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Abstract We review electrodynamics of rotating magnetized neutron stars, from the early
vacuum model to recent numerical experiments with plasma-filled magnetospheres. Signifi-
cant progress became possible due to the development of global particle-in-cell simulations
which capture particle acceleration, emission of high-energy photons, and electron-positron
pair creation. The numerical experiments show from first principles how and where electric
gaps form, and promise to explain the observed pulsar activity from radio waves to gamma-
rays.

Keywords Pulsars: general · Acceleration of particles · Radiation mechanisms:
non-thermal · Magnetic reconnection · Relativistic processes · Stars: winds, outflows

1 Introduction

The canonical radio pulsar is an isolated, rotating, magnetized neutron star. Its radius is
r� = 10–13 km and its mass is M� ≈ 1.4M�. The rotation periods of pulsars vary from
milliseconds to seconds and their surface magnetic fields—from 109 G to 1014 G. Pulsars
have been a great puzzle since their discovery in 1967 (Hewish et al. 1968). It is established
that the canonical pulsars are powered by the kinetic energy of their rotation. Their powerful
electromagnetic winds extract the rotational energy of the star and create bright nebulae, e.g.
the famous Crab nebula. More surprisingly, pulsars themselves are bright sources of broad-
band radiation, from radio waves to gamma-rays, whose mechanisms have been debated for
almost five decades.
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The precise measurements of the pulsar rotation period P and its time derivative Ṗ pro-
vide accurate knowledge of the energy reservoir and the total released power. A significant
fraction of the spindown power (typically 1–10 %) is converted to high-energy gamma-rays,
as clearly demonstrated by the Fermi-LAT observations in the 0.1–10 GeV band (Abdo et al.
2010, 2013). Thus pulsars must be efficient particle accelerators. Understanding their mech-
anism is a difficult task, because it involves a complex interplay between electrodynamics,
high-energy radiative processes, and electron-positron pair creation.

The basic picture of pulsar magnetosphere needs to be established before addressing the
many puzzles posed by pulsar observations—the extremely high number of e± ejected by
the Crab pulsar, the drifting radio sub-pulses, the giant radio pulses, intermittency, gamma-
ray pulse profiles, the spectrum shape etc. In this introductory review, we summarize the
attempts to understand the basic picture of the pulsar magnetosphere over the past five
decades. The topic has been discussed in many reviews, e.g. by Arons (1979), Michel (2004)
and recently by Arons (2009, 2012), Spitkovsky (2011), Bühler and Blandford (2014), Be-
skin et al. (2015), Grenier and Harding (2015), Pétri (2016). We focus on the pulsar itself,
i.e. the region inside and around the light cylinder where the pulsar wind forms; an excellent
theoretical review of pulsar-wind nebulae is found in Kirk et al. (2009).

2 Vacuum Dipole Magnetosphere

In the early model of pulsar magnetosphere, the star is surrounded by vacuum (Pacini 1967,
1968; Ostriker and Gunn 1969). The initial argument behind this assumption was that the
strong gravity of the neutron star keeps any free particles at the stellar surface and does not
allow them to fill the magnetosphere (Hoyle et al. 1964). This model neglects the lifting of
particles by strong induced electric fields and pair creation in the magnetosphere, which will
be discussed in the next sections.

The pulsar is described by its magnetic moment μ and angular velocity �, and the light
cylinder radius is defined by RLC = c/Ω . Let us first consider the “aligned rotator” μ ‖ �

with the magnetic axis passing through the center of the star. Clearly, this “pulsar” would not
pulsate, as the configuration is symmetric about the rotation axis. However, understanding
this simplest configuration plays an important role in the development of pulsar theory.

The neutron star is an excellent conductor, and therefore the electric field measured in
the corotating frame inside the star nearly vanishes, E′

int = 0. This condition determines the
internal electric field in the fixed lab frame Eint,

E′
int = Eint + V × Bint

c
= 0, V = � × r. (1)

It implies that the star is polarized by rotation, very much like a Faraday disk (the unipolar
induction effect). Electrons re-distribute themselves inside the star to create the electric field
Eint that balances the Lorentz force V × Bint/c, where V = cEint × Bint/B

2
int = � × r is the

drift speed of the electrons. This polarization creates an excess of negative charges at the
poles and positive charges at the equator.

The internal electric field, in particular its θ -component Eint
θ = −VφB int

r /c (we use spher-
ical coordinates r, θ,φ) determines the electrostatic potential drop with latitude on the stel-
lar surface Φ(r�, θ) − Φ(r�,0) = − ∫

Eint
θ r� dθ . Using the surface dipole magnetic field

Br = 2μ cos θ/r3
� and Vφ = Ωr� sin θ one finds

Φ(r�, θ) = Φp + Ωμ

cr�

sin2 θ, Φp ≡ Φ(r�,0). (2)
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It is straightforward to solve Laplace equation ∇2Φ = 0 in the vacuum domain outside the
star with the boundary condition given in Eq. (2) (using that sin2 θ − 2/3 = −(2/3)P2(θ)

is an eigen function of the θ -part of the Laplacian). The solution is given by (Davis 1947;
Deutsch 1955; Hones and Bergeson 1965)

Φ(r, θ) =
(

Φp + 2Ωμ

3cr�

)
r�

r
+ Ωμ

cr�

(
r�

r

)3(

sin2 θ − 2

3

)

, r ≥ r�. (3)

Φp determines the monopole contribution to Φ . It is related to the net charge of the star
Q = −r�Φp −2Ωμ/3c, as seen from the Gauss theorem applied to a sphere of radius r 	 r�.
If the neutron star is formed with zero charge and no particles are lifted from its surface then
Q = 0 and Φp = −(2Ωμ/3cr�).

