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Abstract Magnetic helicity is a conserved quantity of ideal magneto-hydrodynamics char-
acterized by an inverse turbulent cascade. Accordingly, it is often invoked as one of the basic
physical quantities driving the generation and structuring of magnetic fields in a variety of
astrophysical and laboratory plasmas. We provide here the first systematic comparison of
six existing methods for the estimation of the helicity of magnetic fields known in a finite
volume. All such methods are reviewed, benchmarked, and compared with each other, and
specifically tested for accuracy and sensitivity to errors. To that purpose, we consider four
groups of numerical tests, ranging from solutions of the three-dimensional, force-free equi-
librium, to magneto-hydrodynamical numerical simulations. Almost all methods are found
to produce the same value of magnetic helicity within few percent in all tests. In the more
solar-relevant and realistic of the tests employed here, the simulation of an eruptive flux
rope, the spread in the computed values obtained by all but one method is only 3 %, in-
dicating the reliability and mutual consistency of such methods in appropriate parameter
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ranges. However, methods show differences in the sensitivity to numerical resolution and to
errors in the solenoidal property of the input fields. In addition to finite volume methods, we
also briefly discuss a method that estimates helicity from the field lines’ twist, and one that
exploits the field’s value at one boundary and a coronal minimal connectivity instead of a
pre-defined three-dimensional magnetic-field solution.

Keywords Magnetic fields · Methods: numerical · Sun: surface magnetism · Sun: corona

1 Introduction

The volume integral

H(t) ≡
∫
V
(A · B)dV (1)

is the helicity of the vector field B = ∇ × A in a given volume V , with A(x, t) represent-
ing the corresponding space- and time-dependent vector potential. If the field consists of a
discrete collection of flux tubes, H is the winding number (Moffatt 1969) expressing their
degree of mutual linkage. By extension, Eq. (1) is a measure of the entangling (“knotted-
ness”) of the field’s streamlines.

For a given vector potential A, the addition of the gradient of a (sufficiently regular but
otherwise arbitrary) scalar function, i.e., the transformation A −→ A+∇ψ , does not change
the resulting B. This property of the definition of B is called gauge-invariance. Due to this
freedom in the gauge, H is not uniquely defined, since

H(A + ∇ψ) = H(A) +
∫

∂V
(ψB) · dS −

∫
V

ψ(∇ · B)dV, (2)

where dS = dSn̂, with dS being the infinitesimal element of the bounding surface ∂V of
the volume V , and n̂ the outward-oriented normal to ∂V . Hence, H is not gauge-invariant
unless two conditions are met: First, the vector field B must be solenoidal, as implied by
its definition as curl of A, and, second, the volume’s bounding surface ∂V must be a flux
surface of B, i.e., (B · n̂)|∂V = 0. When applied to a magnetic field B, the solenoidal require-
ment is satisfied by virtue of Maxwell equations, although possibly only to a finite extent
in numerical experiments, and ∂V is a flux surface if no magnetic field line is threading the
boundary. This latter requirement is rarely satisfied in natural systems, and makes Eq. (1) of
little interest for practical use.

On the other hand, helicity has the fundamental property of being strictly conserved in
ideal magneto-hydrodynamics (MHD, Woltjer 1958). Since MHD evolution in the absence
of dissipation preserves the topology of the magnetic field, the field lines’ winding num-
bers, or, more generally, magnetic helicity, cannot be changed during the evolution. Even
more appealing is the fact that magnetic helicity, contrary to magnetic energy, is very well
conserved in non-ideal dynamics as well (Berger 1984), as expected theoretically because
it cascades to large scales rather than to the small, dissipative scales (see, e.g., Frisch et al.
1975). Thanks to these properties, helicity has the possibility of being used as a constraint
for the magnetic field evolution. For isolated systems, conservation of helicity effectively
restricts the allowed time-evolution to helicity-conserving paths in phase-space, which, for
instance, yielded the so-called Taylor hypothesis on magnetic field relaxation (see, e.g., Tay-
lor 1986). In the solar context, helicity conservation is involved in magnetic field dynamos
(see, e.g., Brandenburg and Subramanian 2005), as well as a potential trigger of CMEs (see,
e.g., Rust 1994)
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1.1 Relative Magnetic Helicity

In order to overcome the limitations of Eq. (1), Berger and Field (1984) and Finn and An-
tonsen (1985) introduced the relative magnetic helicity

HV ≡
∫
V
(A + Ap) · (B − Bp)dV, (3)

of a magnetic field B with respect to a reference magnetic field Bp = ∇ × Ap. Even though
Eq. (3) allows for an arbitrary reference field, here we adopt the usual choice of the electric
current-free (potential) field for Bp. This choice has the following motivation: in order for
HV in Eq. (3) to be gauge invariant, the input and potential fields, B and Bp, respectively,
must be solenoidal, and such that

(n̂ · B)|∂V = (n̂ · Bp)|∂V . (4)

With such a prescription, the potential field that is chosen as a reference is uniquely defined
and represents the minimal energy state for a given distribution of the normal component of
the field on the boundaries (see, e.g., Valori et al. 2013). Moreover, ∂V needs not to be a flux
surface for HV to be gauge-invariant, and the definition Eq. (3) can be applied to arbitrary
field distributions.

Berger (2003) derived a useful decomposition of Eq. (3) as

HV = HV,J + HV,JP (5)

where

HV,J ≡
∫
V
(A − Ap) · (B − Bp)dV, (6)

HV,JP ≡ 2
∫
V

Ap · (B − Bp)dV. (7)

The two definitions in Eqs. (6), (7) have the property of being separately gauge-invariant
under the same assumptions guaranteeing the gauge-invariance of HV . The first term HV,J

corresponds to the general definition of helicity equation (1), but this time of the current-
carrying part of the field only, (B−Bp) = ∇× (A−Ap). By construction, such a field has no
normal component on the boundary, i.e., has ∂V as a flux surface. The second term HV,JP

has no intuitive interpretation, but is a sort of mutual helicity that basically takes care of the
flux threading ∂V (via the transverse component of Ap), and is gauge-invariant because only
the current-carrying part of B appears.

The conservation properties of the relative magnetic helicity were numerically tested
by Pariat et al. (2015), confirming that helicity is a very well conserved quantity even in
presence of very strong dissipation. The equation regulating the relative magnetic helicity
variation rate due to dissipation and flux through the boundaries is also derived by Pariat
et al. (2015). In the particular case of the simulation of a jet eruption examined in that article,
relative helicity is conserved more than one order of magnitude better than free energy.

In the particular case of applications to the solar atmosphere, one additional complica-
tion is that the magnetic field cannot be measured in the solar corona with the resolution
necessary for the computation of magnetic helicity. The magnetic field is instead inferred by
inverting spectropolarimetric measurements of emission from lower, higher-density layers
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of the atmosphere, yielding basically two-dimensional maps of the field vector mostly at
photospheric heights, see e.g., Lites (2000). Therefore, in order to compute the helicity, it is
first necessary to introduce a model of the solar corona based on the observed photospheric
field values. In this work we exclude addressing this problem directly by using numerical
models of magnetic fields, in this way testing the different helicity methods in a strictly
controlled environment.

In summary, magnetic helicity is a fundamental quantity of plasma physics that is almost
exactly conserved in most conditions. This can be relevant in fusion plasmas, as well as in
astrophysical ones. In this article we focus on solar applications, but the conclusions derived
are general enough to be extended to other fields.

In the following we refer to the relative magnetic helicity equation (3) computed with
respect to the potential field defined by the boundary condition Eq. (4) simply as helicity,
and we consider V to be a single, rectangular, 3D, finite volume. More general formulations
are possible, e.g., Longcope and Malanushenko (2008) introduces a procedure for defining
reference fields on multiple sub-volumes, possibly covering the entire open space. We also
refer to the discussion and references in Prior and Yeates (2014) for a physical interpretation
of H in Eq. (1) under several different gauges in the presence of open field lines threading
opposite faces of V .

1.2 Overview of the Methods for the Estimation of Helicity

Several methods of helicity estimation are currently available. A practical categorization,
according to decreasing levels of required input information, results into

– finite volume (FV)
– twist-number (TN)
– helicity-flux integration (FI)
– connectivity-based (CB)

methods. In practical applications, some assumption about the unknown coronal magnetic
field need to be made, and the above groups of methods essentially differ in the nature of
this assumption and in the correspondent helicity definition. A synoptic view of the available
methods for the estimation of magnetic helicity in finite volumes is presented in Table 1.

Finite volume (FV) methods entirely rely on external techniques, such as nonlinear force-
free field extrapolations or MHD simulations, to produce numerical models of the coronal
magnetic field, (see, e.g., Wiegelmann et al. 2015). The “finite volume” characterization in-
dicates that the methods are designed to provide the helicity value in a bounded volume,
typically one employed in a 3D numerical simulation, as opposed to methods that estimate
the helicity in a semi-infinite domain. The helicity in a given volume at a given time can be
directly computed if the magnetic field is known at each location in V at that time. There-
fore, FV methods are direct implementation of Eq. (3) which requires only the computation
of the vector potentials for a given discretized magnetic field B in V , see e.g., Thalmann
et al. (2011), Valori et al. (2012), Yang et al. (2013b), Amari et al. (2013), Rudenko and
Anfinogentov (2014), Moraitis et al. (2014). Despite the apparent straightforward task that
such methods have, differences in the gauge, in the implementations, and in the sensitivity
to the input discretized magnetic field may impact on the accuracy of the helicity estima-
tion. To test the accuracy of finite volume methods is the main focus of this article, and such
methods are extensively described in Sect. 2.
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Table 1 Synoptic view of helicity computation methods, their properties and formulation, as described in
Sect. 1.2. The subset of methods actually tested in this paper is listed in Table 2

Finite volume (FV)

HV = ∫
V (A + Ap) · (B − Bp)dV

see Eq. (3)

– Requires B in V e.g., from MHD simulations or
NLFFF

– Compute HV at one time
– May employ different gauges (see Table 2)

Helicity-flux integration (FI)

dHV
dt

= 2
∫
∂V [(Ap · B)vn − (Ap · vt)Bn]dS

– Requires time evolution of vector field on ∂V
– Requires knowledge or model of flows on ∂V
– Valid for a specific set of gauge and assumptions,

see Pariat et al. (2017)

Discrete flux-tubes (DT)

H � ∑M
i=1 TiΦ

2
i

+ ∑M
i=1

∑M
j=1,j �=i Li,jΦiΦj ,

see Eq. (31)

Twist-number (TN)

H � T Φ2

see Eq. (32)

– Estimation of the twist contribution to H
– Requires B in V
– Requires a flux-rope-like structure for computing

the twist T

Connectivity-based (CB)

H = A
∑M

i=1 αiΦ
2δ
i

+ ∑M
l,m=1 LlmΦlΦm

see Eq. (35)

– Requires the vector field on photosphere at one
time

– Models the corona connectivity as a collection of
M force-free flux tubes

– Minimal connection length principle

The field-line helicity method by Russell et al. (2015) is also using the full 3D vec-
tor magnetic field in a volume as an input to the method. Rather than producing a single
number for the value of Eq. (3) in V , the field-line helicity method provides the value of
helicity associated to a single flux tube, and follows its evolution in time. In this sense, the
FL method is a powerful investigating tool for studying the distribution of helicity in nu-
merical simulations, especially those involving reconnection processes. Given its peculiar
and focussed applications, we do not discuss this method further, and refer the reader to the
above-mentioned article.

