar properties.

To conclude, significant progress in our understanding of PWNe of supersonically mov-
ing pulsars has been achieved, thanks to the high resolution and sensitivity of the Chandra
and XMM-Newton observatories, but there remain a number of open problems that could be
resolved with further deep X-ray observations and more realistic modeling.

4 Gamma-Ray Observations of Pulsar-Wind Nebulae

Gamma-ray astronomy has entered a golden age during the last decade thanks to the lat-
est generation of space telescopes in the High-Energy (HE; 0.1 < E < 100 GeV) do-
main (Fermi-LAT, AGILE), and ground-based instruments in the very-high energy (VHE;
0.1 < E < 100 TeV) domain, in particular the Imaging Atmospheric Cherenkov Tele-
scopes (IACTs) such as H.E.S.S., VERITAS and MAGIC, featuring unprecedented per-
formance.8 Fermi-LAT, with a large field-of-view of 2.4 sr, an angular resolution varying
from ∼5◦ at 100 MeV to �0.1◦ above 50 GeV, and a point-source sensitivity at the level of
∼10−12 erg cm−2 s−1 in the GeV domain, has revealed more than 3000 (3FGL) sources in
the 0.1–300 GeV band (Acero et al. 2015) and 360 (2FHL) sources above 50 GeV (Ack-
ermann et al. 2016). IACTs have so far detected more than 170 VHE sources, two third of
which being located in the Galaxy .9 In particular, the H.E.S.S. experiment, exhibiting a
5◦-wide field-of-view, an angular resolution of ∼0.06◦ and a point-source sensitivity of a
few 10−12 erg cm−2 s−1 in the TeV domain, has surveyed the inner Galactic Plane during ten
years, resulting in the detection of more than 70 sources.10

These GeV–TeV instruments offer for the first time the possibility to spatially resolve
large enough sources such as middle-aged pulsar wind-nebulae (PWNe) and shell-type su-
pernova remnants (SNRs), and to study source spectra over more than five decades in energy.
Spectro-morphological studies are of prime importance as they allow one to pinpoint the
origin of γ -ray emission from SNR systems in which the pulsar (PSR), the associated wind-
nebula, and the host SNR shell, can contribute to the observed emission. In this regard, while
Fermi-LAT has detected more than 200 PSRs in the HE domain,11 IACTs, and H.E.S.S. in
particular, have revealed more than 30 TeV PWNe and PWN candidates associated with
energetic PSRs (Klepser et al. 2013; Kargaltsev et al. 2013), a dozen of which being also
detected at (multi-)GeV energies (Acero et al. 2013; Ackermann et al. 2016). Nevertheless,
a large fraction of the HE/VHE sources in the Galaxy still remain unassociated due to the

8In what follows, the angular resolutions are provided as the 68% containment radii. The Fermi-
LAT sensitivity is given at TS = 25 in 10 y, for a source at (�, b) = (0◦,30◦) with Pass 8 data
(https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm). The H.E.S.S. sensitivity is pro-
vided at 5 σ in 25 h, for a source near zenith (https://www.mpi-hd.mpg.de/hfm/HESS/pages/home/
proposals/). See also the dashed lines in Fig. 38.
9See http://tevcat.uchicago.edu/.
10From Abramowski et al. (H.E.S.S. Collaboration) 2016, in prep. See also https://www.mpi-hd.mpg.de/hfm/
HESS/pages/home/som/2016/01/.
11https://confluence.slac.stanford.edu/display/GLAMCOG/Public+List+of+LAT-Detected+Gamma-Ray+
Pulsars.
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Fig. 37 PWN evolutionary phases. Left: young systems where the nebula lies at the center of the host shell–
type SNR, as examplified by G11.2-0.3 seen in X-rays. Middle: evolved nebulae, after the so-called crushing
phase caused by the interaction with the asymmetric reverse shock (RS) due to an inhomogeneous ISM and/or
a high PSR’s proper motion, as illustrated by G327.1-1.1 observed in radio (red) and X-rays (blue). The inset
image shows the age distribution of particles injected by the PSR some 17000 years ago, based on the hy-
drodynamical simulation of Temim et al. (2015) with the assumed ISM density gradient and PSR’s velocity
depicted by the two arrows. Right: bow-shock nebulae, when the pulsar motion through the SNR or the ISM
becomes supersonic

limitations of gamma-ray instruments to precisely characterize the source morphologies in
most cases and to the difficulty for radio/X-ray telescopes to reveal structures at scales of
the order of the typical VHE source sizes (σ ∼ 0.1◦–0.3◦).

Gamma-ray emission from PWNe is usually interpreted in the so-called leptonic sce-
nario,12 where the accelerated electron–positron pairs emit through inverse Compton (IC)
scattering off the ambient low-energy photons, from the CMB and the interstellar radia-
tion fields (ISRFs) made of infrared emission from dust and optical/UV starlight. In this
framework, HE/VHE observations allow one to derive the spectral distribution and energy
content of the high-energy particles (provided the ISRFs are known), to reveal their spa-
tial distribution, and to set important constraints on the particle acceleration and transport
mechanisms. Furthermore, these measurements, when combined with radio/X-ray observa-
tions of the synchrotron (SC) component, provide estimates of the magnetic field strength
and distribution in these sources, as we shall see below.