The electric field outside the star is found from E = −∇Φ . Note that while Φ is con-
tinuous at the surface r = r�, its derivative is not. Thus, a continuous dipolar magnetic field
implies a discontinuous Er i.e. there is a surface charge 4πΣ = Er − Eint

r . The star also
possesses an interior charge, which is found from the Gauss theorem applied to a sphere
just inside r� using Eint

r (r�, θ) = (Vφ/c)B int
θ = Ωμ sin2 θ/cr2

� , which gives Qint = 2Ωμ/3c

(Michel and Li 1999). The net charge Q is the sum of the interior and surface charges.
The dipole magnetic field remains a valid vacuum solution for the aligned rotator, as if

there were no rotation. In summary, the vacuum electromagnetic field of the aligned dipole
rotator with Q = 0 is given by1

(Br,Bθ ,Bφ) = B�

(
r�

r

)3

(2 cos θ, sin θ,0) (4)

(Er,Eθ ,Eφ) = Ωr�

c
B�

(
r�

r

)4(
1 − 3 cos2 θ,− sin 2θ,0

)
(5)

where B� = μ/r3
� is the magnetic field strength at the stellar equator. The vacuum electric

field has a monopole component if Q 
= 0; otherwise it is a pure quadrupole (see Fig. 1).
The net Poynting flux from the aligned rotator (integrated over a sphere of radius r > r�)

vanishes, Lvac = 0. Therefore, the rotating star does not lose energy and hence does not spin
down. The vacuum solution can be generalized to the case of an inclined rotator, where the
magnetic moment is directed at an angle χ relative to the rotation axis. In this case, the net
Poynting flux becomes (Pacini 1968; Ostriker and Gunn 1969)

Lvac = 2

3

μ2Ω4

c3
sin2 χ. (6)

3 The Electrosphere

Particles are strongly magnetized near the neutron star, so that their velocities perpendicu-
lar to the magnetic field lines are limited to the drift velocity VD = E × B/B2. However,
particles can freely slide along the magnetic field, in particular if there is a parallel electric
field component E‖ = E · B/|B| 
= 0. From the vacuum solution, one immediately realizes
that there is a strong unscreened E‖, in contrast to the interior of the star where E · B = 0.

1Generalization of the Deutsch solution to an arbitrary multipolar order is discussed by Bonazzola et al.
(2015), Pétri (2015).
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Fig. 1 Vacuum electromagnetic field of an aligned dipole rotator, � ‖ μ (both along the z-axis in the fig-
ure). Black curves show the magnetic field lines. Color shows the electric field outside the star (top: Er,
bottom: Eθ ) induced by the rotation of the perfectly conducting neutron star with no net charge (Q = 0). The
electric field is shown in units of E0 = Ωμ/r2

� c = Ωr�B�/c

Goldreich and Julian (1969) pointed out that the electric force greatly exceeds gravity of the
star and will lift electrons in the polar region and ions in the equatorial region. The work
function W at the condensed surface of a neutron star crust is negligible for electrons and
may be significant for ions (Ruderman 1974). However, detailed calculations of W (Jones
1986; Medin and Lai 2007) show that the typical temperatures of pulsars provide sufficient
surface emission of ions; these free ions are picked up by the electric field and lifted to the
magnetosphere.
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Fig. 2 Fully charge-separated
solution (electrosphere) of the
aligned rotator obtained with a
2D axisymmetric PIC simulation
after one rotation period.
Electrons (blue) form a dome
above the magnetic pole while
positive charges (here positrons,
in red) form the equatorial torus.
Both species are confined well
within the light-cylinder radius,
here set at RLC = 6r� . Charge
densities are normalized by the
surface Goldreich-Julian density
at the pole. Solid curves show the
magnetic field lines and the
oblique dashed line shows the
null line (where ρGJ = 0, i.e.,
θ ≈ 55◦)

Thus the entire surface charge of the aligned rotator must be lifted and distributed in the
magnetosphere. There exists an axisymmetric electrostatic equilibrium for the lifted charge
(Jackson 1979; Krause-Polstorff and Michel 1985a,b): the electrons lifted in the polar region
form a dome above the star, and the ions lifted in the equatorial region form a torus. In both
dome and torus E · B = 0. There is a vacuum gap between (and around) the dome and torus,
i.e. the lifted charge does not fill the entire magnetosphere. The equilibrium solution for
the lifted charge implies no outflow, no poloidal electric current, and no toroidal magnetic
field Bφ . This “electrosphere” produces no net Poynting flux and the pulsar is dead—there
is no spindown power.

In the corotating regions (stellar interior, dome, and part of the torus) the condition
E = −V × B/c determines charge density ρ by ∇ · E = 4πρ, which is often called “corota-
tion density” or Goldreich-Julian density (Hones and Bergeson 1965; Goldreich and Julian
1969),

ρGJ ≈ −� · B
2πc

= B�

2πc

(
r�

r

)3(
3 cos2 θ − 1

)
. (7)

The electrosphere configuration was obtained by several groups using iterative or PIC nu-
merical simulations (Krause-Polstorff and Michel 1985a,b; Shibata 1989; Neukirch 1993;
Thielheim and Wolfsteller 1994; Smith et al. 2001; Pétri et al. 2002b; Spitkovsky and Arons
2002; McDonald and Shearer 2009; Wada and Shibata 2011; Philippov and Spitkovsky
2014; Cerutti et al. 2015). In almost all cases, the simulations are initiated with the vacuum
solution and zero work function at the stellar surface. Then, as expected, the electric field
extracts charges from the star; they fill the magnetosphere and form the charge-separated
dome + torus structure. The charge distribution obtained by an axisymmetric PIC simula-
tion (Cerutti et al. 2015) is shown in Fig. 2.

The equilibrium electrosphere model is however incomplete, because it turns out unsta-
ble to non-axisymmetric perturbations (Pétri et al. 2002a; Spitkovsky and Arons 2002). The
magnetosphere rotates with the drift velocity E × B/B2, and the electrosphere solution im-
plies a strong velocity shear. This causes the diocotron instability of the torus, an analog
of the Kelvin-Helmholtz instability in neutral fluids. This instability is captured only by 3D
simulations as it grows from non-axisymmetric modes. It induces an expansion of the torus,
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and can even produce an outflow of charge through the light cylinder. However, this outflow
is too weak to give a significant spindown power. Furthermore, Pétri (2007) showed that
the diocotron instability is suppressed by relativistic effects that become important near the
light cylinder.

In summary, the electrosphere formed by particles lifted from the surface can hardly
explain the spindown and the magnetospheric activity of pulsars. The model is, however,
useful for old inactive neutron stars.

4 The Force-Free Magnetosphere: The Plasma-Filled Solution

Observations of pulsar wind nebulae indicate that the wind is heavily loaded with e± plasma,
which must be created in the pulsar magnetosphere (e.g., Kirk et al. 2009). Creation of
e± pairs is also expected theoretically, due to strong electric fields that must develop in
plasma-starved regions—so-called “gaps.” For instance, the electrosphere solution has a gap
between the dome and the torus, and a seed electron placed in the gap will be accelerated
to enormous Lorentz factors. The electron is accelerated by E‖ along the curved field lines
and emits high-energy photons (curvature radiation) which convert to e± pairs in the strong
magnetic field (Erber 1966; Harding and Lai 2006). This process ignites an electromagnetic
cascade of gamma rays and pairs until the density of the plasma is high enough to screen the
accelerating electric field, so that E · B = 0 becomes nearly satisfied.