Similarly to FV methods, the twist-number (TN) method (see, e.g., Guo et al. 2010) re-
quires in input the 3D discretized magnetic field vector. The method also assumes the pres-
ence of a flux rope in the coronal volume, and proceeds by relating the twist of that structure
with helicity. The level of approximation of the true helicity value that is implied by such a
technique is assessed here for the first time. Application of this method to observations can
be found in Guo et al. (2013).

Helicity-flux integration (FI) methods, do not make any assumption about the coronal
field, but rather assume that the helicity accumulated in a given volume is the result of the
helicity flux through the volume boundaries, from a given point in time onward, see, e.g.,
Eq. (5) in Berger and Field (1984) for negligible dissipation. Such an estimation requires the
knowledge of the time evolution of magnetic and velocity fields on the bounding surface of
the considered volume (see e.g., Eq. (16) in Berger 1999. The vector potential of the potential
field appearing there can be derived from the field distribution on the boundaries). Under
these assumptions, in the case of negligible dissipation, no information on the magnetic
field inside the volume is necessary.

In practical applications, such methods follow the time evolution of the photospheric field
and assume that the flux of helicity through that boundary accumulates in the coronal field,
see e.g., Chae et al. (2001). Since only the flux is computed, FI methods can only estimate
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the variation of accumulated helicity with respect to an unknown initial state. Methods that
exploit this approach appear in Nindos et al. (2003), Pariat et al. (2005), LaBonte et al.
(2007), Liu and Schuck (2012), among others, but direct comparisons between them do not
yet exist.

A method of computing the helicity that also uses only the distribution of magnetic field
on the bottom boundary is the connectivity-based (CB) method (Georgoulis et al. 2012).
The method is based on modeling the unknown connectivity of the coronal field with a col-
lection of slender force-free flux tubes, each with different constant force-free parameter
α ≡ (∇ × B)/B. More specifically, the CB method takes in input the photospheric obser-
vations and models the coronal field as a single (linear) or a collection of (nonlinear) flux
tube(s) as an integral step of the helicity computation itself. The set of flux tubes is ob-
tained assuming that the line connectivity is, globally, the shortest possible, mimicking the
compact character of the more flare-productive active regions. In this way, the connectivity-
based method requires as input only the knowledge of the magnetic field distribution at
the photosphere, at each time. Different flux tubes have a different value of the force-free
parameter, hence the characterization of the method as “nonlinear”, despite the simplifi-
cation of neglecting the braiding between different flux tubes that is used in summing up
the helicity and energy contributions of individual flux tubes. Therefore, the CB method is
an approximate, nonlinear method that is meant to produce a lower-limit estimation of the
true helicity associated to a flux-balanced coronal field in a very fast way. In this sense, the
CB method does not share the same purpose of finite volume and helicity-flux integration
methods, which, in the ideal situation, are in principle capable of obtaining the true value of
helicity in a volume, at the price of requiring more information in input.

Both the TN and the CB methods are based on the representation of the magnetic field
as a collection of a discrete number of finite-sized flux tubes, as opposite to a continuous
three-dimensional field. We therefore categorized both methods as discrete flux-tubes (DT)
methods, see Table 1.

1.3 Systematic Comparison of Methods

Section 1.2 briefly introduced the methods currently available for the estimation of HV .
Many of those have been independently tested and already applied to observations. How-
ever, the accuracy, mutual consistency, and sensitivity of these methods are not sufficiently
tested, while a systematic comparison of methods in both their theoretical as well as practical
aspects is necessary. This work is the first one of a series of papers undertaking such a task.
Beside benchmarking, the ultimate goal of this series is no less than to assess if and how can
helicity be meaningfully used as a tracer of the evolution of the magnetic field in magnetized
plasmas. To that purpose, we designed a collection of progressively more complex and real-
istic discretized test fields, starting with 3D solutions of the force-free equations, proceeding
then to time-dependent MHD simulations of flux emergence, and finally to applications to
real solar observations.

The present article is focussed on FV methods, whereas in Pariat et al. (2017) we mostly
focus on FI methods and the comparison with the CB method. Subsequent papers are ded-
icated to the TN method (Guo et al. 2017), and to applications to observed solar active
regions. The results of this and of subsequent articles presented in this section are the direct
outcome of the International Team on magnetic helicity hosted at ISSI-Bern in the 2014–
2016 period.1 As a reference for future testing, we make available the data cube of each

1See the web page http://www.issibern.ch/teams/magnetichelicity/ for more information.

http://www.issibern.ch/teams/magnetichelicity/
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employed test field and the complete results of the analysis in tabular form, of which the
plots presented here are a subset. That material can be found in the section Publications of
the ISSI website given in the footnote.

1.4 This Article

In view of the large scope of the project outlined in Sect. 1.3, it is necessary in the first
place to determine the respective limits, field of applications, and precision of each of the
existing FV methods, and check if FV methods can be reliably used to benchmark other,
more approximate methods.

More in detail, we wish to properly quantify the reliability of HV estimations when the
field is known in the volume V . Such a reliability can be tested by quantifying the sensitivity
and robustness of the estimations with respect to resolution, energy and helicity properties
of the input field, and sensitivity to violation of the solenoidal constraint by the discretized
field.

In order to compare and benchmark existing methods against the above properties in a
representative variety of relevant setting, we consider test cases that confront the methods
with increasing complexity, uncertainties, and realism. We consider strongly-controlled-
environment, equilibrium test-cases such as the Low and Lou (1990) and Titov and Dé-
moulin (1999) solutions of the force-free equations. Such tests provide basic benchmarking
as they differ for helicity content, resolution, and accuracy of the solenoidal property. Then,
two series of snapshots from MHD numerical simulations of flux emergence resulting in
stable (Leake et al. 2013) and unstable (Leake et al. 2014) configurations are considered.
The flux emergence test cases are also meant to build a bridge toward FI methods studied in
Pariat et al. (2017), which is more focussed in understanding how the helicity information is
modified when the knowledge of the magnetic field is limited (typically to the photosphere
only).

In addition to FV methods, in this article we also consider two DT methods, namely the
twist-number (TN) and the connectivity-based (CB) methods. These methods were already
used to obtain estimates of the magnetic helicity in several observational studies (Guo et al.
2013; Georgoulis and LaBonte 2007; Georgoulis et al. 2012; Tziotziou et al. 2012, 2013,
2014; Moraitis et al. 2014). Benchmarking DT methods together with the FV ones enables
the reader to better interpret results of past and future studies applying such methods. From
a different point of view, the TN method is included because it requires the same informa-
tion as the other finite volume methods, i.e., the full knowledge of the magnetic field in the
entire considered volume. The CB method is included because, despite requiring only the
photospheric vector magnetogram, it can use any available information of the coronal con-
nectivity. Also, similarly to FV methods, the connectivity-based method can be applied to a
single time snapshot, rather than requiring a series of temporal snapshots, which is the case
for the FI methods. A list of the methods tested in this article is given in Table 2.

The methods applied in this article are described in Sect. 2, whereas the numerical mag-
netic fields used as tests are discussed in Sect. 4. Section 3 summarizes the diagnostic tools
used for the comparing the results. The main results of the comparison are then discussed in
Sect. 5, with specific discussion of the dependence on resolution presented in Sect. 6 and of
the dependence on the solenoidal property given in Sect. 7. An overview of the FV methods
results is given in Sect. 8, whereas the comparative tests with DT methods are presented in
Sect. 9. Finally our conclusions are summarized in Sect. 10.
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Table 2 Summary of the methods employed in this article, their short label, their categorization according
to Table 1, the section of this article where they are described, and their main bibliographic reference

Method Label Category Section Reference

Coulomb-Thalmann Coulomb_JT Finite volume Sect. 2.1.1 Thalmann et al. (2011)

Coulomb-Yang Coulomb_SY Finite volume Sect. 2.1.2 Yang et al. (2013b)

Coulomb-Rudenko Coulomb_GR Finite volume Sect. 2.1.3 Rudenko and Anfinogentov (2014)

DeVore-Valori DeVore_GV Finite volume Sect. 2.2.1 Valori et al. (2012)

DeVore-Moraitis DeVore_KM Finite volume Sect. 2.2.2 Moraitis et al. (2014)

DeVore-Anfinogentov DeVore_SA Finite volume Sect. 2.2.3 Not available

Twist-number TN Discrete flux-tubes Sect. 2.3.1 Guo et al. (2010)

Connectivity-based CB Discrete flux-tubes Sect. 2.3.2 Georgoulis et al. (2012)

2 Helicity Computation Methods

Finite volume methods require the knowledge of the magnetic field B in the entire volume V ,
and differ essentially in the way in which the vector potentials are computed. The methods
presented here compute vector potentials employing either the Coulomb gauge (∇ · A = 0)
or the DeVore gauge (Az = 0, DeVore 2000). Due to the gauge-invariant property of Eq. (3),
the employed gauge should be irrelevant for the helicity value. It may have, however, conse-
quences on the number and type of equations to be solved for that purpose. Methods using
the Coulomb gauge differ in the way in which the magnetic fields and the corresponding
vector potentials are split into potential and current-carrying parts. Hence, they differ to
some extent in the equations that they solve. Methods applying the DeVore gauge are appli-
cations of the method in Valori et al. (2012) that differ only in the details of the numerical
implementation. In the following, different FV methods are identified by the gauge they
employ (DeVore or Coulomb), followed by the initial of the author of the reference article
describing its implementation (e.g., Coulomb_GR labels the Coulomb method described in
Rudenko and Myshyakov 2011), see Table 2.

All the FV methods considered in this article, except for the Coulomb_GR method, define
the reference potential field as Bp = ∇φ, with φ being the scalar potential, solution of

∇2φ = 0, (8)

(n̂ · ∇φ)|∂V = (n̂ · B)|∂V , (9)

such that the constraint equation (4) is satisfied. Errors in solving equations (8), (9) are a
first source of inaccuracy for the methods.

2.1 Methods Employing the Coulomb Gauge

Vector potentials in the Coulomb gauge satisfy

∇2Ap = 0, (10)

∇ · Ap = 0, (11)

n̂ · (∇ × Ap)|∂V = (n̂ · B)|∂V , (12)
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for the vector potential of the potential field, and

∇2A = −J, (13)

∇ · A = 0, (14)

n̂ · (∇ × A)|∂V = (n̂ · B)|∂V , (15)

for the vector potential of the input field, where J = ∇×B. The conditions Eqs. (12) and (15)
are the translation into vector potential representation of Eq. (4). The accuracy of Coulomb
methods depend on the accuracy in solving numerically the above Laplace and Poisson
problems. This includes the accuracy in fulfilling numerically the gauge condition, i.e., the
solenoidal property of the vector potentials Ap and A.

From the computational point of view, the numerical effort required to solve for the vector
potentials consists, in general, in the solutions of Eqs. (10)–(12) and (13)–(15), i.e., of six
3D Poisson/Laplace problems, one for each Cartesian component of the vector potentials
Ap and A.