Two classes of γ -ray PWNe can be distinguished according to their evolutionary stages,
as shown in Fig. 37 (no clear evidence of γ -ray emission associated with a bow-shock
nebula [see Sect. 3] has been reported so far). First, young PWNe, such as the Crab neb-

12The possibility that a hadronic component could carry a significant fraction of the energy content in PWNe
has been investigated in several works (see Di Palma et al. 2016 and references therein), but the observational
evidence of the presence of accelerated ions in PWNe, through e.g. pion production in hadronic interactions
and the subsequent emission of γ -rays and neutrinos, has been so far elusive.
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Fig. 38 Broadband spectrum of the PWN HESS J1356-645 (H.E.S.S. Collaboration et al. 2011; Ackermann
et al. 2016). The blue and red solid curves give the SC and IC emission from a one-zone, time-independent,
modeling performed in H.E.S.S. Collaboration et al. (2011). The dotted line represents the best-fit phase-av-
eraged spectrum of PSR J1357-6429 as obtained in Lemoine-Goumard et al. (2011). The two dashed lines
show the Fermi-LAT and H.E.S.S. point-source sensitivities (see text for more details). The 1◦-wide multi-
-wavelength images, as obtained in H.E.S.S. Collaboration et al. (2011), Ackermann et al. (2016), centered
on the PSR position, are also shown. The lower panel presents the angular resolutions of the considered radio,
X-ray and gamma-ray instruments

ula, MSH 15-52, G0.9+0.1, G21.5-0.9 and Kes 75 (discussed in Sect. 4.1), are usually
found at the center of their host shell-type SNRs and are seen as unresolved or compact
γ -ray sources. HESS J1818-154, a compact TeV source located at the center of the radio
SNR G15.4+0.1, is worth to be mentioned as being the first PWN discovered by TeV ob-
servations in a composite SNR (H.E.S.S. Collaboration et al. 2014). Second, middle-aged
PWNe (with PSR characteristic ages of �104 yr), such as HESS J1356-645 (see Fig. 38),
HESS J1825-137 (Sect. 4.2.1), and the peculiar Vela PWN (Sect. 4.2.2), are usually resolved
in the HE/VHE domains and are found to be significantly offset from the current position
of the associated PSR, with large size ratios between the X-ray and γ -ray emission regions.
The evolution of the SNR into an inhomogeneous ISM, through the interaction with an
asymmetric reverse shock (RS), and/or the high PSR’s velocity (Blondin et al. 2001; van
der Swaluw et al. 2004; Temim et al. 2015) can lead to a displacement of the crushed PWN
from the SNR center. Also, mean magnetic field strengths within these γ -ray PWNe as low
as ∼3–5 µG are required in order to prevent the TeV-emitting electrons from suffering from
severe radiative losses, enabling the majority of them to survive from (and hence probe)
early epochs of the PWN evolution (de Jager and Djannati-Ataï 2009). All these effects can
thus explain the large-offset X-ray-faint long-lived γ -ray sources as being the relic nebulae
from the past history of the pulsar wind inside its host SNR.
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Fig. 39 Broadband spectra of G21.5-0.9 (left) and Kes 75 (right) with the best-fit models from Torres et al.
(2014) shown as solid lines. The grey dots and lines correspond to the multi-wavelength data and the asso-
ciated models (at different ages) for the Crab nebula. Chandra X-ray images of these two PWNe with the
typical H.E.S.S. PSF depicted as a green circle are also shown

4.1 Young PWNe

Several time-dependent models of the radiative (sometimes coupled with the dynamical)
evolution of PWNe have been developed in order to estimate, from the observed broadband
non-thermal emission, the energy distribution and content of particles and the wind mag-
netization, and to constrain the particle acceleration mechanisms at work in these sources
(Gelfand et al. 2009; Fang and Zhang 2010; Tanaka and Takahara 2010, 2011; Bucciantini
et al. 2011; Martín et al. 2012; Vorster et al. 2013; Torres et al. 2014). Figure 39 shows
the broadband spectra from G21.5-0.9 and Kes 75, two young PWNe respectively associ-
ated with the energetic pulsars PSR J1833-1034 and PSR J1846-0258 and detected in the
VHE domain (Djannati-Ataï et al. 2008), together with the best-fit models from Torres et al.
(2014). The common findings of all the above-mentioned modelings are as follows: the par-
ticle energy distribution is well described by a broken power law with an intrinsic break13

(i.e. assumed to be of non-radiative origin) at a Lorentz factor of ∼105–6, and almost all
of the young PWNe considered in these studies are particle-dominated. This is translated
into large pair multiplicities (κ � 104) and magnetic fractions of � a few percent (i.e. with
magnetic fields lower than the equipartition values), with TeV emission dominated by IC
scattering off (far-)infrared photons (with energy densities generally larger than the Galac-
tic large-scale ISRFs provided by Porter and Strong (2005)). Although these constraints are
valuable to pinpoint the particle acceleration mechanisms (Amato 2015), it should be noted
that these modelings assume a one-zone emission region (in the 1D approximation, known
to face several issues such as the so-called σ problem, cf. a brief discussion in Sect. 3.1),
whereas the unresolved TeV emission from e.g. G21.5-0.9 and Kes 75 (see Fig. 39) and the
debated origin of the radio emission from these young PWNe could question this assump-
tion. Also, relying on (or rescaling) the commonly used Galactic ISRFs as an estimate of the
local fields from dust and stars is another major source of uncertainty which directly affects
the predicted IC emission.

13The modeling presented in Vorster et al. (2013) assumes that the particle spectrum has a discontinuity at
the transition between the low- and high-energy components.
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4.2 Middle-aged PWNe

As discussed above, middle-aged PWNe are observed in the HE/VHE domain as extended
sources, offset from the PSR position. These two characteristics make them difficult to
identify as such from γ -ray observations, and many of the so-called dark VHE sources,
with no obvious radio/X-ray counterpart, could actually be such ancient nebulae (de Jager
et al. 2009). Besides dedicated pulsars search (with Fermi-LAT in particular) within the
VHE source extent, multi-wavelength investigation, as shown in Fig. 38 in the case of
HESS J1356-645, and energy-dependent γ -ray morphological analysis (as commonly done
in X-rays) are the two means to unveil their nature.