Although the existence of gaps is required to fill the magnetosphere with pair plasma, as
a first approximation it makes sense to study “force-free” magnetospheres with E · B ≈ 0.
This model assumes that small deviations from the screening condition are sufficient to fill
the magnetosphere with plasma. The model also assumes that the inertial mass density of
the plasma is much smaller than B2/8πc2. This limit is called “force-free electrodynamics”
(FFE). It satisfies the equation,

ρE + J × B
c

= 0, (8)

where ρ and J are the charge and current densities. The FFE describes the behavior of the
electromagnetic field, however does not provide any information about the plasma creation
and dynamics, except that it sustains the electric current J and charge density ρ = ∇ · E/4π

demanded by the electromagnetic field.

4.1 Axisymmetric “Pulsar Equation”

Since the φ-derivative vanishes for axisymmetric configurations, the condition ∇ · B = 0
gives ∇ · BP = 0. This condition implies that there is only one degree of freedom in the
poloidal magnetic field BP = (Br,Bθ ). It is convenient to use the so-called “poloidal flux
function” Ψ (r, θ) or Ψ (R, z) in cylindrical coordinates R,z. It is defined so that 2πΨ equals
the magnetic flux through the circle of radius R = r sin θ around the rotation axis at height
z = r cos θ . The flux function Ψ (R, z) is related to BP by

BP = ∇Ψ × eφ

R
. (9)

The poloidal electric current through the same circle, 2πI , is related to the toroidal magnetic
field Bφ according to the Stokes’ theorem,

Bφ = I

R
. (10)
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The two scalar functions—the flux function Ψ (R, z) and the current function I (R, z)—
completely describe an axisymmetric magnetic field.

In a steady state, it is possible to translate the force-free condition into the so-called “pul-
sar equation” for Ψ and I (Scharlemann and Wagoner 1973; Michel 1973b). This equation
reads,

(

1 − R2

R2
LC

)(
∂2Ψ

∂R2
+ ∂2Ψ

∂z2

)

−
(

1 + R2

R2
LC

)
1

R

∂Ψ

∂R
+ I (Ψ )

∂I

∂Ψ
= 0. (11)

No analytical solution to the pulsar equation is known for a rotating dipole. However, an
exact solution was found for a rotating monopole (Michel 1973b). Some features of this
solution are shared by the aligned dipole rotator, in particular in the wind zone beyond the
light cylinder. Below we first describe the monopole solution and then discuss the dipole
rotator.

4.2 (Split) Monopole: Michel’s Solution

Michel’s solution is given by (in spherical coordinates)

Br = B�

(
r�

r

)2

(12)

Bθ = 0 (13)

Bφ = −B�

(
r�

RLC

)(
r�

r

)

sin θ (14)

Er = 0 (15)

Eθ = Bφ (16)

Eφ = 0. (17)

The solution is remarkably simple, as the poloidal magnetic field BP = Br is unchanged
from the normal monopole. Rotation creates the additional toroidal field Bφ = (Vφ/c)Br

(where Vφ = Ωr sin θ is the co-rotation velocity) and Eθ = Bφ . The corresponding current
density is purely radial,

J = c

4π
(∇ × B) = −� · B

2π
er = cρ er , (18)

where ρ = ∇ · E/4π is the charge density. According to this force-free solution, the current
can be carried by charge-separated plasma extracted from the star and moving with the speed
of light. Since magnetic monopoles are forbidden by ∇ ·B = 0, it is better to consider a “split
monopole,” which is antisymmetric about the equatorial plane. Then the above solution
describes one hemisphere, and the solution in the opposite hemisphere is obtained by the
transformation B → −B, E → −E, and J → −J. The reversal of the magnetic field across
the equator implies the presence of an equatorial current sheet, which is not included in
Eq. (18). It carries the return current and ensures that the net current through the stellar
surface vanishes, so the stellar charge does not grow.

The relation Bφ/Br = r sin θ/RLC shows that the magnetic field lines are nearly radial
close to the star (r sin θ  RLC) and start winding up around the pulsar with increasing
distance (see Fig. 3, top panel). At the light-cylinder, in the equatorial plane, the poloidal and
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Fig. 3 Analytical solution of the aligned split monopole (Michel 1973b). Top: Magnetic field line structure
winding up around the star (black sphere) due to the stellar rotation. The green arrow is the rotation axis
of the star. Red lines represent outgoing field lines while blue lines show the incoming field lines. The field
changes its polarity across the equator. The magnetosphere contained within the light-cylinder radius is shown

in grey. Bottom: E × B drift velocity (solid line: βr
D = V r

D/c, dashed line: β
φ
D = V

φ
D /c) and Lorentz factor,

ΓD = 1/

√
1 − β2

D =
√

1 + (R/RLC)2, as a function of the cylindrical radius R = r sin θ

toroidal magnetic components are equal, i.e. the field line makes a 45◦ angle with respect
to the radial direction. Far outside the light cylinder, the magnetic field is almost purely
toroidal. The Poynting flux � = cE × B/4π integrated over any sphere of radius r > r�
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determines the spindown power extracted from the star,

Lmono =
∫

� · dS = 2cB2
� r

4
�

3R2
LC

. (19)

This result turns out also valid for any oblique split monopole, i.e. it does not depend on the
inclination angle χ between � and the normal to the antisymmetry plane of B (Bogovalov
1999).

The drift velocity of the magnetic field lines is given by (Fig. 3, bottom panel)

VD = c
E × B

B2
= c er

1 + (
RLC
R

)2
+ RΩeφ

1 + ( R
RLC

)2
. (20)

This velocity does not describe the true motion of the charge-separated plasma in the
monopole magnetosphere. The force-free result J = cρer implies that the charge-separated
plasma everywhere flows radially with the speed of light, which is inconsistent with VD.
The true plasma velocity can only be found beyond the realm of force-free models. The
plasma is co-rotating with the star at the stellar surface and starts radial motion into the
magnetosphere with a negligible vr and a very high charge density ρ 	 J/c. The Lorentz
factor of the radial outflow is controlled by E‖ 
= 0 which requires a self-consistent calcula-
tion (Michel 1974). The outflow Lorentz factor quickly grows with altitude and saturates at
γ ∼ σ 1/2 cos θ , where σ = eΩB�r

2
� /mec

3. While E‖ 
= 0 is essential for the plasma accel-
eration, it is much smaller than Eθ , Br , Bφ when σ 	 1. In this limit, the electromagnetic
field around the star approaches the force-free model with E‖ = 0.