2.1.1 Coulomb_JT

In order to solve Eqs. (10)–(12) and (13)–(15), appropriate additional boundary conditions
for A and Ap on the boundaries of the 3D-rectangular computational domain need to be
specified. For this purpose, the method of Thalmann et al. (2011), decomposes A into a
current-carrying and a potential (current-free) part, in the form A = Ac + Ap. The repro-
duction of the input fields’ flux at the volume’s boundaries, ∂V , is entirely dedicated to Ap

(obeying Eqs. (10)–(12)). The electric current distribution in V and on ∂V , on the other
hand, are delivered by Ac (Eqs. (13), (14) with Ac instead of A and Eq. (15) replaced by
n̂ · (∇ × Ac)|∂V = 0).

In particular, the tangential components of Ap on a particular face, f , of the 3D com-
putational domain are specified to be the 2D stream function of a corresponding Laplacian
field, φf , in the form Ap,t = −n̂ × ∇tφf , where ∇t is the 2D-gradient tangential operator
on the face f . The Laplacian field itself is gained by substituting in Eq. (12) and seeking the
solution of the derived 2D Laplace problem ∇2

t φf = −n̂ · B, for which boundary conditions
on the four edges of each face f need to be specified. This approach of defining Ap on ∂V
is in principle used by all Coulomb methods considered in the present study, but the specific
way in which the 2D Laplace problems are formulated is different.

Thalmann et al. (2011) use Neumann conditions in the form ∂nφf = cf , where cf is a
constant along a particular face and ∂n is the derivative in the direction normal to the edge
of the face f (see their Sect. 2.1 for details). The different cf are constructed in such a way
that the total outflow through the volume’s bounding surface ∂V is minimized. In this way,
a vanishing tangential divergence (∇t · Ap,t = 0) is enforced on ∂V , and following Gauss’
theorem, Eqs. (10)–(12) are approximately fulfilled.

Another difference of the applied Coulomb methods is how the current-carrying vec-
tor potential Ac is calculated and its solenoidality enforced. Thalmann et al. (2011) solves
Eq. (13) for Ac numerically, similar to Yang et al. (2013a), just with differing boundary con-
ditions. In the Coulomb_JT case, ∇t · Ac,t = 0 on ∂V is explicitly enforced in order to fulfill
the Coulomb gauge for Ac.

The method discussed in Thalmann et al. (2011) is implemented in C. The Poisson and
Laplace problems are solved numerically using the Helmholtz solver in Cartesian coordi-
nates of the Intel® Mathematical Kernel Library.
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2.1.2 Coulomb_SY

The Coulomb_SY method is described in Yang et al. (2013a,b). In the original formula-
tion of Yang et al. (2013a), the method requires a balanced magnetic flux through each of
the side boundaries of the volume. This restriction has been further removed in Yang et al.
(2013b). In order to solve Eqs. (10), (12) and (13), (15), the Coulomb_SY method addition-
ally enforces the boundary condition (n̂ · Ap)|∂V = (n̂ · A)|∂V = 0 at all boundaries. Then,
the transverse vector potential at the boundaries and the vector potential at the edges is ob-
tained by using Gauss’ theorem. After obtaining the boundary values, Yang et al. (2013a,b)
firstly resolve the Laplace equation (10) and the Poisson equation (13) to obtain an initial
guess of the solution, A′

p and A′. These preliminary solutions satisfies Eqs. (12) and (15),
but not the Coulomb gauge condition. The Coulomb_SY method then uses a divergence-
cleaning technique based on the Helmholtz vector decomposition to iteratively impose the
Coulomb constraint to the vector potentials, without modifying their values at the bound-
aries. Comparing with the Coulomb_JT method, in Coulomb_SY are the vector potentials
that are decomposed, rather than the boundary contributions. The method is implemented in
Fortran; Poisson and Laplace problems are solved numerically using the Helmholtz solver
in Cartesian coordinates of the IMSL® (International Mathematics and Statistics Library).

2.1.3 Coulomb_GR

The Coulomb_GR method is described in Rudenko and Myshyakov (2011). A distinctive
feature of the algorithm is that the Coulomb_GR method defines the reference potential
field in terms of vector potential Bp = ∇ × Ap, rather than using Eqs. (8), (9). The cor-
responding boundary value problem, Eq. (10), is solved with the constraint equation (11)
and the boundary condition (Ap · n̂)|∂V = 0. The Laplace problem is divided into six sub-
problems, one for each side of V . Such a splitting of the Laplace problem is correct only if
the total magnetic flux is zero (balanced) on each side of the box independently. To satisfy
this requirement, a compensation field Bm

p = ∇ × Am
p is introduced. It is built as a field of

5 magnetic monopoles located outside of the box. Positions and charge of the monopoles are
selected such as to compensate unbalanced flux on each side of the volume independently.
The modified magnetic field B′ = B−Bm

p has zero total flux on each face independently and
can be correctly used as a boundary condition for the sub-problems

n̂ · (∇ × Afi
p

)∣∣
fj

= δij

(
n̂ · B′)∣∣

fj
, (16)

where Afi
p is the vector potential of sub-problem solution corresponding to the side fi .

After solving all sub-problems, the full solution is then obtained by summation of the
solutions of the six sub-problems Afi and the vector potential of a compensation field, Am,
as

Ap = Am
p +

6∑
i=1

Afi
p . (17)

The field described by the first term of Eq. (17), instead, is flux balanced on each side of the
box independently.

Instead of solving numerically the Poisson problem equations (13)–(15), the Coulomb_
GR methods adopts a decomposition similar to the one in Coulomb_JT method, i.e., A =
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Ac + Ap, but the vector potential of the current-carrying part of the field is computed as

Ac(r) = − 1

4π

∫
V

r − r′

|r − r′|3 × (B − Bp)dV. (18)

In contrast to other methods, the solutions of the Laplace and Poison problems for the Afi

components are derived analytically as decompositions into a set of orthonormal basis func-
tions. The detailed description of the strategy for solving these equations can be found in
the original paper by Rudenko and Myshyakov (2011).

In the current implementation the method is relatively demanding in terms of running
time. Therefore, it is applied here only to a subset of test cases.

2.2 Methods Employing the DeVore Gauge

Using DeVore gauge Az = 0 (DeVore 2000), Valori et al. (2012) derived the expression for
the vector potential of the magnetic field B in the finite volume V = [x1, x2] × [y1, y2] ×
[z1, z2] as

A = b + ẑ ×
∫ z2

z

B dz′, (19)

where the integration function b(x, y) = A(z = z2) obeys to

∂xby − ∂ybx = Bz(z = z2), (20)

and bz = 0. The particular solution of Eq. (20) employed here is

bx = −1

2

∫ y

y1

Bz

(
x, y ′, z = z2

)
dy ′, (21)

by = 1

2

∫ x

x1

Bz

(
x ′, y, z = z2

)
dx ′, (22)

but see Valori et al. (2012) for alternative options. The above equations are applied in the
computation of the vector potential of the potential field too by substituting B with Bp ev-
erywhere in Eqs. (19)–(22). In particular, using Eqs. (21), (22) for both Ap and A implies
Ap = A at z = z2, although this is not necessarily required by the method.

The DeVore gauge can be exactly imposed also in numerical applications, which is gen-
erally not the case for the Coulomb gauge. On the other hand, since Az = 0, then

Bx = −∂zAy = ∂z

∫ z2

z

Bx dz′, (23)

where Eqs. (20) and (21), (22) where used; a similar expression holds for By. Hence, the
accuracy of DeVore method in reproducing Bx and By from A of Eq. (19) depends only on
how accurately the relation

∂z

∫ z2

z

= identity (24)

is verified numerically. On the other hand, even when Eq. (24) is obeyed to acceptable
accuracy, one can easily show that, for a non-perfectly solenoidal field Bns, it is

Bns − ∇ × A = ẑ
∫ z2

z

(∇ · Bns)dz′, (25)
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as derived in Eq. (B.4) of Valori et al. (2012). Hence, the accuracy in the reproduction of
the z-component of the field depends on the solenoidal level of the input field (and on how
accurately Eq. (20) is solved).

All DeVore-gauge methods discussed in this study employs Eqs. (8), (9) and (19)–(22),
but they differ in the way integrals are defined, and in the way the solution to Eq. (8) is
implemented. The computationally most demanding part of the method is the solution of the
3D scalar Laplace equation for the computation of the potential field, Eq. (8). This makes
DeVore methods computationally appealing since they require very little computation time.

2.2.1 DeVore_GV

DeVore_GV is the original implementation described in Valori et al. (2012), where the re-
quirement equation (24) is enforced by defining the z-integral operator as the numerical
inverse operation of the second order central differences operator, see Sect. 4.2 in Valori
et al. (2012). The Poisson problem for the determination of the scalar potential φ in Eqs. (8),
(9) is solved numerically using the Helmholtz solver in the proprietary Intel® Mathematical
Kernel Library (MKL).

Following Eq. (39) in Valori et al. (2012), the DeVore gauge for the potential field can be
reduced to the Coulomb gauge. We checked the effect of this gauge choice in the tests below,
and found no significant difference with the standard DeVore gauge. The DeVore-Coulomb
gauge for the potential field is thus no further discussed here.

2.2.2 DeVore_KM

DeVore_KM is described in Moraitis et al. (2014). This implementation has two main dif-
ferences with the one of DeVore_GV. The first is in the solver of Laplace’s equation. De-
Vore_KM uses the routine HW3CRT that is included in the freely available FISHPACK
library (Swartztrauber and Sweet 1979). A test, however, with the corresponding Intel MKL
solver revealed minor differences in the solutions obtained with the two routines, and a fac-
tor of ≤ 2 more computational time required by the FISHPACK solver. The second and
most important difference with the DeVore_GV method is in the numerical calculation of
integrals and derivatives in Eqs. (19)–(22). In DeVore_KM integrations are made with the
modified Simpson’s rule of error estimate 1/N4 (Press et al. 1992), with N being the num-
ber of integration points, and, in the special case N = 2, with the trapezoidal rule instead.
In addition, differentiations are made using the appropriate (centered, forward or backward)
second-order numerical derivative, without trying to numerically realize Eq. (24). Finally,
Eqs. (19)–(22) in DeVore_KM are used in the same way for both the potential and the ref-
erence fields.

2.2.3 DeVore_SA

DeVore_SA follows the general scheme of the DeVore_GV method with two differences.
The first one is that Eqs. (8), (9) for the potential φ are solved in Fourier space separately
for all faces of the box. In particular, the problem is divided into six sub-problems using

φ = φc +
6∑

i=1

φi, (26)

where φc is the 3D scalar potential of the compensation field Bc = ∇φc and φi are 3D solu-
tions for the potential field with the normal component given on ist side of V and vanishing
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boundary conditions on the other sides of V . The individual Laplace problems for each φi

are then solved in Fourier space following the general scheme of the potential and linear
force-free field extrapolation employing the fast Fourier transform by Alissandrakis (1981).
For the application here, the original extrapolation algorithm is modified to take into ac-
count the imposed boundary conditions. This method of solving equations (8), (9) will be
described in a dedicated forthcoming paper.