4.2.1 HESS J1825-137: Energy-Dependent Morphology and Particle Transport
Mechanisms

HESS J1825-137 is the archetypal middle-aged PWN, discovered by H.E.S.S. (Aharonian
et al. 2006a) as a bright, ∼1◦-large (i.e. ∼70 pc at 4 kpc) source offset from the energetic
radio pulsar PSR J1826-1334, and later detected with Fermi-LAT (Grondin et al. 2011).
A detailed spectro-morphological analysis has revealed for the first time in the VHE domain
a steepening of the energy spectrum with increasing distance from the pulsar, likely due to
the cooling losses of electrons during their transport in the nebula. This is illustrated by the
three-colour image in Fig. 40 (left) revealing the shrinking of the nebula with increasing en-
ergy and hence the physical connection between the TeV PWN with PSR J1826-1334, also
responsible for the compact hard-index X-ray nebula of size ∼30′′ embedded in a ∼10′-
large softer structure (Pavlov et al. 2008; Van Etten and Romani 2011). These γ -ray mea-
surements, when combined with X-ray observations, provide important constraints on the
particle injection, transport and cooling within the nebula: a detailed 3D time-dependent
multi-zone spectro-morphological modeling (Van Etten and Romani 2011) has shown a
good agreement with the data by including radially decreasing advection velocity and mag-
netic field profiles and substantial particle diffusion in order to explain the presence of multi-
TeV particles ∼80 pc away from the pulsar. Such a rapid diffusion is at odds with the toroidal
magnetic field structure effective at smaller scales in many PWNe leading to strong magnetic
confinement of particles.

4.2.2 Vela X: Multi-wavelength Picture and Particle Escape

The energetic Vela pulsar (PSR B0833-45, τc = 11 kyr, P = 89 ms, Ė = 7 × 1036 erg s−1),
embedded in the nearby 8◦-large Vela SNR located at d ∼ 290 pc, is known to power sev-
eral manifestations of wind nebulae seen at different spatial scales: a compact X-ray nebula
composed of two toroidal arcs at sub-arcmin scales and a 4′ long collimated jet (Helfand
et al. 2001; Pavlov et al. 2003), an extended hard X-ray emission (E > 18 keV) north of
the pulsar (Mattana et al. 2011), a 45′ elongated X-ray structure dubbed the Vela cocoon,
also detected at TeV energies with H.E.S.S. (Aharonian et al. 2006b) and partially coinci-
dent with a bright radio filament (LaMassa et al. 2008), and the Vela X nebula (referred to
as the Vela halo, encompassing the cocoon area), a large-scale 2◦ × 3◦ non-thermal radio
region offset by ∼40′ from the pulsar that is also detected at GeV energies with Fermi-
LAT (Abdo et al. 2010). Two distinct lepton populations have been suggested to explain
the different broadband spectra of the latter two emission regions: a young population pro-
ducing the X-ray/VHE cocoon and a relic one responsible for the radio/HE halo (de Jager
et al. 2009), with similar magnetic field strengths of ∼3–5 µG (Abdo et al. 2010). However,
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Fig. 40 Left: Three-color 3◦-large image of HESS J1825-137 as observed with H.E.S.S. in different energy
bands (Funk et al. 2008) showing the shrinking of the nebula with increasing energy. Right: Broadband spectra
from the whole PWN (slate data points and dotted line) and from different wedges in HESS J1825-137 with
a color scale evolving from dark red (inner region) to green, blue and violet (outer region), as defined in
Aharonian et al. (2006a). Lines represent the best-fit model presented in Van Etten and Romani (2011) (see
text for more details)

such an interpretation has been challenged by several new observational evidences: TeV
emission beyond the cocoon, extended over much of the halo and featuring a similar VHE
spectrum, has been detected with H.E.S.S. (Abramowski et al. 2012), and a detailed spectro-
morphological Fermi-LAT data analysis has revealed two new spatial HE features matching
the so-called northern and southern wings of Vela X as seen with WMAP and Planck, with
marginally different spectra (Grondin et al. 2013). Such a complex morphology, with sev-
eral emission components at different scales, is highlighted in the multi-wavelength image
shown in Fig. 41 (left).

These new γ -ray measurements provide direct evidence that high-energy leptons are
present in the extended halo, ∼10 pc away from the pulsar. In order to explain the steep
spectra measured with Fermi-LAT, diffusive escape of particles from the radio nebula has
been invoked by Hinton et al. (2011) (see Fig. 41, right), as in the case of HESS J1825-
137 discussed in Sect. 4.2.1. While particle confinement is thought to be important during
the early PWN evolution, the interaction with the SNR reverse shock could thus make the
diffusion of particles out of the nebula possible. Such an energy-dependent escape in this
nearby PWN should produce a clear signature in the local CR lepton spectrum (Hinton
et al. 2011; Della Torre et al. 2015). Latest measurements with AMS-02 (Aguilar et al.
2014a,b) have shown an increase of the positron fraction with increasing energy, which
could be explained by the Galactic PSR population and in particular by a few nearby PSRs
(Hooper et al. 2009; Di Mauro et al. 2014; Boudaud et al. 2015). Therefore, continuing
HE/VHE observations of middle-aged and bow-shock PWNe are crucial to estimate the total
energy content of high-energy particles residing inside these sources in order to assess the
importance of escape mechanisms throughout their evolution, and hence their contribution
to the Galactic CR lepton spectra observed at Earth.