The drift velocity profile given in Eq. (20) becomes relevant to plasma motion if the
plasma has a high multiplicity of charges instead of being charge separated. In particular, the
force-free pulsar wind of a high multiplicity (discussed below) approaches a split-monopole
structure at R 	 RLC. In this case, the plasma flies away with V ≈ VD until it reaches the
fast magnetosonic point. It follows from Eq. (20) that the bulk Lorentz factor of the flow is
given by

ΓD =
√

1 +
(

R

RLC

)2

, (21)

so the pulsar wind accelerates linearly with cylindrical radius beyond the light cylinder
(Buckley 1977; Contopoulos and Kazanas 2002).

4.3 Dipole

The dipole magnetic flux emerging from the stellar surface is described by the flux function

Ψ (r�, θ) = μ sin2 θ

r�

. (22)

As in the monopole case, rotation of the star � distorts the external dipole field. The force-
free magnetosphere of the aligned rotator (� ‖ μ) is described by the poloidal flux function
Ψ (r, θ) that obeys the pulsar equation (Eq. (11)) with the boundary condition Eq. (22). This
equation was solved numerically by Contopoulos et al. (1999) (see also Goodwin et al.
2004, Gruzinov 2005, Contopoulos 2005, Timokhin 2006). The solution gives the poloidal
magnetic field BP (which determines the charge density ρGJ = −� · BP /2πc) and the self-
consistent poloidal current JP (which determines Bφ).
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Fig. 4 Sketch of the ideal
force-free magnetosphere of the
aligned pulsar. The main
elements are: (i) The closed field
line region (grey, and black field
lines) lying between the star
surface and the light cylinder.
This zone is dead and does not
participate to the pulsar activity.
(ii) The open field line region
(red and blue field lines)
extending beyond the light
cylinder. The open field-line
bundle carries the outflowing
electric current, Poynting flux
and the relativistic pulsar wind.
(iii) The equatorial current sheet
(green) between the opposite
magnetic fluxes in the wind zone.
It splits at the light cylinder into
two separatrix current sheets that
go around the closed zone,
between the last open and the
first closed field lines

The force-free magnetosphere possesses the following three basic features depicted
schematically in Fig. 4: (i) an open zone with JP 
= 0 and Bφ 
= 0, resembling the monopole
solution, especially far outside the light cylinder, (ii) a closed zone with JP = 0 and Bφ = 0,
and (iii) a Y-shaped current sheet. The current sheet supports the jump in Bφ between the
open and closed zones inside the light cylinder (the separatrix) and the jump B → −B across
the equatorial plane in the wind zone. The current sheet is positively charged outside the light
cylinder and negatively charged inside, as predicted by Lyubarskii (1990). The presence of
the closed zone and the Y-point in the magnetic field topology is an essential difference from
the monopole magnetosphere. The closed magnetic field lines are not much different from
a normal dipole configuration. However, the closed zone is not vacuum—it is filled with
charge density ρGJ, similar to the corotating part of the torus in the electrosphere solution.
It co-rotates with the star, creating current Jφ = VφρGJ which increases the effective dipole
moment of the star, slightly inflating the poloidal magnetic field lines.

The field lines in the open zone would be closed if there were no rotation; rotation pushes
them to infinity. This effect may be thought of as a result of the effective inertial mass
of the magnetic field B2/8πc2 (Michel 1973a), as there is no plasma inertia in the force-
free magnetosphere. Like the monopole case, the field outside the light cylinder becomes
increasingly dominated by the toroidal component, and the field energy flows out with nearly
speed of light. The amount of open flux Ψpc may be estimated approximating the closed zone
by the dipole field. Then the last closed field line crosses the stellar surface at the polar angle
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θpc given by

sin2 θpc = r�

RLC
, Ψpc = μ

RLC
. (23)

The angle θpc defines the “polar cap”—the footprint of the open field-line bundle on the
star, carrying magnetic flux Ψpc. Its accurate value is slightly larger, because of the poloidal
inflation of magnetic field lines caused by Jφ > 0. The open field-line bundle carries the
polar-cap current and the Poynting flux into the wind zone. This is the active part of the
magnetosphere which spins down the star.

The spindown power may be estimated using the fact that Bφ ∼ BP and Eθ ∼ BP near
the light cylinder (similar to the monopole magnetosphere). The net radial Poynting flux
may be estimated as L ≈ 4πR2

LCEθBφ/4πc, which gives

L ≈ μ2Ω4

c3
(aligned rotator). (24)

This simple expression turns out quite accurate, within a numerical factor close to unity.

4.4 Time-Dependent Force-Free Simulations

In the standard force-free solution for the aligned rotator, the last closed field line touches
the light-cylinder radius, i.e. the Y-point is at r = RLC. Timokhin (2006) pointed out that this
is not required by the pulsar equation, and in fact there is a continuous sequence of steady
solutions with the Y-point located at r ≤ RLC. This degeneracy is resolved by direct time-
dependent simulations of the force-free magnetosphere, which show how the steady state is
established (Spitkovsky 2006; McKinney 2006; Parfrey et al. 2012).

The force-free electrodynamic equations can be formulated exclusively in terms of E
and B with no reference to the plasma. Combining Eq. (8) with ∂(E · B)/∂t = 0, one obtains
(Blandford 2002)

J = cρ

(
E × B

B2

)

+ c

4π
(B · ∇ × B − E · ∇ × E)

B
B2

. (25)

Using ρ = ∇ · E/4π and substituting Eq. (25) into the Maxwell equation ∂E/∂t = ∇ × B −
(4π/c)J one can express ∂E/∂t in terms of E, B, and their spatial derivatives. Together
with ∂B/∂t = −c∇ × E, this gives a closed dynamical system of field equations that can be
evolved in time. For example, one can start with a non-rotating star with a vacuum dipole
magnetosphere, then spin it up to a desired �, and let it relax to the quasi-steady state. For
the aligned rotator, these simulations reproduced the steady-state solution with the Y-point
located close to the light cylinder.