The second difference with the DeVore_GV method is that Eq. (19) is modified by intro-
ducing a new integration function c that is computed using Bz from any level zr inside the
data cube. In particular, by addition and subtraction to Eq. (19), one has

A = b + ẑ ×
(∫ z2

z

B dz′ +
∫ z2

zr

B dz′ −
∫ z2

zr

B dz′
)

, (27)

which can be re-casted as

A = c + ẑ ×
(∫ z2

z

B dz′ −
∫ z2

zr

B dz′
)

, (28)

where we have defined

c = b + ẑ ×
∫ z2

zr

B dz′. (29)

Taking the x- and y-derivatives of Eq. (29), and using Eq. (20) and ∇ · B = 0, one derives

∂xcy − ∂ycx = Bz(z = zr). (30)

The solution of Eq. (30) is then analogous to Eqs. (21), (22), where Bz(z = z2) is replaced
by Bz(z = zr). Tests using the LL case of Sect. 4.1 shown that the minimal error in Ap and A
is obtained for zr = (z2 − z1)/2. The vector potential is finally computed following Eq. (28).

This scheme coincides with the original one of DeVore_GV if zr is taken at the top
boundary of the box, i.e., for c(zr = z2) = b.

2.3 Discrete Flux-Tubes Methods

Berger and Field (1984) and Démoulin et al. (2006) have shown that the relative magnetic
helicity can be approximated as the summation of the helicity of M flux tubes:

H �
M∑
i=1

TiΦ
2
i +

M∑
i=1

M∑
j=1,j �=i

Li,jΦiΦj , (31)

where Ti denotes the twist and writhe of magnetic flux tube i with flux Φi , and Li,j is the
linking number between two magnetic flux tubes i and j with fluxes Φi and Φj , respectively.
The first and second term on the right hand side of Eq. (31) represents the self and mutual
helicity, respectively. With the approximation of discrete magnetic flux tubes, the physical
quantity of the magnetic helicity is related to the topological concept of the writhe, twist and
linking number of curves, and the magnetic flux associated with those curves. The formulae
of computing these topological quantities for both close and open curves have been derived
in Berger and Prior (2006) and Démoulin et al. (2006). For the purpose of our compari-
son it must be noticed that discrete flux-tubes methods do not provide the vector potentials
and potential fields in the considered volumes like FV methods. Therefore, the comparison
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between DT methods and FV methods is necessarily restricted to the helicity values only.
The twist-number method and connectivity-based method presented in this section adopt
different assumptions in the helicity formulae and the magnetic field models to compute the
magnetic helicity.

2.3.1 Twist-Number

The TN method is described in Guo et al. (2010, 2013). This method is aimed at computing
the helicity of a highly twisted magnetic structure, such as a magnetic flux rope. A magnetic
flux rope is considered as an isolated, single flux tube such that only the self magnetic
helicity is computed. The helicity contributed by the writhe is also omitted assuming that
the flux rope is not highly kinked. With these two assumptions, the magnetic helicity of a
single highly twisted structure is simplified as

Htwist � T Φ2, (32)

where T is the twist number of the considered magnetic flux rope with flux Φ . In order to
estimate T , the formula derived in Berger and Prior (2006) to compute the twist number of
a sample curve referred to an axis is employed. Practically, the axis can be determined by
the symmetry of a magnetic configuration or by other assumptions, such as requiring it to
be horizontal and to follow the polarity inversion line (Guo et al. 2010). The boundary of
the flux rope is determined by the quasi-separatrix layer (QSL) that is found to wrap the flux
rope (Guo et al. 2013). Then the twist density, dT /ds, at an arc length s is:

dT
ds

= 1

2π
T · V × dV

ds
. (33)

Two unit vectors are used in Eq. (33): T(s), that is tangent to the axis curve, and V(s), that
is normal to T and pointing from the axis curve to the sample curve. By integrating the
equation along the axis curve the total twist number is derived. Equation (33) is suitable
for smooth curves in arbitrary geometries without self intersection. Since it makes no as-
sumption about the magnetic field, it can be applied to both force-free and non-force-free
magnetic field models.

2.3.2 Connectivity-Based

The CB method was introduced by Georgoulis et al. (2012) and was used by a number of
studies thereafter. In principle, the method requires only the full (vector magnetic field) pho-
tospheric boundary condition to self-consistently estimate a lower limit of the free energy
and the corresponding relative helicity.

A key element of the method is the discretization of a given, continuous photospheric
flux distribution into a set of partitions with known spatial extent and flux content. Each
partition is then treated as the collective footprint of one or more flux tubes. To map the
relative locations of these footprints, one either infers or calculates the coronal magnetic
connectivity that distributes the partitioned magnetic flux into opposite-polarity connections,
treated thereafter as discrete magnetic flux tubes. The flux content of these connections, with
both ends within the photospheric field of view (FOV), constitutes the magnetic connectivity
matrix corresponding to the given photospheric boundary condition.
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The unknown coronal connectivity is either inferred by any explicit solution of the vol-
ume magnetic field or calculated with respect to the existing photospheric boundary con-
dition. In the first case, individual field-line tracing associates connected flux with photo-
spheric partitions, providing the magnetic connectivity matrix upon summation of individual
field-line contributions. Obviously, only magnetic field lines entirely embedded in the finite
volume are taken into account. In the second case, a simulated-annealing method is used to
absolutely and simultaneously minimize the flux imbalance (hence achieving connections
between opposite-polarity partitions) and the (photospheric) connection length. This crite-
rion is designed to emphasize photospheric magnetic polarity inversion lines by assigning
higher priority to connections alongside them. The converged simulated-annealing solution,
that provides the connectivity matrix, is unique for a given photospheric partition map. More
information and examples are provided in Georgoulis et al. (2012) and Tziotziou et al. (2012,
2013).

The connectivity matrix in a collection of partitions of both polarities will reveal a num-
ber of M discrete, assumed slender, flux tubes with flux contents Φi ; i ≡ {1, . . . ,M}. The
respective force-free parameters αi are assumed constant for a given flux tube but vary
between different tubes, thus implementing the nonlinear force-free (NLFF) field approx-
imation. Force-free parameters for each flux tube are the mean values of the force-free
parameters of the tubes’ respective footprints, each calculated by the relation αi = 4π

c

Ii
Fi

;
i ≡ {1, . . . ,M ′} for M ′ magnetic partitions, where Ii is the total electric current of the i-
partition and Fi its flux content. The total current is calculated by applying the integral form
of Ampére’s law along the outlining contour of the partition.

Knowing Fi , αi , and the relative positions of each flux tube’s footpoints, Georgoulis et al.
(2012) showed that a lower limit of the free magnetic energy for a collection of M flux tubes
is

EcCB
≡ Ec(CB;self ) + Ec(CB;mutual) = Aλ2

M∑
i=1

α2
i Φ

2δ
i + 1

8π

M∑
l=1

M∑
m=1;l �=m

αlLlmΦlΦm, (34)

where A, δ are known fitting constants, λ is the length element (the pixel size in observed
photospheric magnetograms), and Llm is the mutual-helicity parameter for a pair (l,m) of
flux tubes. This parameter is inferred geometrically, by means of trigonometric interior an-
gles for the relative positions of the two pairs of flux-tube footpoints. The locations of point-
like footpoints of the slender flux tubes coincide with the flux-weighted centroids of the
respective flux partitions. As included in Eq. (34), the parameter Llm does not include braid-
ing between the two flux tubes, that can be found only by the explicit knowledge of the
coronal connectivity. Additional complexity via braiding will only add to the free energy
EcCB

in Eq. (34). Therefore, the above EcCB
is already a lower limit of the actual Ec, as-

suming only “arch-like” (i.e., one above or below the other) flux tubes that do not intertwine
around each other. In addition, Eq. (34) does not include an unknown free-energy term that
is due to the generation, caused by induction, of potential flux tubes around the collection of
non-potential ones (Démoulin et al. 2006). Such a term would again contribute to the mutual
term of the free energy.

The corresponding self-consistent relative helicity is, then,

HmCB
≡ Hm(CB;self ) + Hm(CB;mutual) = 8πAλ2

M∑
i=1

αiΦ
2δ
i +

M∑
l=1

M∑
m=1;l �=m

LlmΦlΦm. (35)
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From Eqs. (34), (35) we identically have EcCB
≡ 0 for potential flux tubes (αi = 0; i ≡

{1, . . . ,M}). For HmCB
= 0 in this case, we further require

∑Mp

l=1

∑Mp

m=1;l �=m LlmP
ΦlΦm = 0,

where LlmP
�= Llm is the mutual-helicity factor for a collection of Mp �= M collection of

potential flux tubes. As Démoulin et al. (2006) discuss, this can be the case for a flux-
balanced potential-field boundary condition. In practical situations of not-precisely flux-
balanced magnetic configurations, however, one may approximate HmCB;mutual = 0, in case all
αi ; i ≡ {1, . . . ,M} are zero within uncertainties δαi , which are fully defined in this analysis.
More generally, one may use the “energy-helicity diagram” correlation of Tziotziou et al.
(2012, 2014) to infer |HmCB

| ∝ E0.84±0.05
cCB

for EcCB
−→ 0.

3 Analysis Metrics

Apart from extremely simplistic magnetic fields, the analytical computation of the relative
magnetic helicity in a non-magnetically bounded system is highly non-trivial. Even with
simple natural-world-relevant models relative magnetic helicity cannot be analytically esti-
mated. Similarly, the exact value of HV in the finite volume of the 3D discretized magnetic
fields used here as tests is, in general, not known. Hence, we need to provide indirect accu-
racy metrics to judge the examined methods.

The main goal of the analysis presented below is to compare the helicity values that are
obtained employing the potential field and vector potentials computed with the methods
described in Sects. 2.1 and 2.2. Since the helicity of B defined by Eq. (3) involves the
corresponding potential field Bp, as well as the vector potentials for Bp and B, this basically
implies providing a quantitative estimation of the accuracy of such fields. To that purpose,
we introduce normalized quantities and metrics as follows:

For each discretized magnetic field, we define HV as the helicity defined in Eq. (3) nor-
malized to Φ2,

HV ≡ HV/Φ2, (36)

where

Φ(B) = 1

2

∫
z=0

∣∣Bz

(
x ′, y ′, z = 0

)∣∣dx dy (37)

is half of the unsigned flux through the bottom boundary, corresponding to the injected flux
for an exactly flux-balanced configuration. In that normalization, a uniformly twisted flux
rope with field lines having N turns has an helicity equal to N (see e.g., Démoulin and
Pariat 2009). In computing the helicity values with different methods we refrain from using
simplifications of Eq. (3) coming from the specific gauge in use, in this way keeping the
comparison as general as possible. Hence, for each FV method and for each test case, the
value of HV as defined by Eq. (36) is obtained by computing separately the four volume
contributions of Eq. (3) and normalizing them to Φ2. We reserve the calligraphic symbol H
for non-normalized helicities.