216 S.P. Reynolds et al.

Fig. 41 Left: multi-wavelength picture of Vela PWN. The 4◦-wide three-color image (in Galactic co-
ordinates) is composed of the 0.3–1 GeV (red) and 1–100 GeV (green) emission measured with
Fermi-LAT (Grondin et al. 2013), and of the 1–10 TeV (blue) emission detected with H.E.S.S. (Abramowski
et al. 2012). Contours represent the 44 GHz radio emission measured by Planck (Planck Collaboration et al.
2016) and the X-ray emission above 1 keV observed with ROSAT (in blue). The well-known X-ray compact
nebula around the Vela PSR is shown in the inset on the upper right corner (Chandra/ACIS 0.3–10 keV im-
age). Right: broadband spectrum of Vela PWN (ERN: Extended Radio Nebula) with (solid lines) and without
(dashed lines) the assumption of particle escape throughout its evolution, according to Hinton et al. (2011)

5 Outflows in Magnetars

Magnetars differ from the rotation-powered NS discussed in the previous sections because a
strong magnetic field is the main energy source which ultimately powers their persistent and
bursting/flaring emission (Mereghetti et al. 2015). Unlike ordinary pulsars, which show no
or very little variability, magnetars are characterized by a variety of transient phenomena on
timescales from a few milliseconds to years and involving flux changes as large as several
orders of magnitude. There are many indications that their magnetosphere is highly dynamic
and characterized by a complex non-dipolar geometry. It is thus expected that magnetars
might also be able to accelerate charged particles and produce outflows which, in principle,
can lead to the formation of diffuse nebulae.

Owing to their long spin periods (>2 s), magnetars have rotational energy losses much
smaller than those of the energetic pulsars typically associated with PWNe. The magnetar
with the highest spin-down rate, 1E 1547.0-5408, has ĖROT = 2.1 × 1035 erg s−1, but more
typical values are in the range ∼1032–1034 erg s−1. While the ratio LPWN/ĖROT is a use-
ful description of the efficiency of classical PWNe, the analogous quantity for magnetars,
LMWN/ĖROT is less relevant, because their nebulae might be powered, at least in part, by
magnetic energy. In fact, the observation of time-variable radio and hard X-ray emission
after giant flares, as well as the presence of long-lived nebulae around some magnetars,
provide evidence that these neutron stars can emit relativistic particle outflows.

In this section we discuss two kinds of observational results which give evidence for
relativistic outflows from magnetars: (a) the detection of time-variable emission associated
to the occurrence of giant flares, and (b) the presence of persistent diffuse emission at radio
and/or X-ray energies around some magnetars.

5.1 Outflows During Giant Flares

Giant flares are the most extreme manifestations of magnetars, involving radiated energies
up to about 1046 erg (assuming isotropic emission). They are rare events: only three have
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Fig. 42 High-energy (>80 keV)
light curve of the 27 December
2004 giant flare of SGR 1806-20
measured with the INTEGRAL
satellite (from Mereghetti et al.
2005). After the bright flare
truncated in the plot (reaching
> 2 × 106 counts s−1) a long tail
of hard X-ray emission, which
peaks at t ∼ 500 s and lasts more
than one hour is clearly visible

been observed in more than 40 years (each one from a different source, in a sample now
totalling at least two dozen magnetars (Olausen and Kaspi 2014)). The famous giant flare
of 1979 March 5, from the Large Magellanic Cloud source SGR 0526-66, was crucial for
our understanding of magnetars, but due to its large distance and unexpected occurrence, it
could not be studied in much detail.

More data could be obtained for the giant flare emitted on 1998 August 27 from the
Galactic magnetar SGR 1900+14. Observations carried out with the VLA about one week
after the outburst revealed a faint (∼0.3 mJy), unresolved radio source (angular diame-
ter θ < 0.8′′), which became undetectable after a few days (Frail et al. 1999). A power
law index α = 0.74 ± 0.15 was derived from the fluxes at 1.43 and 4.86 GHz. This
radio emission was interpreted as a cloud of synchrotron emitting relativistic particles
ejected during the giant flare (or in the phase of intense bursting activity which preceded
it). Simple equipartition arguments led to an estimate for the nebula minimun energy of
1.6 × 1043 (d/10 kpc)17/7 (θ/0.4′′)9/7 erg.

The event of 2004 December 27 from SGR 1806-20 was by far the most energetic and
best studied giant flare, with an isotropic energy release in hard X-rays and γ -rays of more
than 5 × 1045 (d/10 kpc)2 erg. The expanding radio nebula detected after this flare could
be observed for more than one year (Gaensler et al. 2005; Cameron et al. 2005; Granot
et al. 2006). It had a peak flux of ∼170 mJy at 1.4 GHz in the first observation, carried
out about one week after the giant flare. The flux then decreased as a steep power law of
time, F(t) ∝ t−δ with δ ∼ 3, and, after a brief rebrightening at ∼25 days after the flare, it
followed a shallower power law decay with δ ∼ 1.1. The radio source was spatially resolved
and featured an elliptical shape; it expanded from ∼60 mas to ∼400 mas in a couple of
months, while at the same time its centroid moved by about 200 mas, along the direction
of the elongation. The power-law spectrum and linear polarization indicate that the radio
emission is synchrotron radiation. The minimum energy in the radio nebula was of the order
of a few 1043 erg. This is much larger than the energy available in the electron/positron
pairs escaping the initial fireball (Nakar et al. 2005), implying that that the relativistic flow
powering the nebula was loaded by baryons or Poynting flux. Indeed, the observed properties
of the expanding nebula are well explained by an asymmetric ejection of few 1024 g of mildly
relativistic baryons, v/c ∼ 0.3 (d/10 kpc), which interact with a pre-existing shell of matter
surrounding the magnetar (Gelfand et al. 2005; Granot et al. 2006).

High-energy data obtained immediately after the SGR 1806-20 giant flare provided ad-
ditional evidence for the ejection of relativistic matter. The INTEGRAL satellite revealed
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Fig. 43 Images of the expanding X-ray rings caused by interstellar dust scattering around the transient
magnetar 1E 1547.0-5408 (from Tiengo et al. 2010b). The seven Swift observations and the XMM-Newton
observation (bottom right panel) were obtained from one to 12 days after a very bright burst that occurred
on 2009 January 22. The apparent angular expansion of the three rings is due to the longer pathlength of the
burst radiation scattered by three layers of dust along the line of sight

emission at energy above ∼80 keV, which peaked about 11 minutes after the start of the
flare and then decreased approximately as F(t) ∝ t−0.85 (Fig. 42). Evidence for this long-
lasting high-energy emission was later found also in the Konus/WIND and RHESSI data
(Frederiks et al. 2007; Boggs et al. 2007), which indicated a duration of at least 104 s and a
hard spectrum (power-law photon index Γ ∼ 1.6). No pulsations at the NS rotation period
of 7.56 s were seen in this component, consistent with an origin far from the star surface
and/or magnetosphere. This long-lasting emission can be interpreted as a hard X-ray after-
glow produced by the fireball ejected in the initial spike of the giant flare (Mereghetti et al.
2005).