Three-dimensional time dependent simulations were then performed for the oblique
rotator (right panel in Fig. 5, Spitkovsky 2006, Kalapotharakos and Contopoulos 2009,
Kalapotharakos et al. 2012, Pétri 2012). These simulations showed how the spindown power
depends on the angle χ between � and μ (Fig. 6). The result is well approximated by a sim-
ple formula proposed by Spitkovsky (2006),

L ≈ μ2Ω4

c3

(
1 + sin2 χ

)
. (26)

In contrast to the oblique split monopole, the dipole spindown power depends on χ . The
term proportional to sin2 χ is similar to the vacuum model, except for a different numerical
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Fig. 5 Snapshots of time-dependent force-free simulations of the aligned (left) and oblique (right) rotators
(from Spitkovsky 2006). The oblique rotator magnetosphere is shown in the � − μ plane; the inclination
angle is χ = 60◦ . Solid lines represent magnetic field lines, and color shows the strength of the magnetic
field component perpendicular to the plane of the figure (the toroidal field in the aligned rotator case)

Fig. 6 Compilation of the
spindown power for the oblique
plasma-filled magnetosphere
reported in the literature in
different numerical models:
force-free (Spitkovsky 2006),
spectral force-free (Pétri 2012),
full MHD (Tchekhovskoy et al.
2013), PIC (Philippov et al.
2015a), and radiative PIC
(Cerutti et al. 2016b). The
spindown power is normalized by
L0 = μ2Ω4/c3. The black
dashed line shows the
approximate analytical fit
L ≈ L0(1 + sin2 χ)

prefactor (1 instead of 2/3). Note also that L does not vanish in the aligned case χ = 0. The
origin of the variation L(χ) was discussed by Tchekhovskoy et al. (2016). Part of it comes
from the increasing open magnetic flux Ψpc(χ) (explaining 40 % of the increase in L),
and the remaining part is caused by the increasing concentration of the open magnetic flux
toward the equator. Apart from the moderate dependence L(χ), the wind from the dipole
rotator is similar to that from a split monopole with equal open magnetic flux.

Force-free simulations have also verified the existence of the current sheet in the dipole
magnetosphere. Its presence is important as it carries most of the return current, which
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makes the net current through each polar cap equal to zero. In the wind zone, the current
sheet separates the two opposite magnetic fluxes. For the aligned rotator, the current sheet
is flat outside the light cylinder and lies in the equatorial plane. For an oblique rotator, the
current sheet outside the light cylinder has the shape of a ballerina skirt (“striped wind”,
a relativistic analog of the heliospheric current sheet). It oscillates in θ around π/2 with the
amplitude χ and a wavelength of 2πRLC.

A key feature of the equatorial current sheet is that it is the place where the force-free ap-
proximation certainly breaks down. The magnetic field flips across the sheet, i.e. it must pass
through B = 0, making the plasma unmagnetized (infinite Larmor radius) and violating the
force-free condition B2/8π 	 Upl where Upl is the plasma energy density including its rest-
mass energy. A complete model of the current sheet should include the plasma inertia and
pressure, a finite resistivity and localized dissipation, which promotes magnetic reconnec-
tion. In numerical force-free models, the singular behavior of the current sheet outside the
light cylinder is regularized by introducing artificial resistivity (Li et al. 2012; Parfrey et al.
2012; Kalapotharakos et al. 2012). Alternatively, the full MHD approach can be employed
to model the plasma inertia and pressure in the sheet (Komissarov 2006; Tchekhovskoy et al.
2013).

5 Toward a Realistic Magnetosphere: Pair Creation, Particle
Acceleration and Radiation

Observations show that the spindown power is partially dissipated in the magnetosphere,
resulting in bright X-ray and gamma-ray emission. Radiation is produced by relativistic
particles and a self-consistent model is needed that would demonstrate how and where the
particles are created and accelerated. A traditional approach to pulsar modeling was based
on guessing the location of electric gaps inside the light cylinder—places where a strong
electric field E‖ accelerates particles to relativistic energies. Various gaps were proposed:
polar-cap gap (Sturrock 1971; Ruderman and Sutherland 1975), slot gap (Arons 1983; Mus-
limov and Harding 2004), and outer gap (Cheng et al. 1986). The approach to this problem
significantly evolved in the last decade, as described below.

5.1 Hints from the Force-Free Model

The force-free model shows one obvious candidate for strong emission—the equatorial cur-
rent sheet outside the light cylinder, as anticipated in some earlier work (Mestel and Shibata
1994; Lyubarskii 1996). In addition, the force-free model provides guidance to possible lo-
cations of the particle accelerator inside the light cylinder, since it shows the current density
J and charge density ρ desired by the magnetosphere. Using the dimensionless parameter
α = J/cρ, one can formulate a simple necessary condition for particle acceleration (Be-
loborodov 2008):

α−1 ≤ 1, α ≡ J

cρ
, (27)

which corresponds to α ≥ 1 or α < 0. If the opposite condition 0 ≤ α < 1 is satisfied along
the magnetic field line, the charge-separated flow extracted from the star is pushed to veloc-
ity v = J/ρ and provides the desired J and ρ with insignificant acceleration. The condition
0 ≤ α < 1 corresponds to 0 ≤ v < c, making the velocity v = J/ρ accessible to the flow,
which is sufficient for avoiding gaps. In contrast, if α−1 ≥ 1, the charge-separated outflow
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either fails to conduct the current (and then E‖ is generated by the induction effect) or fails
to sustain ρ. In this case, the magnetosphere may approach the desired configuration only if
the field lines are loaded with e± pairs created in the magnetosphere—otherwise a gap with
a strong unscreened E‖ must form.

This criterion can be applied to the polar cap of the aligned dipole rotator using α calcu-
lated for the force-model by Timokhin (2006), see also Parfrey et al. (2012). On the polar-cap
surface, α(θ) decreases from unity at θ = 0 and becomes negative near the edge of the polar
cap θpc. The return current sheet at the edge also has α < 0 (recall that the force-free mag-
netosphere requires the current sheet inside the light cylinder both to be negatively charged
and to conduct Jr > 0).

The criterion in Eq. (27) then says that the polar-cap accelerator is suppressed in most
of the polar-cap interior—here the extracted charge-separated flow with v = αc screens E‖.
More exactly, a moderate E‖ is sustained to move the plasma from the surface, and the
flow velocity v oscillates around αc (Mestel et al. 1985; Beloborodov 2008). The resulting
oscillating flow has the maximum dimensionless momentum p = γβ given by

pmax = 2α

1 − α2
(0 < α < 1). (28)

This result was confirmed by one-dimensional particle-in-cell (PIC) simulations of the
charge-separated flow above the polar cap (Chen and Beloborodov 2013; Timokhin and
Arons 2013).