The numerically obtained HV values depend in principle on many factors. In the first
place, different methods may have a different level of accuracy in computing the vector
potentials of the test and potential fields, depending on the strategy applied to solve the
relevant equations, see Sect. 2. Second, the reference potential field is uniquely defined by
the requirement that HV is gauge invariant, yielding to Eq. (4). However, without violat-
ing that requirement, the potential field can equivalently be computed both as the curl of
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the vector potential, as in some methods of Sect. 2.1, or as the gradient of the scalar po-
tential. Numerically, the derived potential fields may not be identical for different methods.
Finally, since helicity estimation methods are developed for application to research-relevant
dataset, all employed tests are defined on discretized grids of moderate- to high-resolution,
and therefore violate the solenoidal property to some extent (cf. Valori et al. 2013). Different
methods might be affected differently by small violations of the solenoidal property of the
test field. Substantial violations of the solenoidal property are not considered here since the
very definition of HV is devoid of meaning in that case.

We report in Tables 8–10 the complete listing of all employed metrics for all FV methods
and test cases considered in this study. On the other hand, in the next sections we provide
concise summaries of the tables’ values for subsets of test cases and/or methods. To this
purpose, we compute the mean of the relevant HV values, and a relative spread around it,
defined as the standard deviation of the HV values distribution over the mean. In addition, in
order to discern among different factors influencing HV values, several diagnostic metrics
are here introduced.

3.1 Accuracy of Vector Potentials

The vector potentials required in the helicity computation of Eq. (36) must reproduce the
correspondent magnetic fields as accurately as possible. In order to compare two vector
fields X and Y in V we employ the metrics

εN = 1 −
∑

i |Xi − Yi |∑
i |Xi | , (38)

εE =
∑

i |Yi |2∑
i |Xi |2 , (39)

which are, respectively, the complement of the normalized vector error and the energy ratio,
introduced by Schrijver et al. (2006).2 Both are unity if Xi = Yi in all grid points i in V .
The metrics are applied to the pair (X = Bp,Y = ∇ × Ap) or (X = B,Y = ∇ × A), to
quantitatively assess the accuracy of a vector potential in reproducing the corresponding
magnetic field. Additional metrics defined in Schrijver et al. (2006) are either not particularly
sensitive, or not providing essential additional information in the cases examined below. For
the interested reader, they are listed in Appendix B.

For the metrics defined here, as well as for the integral in Eq. (36), we use standard nu-
merical prescriptions, as those in Appendix A of Valori et al. (2013). In particular, we com-
pute the curl and divergence operators using a second-order, central-difference discretization
scheme for points in the interior of V . Values on the volume-bounding surface, ∂V , are taken
from the input magnetic fields.

3.2 Quantification of the Solenoidal Property

The test cases used in this article must have a value of ∇ · B small enough to be considered
numerically solenoidal. In order to quantify the level of solenoidality, we apply here the
decomposition of the energy of the magnetic field in V into solenoidal and nonsolenoidal
contributions, as in Valori et al. (2013). Using that decomposition, a fraction Ediv of the

2We use the notation εN rather than 1 − EN to avoid confusion with energy symbols.
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total magnetic energy can be associated to the nonsolenoidal component of the field. In this
article, all energy contributions are normalized to the total energy, E, of the test case in
exam. More details on the decomposition can be found in Appendix A.

For reference, we occasionally include the divergence metric proposed in Wheatland
et al. (2000) and often used in the literature to test the solenoidal property of discretized
fields, defined as the average over all n grid nodes, 〈|fi(B)|〉 = (

∑
i |fi |)/n, of the fractional

flux,

fi(B) =
∫

v
∇ · Bi dv∫

∂v
|Bi |dS

� ∇ · Bi

6|B|i/�, (40)

through the surface ∂v of an elementary volume v including the node i. The rightmost
expression in Eq. (40) holds for a grid of uniform and homogeneous resolution �. Therefore,
it may be appropriately used as a metric for the methods analyzed in this study, since they all
are based on uniform Cartesian grids. The smaller the value of 〈|fi |〉, the more solenoidal the
field. However, the actual value of this metric depends on the number of grid points n and
the resolution �, therefore it makes most sense to apply it to identical discretized volumes.
In addition, this metric is used when the energy one is not applicable, for instance, when
checking the solenoidal property of vector potentials in Coulomb gauge methods, 〈|fi(A)|〉,
as in Sect. 7.

4 Test Fields

In order to be able to critically test the different helicity computation methods of Sect. 2,
the test fields used in this study are chosen such that they represent challenging tests, at
the same time including aspects of relevance for solar physics. From the point of view of
the fields’ structure, we include both compact structures with concentrated currents as in
Fig. 1b and c, as well as more extended structures with currents threading also the lateral
and top boundaries, as in Fig. 1a and d. Similarly, we consider both static (Fig. 1a and b)
and time evolving (Fig. 1c and d) fields, representing typical magneto-static and magneto-
hydrodynamic applications. In the following, the most relevant properties of the test fields
used in this study are discussed in some detail. In particular, the solenoidal properties of
the discretized magnetic fields are quantified using the method described in Sect. 3.1. The
results of the analysis of the input fields is given in full in Table 7, and a selection thereof
is graphically presented in the following sections. In particular, Table 7 also reports the
fractional flux defined in Eq. (40) for all test fields considered here.

4.1 Low and Lou

The Low and Lou model (Low and Lou 1990; Wiegelmann and Neukirch 2006, hereafter
LL) is a 2.5D solution of the zero-β Grad-Shafranov equation, analytical except for the nu-
merical solution of an ordinary differential equation. In particular, the four LL cases consid-
ered here are different discretizations of the same solution (corresponding to n = 1, l = 0.3,
φ = π/4 in the notation of Low and Lou 1990), in the same V = [−1,1] × [−1,1] × [0,2]
volume. From this solution, four test cases are constructed where the above volume is dis-
cretized using 32, 64, 128, and 256 nodes per side. Since the solution of the ordinary dif-
ferential equation that defines the LL field is always the same in the four cases, the only
factor changing among the different LL cases is the resolution. As a test for helicity meth-
ods, LL represents a large-scale, force-free field with large-scale smooth currents distributed
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Fig. 1 Representative field lines of the four employed test cases: (a) low and Lou (LL) force-free equilibrium,
see Sect. 4.1; (b) Titov and Démoulin (TD) force-free equilibrium for N = 1 and � = 0.06, see Sect. 4.2;
(c) snapshot at t = 155 of the stable MHD simulation (MHD-st), and (d) snapshot at t = 140 of the unstable
MHD simulation (MHD-un), see Sect. 4.3. Yellow field lines depict the flux rope, red field lines belong to the
ambient magnetic field, except for the LL case where no flux rope is present and the field lines’ color scheme
does not apply. A cyan semi-transparent iso-contour of the current density is shown at 15 %, 35 %, 11 %,
and 10 % of its maximum in the four cases (a) to (d), respectively

in the entire volume. This latter aspect is not supported by observations of solar active re-
gions. However, being almost analytic, the LL equilibrium offers a tightly controlled test
case. Here, this test field is used mostly in Sect. 6.2 for exploring the dependence of the
finite volume methods on spatial resolution.

Figure 2a shows that for the LL test cases, while Efree � 26 % and hardly changes with
resolution, the solenoidal error of the input field varies from 0.1 % to 4 % as pixels become
coarser (see also Table 7). Hence, the value of HV for the LL cases computed by the dif-
ferent methods will be affected simultaneously by the combined effects of resolution in the
computation of the vector potentials on one hand, and by the different degree of violation of
the solenoidal property by the test field on the other.

4.2 Titov and Démoulin

The Titov and Démoulin model (Titov and Démoulin 1999, hereafter TD) is a parametric
solution of the 3D force-free equations constituted by a current ring embedded in a confining
potential field. By considering the portion of the ring above a given (photospheric) plane, the
TD equilibrium is possibly the simplest 3D model of a bipolar active region with localized
direct currents, see Fig. 1b. Differently from the LL case, the current is tethering only the
bottom boundary, while the field is potential on the lateral and top boundaries of the volume
considered here.

The TD model has significant topological complexity, in the sense that, for different val-
ues of its defining parameters, can exhibit a finite twist of N end-to-end turns, bald patches,
and an hyperbolic flux tube (Titov et al. 2002). In this article we consider six realizations
of that solution, in different combinations of twist and spatial resolution. Unless differently
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Fig. 2 Normalized free (blue connected triangles) and nonsolenoidal (green connected crosses) energies
for the test cases (a) LL; (b) TD as a function of twist; (c) TD as a function of resolution; (d) MHD-st;
(e) MHD-un (f) divergence test MHD-st-div(B), as a function of δ, see Sect. 7
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Table 3 Parameters of the TD twist test cases, with resolution � = 0.06; N is the approximate end-to end
number of turns, a and d are the minor radius and the depth of the center of the current ring, q is the strength
of the magnetic charges generating the confining field. The N = 1 case here is the same as the � = 0.06 case
of Table 4. We refer to Valori et al. (2010) for definitions and normalizations of the TD parameters

N a/d q × 1012 Twist/π

3 0.31 100 −6.054

1 0.80 100 −2.114

0.5 0.80 29.5 −1.004

0.1 0.80 5.5 −0.201

Table 4 Parameters of the TD resolution test cases, with N � 1; � is the spatial resolution (nx , ny , nz)
are the number of nodes in the x-, y- and z-directions, respectively. The case � = 0.06 here is the same the
N = 1 case in Table 3. We refer to Valori et al. (2010) for definitions and normalizations of the TD parameters

� nx ny nz Twist/π

0.03 209 337 153 −2.15

0.06 107 171 79 −2.14

0.12 56 88 42 −2.09

stated, in the following we refer to twist of the TD cases as the average twist over the current
ring’s cross section at the flux rope apex, as computed, e.g., in Sect. 4 of Valori et al. (2010).

Since the equations in Titov and Démoulin (1999) are given in implicit form, the twist
of each equilibria is obtained by trial and error. In all six TD cases considered here, the
discretized volume is [−3.18,3.18] × [−5.10,5.10] × [0.00,4.56], the distance between
the charges and the current ring center is L = 0.83, the depth of the current ring center is
d = 0.83, and the ring’s radius is R = 1.83. We refer to Valori et al. (2010) for definitions and
normalizations of the TD parameters, where the Low_HFT case has the same parameters as
the N = 1 case here. Based on previous tests (see e.g., Török et al. 2004; Kliem and Török
2006), all cases presented here are stable equilibria, except for the N = 3 one, which is
almost certainly kink-unstable.

TD-Twist Test Cases We consider equilibria defined by parameters given in Table 3 re-
sulting into flux ropes with different average twist. The resolution (uniform pixel size) is
� = 0.06 for all four cases, i.e., given by a grid of 107 × 171 × 79 nodes. The energy de-
composition of the TD twist cases are shown in Fig. 2b. The solenoidal errors vary between
0.1 % and 2 %, monotonically increasing with twist except for the N = 3 case, which cor-
responds to a much thinner flux tube that satisfies the local cylindrical approximation better.
Their contribution in relative energy is always one order of magnitude smaller than the free
energy. The only exception is the N � 0.05 case where the twist is lower and the field is
almost potential (Efree � 0.1 %). In this case solenoidal errors are slightly larger than the
free energy, but anyway extremely small (Ediv = 0.2 %).