5.2 Magnetar Wind Nebulae

The identification and study of “magnetar wind nebulae” (MWNe) is complicated by the
fact that most magnetars lie in crowded and highly absorbed regions of the Galactic plane
and can be surrounded by diffuse emission of different origins, such as supernova remnants,
molecular clouds, and H II regions. For example, SGR 1806-20 was initially associated with
a variable radio nebula (Frail et al. 1997), but, when a better localization of this magnetar was
obtained, it became apparent that a different object14 is powering the radio emission. Other
magnetars are located inside radio-emitting supernova remnants, but no signs of enhanced
radio emission directly connected with the neutron star has been found. Therefore, there is
no evidence up to now for diffuse emission produced by magnetars in the radio band, besides
that of the transient nebulae associated to giant flares described above.

In the X-ray range, where diffuse emission has been seen around several magnetars,
a further complication results from the effect of interstellar dust scattering. Remarkable
evidence for the importance of this effect was demonstrated by the expanding X-ray rings
(Fig. 43) seen around 1E 1547.0-5408 after its January 2009 outburst (Tiengo et al. 2010a).

14The luminous blue variable star LBV 1806-20 (Figer et al. 2004).
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Fig. 44 X-ray image of the
region of Swift J1834.9-0846
obtained with the XMM-Newton
satellite (from Younes et al.
2016). The cross indicates the
position of the magnetar. The
colors code the X-ray energy (red
2–3 keV, green 3–4.5 keV, 4.5–10
keV blue). The contours are at
the 2.5, 3.0, and 3.5 σ level. For a
distance of 4 kpc, 100′′
correspond to ∼2 pc (horizontal
bar)

Excess X-ray emission over the XMM-Newton PSF was detected at radii from ∼10′′ up to
∼2′ around the transient SGR 1833-0832 (Esposito et al. 2011). Its spectrum was softer than
that of the central source, as expected for a halo caused by interstellar dust, due to the E−2

dependence of the scattering cross section. Given the high absorption of SGR 1833-0832
(NH = 1023 cm−2), a large amount of dust is likely present along its line of sight. Thus, the
diffuse X-ray emission around this source, as well as that reported for other highly absorbed
sources like SGR 1900+14 (Kouveliotou et al. 2001) and SGR 1806-20 (Kaplan et al. 2002;
Viganò et al. 2014), is probably due to dust scattering. Recently, diffuse X-rays with a steep
power-law spectrum have been detected around SGR J1935+2154, on an angular scale of
about one arcmin with XMM-Newton (Israel et al. 2016; Younes et al. 2017). This could be
a dust scattering halo, but a possible contribution from a wind nebula cannot be excluded.

To date, the best evidence for a MWN is provided by the case of Swift J1834.9-0846. This
magnetar is surrounded by extended X-ray features with different spatial scales (Fig. 44).
The X-ray emission within a radius of ∼40′′, resolved in Chandra images (Kargaltsev et al.
2012), is most likely due to dust scattering of the outburst emission of this transient. Its flux
varied in correlation with that of the central source, as expected for such small angles in
case of dust scattering (Esposito et al. 2013). The more extended X-ray emission, with an
elongated shape (∼2′ × 1′) and a constant flux detected with XMM-Newton in 2005, 2011
and 2014, is instead best explained as a MWN (Younes et al. 2012, 2016). In favour of this
interpretation are the relatively hard spectrum of the nebula, which is well fit by a power
law with photon index Γ = 2.2, and the apparent lack of variability. For a distance of 4 kpc,
suggested by the possible association of Swift J1834.9-0846 with the supernova remnant
W41, the nebula has an X-ray luminosity of ∼3×1033 erg s−1. This luminosity, which might
be underestimated if the source is at a larger distance, represents a considerable fraction of
the the spin-down power, ĖROT = 2.1 × 1034 erg s−1, of Swift J1834.9-0846.

We presented above the evidence for relativistic ejections during the giant flares, but,
according to the magnetar model, the acceleration of particles in the magnetosphere is not
restricted to these extremely energetic events. The normal bursting activity is expected to
produce particle outflows, and Alfvén waves can drive a steady wind also during “quies-
cent” periods (Thompson and Duncan 1996; Harding et al. 1999). In this respect, it is more
meaningful to compare LMWN with the total reservoir of magnetic energy. For example, if
we assume for Swift J1834.9-0846 the age of ∼105 yr estimated for the W41 supernova
remnant (Tian et al. 2007), the total energy radiated in X-rays in the nebula (a few 1038 erg)
is a very small fraction of the magnetic energy ∼ R2�RB2 ∼ 1045B2

14 erg, if the field is in
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a crustal depth of �R ∼ 1 km (although probably only a small part of such energy may be
available for powering a nebula).

Indeed, several authors recently proposed models in which the nebula of Swift J1834.9-
0846 is magnetically-powered (Tong 2016; Granot et al. 2017). Considering the few ob-
servational data available up to now for this alleged MWN, there is considerable degen-
eracy in the numerous involved parameters and it is not surprising that such models led to
rather different estimates for the PWN and magnetar properties. For example, the wind brak-
ing scenario of Tong (2016) invokes a flow of particles with luminosity between 1036 and
1038 erg s−1 and requires a rather high magnetic field in the nebula, ∼ 10−4 G, while Granot
et al. (2017) estimate a likely upper limit of ∼30 µG. An alternative interpretation, in which
the Swift J1834.9-0846 nebula is powered by rotational energy, like normal PWNe, has been
proposed by Torres (2016). This is energetically possible if one considers the rotationally-
powered wind injected over the whole lifetime of the magnetar and the reverberation effect
due to the location in a particularly dense ambient medium.