The fact that α < 0 near the edge of the polar cap implies strong particle acceleration,
in particular in the current sheet at the boundary with the closed magnetosphere. One can
show that e± creation in the accelerator with α−1 ≤ 1 must be time-dependent and follow
a limit-cycle pattern (Beloborodov 2008). The cyclic discharge is demonstrated by one-
dimensional PIC simulations that track e± creation (Timokhin and Arons 2013). This is
a rather general property of e± discharge; similar one-dimensional PIC simulations of pair
creation in the twisted closed magnetospheres of magnetars (which have α 	 1) also exhibit
quasi-periodic behavior (Beloborodov and Thompson 2007).

5.2 Global Numerical Experiments: Particle-in-Cell (PIC) Simulations

The full problem of gap formation and particle acceleration is a global problem, because
particles and pair-creating photons can flow through the magnetosphere. For instance, above
the polar cap, the condition α−1 ≤ 1 is necessary but may not be sufficient for gap formation,
as e± pairs may be supplied to the polar cap (and screen E‖) from an accelerator located
elsewhere in the magnetosphere. Simulations of the plasma-filled magnetosphere developed
in recent years (Philippov and Spitkovsky 2014; Chen and Beloborodov 2014; Philippov
et al. 2015a,b; Cerutti et al. 2015, 2016b; Belyaev 2015a,b) provided an opportunity to
study this problem from first principles.

In the full global problem, it is not known in advance where the e± discharge will occur,
and the problem requires a self-consistent calculation of the electromagnetic field, plasma
dynamics and e± creation in a region that extends from the stellar surface to r 	 RLC.
Self-consistent simulations of e± discharge showing how the magnetosphere is filled with
plasma were first performed for an aligned rotator (Chen and Beloborodov 2014) and then
for an inclined rotator (Philippov et al. 2015a). They demonstrated that the main particle
accelerator in pulsars is the Y-shaped current sheet.

The basic technique for such simulations is the particle-in-cell (PIC) method (Birdsall
and Langdon 1991). The technique was originally developed in the 1960s to study kinetic
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problems in plasma physics (e.g. Dawson 1962). It consists of describing a collisionless
plasma from its fundamental constituents—individual charged particles (“macroparticles”)
and an electromagnetic field. Each macroparticle represents a large number of real particles
which would be following the exact same path in phase space. From the positions and veloc-
ities of each macroparticle, the charge and current densities are deposited on the numerical
grid. Then, the full time-dependent Maxwell’s equations are integrated on a staggered mesh
to ensure second order accuracy in both space and time (Yee 1966). All these steps are done
within each time step, so that the motion of particles and the evolution of the electromagnetic
fields are captured self-consistently.

In contrast to other applications (shocks, reconnection), PIC simulations of pulsars must
be global, as the problem is intrinsically non-local—what is happening at the light-cylinder
affects the activity at the polar cap and vice-versa. Such simulations are challenging because
the separation between the macroscopic (r�, RLC) and microscopic (plasma skindepth) scales
is huge in real pulsars. In practice, simulations are limited to a few orders of magnitude in
scale separation, which is sufficient to capture basic physics of pulsars, such as the mecha-
nism of gap formation and production of gamma-rays.

Apart from the numerical PIC aspects, a major challenge in pulsar simulations is the
self-consistent implementation of e± creation. It was first implemented in an axisymmet-
ric PIC simulation by Chen and Beloborodov (2014). Since it was not known in advance
where pairs will be created, the simulation started with a “clean” initial condition—a non-
rotating vacuum dipole, which was gradually spun up to a desired Ω . It was observed how
the rotation-induced electric field extracted particles from the stellar surface and accelerated
them to high Lorentz factors leading to curvature emission, and how the curvature photons
converted to e± pairs. This numerical experiment demonstrated the mechanism of filling the
magnetosphere with plasma, with the following results:

– There are two types of pulsar magnetospheres, depending on the physical process avail-
able to create e± pairs. If e± are created only in a strong magnetic field (due to gamma-ray
absorption by the field, Erber 1966) then pair production is limited to r  RLC. Chen and
Beloborodov (2014) called it “Type II” rotator. In this case, the aligned rotator was found
to evolve to a nearly “dead” state, resembling the electrosphere described in Sect. 3. It
is qualitatively different from Type I rotators where e± pairs can be created at r ∼ RLC

through photon-photon collisions.
– Type I rotator self-organizes to produce copious pairs inside and around the Y-shaped

current sheet. It evolves into a quasi-steady magnetic configuration close to the force-free
solution (Fig. 7).

– The current sheet inside the light cylinder (the separatrix) develops a time-dependent gap
stretched along the closed zone boundary: the separatrix gap. This accelerator enables
pair creation required to sustain the current sheet and the open magnetic flux. The gap is
qualitatively different from the “slot gap” and “outer gap” proposed in earlier works. The
earlier models assumed that the charge density “desired” by the magnetosphere is ρGJ. In
contrast, the charge density in the current sheet greatly exceeds ρGJ (in the ideal force-free
model it would be infinite). The accelerating voltage develops because the large ρ and J

(with α < 0) cannot be sustained without a high rate of pair creation.

The global PIC simulations also show how the plasma is accelerated and ejected through
the Y-point into the equatorial current sheet (Fig. 7). Plasma outflows along the equatorial
plane outside RLC and the Y-point resembles a nozzle formed by the open magnetic fluxes
of opposite polarity. Two plasma streams come to the Y-point along the boundary of the
closed zone and exchange their opposite θ -momenta. Their collimation outside the light
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Fig. 7 Poloidal cross section of the magnetosphere of the aligned rotator (from Chen and Beloborodov
2014). Vertical dashed line shows the light cylinder RLC = c/Ω . Green curves show the poloidal magnetic
field lines. Top: (a) Radial component of the electric current density Jr . (b) Net charge density ρ. (c) Toroidal
component of the magnetic field Bφ . Units: distance is measured in r� , charge density in mec

2/4πer2
� ,

current in mec
3/4πer2

� , and field in mec
2/er�. Bottom: (a) Average ion energy in units of mec

2 (the ion rest
mass was re-scaled to 5me in the simulation). One can see the acceleration of ions in the gap, their ejection
through the Y-point, and gyration in the equatorial current sheet. (b) Ratio of matter energy density Um to
magnetic energy density UB = B2/8π

cylinder is achieved through gyration in the (predominantly toroidal) magnetic field, which
communicates the θ -momentum from one stream to the other.

The 3D simulations of inclined rotators (Philippov et al. 2015a) show a similar mecha-
nism of sustaining the wobbling current sheet predicted by the 3D force-free simulations of
Spitkovsky (2006). A snapshot of the inclined rotator with χ = 60◦ is shown in Fig. 8.