TD-Resolution Test Cases The three equilibria for this test are the N1 case in Table 4
at resolution � = 0.06, and two additional equilibria with exactly the same parameters but
with � = 0.03 and 0.12, respectively. The energy decomposition of the TD resolution tests
summarized in Fig. 2c shows that the free energy is independent of resolution (at about 2 %
of the total energy), and that the solenoidal errors depend only very weakly on it (cf. Table 7).
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While the former is expected, the latter confirms that solenoidal errors in the (non-relaxed)
numerical implementations of TD equilibria have a stronger dependence on twist than on
resolution that is mostly generated by the match at the interface between flux rope and
ambient potential field.

In the construction of TD equilibria, the local matching between current ring and poten-
tial environment field at the flux rope’s boundary is done in locally cylindrical coordinates,
hence some spurious Lorentz forces and solenoidal errors are present at the interface be-
tween the two flux systems. For such reasons, when employed as an initial state of numeri-
cal simulations, an MHD relaxation is normally applied beforehand to remove such residual
forces and errors, see e.g., Török and Kliem (2003). For the purpose of computing the rel-
ative magnetic helicity, however, the relaxation step is unnecessary as long as the errors in
the solenoidal property of the field are small enough, which is the case here.

4.3 MHD-Emergence Stable and MHD-Emergence Unstable

The MHD cases are simulations of stable (hereafter, MHD-st) and unstable (hereafter,
MHD-un) evolutions of flux emergence published in by Leake et al. (2013) and (2014),
respectively. These simulations offer the possibility of studying the time evolution of the he-
licity as the flux breaks through the photospheric layers, slowly accumulates in the coronal
volume, and either reaches stability or erupts.

More in detail, the MHD-st case is a sub-domain of the Strong Dipole case by Leake
et al. (2013), which was obtained using a stretched grid. Here we consider five snap-
shots of that simulation, and for each one the magnetic field is interpolated using a grid
of 233 × 233 × 174 nodes with a uniform mesh size � = 0.86 discretizing the volume
[−100,100] × [−100,100] × [0,149] (in units of L0, see Leake et al. 2013 for more de-
tails). The interpolation is expected to introduce spurious solenoidal errors, but is required
to accommodate for the requirements of all helicity computation methods. Compared to
the original data, the bottom boundary of the interpolated mesh corresponds to the photo-
spheric level, the top boundary to z = 150, and the domain is reduced in the lateral extension.
The time series includes snapshots at t = [50,85,120,155,190]. The MHD-un case, corre-
sponding to the Medium Dipole case of Leake et al. (2014), is prepared in a similar way,
but the time series is t = [50,80,110,140,150,160,190]. Leake et al. (2014) identify the
starting time of the eruption around t = 120 and the erupting structure is leaving the domain
between t = 150 and t = 160, see, e.g., their Fig. 11.

In the MHD simulation, the stable and unstable cases are obtained only by changing
strength and orientation of the coronal field, but nothing of the emerging flux rope. In this
sense, the two simulations are very similar, albeit resulting in a very different end state. Note
that in the MHD cases, Efree, Ep, and hence E are all dynamically evolving in time. In the
unstable case, the small variation of the ratio Efree(t)/E(t) (of about 0.05 points in Table 7)
during the eruption, actually corresponds to a variation of 93 units of free energy with the
maximum total energy before the eruption being equal to 464 units.

Figure 2d, e show that, in both MHD-st and MHD-un cases, the solenoidal errors slightly
decrease during the MHD evolution from at most 1.6 % at the beginning of the simulations,
to 0.5 % at their end. Due to the interpolation, the actual values of the solenoidal errors
are larger than for the original simulations, but the trend in time is presumably the same. In
addition to the helicity estimation discussed in Sect. 4.3, the snapshot at t = 50 of MHD-st is
also used as the reference case for the test on the effect of nonzero divergence independently
of resolution, as described in Sects. 4.4 and 7.
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Table 5 Parameters δ and
corresponding values of relative
nonsolenoidal energy for the
MHD-st-div(B) test, see Eq. (44)

δ 0.48 −0.45 −1.28 −2.87 −6.04 −16.00

Ediv(%) 0.2 1.1 2.0 4.0 8.2 14.4

Ens (%) −0.1 −1.0 −1.9 −3.6 −6.3 −8.3

With respect to TD and LL cases, the MHD-st and MHD-un tests confront the finite
volume methods with a higher complexity in the field, with the formation of small scales,
and with the coronal re-organization of the connectivity in time, see Fig. 1c, d. Moreover,
these cases contain large currents and large free energies, of the order of 50 % to 60 % of
the total magnetic energy, depending on the type and stage of the evolution, see Table 7 and
Fig. 2d, e. Naturally, such cases are of interest for our discussion since they are supposed
to mimic more realistically the difficulties that helicity estimation methods face in solar
applications.

4.4 Parametric Nonsolenoidal Test Case

The application of Eq. (3) to a field with nonzero divergence makes simply no sense in terms
of helicity because Eq. (3) becomes gauge-dependent. However, in the routine situation of
numerical studies, a finite value of divergence is always present. The question arises, what is
the value of divergence that is tolerable in computing helicity, i.e., that is producing a helicity
value close to the one obtained for the solenoidal field? A complication of the problem is
that the value of helicity is in general not known, not even for the test cases presented here.
Hence, we are forced to reformulate our question in terms of variation of HV obtained by
each method as a function of the increasing divergence. In practice, we check how each
method behaves for increasing violation of the solenoidal property, but we are not in the
position of stating which method gives the more “correct” value as divergence increases.

To this purpose, we designed a dedicated MHD-emergence stable div(B) test (hereafter,
MHD-st-div(B)) by considering a numerically solenoidal field to which divergence is added
in a controlled way and without changing the resolution, as done in Eqs. (14), (15) of Valori
et al. (2013), to whom we refer for the details. In brief, starting from the snapshot of the
magnetic field B at t = 50 of the MHD-st case, a solenoidal field Bs is produced by removing
the divergence part Bns of B. A parametric, generally nonsolenoidal field,

Bδ = Bs + δBns, (41)

is then constructed by adding the divergence part back, multiplied by a scalar amplitude δ.
In this way, the original spatial structure of Bns is kept in Bδ but its amplitude is modified
according to the chosen value of δ. The case δ = 0 corresponds the numerically solenoidal
field Bs, whereas δ = 1 reproduces the original test field B, i.e., the snapshot of MHD-st at
t = 50. The method for building the vector field Bns is detailed in Sect. 7.1 of Valori et al.
(2013).

By increasing the value of δ, progressively more divergence can be added, yielding a
larger amplitude of the nonsolenoidal component. A trial-and-error tuning of δ resulted into
six MHD-st-div(B) test fields with nonsolenoidal contributions as a function of the param-
eter δ as summarized in Table 5 and Fig. 2f. In the following, different MHD-st-div(B) test
cases are identified by the correspondent fraction of Ediv.

The dependence of FV methods on solenoidal errors as modeled by Eq. (41) is discussed
in Sect. 7.
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Fig. 3 TD-twist test: (a) normalized helicity HV ; (b) complement of the normalized vector for the test field
εN(B,∇ × A)

5 Results: Finite Volume Methods

In this section we discuss the accuracy of FV methods presented in Sect. 2 using the test
cases introduced in Sect. 4. As mentioned above, such methods require the full knowledge
of the 3D magnetic field. Obviously, a non-perfectly solenoidal input field cannot be repro-
duced by a vector potential, and will affect each method in a different way. Therefore, the
comparison between methods presented below should be read against the properties of the
input field as described in Sect. 4. The purpose of these comparisons is not only to assess
absolute accuracy in specific tests, but also to address the sensitivity of the methods towards
certain studied parameters, such as resolution, twist, and topological complexity.

As anticipated in Sect. 3.1, the vector potentials obtained by FV methods are judged on
their ability of reproducing the test fields and their corresponding potential fields. Indirectly,
this is also a measure of the accuracy of the methods in the computation of HV . The full
metrics’ values are provided in Tables 8–9, together with the computed values of helicity,
and a partial but representative selection is reproduced in the plots of the next sections.

5.1 Dependence on Twist in the Titov and Démoulin Case

Figure 3a shows the dependence on the twist of HV computed by the different FV methods.
With the exception of the Coulomb_GR method, all other methods are basically producing
the same value of HV at all twists. More quantitatively, the spread in HV computed including
all twist values and all methods except for the Coulomb_GR method, is only 2 %. In fact,
DeVore methods are practically indistinguishable from each other. For a given twist value,
for instance at N = 1, the spread of HV values around the average −0.079 is only 2.3 %,
whereas average and spread become −0.084 and 16 %, respectively, if Coulomb_GR is
included. The HV from the Coulomb_GR method, on the other hand, follows the same
trend as the other methods, but has values about a factor two larger. In addition, there is no
apparent correlation between the spread of HV and the value of the twist. All methods seem
to be unaffected by this particular aspect of complexity of the field, at least at the resolution
considered here. On the other hand, recalling the dependence on twist of the solenoidal
errors discussed in Sect. 4.2 and Fig. 2b, it is found that larger spreads in HV correlates to
larger values of divergence.
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In order to address specifically the methods’ accuracy, we show in Fig. 3b the comple-
ment of the normalized vector error, εN(B,∇ × A) (cf. Eq. (38)), between the test field B
and the rotation of the corresponding vector potential A computed by each method. The De-
Vore methods sport extremely high accuracy metric of εN = 0.994 or higher, and are indeed
indistinguishable from each other. The Coulomb_SY accuracy correlates inversely with the
solenoidal errors of that test (cf. Fig. 2b), in the sense that the accuracy is lower for propor-
tionally larger values of Ediv, as could be expected. Given the high accuracy in all twist cases,
such a dependence in not very clearly visible in Fig. 3b. Among the Coulomb methods, the
Coulomb_SY method has accuracy values (e.g., εN = 0.976 at N = 1) that are only slightly
worse than the DeVore methods. Similarly to DeVore-gauge methods, the Coulomb_SY ac-
curacy correlates inversely with the solenoidal errors, but in this case with more pronounced
variations. The vector potential computed by the Coulomb_GR method has the largest error
in reproducing the input field, with values of the complement of the error vector as small as
εN = 0.88. A trend similar to Coulomb_GR’s one is found for the Coulomb_JT method but
with a slightly smaller error (εN = 0.903). Apparently, both Coulomb_GR and Coulomb_JT
method show an accuracy in this test that directly correlates with the solenoidal errors, i.e.,
the accuracy is lower (smaller values of εN) for smaller values of Ediv. This counterintuitive
trend, however, is not confirmed by the tests in Sect. 7, and has to be regarded as insignifi-
cant. On the other hand, one could equally conjecture that Coulomb_GR and Coulomb_JT
methods show a direct correlation between εN and the free energy Efree, see again Fig. 2b. In
this sense, Coulomb_GR and Coulomb_JT could be said to obtain more accurate results for
fields with higher currents, which can be understood in terms of a stronger source term in
Eq. (13), and is not contradicted by the tests presented in the following sections. We notice
that, even for similar values of εN, the helicity values obtained by the Coulomb_GR and
Coulomb_JT methods are quite different, the latter aligning with the DeVore ones within
2 %-variation.