6 Gamma-Ray Binaries: Pulsar Winds Interacting with a Massive
Companion

The last decade has revealed a new group of gamma-ray emitters, composed of a fast-
rotating pulsar and a massive star. The emission, which peaks in the MeV band, arises from
the shocked region between the stellar wind and the pulsar wind. The binary interaction
typically takes place around one AU from the pulsar, about 5 orders of magnitude closer
than for pulsars interacting with the ISM. Although only a handful of these systems have
been discovered, theoretical work benefits from the well-constrained environment created
by the binary companion and the wealth of information provided by orbital variability. As
such, gamma-ray binaries have opened a new window on pulsar wind physics. This subject
is reviewed fully elsewhere.

7 Conclusions

The phenomenology of pulsar winds and their impact on their environments is a rich one,
documented from radio to TeV photon energies. These objects pose various problems of par-
ticle acceleration and propagation, magnetic-field evolution, and neutron-star physics. Here
we have summarized the spectra and morphology (primarily at X-ray and gamma-ray ener-
gies) of PWNe still in their natal shell supernova remnants, young PWNe which for some
reason lack shells, PWNe from much older pulsars, interacting directly with the interstellar
medium; and magnetars, with tantalizing but not yet definitive evidence for magnetar wind
nebulae (MWNe).

Young PWNe exhibit their pulsars at near-birth properties, generally with high spin-
down luminosities. The PWNe interact with expanding ejecta in SNR interiors, tending to
produce fairly symmetric objects, at least compared to morphologies observed for much
older objects. These objects radiate synchrotron radiation from radio through hard X-rays,
whose SED contains important information on particle acceleration and propagation. The
flat radio spectrum of these PWNe is still unexplained; the few anomalous PWNe with steep
radio spectra have very unusual properties, such as very large ratios of radio to X-ray sizes.
The spectra steepen in the mm–IR region of the spectrum, generally by larger amounts than
can be accounted for by the simplest models.
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NuSTAR observations above 10 keV have provided important new information on the
X-ray properties of young PWNe. PWN sizes decrease with increasing photon energy; that
energy-dependence encodes information on electron propagation (advective, diffusive, or a
combination). It is still not clear if intrinsic spectral structure is required to explain the ob-
servations, or whether synchrotron losses in inhomogeneous sources with some combination
of advection and diffusion can explain the observed size decrease and spectral steepening
with increasing distance from the pulsar. NuSTAR observations also show unexpected slight
steepening of X-ray spectra in the interiors of the Crab Nebula and G21.5-0.9. This effect
may be a clue to some feature of particle energization near the pulsar-wind shock not yet
explored.

The spatial resolution of NuSTAR allows the determination of anisotropic morphological
changes with increasing photon energy that support strong asymmetry in the pulsar outflows
beyond the termination shock. In the Crab Nebula, the energy-dependence of the torus radius
is about what is predicted in the Kennel–Coroniti spherically symmetric model, while the
NW counterjet length drops much more steeply with increasing energy, at a rate comparable
to that seen in both MSH 15-52 and G21.5-0.9. This resemblance suggests a commonality
of origin not yet explained. MHD models of young PWNe will need to have more accurate
treatment of the spatial and temporal evolution of relativistic-particle distributions in order
to confront these data effectively.

Pulsars that have left their host SNRs move in the ISM with supersonic velocities, which
drastically changes PWN morphologies. In particular, long tails, with a typical length of a
few parsecs, form behind the fast-moving pulsars. These tails, collimated by the ram pres-
sure of the oncoming ISM, are fast outflows of the shocked PW emitting synchrotron radia-
tion from radio to hard X-rays. In addition, PWN “heads” in the pulsar vicinity are seen in
deep high-resolution X-ray images. The appearance of PWN heads, very different in differ-
ent objects, depends on the direction of the pulsar velocity with respect to the line of sight, as
well as on the inclinations of the velocity vector and the magnetic axis to the spin axis. The
observed shapes of the heads differ significantly from the current PWN models. The main
reason for these differences is likely the unrealistic model assumption that the unshocked
PW is isotropic.

In addition to the PWN tails and heads, deep X-ray observations have revealed “mis-
aligned outflows” in some PWNe, at large angles to the pulsar velocities. Such outflows are
not predicted by the current PWN models, and their true nature remains puzzling.

The X-ray spectra of the head-tail PWNe are usually well described by power-law mod-
els, with typical photon indices Γ ∼ 1.5–2.0 in the pulsar vicinity. This implies power-
law spectral energy distributions of the X-ray emitting relativistic electrons/positrons,
dNe/dγ ∝ γ −p , with p ∼ 2–3. Some PWNe show spectral softening with increasing dis-
tance from the pulsar, with �Γ ≈ 1.0–1.5, which can be due to synchrotron cooling. How-
ever, no softening is seen in other PWNe, which remains unexplained. Moreover, the lateral
tails of the Geminga PWN have unusually hard spectra, Γ ∼ 0.7–1.0, without measurable
spectral softening, which might suggest an unusual acceleration mechanism for the radiating
electrons.

Typical equipartition magnetic fields in head-tail PWNe are ∼10–100 µG. Interpreting
the spectral softening observed in some tails as caused by synchrotron cooling, one can
crudely estimate flow speeds Vflow ∼ 104 km s−1, much faster than the pulsar speed but much
slower than the mildly relativistic speeds predicted by some models.