The pulsar spindown reported by PIC simulations is in agreement with the ideal MHD
expectations in the limit where abundant plasma is present in the magnetosphere (Fig. 6).
However, all PIC studies also show significant dissipation of the spindown power L� inside
and around the light cylinder. Figure 9 (top panel) shows the fraction of L� that is dissi-
pated within a sphere of radius r = 2RLC found in the literature, as a function of the pulsar
inclination. The aligned rotator has the maximum dissipated fraction of about 20 %. The
dissipation rate then decreases monotonically with increasing inclination to about 2.5 %
for χ = 90◦ (Philippov et al. 2015a). The dissipated Poynting flux is not lost numerically,
but instead it is self-consistently channelled into particle kinetic energy and non-thermal
radiation.
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Fig. 8 Electron (left) and positron (right) densities in a 3D PIC simulation of the oblique rotator with
χ = 60◦ (from Philippov et al. 2015a). The magnetosphere is viewed in the � − μ plane; solid curves show
the magnetic field lines. Particle acceleration and e± creation occurs in part of the polar cap as well as in the
current sheet

The scatter in L/L� at χ = 0◦ in Fig. 9 is most likely due to different prescriptions for
particle injection. Cerutti et al. (2015) did not implement e± creation in the magnetosphere
and instead injected a mildly relativistic flow of e± from the stellar surface. This prescrip-
tion tends to screen E‖ and somewhat reduces dissipation. Belyaev (2015a) implemented
e± creation proportionally to the local E‖. Philippov et al. (2015a) assumed instantaneous
local pair creation by any particle reaching a fixed threshold Lorentz factor γthr. Chen and
Beloborodov (2014) performed the most detailed simulation that followed the propagation
of curvature gamma-rays and their conversion to pairs. All the simulations, however, show
a qualitatively similar structure of the magnetosphere, in particular the formation of the Y-
shaped current sheet with significant dissipation.

The dissipated fraction must increase as the pulsar slows down and approaches its
“deathline,” when the pair creation rate declines so that it becomes increasingly difficult
to screen E‖. When Cerutti et al. (2015) reduced plasma supply in their simulations, they
observed that the magnetosphere becomes highly charge-separated with a low spindown
power (L� < L0, some field lines remain closed outside the light-cylinder) and the dissipa-
tion fraction can reach > 50 %. In this dissipative solution, the separatrix current layers and
the Y-point disappear, and the equatorial current sheet is electrostatically supported (see also
Contopoulos et al. 2014 solution).

5.3 General Relativistic Effects

In agreement with the criterion in Eq. (27), Chen and Beloborodov (2014) did not observe a
polar-cap accelerator in the standard aligned-rotator problem—the negative electric current
flowing from the polar cap was carried by the mildly relativistic electron flow extracted
from the star. Philippov et al. (2015b) observed similar behavior of moderately inclined
rotators, with inclinations χ < 40◦. For larger inclinations, the polar cap became “activated,”
in agreement with the analysis of the α parameter in force-free models: strongly oblique
rotators have large variations of α across their polar caps (e.g., see Fig. 1 in Timokhin and
Arons 2013).
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Fig. 9 Top: Dissipated fraction
of the total radial Poynting flux
L� (converted to non-thermal
particles and radiation) within a
sphere of radius r = 2RLC as a
function of the pulsar inclination,
as reported by global PIC studies
(Philippov and Spitkovsky 2014;
Chen and Beloborodov 2014;
Cerutti et al. 2015; Philippov
et al. 2015a; Belyaev 2015a). The
values from Cerutti et al. (2015)
and Belyaev (2015a) are for their
highest particle injection
solutions (closest to force-free);
lower particle injection leads to
more dissipation (20–50 %).
Bottom: High-energy radiation
efficiency reported by Cerutti
et al. (2016b) as a function of the
pulsar inclination. The radiative
efficiency is defined as the
curvature and synchrotron
radiative power summed over the
numerical box and over all
directions, Lγ , divided by the
total radial Poynting flux, L�

The lack of polar-cap activity at moderate inclinations may be problematic for explain-
ing observed radio emission, in particular its “core” component that is usually associated
with e± production inside the open field-line bundle. This motivated recent work on sim-
ulating general relativistic effects near pulsars, which change the parameter α by tens of
percent (Philippov et al. 2015b; Gralla et al. 2016; Belyaev and Parfrey 2016). The most
important effect in this context is the frame-dragging of space-time by the stellar rota-
tion (Beskin 1990; Muslimov and Tsygan 1992; Sakai and Shibata 2003). The effective
angular velocity of the magnetosphere is reduced by the Lense-Thirring angular velocity,
ωLT = (2/5)Ω(rg/r�)(r�/r)3, where rg = 2GM�/c

2 is the Schwarzschild radius. This leads
to an increase of the α parameter,

αGR ≈ α

1 − ωLT/Ω
, (29)

where α on the right-hand side corresponds to the standard dipole rotator neglecting general
relativistic effects. The effect is strongest at the stellar surface, where one finds αGR ≈ 1.2α.
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Philippov et al. (2015b) included the Lense-Thirring effect in the field solver (in a leading
order) in a 2D axisymmetric PIC simulation, and observed the ignition of e± discharge
above the polar cap for a sufficiently high compactness of the neutron star M/r�. They
also observed that the discharge operates in a quasi-periodic manner, in agreement with
Beloborodov (2008) and Timokhin and Arons (2013), and may generate radio waves.

5.4 Radiation from the Equatorial Current Sheet

The equatorial current sheet outside the light cylinder is a prominent dissipation site, espe-
cially if the magnetosphere itself is close to force-free (the pulsar is far from the deathline).
The strong energy dissipation and particle acceleration in the equatorial sheet accompanies
magnetic reconnection of the opposite open magnetic fluxes, which produces and ejects rel-
ativistic plasmoids (Philippov and Spitkovsky 2014; Chen and Beloborodov 2014; Cerutti
et al. 2015), as predicted by Coroniti (1990) and Michel (1994). This dissipation occurs in
the plasma outflow outside the light cylinder and may be studied in detail by PIC simulations
even without an explicit implementation of pair creation. Instead, one can form a plasma-
filled magnetosphere e.g. by sprinkling e± everywhere (Philippov and Spitkovsky 2014) or
by ejecting a flow of copious e± pairs from the stellar surface (Cerutti et al. 2015, 2016b).
This leads to the magnetic configuration close to the force-free solution with the Y-shaped
current sheet, and to the strong dissipation in the equatorial plane outside the light cylinder.