As for the average HV values, the TD-twist test cases in Fig. 3a demonstrate that more
twist does not necessarily translate into larger helicity values. Indeed, the N = 3 case has
a smaller helicity than N = 1. The higher twist of the N = 3 case is obtained by reducing
the radius of the current channel (a in Table 3) without changing the ambient field (i.e.,
the magnetic “charges”, q). The dependence of the current on a is weak (see Eq. (6) of
Titov and Démoulin 1999), and the difference in HV is mostly due to the difference in the—
dominant—mutual helicity between ambient field and current channel.

In conclusion, in the TD-twist test cases all methods, with the exception of the
Coulomb_GR one, provide the same value of helicity within 2 % of variation. Furthermore,
in a range of different twist ranging from practically zero to 3 full turns, no evidence of direct
influence of the amount of twist on the accuracy of the methods is found. The variation of
the accuracy with twist clearly correlates for most of the methods with the solenoidal errors,
but an inverse correlation is also found for the Coulomb_JT and Coulomb_GR methods.

5.2 Time Evolution in the MHD-Emergence Stable and MHD-Emergence
Unstable Cases

Figure 4 shows the helicity evolution for the MHD-st and MHD-un cases. No solution from
the Coulomb_GR method is included for the MHD-st and MHD-un cases due to the long
computation time that is required to obtain the two time series. The spread in HV computed
including all available methods and time snapshots is basically negligible in the MHD-st
case, amounting to just 0.2 %, see Fig. 4a. Hence, in the MHD-st case, even more than
in the TD-twist case of Sect. 5.1, all considered methods yield essentially the same value



172 G. Valori et al.

Fig. 4 Normalized helicity HV for the (a) MHD-st and (b) MHD-un, as a function of time. No result from
the Coulomb_GR method is included here due to computing-time limitations

Fig. 5 Complement of the normalized vector for the test field, εN(B,∇ × A), for the MHD-st (a) and the
MHD-un (b) cases, as a function of time

of HV , which is a very encouraging result in view of future applications. The spread in HV is
very small also in the MHD-un case, being 3 % at the end of the simulation. Even though this
represents a modestly larger spread in HV values, one has to recall that the MHD-un case
corresponds to a time evolution where an eruption rearranges drastically the magnetic field,
with ejection of field and currents from the top boundary. The challenge posed to numerical
accuracy in such cases is indeed very high.

Concerning the accuracy metrics for the magnetic field, Fig. 5 shows the εN(B,∇ × A)

(cf. Eq. (38)), for the MHD-st and MHD-un cases, respectively, as a function of time. The
accuracy metric shows that Coulomb_SY and all DeVore methods have comparable accu-
racy, of about 0.96 and 0.97 on average, respectively. On the other hand, the Coulomb_JT
method has an accuracy for the complement of the vector error of εN = 0.54 at the beginning
of the simulation, increasing up to εN = 0.77 at the end. Comparing with the evolution in
the MHD-un case, we notice that the metric εN drops to worse values in correspondence of
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the eruption, which correlates in time with the passage of current carrying field through the
top boundary (without necessarily contradicting the direct correlation between εN and Efree

noticed for the Coulomb_JT method in Sect. 5.1, cf. Fig. 5b with Fig. 2e).
Indeed, the simulation MHD-st and MHD-un are similar in many respects, but one es-

sential difference from the point of view of the HV computation is that the eruption in the
MHD-un case generates the transit of a plasmoid carrying significant field through the top
boundary. This seems to have hardly any consequence for DeVore methods, but may have
more severe consequences for Coulomb methods that use the normal component of the field
to specify the boundary conditions for A (cf. Eq. (15)). The reason of the increase in the error
might then be due to the fact that the Coulomb_JT method practically enforces flux balance
by concentrating to the top boundary any possible error deriving from a nonsolenoidal input
field (see Sect. 2.1). As significant field transits through the boundary as a consequence of
the eruption, larger solenoidal errors affect the value of the field there and, as a consequence,
the solution of Ap that is computed form the boundary values. The correlation between the
drop in the metrics of Coulomb_JT in correspondence with the plasmoid passage through
the top boundary supports this speculation.

As for the average HV values, it is worth noticing that, for the simulation in exam,
“larger HV value” does not immediately translate into “more likely to erupt”. Indeed, Fig. 5
shows that, according to all methods, the MHD-un case has less helicity than the stable one,
MHD-st.

In conclusion, the helicity values HV in this most relevant test of MHD evolutions, both
stable and unstable, show a very good agreement between different methods, namely within
3 % in the most challenging MHD-un case. It is only using very sensitive metrics such as εN

that differences between methods of vector potentials’ computations can be disclosed. The
results presented in this section are very encouraging for applications of helicity estimation
methods to numerical simulations. The obtained values are largely independent of the spe-
cific methods employed, provided that the solenoidal property is sufficiently fulfilled, which
allows for accurate and reliable studies of the properties of helicity as tracer of magnetic
field evolution.

6 Dependence on Resolution

Numerical resolution, taken here to be the voxel size as customary in simulations, affects the
solenoidal property of the input field as well as the accuracy of finite volume (FV) methods
in solving for the vector potentials. Here we address the issue directly, trying to separate
each contribution.

6.1 TD Resolution Test: Major Field Complexity with Little Flux Through
Boundaries

Figure 2c shows that the solenoidal error in the TD-resolution cases is practically indepen-
dent of resolution, and amounts to Ediv � 3 % at most in the examined resolution inter-
val, � = [0.03,0.12]. Similarly, the HV values for each method separately, see Fig. 6a, are
all essentially independent of resolution, except for a small variation of about 1 % for the
Coulomb_JT case. On the other hand, the spread in values between methods over all reso-
lutions is definitely more significant, being equal to 20 % if all methods are included, and
4 % if Coulomb_GR is excluded. Hence, this is a first indication that differences between
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Fig. 6 TD resolution test: (a) normalized helicity HV ; (b) complement of the normalized vector
εN(B,∇ × A)

methods (4 % at least) are more important than resolution (1 % at most) in determining the
value of HV , for similar levels of solenoidal errors.

Figure 6b shows the complement of the normalized vector for the test field εN(B,∇ × A)

(cf. Eq. (38)). The analysis of the complement of the vector error again separates the methods
more markedly. There are no appreciable differences between the three DeVore methods, all
around εN = 0.99. Errors are larger on average going from Coulomb_SY (εN = 0.97), to
Coulomb_JT (εN = 0.90), to the Coulomb_GR (εN = 0.89).

Since there is no strong dependence on resolution of the solenoidal error in the
TD-resolution case, then any such dependence that is found in the value of HV should be
due to specific sensitivity of the different method to resolution.

6.2 LL Resolution Test: Minor Field Complexity with Significant Flux Through
the Boundaries

In the tests analyzed so far, differences in HV are limited, except for the Coulomb_GR
method and, to a slightly lesser extent, the Coulomb_JT method. In order to progress further
in the analysis we consider the LL case described in Sect. 4.1.

Figure 7 summarizes the detailed analysis of the resolution effects on the computation
of HV in that case. The main result is that a very clear dependence of HV on resolution
is found when FV methods are applied to the LL case, see in particular Fig. 7a. In more
detail, excluding again Coulomb_GR, the spread in HV at n = 64 is only 0.8 % (11 % if
Coulomb_GR is included). This is even smaller than the spread in HV for the TD case of
Sect. 6.1, at a comparable level of Ediv (cf. the end-to-end twist = 2.11 data point in Fig. 2a
with the n = 64 data point of Fig. 2b). In the LL case we can decrease the resolution even
further, thereby following the trends over a longer interval.

All methods show an increase of HV to more negative values for larger pixel size, with
the exception of the n = 32 data point of the Coulomb_GR method. This is markedly dif-
ferent from the trend in Sect. 6.1 where, for a test field with basically the same Ediv across
different resolutions, the HV values found by different methods were also basically inde-
pendent of resolution, albeit not the same. Therefore, the dependence of HV on resolution
in the LL case can be directly related to the presence of larger ∇ · B at lower resolutions, as
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Fig. 7 LL resolution test: (a) normalized helicity, HV ; complement of the normalized vector error for the test
field for the (b) potential, εN(Bp,∇×Ap), and (c) test field, εN(B,∇×A); energy ratios for the (d) potential,
εE(Bp,∇ × Ap), and (e) test field, εE(B,∇ × A); (f) 〈|fiAp|〉 and 〈|fiA|〉 for the Coulomb methods only; as
a function of resolution
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Fig. 2a shows. On the other hand, for a given resolution, the spread due to different methods
ranges from 0.3 % at higher resolution, to 2.3 % at the lower one (5.4 % if Coulomb_GR
is included). Among the different methods, DeVore_GV give less variable values with �,
whereas Coulomb_JT is more sensitive to it (and Coulomb_GR even more).

The complement of the normalized vector error and the energy metrics show as usual
more differences between the methods. The DeVore methods are all very accurate in the
computation of Ap, with DeVore_SA slightly less sensitive than DeVore_KM and De-
Vore_GV (see Fig. 7b). Differences become entirely negligible in the computation of A
(cf. Fig. 7c). The energy metrics εE (cf. Eq. (39)) provide similar information, with more ac-
centuated spreads (see Fig. 7d and e). Therefore, we conclude that the most important differ-
ence between the three implementations of the DeVore method (DeVore_SA, DeVore_KM,
DeVore_GV) is how the potential field is computed.

Among the Coulomb methods, Coulomb_SY is the more accurate one on average, and
is only marginally less accurate than the DeVore methods, having slightly larger inaccura-
cies in computing Ap than A. The Coulomb_GR method is even more accurate in this case
than most of the DeVore methods in the computation of Ap (in both εN and εE metrics), but
yields contradictory metrics for A (poor εN but good εE). This results into HV values that
stand more clearly apart form the trend. The Coulomb_GR improvement of εN with coarser
pixel size in Fig. 7c is difficult to interpret without additional testing. The Coulomb_JT
method lies somewhere in between the other two Coulomb methods, but overall yields HV
values in line with the DeVore methods. The computation of Ap (respectively, A) with the
Coulomb_JT method yields εN � 0.88 (respectively, εN � 0.90) but is not particularly sen-
sitive to resolution. Interestingly, Fig. 7d shows that the spread in energy metric for the
potential field has an overall value including all methods of just 1.2 %, with a maximum
value of 2 % at the lowest resolution. The same metrics for the input fields are 1.6 % and
2.4 %, respectively. In summary, the energy metric εE, even though not exactly reproducing
the accuracy of the methods as quantified by εN, indicates a small spread of energy in the
field recomputed from the vector potentials, even at low resolution and for all methods.