Head-tail PWNe have been detected in X-rays only for sufficently powerful pulsars, Ė �
1033 erg s−1, likely because electrons cannot be accelerated to high enough energies in less
powerful pulsars. Unexpectedly, the X-ray efficiency, ηX = LX/Ė, of head-tail PWNe shows
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a huge scatter, up to 4 orders of magnitude. Moreover, several nearby pulsars with Ė >

1034 erg s−1 show either very faint PWNe or no PWN at all. This might be associated with
small angles between the spin and magnetic axes, but the true reason remains unclear. To
explain this and other puzzling properties of the X-ray PWNe created by supersonically
moving pulsars, more such objects should be observed in X-rays and other spectral domains,
with long exposures and high spatial resolution, and new, more realistic models should be
developed.

Gamma-ray observations of PWNe have provided important insights on several aspects
such as the spatial and spectral distributions of the high-energy particles, their total energy
content and the wind magnetization. From a theoretical point of view, 3D time-dependent
multi-zone spectro-morphological models [e.g. Van Etten and Romani (2011)] are required
in order to grasp the processes of particle acceleration, transport and escape in these nebulae.
From an observational point of view, the identification of these HE/VHE PWNe requires ex-
tensive multi-wavelength investigation and/or detailed spectro-morphological studies, only
feasible for bright and resolved sources. In most cases, the association of a γ -ray source
with counterparts at other wavelengths is uncertain.15 In this regard, thanks to a factor ∼10
improvement in sensitivity above 100 GeV, with substantially better angular and spectral
resolutions and wider field-of-view than the current IACTs, the Cherenkov Telescope Array
(CTA; Acharya et al. 2013), currently in its pre-production phase, will have the potential
to reveal hundreds of sources through a uniform Galactic Plane survey (Dubus et al. 2013).
This will undoubtedly trigger detailed morphological and spectral investigations towards a
large number of PWNe and meaningful population studies de Oña-Wilhelmi et al. (2013).
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R.D. Blandford, W.N. Brandt, L.W. Brenneman, J. Chiang, D. Chakrabarty, J. Chenevez, A. Co-
mastri, F. Dufour, M. Elvis, A.C. Fabian, D. Farrah, C.L. Fryer, E.V. Gotthelf, J.E. Grindlay,
D.J. Helfand, R. Krivonos, D.L. Meier, J.M. Miller, L. Natalucci, P. Ogle, E.O. Ofek, A. Ptak,
S.P. Reynolds, J.R. Rigby, G. Tagliaferri, S.E. Thorsett, E. Treister, C.M. Urry, The Nuclear Spec-
troscopic Telescope Array (NuSTAR) high-energy X-ray mission. Astrophys. J. 770, 103 (2013).
doi:10.1088/0004-637X/770/2/103

D.J. Helfand, E.V. Gotthelf, J.P. Halpern, Vela pulsar and its synchrotron nebula. Astrophys. J. 556, 380–391
(2001). doi:10.1086/321533

http://dx.doi.org/10.1086/424906
http://dx.doi.org/10.1038/nature03498
http://dx.doi.org/10.1126/science.1153465
http://dx.doi.org/10.1088/0004-637X/703/2/2051
http://dx.doi.org/10.1088/0004-637X/703/2/2051
http://dx.doi.org/10.1086/498643
http://dx.doi.org/10.1088/0004-637X/788/2/155
http://dx.doi.org/10.1086/497680
http://dx.doi.org/10.1093/mnras/stw2554
http://dx.doi.org/10.1007/BF00643094
http://dx.doi.org/10.1007/BF00643094
http://dx.doi.org/10.1093/mnras/258.4.833
http://dx.doi.org/10.1088/0004-637X/738/1/42
http://dx.doi.org/10.1088/0004-637X/774/2/110
http://dx.doi.org/10.1088/0004-637X/706/2/1316
http://dx.doi.org/10.1086/312339
http://dx.doi.org/10.1088/0004-637X/770/2/103
http://dx.doi.org/10.1086/321533