An important parameter is the plasma magnetization defined as

σ = B2

4πΓ nmec2
, (30)

where n is the number density of the e± plasma and Γ is its average bulk Lorentz factor. In
pulsars, σ 	 1 everywhere in the magnetosphere except the interior of the equatorial current
sheet, and dissipation of a non-negligible fraction of the spindown power can significantly
increase the energy per particle. Simulations show that most of the equatorial dissipation
occurs near the light cylinder, around the Y-point up to a few RLC. The high-energy particles
tend to pile up at an energy given by the magnetization of the plasma at the light cylinder,
i.e. γ ≈ σLC (Philippov and Spitkovsky 2014; Cerutti et al. 2015). This energy should be
compared with the maximum energy that a particle can get from the vacuum potential drop
across the polar cap φpc = eΦpc/mec

2, where (using Eqs. (1), (23))

Φpc =
∫ θpc

0
Eθ(R�)R� dθ = μΩ2

c2
, (31)

so that (Cerutti et al. 2015)

γ ≈ σLC ∼ φpc

κΓ
, (32)

where κ is the multiplicity of e± pairs ejected in the current sheet, defined relative to the
minimum particle number required to sustain the electric current. Hence, the average parti-
cle ejected by a high-multiplicity pulsar earns only a small fraction of the vacuum potential
drop. Cerutti et al. (2015) tracked the motion of accelerated particles in their simulations of
the aligned rotator and studied where the particles gain their energies. They found that pos-
itive charges are accelerated outward as they cross the Y-point region and get ejected along
the equator. In contrast, electrons are mainly accelerated as they precipitate back towards
the star along the current sheet (see Fig. 10).
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Efficient particle acceleration leads to strong non-thermal high-energy emission. The
radiation-reaction force due to the curvature and synchrotron emission can be of the same
order as the Lorentz force, and particle momentum perpendicular to the field lines may be
quickly radiated away. These effects are self-consistently included in the PIC simulations.
In classical electrodynamics, the radiation reaction force is given by the Landau-Lifshitz
formula (Tamburini et al. 2010; Cerutti et al. 2016b)

g = 2

3
r2

e

[
(E + β × B) × B + (β · E)E

]

− 2

3
r2

e γ 2
[
(E + β × B)2 − (β · E)2

]
β, (33)

where re is the classical radius of the electron. The 3D radiative PIC simulations of Cerutti
et al. (2016b) showed that the strong curvature and synchrotron cooling had little impact on
the overall structure of the oblique rotator and its spindown rate (Fig. 6). Radiative cooling
also has little impact on the maximum energy reached by the particles accelerated in the cur-
rent sheet, because the particles are accelerated while being focused deep inside the layer
where the perpendicular magnetic field virtually vanishes (Kirk 2004; Uzdensky et al. 2011;
Cerutti et al. 2013). However, when the particles leave or re-enter the layer they radiate effi-
ciently. The total isotropic power radiated away in the form of synchrotron radiation reaches
almost 10 % of the spindown for the aligned pulsar and decreases down to a few percent
at high inclinations (bottom panel in Fig. 9), because the dissipation rate decreases with in-
clination. Such radiative efficiencies are consistent with observed high-energy gamma-ray
efficiencies reported by the Fermi-LAT (Abdo et al. 2010, 2013).

The expected radiative signatures—pulse profiles and spectra—can then be calculated
from the instantaneous synchrotron and curvature radiation spectrum emitted by each simu-
lation particle,

Fν(ν) =
√

3e3B̃⊥
mec2

(
ν

νc

)∫ +∞

ν/νc

K5/3(x) dx (34)

νc = 3eB̃⊥γ 2

4πmec
(35)

B̃⊥ =
√

(E + β × B)2 − (β · E)2. (36)

This is the usual formula (e.g. Blumenthal and Gould 1970) except that the effective per-
pendicular magnetic field, B̃⊥ here includes the electric field, because it is of the same order
as B in pulsar magnetospheres. Photons are then collected on a spherical screen located at
infinity and they are folded over the pulsar phase to reconstruct the pulse profiles.

The simulations show that the strongest high-energy emission is produced in the equa-
torial current sheet in the form of synchrotron photons (Cerutti et al. 2016b), as envisioned
by Lyubarskii (1996). Additional high-energy radiation is produced in the separatrix current
sheets inside the light cylinder (Chen and Beloborodov 2014). The simulated high-energy
pulse profiles typically have two peaks, in agreement with gamma-ray observations (Abdo
et al. 2010, 2013). Each peak appears when the equatorial current sheet crosses the ob-
server’s line of sight (Fig. 11, Cerutti et al. 2016b). The form of the pulse profile (i.e.,
phase-separation, amplitude and width of pulses) is entirely determined by the geometrical
shape of the current sheet.
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Fig. 11 Top: Spatial distribution
of the high-energy synchrotron
radiation from an oblique rotator
obtained with a 3D PIC
simulation. The grey scale shows
the isotropically integrated flux,
while the color scale shows the
emitting regions at the pulsar
phase 0.17 as seen by an observer
looking along the equator. The
angle between the rotation axis
(blue arrow) and the magnetic
axis (red arrow) is χ = 30◦ . Red
curves are the magnetic field
lines. Bottom: Reconstructed
high-energy pulse profile of
radiation received by the
observer. Figure adapted from
Cerutti et al. (2016b)

These studies prelude the beginning of direct comparison between PIC simulations and
observations. As a proof of principle, Cerutti et al. (2016a) showed that polarization mod-
elling along with pulse profile fitting can provide independent constraints on the pulsar incli-
nation and viewing angles. Applied to the Crab pulsar, they find an obliquity angle χ = 60◦

and viewing angle α = 130◦ which are in good agreement with values inferred from the mor-
phology of the pulsar wind nebula in X-rays (Ng and Romani 2004; Weisskopf et al. 2012).
A more detailed and systematic analysis extended to other pulsars should be performed in
the future.

6 Summary

The theory of pulsar electrodynamics is complex. Although the physics problem is well
posed, it entangles several processes such as particle acceleration, non-thermal emission,
pair creation, and relativistic reconnection, which make the problem hard. The force-free
electrodynamics and MHD models demonstrate some of the essential elements of the pulsar
magnetosphere—the spindown power, the magnetic topology, and the pattern of electric
currents—and highlight the presence of a prominent Y-shaped current sheet. The recent PIC
numerical experiments, which attempt to solve the full problem from first principles, have
been a game changer in pulsar theory. They show how the magnetosphere is filled with
plasma and how a fraction of the spindown power is dissipated and deposited into high-
energy particles that produce observed radiation. For the first time, numerical simulations
became capable of predicting observables from first principles, opening new perspectives
for our understanding of pulsars.
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