Pulsar-Wind Nebulae and Magnetar Outflows: Observations. . . 229

H.E.S.S. Collaboration, A. Abramowski, F. Acero, F. Aharonian, A.G. Akhperjanian, G. Anton, A. Balzer,
A. Barnacka, U. Barres de Almeida, Y. Becherini, J. Becker, B. Behera, K. Bernlöhr, A. Bochow,
C. Boisson, J. Bolmont, P. Bordas, J. Brucker, F. Brun, P. Brun, T. Bulik, I. Büsching, S. Carri-
gan, S. Casanova, M. Cerruti, P.M. Chadwick, A. Charbonnier, R.C.G. Chaves, A. Cheesebrough, L.-
M. Chounet, A.C. Clapson, G. Coignet, G. Cologna, J. Conrad, M. Dalton, M.K. Daniel, I.D. Davids,
B. Degrange, C. Deil, H.J. Dickinson, A. Djannati-Ataï, W. Domainko, L. O’C. Drury, F. Dubois,
G. Dubus, K. Dutson, J. Dyks, M. Dyrda, K. Egberts, P. Eger, P. Espigat, L. Fallon, C. Farnier, S. Fegan,
F. Feinstein, M.V. Fernandes, A. Fiasson, G. Fontaine, A. Förster, M. Füssling, Y.A. Gallant, H. Gast,
L. Gérard, D. Gerbig, B. Giebels, J.F. Glicenstein, B. Glück, P. Goret, D. Göring, S. Häffner, J.D. Hague,
D. Hampf, M. Hauser, S. Heinz, G. Heinzelmann, G. Henri, G. Hermann, J.A. Hinton, A. Hoffmann,
W. Hofmann, P. Hofverberg, M. Holler, D. Horns, A. Jacholkowska, O.C. de Jager, C. Jahn, M. Jam-
rozy, I. Jung, M.A. Kastendieck, K. Katarzynski, U. Katz, S. Kaufmann, D. Keogh, D. Khangulyan,
B. Khélifi, D. Klochkov, W. Kluzniak, T. Kneiske, N. Komin, K. Kosack, R. Kossakowski, H. Laffon,
G. Lamanna, D. Lennarz, T. Lohse, A. Lopatin, C.-C. Lu, V. Marandon, A. Marcowith, J. Masbou,
D. Maurin, N. Maxted, M. Mayer, T.J.L. McComb, M.C. Medina, J. Méhault, R. Moderski, E. Moulin,
C.L. Naumann, M. Naumann-Godo, M. de Naurois, D. Nedbal, D. Nekrassov, N. Nguyen, B. Nicholas,
J. Niemiec, S.J. Nolan, S. Ohm, E. de Ona Wilhelmi, B. Opitz, M. Ostrowski, I. Oya, M. Panter,
M. Paz Arribas, G. Pedaletti, G. Pelletier, P.-O. Petrucci, S. Pita, G. Pühlhofer, M. Punch, A. Quir-
renbach, M. Raue, S.M. Rayner, A. Reimer, O. Reimer, M. Renaud, R. de Los Reyes, F. Rieger, J. Rip-
ken, L. Rob, S. Rosier-Lees, G. Rowell, B. Rudak, C.B. Rulten, J. Ruppel, V. Sahakian, D. Sanchez,
A. Santangelo, R. Schlickeiser, F.M. Schöck, A. Schulz, U. Schwanke, S. Schwarzburg, S. Schwem-
mer, M. Sikora, J.L. Skilton, H. Sol, G. Spengler, L. Stawarz, R. Steenkamp, C. Stegmann, F. Stinzing,
K. Stycz, I. Sushch, A. Szostek, J.-P. Tavernet, R. Terrier, M. Tluczykont, K. Valerius, C. van Eldik,
G. Vasileiadis, C. Venter, J.P. Vialle, A. Viana, P. Vincent, H.J. Völk, F. Volpe, S. Vorobiov, M. Vorster,
S.J. Wagner, M. Ward, R. White, A. Wierzcholska, M. Zacharias, A. Zajczyk, A.A. Zdziarski, A. Zech,
H.-S. Zechlin, Discovery of the source HESS J1356-645 associated with the young and energetic PSR
J1357-6429. Astron. Astrophys. 533, 103 (2011). doi:10.1051/0004-6361/201117445

H.E.S.S. Collaboration, A. Abramowski, F. Aharonian, F. Ait Benkhali, A.G. Akhperjanian, E. Angüner,
G. Anton, S. Balenderan, A. Balzer, A. Barnacka, et al., HESS J1818-154, a new composite su-
pernova remnant discovered in TeV gamma rays and X-rays. Astron. Astrophys. 562, 40 (2014).
doi:10.1051/0004-6361/201322914

J.A. Hinton, S. Funk, R.D. Parsons, S. Ohm, Escape from Vela X. Astrophys. J. Lett. 743, 7 (2011).
doi:10.1088/2041-8205/743/1/L7

D. Hooper, P. Blasi, P. Dario Serpico, Pulsars as the sources of high energy cosmic ray positrons. J. Cosmol.
Astropart. Phys. 1, 025 (2009). doi:10.1088/1475-7516/2009/01/025

C.Y. Hui, W. Becker, X-ray emission properties of the old pulsar PSR B2224+65. Astron. Astrophys. 467,
1209–1214 (2007). doi:10.1051/0004-6361:20066562

G.L. Israel, P. Esposito, N. Rea, F. Coti Zelati, A. Tiengo, S. Campana, S. Mereghetti, G.A. Rodriguez
Castillo, D. Götz, M. Burgay, A. Possenti, S. Zane, R. Turolla, R. Perna, G. Cannizzaro, J. Pons, The dis-
covery, monitoring and environment of SGR J1935+2154. Mon. Not. R. Astron. Soc. 457, 3448–3456
(2016). doi:10.1093/mnras/stw008

S.P. Johnson, Q.D. Wang, The pulsar B2224+65 and its jets: a two epoch X-ray analysis. Mon. Not. R. Astron.
Soc. 408, 1216–1224 (2010). doi:10.1111/j.1365-2966.2010.17200.x

P. Kaaret, H.L. Marshall, T.L. Aldcroft, D.E. Graessle, M. Karovska, S.S. Murray, A.H. Rots, N.S. Schulz,
F.D. Seward, Chandra observations of the young pulsar PSR B0540-69. Astrophys. J. 546, 1159–1167
(2001). doi:10.1086/318287

D.L. Kaplan, D.W. Fox, S.R. Kulkarni, E.V. Gotthelf, G. Vasisht, D.A. Frail, Precise Chandra localization of
the soft gamma-ray repeater SGR 1806-20. Astrophys. J. 564, 935–940 (2002). doi:10.1086/324339

N.S. Kardashev, Nonstationarity of spectra of young sources of nonthermal radio emission. Sov. Astron. 6,
317 (1962)

O. Kargaltsev, G.G. Pavlov, Pulsar wind nebulae in the Chandra era, in 40 Years of Pulsars: Millisecond
Pulsars, Magnetars and More, ed. by C. Bassa, Z. Wang, A. Cumming, V.M. Kaspi, American Institute
of Physics Conference Series, vol. 983 (2008), pp. 171–185. doi:10.1063/1.2900138

O. Kargaltsev, B. Rangelov, G.G. Pavlov, Gamma-ray and X-ray Properties of Pulsar Wind Nebulae and
Unidentified Galactic TeV Sources. ArXiv e-prints (2013)

O. Kargaltsev, Z. Misanovic, G.G. Pavlov, J.A. Wong, G.P. Garmire, X-ray observations of parsec-scale tails
behind two middle-aged pulsars. Astrophys. J. 684, 542–557 (2008). doi:10.1086/589145

O. Kargaltsev, C. Kouveliotou, G.G. Pavlov, E. Göǧüş, L. Lin, S. Wachter, R.L. Griffith, Y. Kaneko,
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