DeVore methods can impose the gauge Az = 0 and Ap,z = 0 exactly also in numerical im-
plementations. On the contrary, the gauge conditions ∇ · A = 0 and ∇ · Ap = 0 in Coulomb
methods are numerically fulfilled only up to a finite precision. Hence, errors in fulfilling
the gauge requirements might become a source of inaccuracy by generating spurious, non-
solenoidal components of the vector potentials. In order to quantify how well the solenoidal
property of the vector potentials is satisfied for each Coulomb-gauge-based FV method, we
show in Fig. 7f the fractional fluxes, 〈|fi(A)|〉 and 〈|fi(Ap)|〉, as defined in Eq. (40), for
the Ap and A solution of the LL resolution test cases, respectively. All Coulomb methods
satisfy the gauge better (i.e., have lower 〈|fi |〉) at higher resolutions, with similar rates of
change, except for the Coulomb_SY method that has a minimum in correspondence of the
n = 64 data point. The Coulomb_SY method satisfies the Coulomb gauge with almost iden-
tical accuracy for both Ap and A, to a relatively low degree (〈|fi |〉 � 10−4). The other two
Coulomb methods show larger differences in the fulfillment of the solenoidal property of Ap

and A. In particular, both the Coulomb_GR method and the Coulomb_JT method respect
the gauge condition better for Ap than for A. The difference is minimal for Coulomb_GR—
about 3 × 10−5—and about one order of magnitude for Coulomb_JT. At the same time,
Coulomb_JT provides the most solenoidal Ap and A of all Coulomb methods, at all resolu-
tions, with values of 〈|fi |〉 below 10−8 for both potentials at the highest resolution.

In summary, the proper fulfillment of the Coulomb gauge is attained at different level
of accuracy by the different methods, especially as far as A is concerned, but no obvious
correlation between violation of the solenoidal property of the vector potentials and accuracy
of the vector potential is found.
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7 Dependence on Divergence

In Sects. 6.1 and 6.2 we show that the pixel size affects not only the accuracy of methods
in solving for the vector potentials, but also the degree of divergence that is caused by the
resolution of the test fields. More generally, in practical cases, when trying to estimate the
helicity of a 3D dataset, a nonzero divergence of B is always present. It is thus of practical
importance to determine the level of confidence of an helicity measurement given its level
of nonsolenoidality, here expressed in function of Ediv. The present section aims at giving
a first test of the impact of the nonsolenoidal effect on the degree of precision of helicity
measurements.

Similarly to classical helicity (cf. Eq. (2)), assuming that B and Bp effectively have the
same distribution of the normal component on ∂V , a gauge transformation (A,Ap) −→
(A + ∇ψ,Ap + ∇ψp) induce the following difference on the relative magnetic helicity:

HV(A + ∇ψ,Ap + ∇ψp) = HV(A,Ap) −
∫
V
(ψ + ψp)(∇ · B − ∇ · Bp)dV. (42)

Comparing one FV method against another is theoretically equivalent to performing a gauge
transformation: for a purely solenoidal field they should provide identical values of helicity
within the numerical precision of each method. While for a finite nonsolenoidal field it is
always theoretically possible to find a gauge transformation that will lead to a significantly
large difference, in practice most methods are solving for A and Ap in such a way that
the amplitude of the vector potentials turns out to be dominant over the contributions from
the gauges ψ and ψp . Hence, for a given dataset, the difference of amplitude of the vector
potentials computed by each method is relatively small. Thus, for a given Ediv, the different
methods provide helicity values that remain within a certain range of each other. As Ediv is
infinitely small, the methods are expected to provide helicity values which are close to each
other, while for large Ediv, the methods should provide helicity values presenting a larger
spread.

In the present section, we consider the MHD-st-div(B) test described in Sect. 4.4, which
allows us to estimate the dispersion of the helicity values obtained with the different methods
for different level of nonsolenoidality. In the present test the Coulomb_GR method is not
included because of computational limitations.

The amplitude of the nonsolenoidal component in the MHD-st-div(B) test field as quan-
tified by Ediv for different values of δ in Eq. (41) is reported in Table 5 and shown in Fig. 2f,
where Ediv is shown growing from 0.2 % up to 14 % for the considered range of δ values
(the corresponding values of 〈|fi |〉 can be find in Table 7). The contributions EJ,ns and Emix

to Ediv in Eq. (44) and their variation with δ are shown in Fig. 8a. The energy Ediv turns out
to be a nonlinear function of δ, with a minimum close, but not at, δ = 0. This apparent con-
tradiction is due to the definition equation (44) that forbids cancellation between different
contributions, and practically shifts the zero of Ediv to slightly higher values. For complete-
ness, the nonsolenoidal error Ens given by Eq. (44) without the absolute value, i.e., allowing
for cancellation between terms, is also plotted in Fig. 8a.

The values of HV obtained in the MHD-st-div(B) test cases are plotted in Fig. 8b. We
confirmed that for low values of Ediv, the methods are providing HV which are close to each
other, while the dispersion of the values obtained are spreading as Ediv is increasing. All
method follow a qualitatively similar exponential trend as a function of Ediv, both in HV
(Fig. 8b) as well as in the accuracy metric εN(B,∇ × A) (Fig. 8c). The only exception to
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Fig. 8 MHD-st-div(B) test (a) nonsolenoidal contributions to the energy, as a function of the divergence
parameter, δ, see Eqs. (41), (44). As a function of Ediv: (b) helicity HV ; (c) complement of the normalized
vector error for the test field, εN(B,∇ × A); (d) 〈|fiA|〉 for the Coulomb methods only

a smooth trend is the Ediv = 2 %-case of the Coulomb_JT method, for which no particular
reason was identified.

In the most solenoidal case, for Ediv = 0.2 %, the relative dispersion of HV obtained is
of 0.8 %. Excluding the Ediv = 2 %-case of the Coulomb_JT method, for each case with
Ediv ≤ 4 %, the relative spread in HV remains lower than 1 %. At Ediv = 2 %, taking all the
methods into account, the relative spread in the HV is of the order of 6 %.

Excluding the Coulomb_GR method, we note that in all the previous tests, the max-
imum spread of HV observed was of 4 % (in the TD-resolution test of Sect. 6.1). This
incline us to state that within that range of Ediv, the differences between the methods are
not related to the nonsolenoidality but rather to the intrinsic numerical error within each
method.

For Ediv = 8.2 %, the relative dispersion of HV is also relatively low, equal to 1.9 %.
However, in the least solenoidal case, for Ediv = 14.4 %, the dispersion in helicity estimation
obtained for the different methods reaches 18 % of the average value. This is much higher
than most of the errors that we have encountered so far. We believe that in this range of Ediv,
the gauge dependence is directly impacting the estimation of HV .
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The implementations of DeVore’s method (DeVore_KM, DeVore_GV and DeVore_SA)
yields very similar results, both in values and in trends. The trend already noticed in Fig. 7b
is confirmed by the accuracy of the vector potential quantified by εN in Fig. 8c. From the
analysis in Sect. 6.2, we tend to attribute this difference to the accuracy in the solution of
Eq. (8) being higher for DeVore_SA with respect to DeVore_KM and DeVore_GV. Simi-
larly, the Coulomb_SY and Coulomb_JT methods deliver analogous HV and εN curves (see
Fig. 8b and c). However, they strongly differ in the accuracy with which the Coulomb gauge
condition is respected, as Fig. 8d shows. Confirming the result of the LL case of Sect. 4.1,
the Coulomb_JT method respect the Coulomb-gauge condition extremely well for Ap

(〈|fi |〉 � 10−9), and still excellently for A (〈|fi |〉 � 10−6 or lower). Interestingly, 〈|fi(Ap)|〉
is practically independent of Ediv, confirming that the strategy adopted by the Coulomb_JT
method for solving equation (10) is very much able to handle flux unbalance resulting
from solenoidal errors in V . However, even though the solenoidal property of the vector
potentials is definitely better verified by the Coulomb_JT method than by the Coulomb_SY,
the accuracy of the vector potential does not reflect this trend. The Coulomb_SY vector
potentials, indeed, have much higher values of 〈|fi(Ap)|〉 � 〈|fi(A)|〉 � 10−4 than those
by the Coulomb_JT method. In this sense, the divergence-cleaning strategy adopted by
Coulomb_SY is less efficient in imposing the Coulomb gauge. However, such values of
〈|fi |〉 seem still low enough to guarantee a relative high accuracy, as testified by εN of
Fig. 8c.

The test discussed here, of course, does not pretend to be general in assessing the in-
fluence of the nonsolenoidality on helicity estimations, and further tests are likely to be
required. However, it represents one well-controlled example that enables an estimate of the
degree of confidence of a helicity estimations for given a finite nonsolenoidality level.

In summary, according to our tests, errors in respecting the solenoidal constraint might
be still ignorable as long as Ediv is below 1 %, but become abruptly more important above
that threshold. For a dataset with Ediv comprised between 1 and 8 %, using on FV method or
the other would lead up to 6 % difference in the estimation of HV (excluding Coulomb_GR
method). For higher Ediv, the gauge invariance starts to have significant effects.

According to the above discussion, most of the tests employed in the remaining sections
of this work have nonsolenoidal contributions that are mostly ignorable, with few data points
where Ediv (and hence its influence on HV ) is of the order of few percent (cf. Fig. 2 and
Table 7).

8 Discussion of FV Methods

The previous sections discuss the results of FV methods when applied to a variety of test
fields that differ for topological complexity, importance and distribution of currents in the
volume, stability properties. Factors that seem to influence the accuracy in the computation
of HV in FV methods range from the distribution of strong currents at the top boundary (see
Coulomb_JT in Sect. 5.2 in particular), to the solver employed for the construction of the
reference potential field, as for the DeVore methods in Sect. 6.1. In this sense, the solar-like
separation between a current-carrying and a more potential part of the coronal field seems
to favor accuracy in helicity computations, possibly because in this way currents do not
affect the boundary conditions for Coulomb methods. However, as TD and LL tests show,
the accuracy of the helicity computed by different methods is not always directly related
to the accuracy of the vector potentials in reproducing the corresponding fields. Two of the
Coulomb methods, Coulomb_JT and Coulomb_SY, despite their lesser accuracy in solving
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for the vector potentials (when compared to the accuracy of the DeVore methods), they still
deliver a helicity in line with that obtained by the DeVore methods. On the other hand,
while, e.g., Coulomb_GR is of similar (in)accuracy as the other two Coulomb methods,
it delivers slightly different helicity values. Likely, given the nonlocal nature of HV , such
details depend on the particular spatial distribution of the solenoidal errors on a case by case
basis, which may affect how the different distributions of values combine into HV . This is
in a way confirmed by the remarkable absence of differences in the MHD-st case, in which
HV is dominated by the large contribution of the potential field. Similarly, we find no strong
influence on the methods’ accuracy by the amount of twist in the field of the TD case, where
the self-helicity HJ is almost a factor 100 smaller than the total helicity HV , Sect. 5.1.

A strong effect on helicity values is found from errors in the solenoidal property of
the input field. In Sect. 7 a test field is considered that has increasing value of solenoidal
error, as measured by the normalized fraction of the energy associated with magnetic
monopoles, Ediv.

We find a rapid increase of HV fluctuations as Ediv grows above 1 %, see e.g., Fig. 8d. We
also extensively test the effect of resolution, which is found to affect helicity values basically
in two ways: Directly, by affecting the solution of the Poisson solvers that compute the scalar
or vector potentials, and indirectly, by increasing the solenoidal error in the input field and
consequently weakening the consistency between potentials and boundary conditions. By
increasing the solenoidal error, resolution may influence the helicity value significantly in
heavily under-resolved cases, as in Fig. 7, for which systematic quantifications of solenoidal
errors must be put in place. On the other hand, when resolution is not pushed to limits,
differences between methods account for larger spread in HV values than resolution, as
Fig. 6a and Sect. 6.1 show.

From the point of view of the accuracy, vector potentials computed with the DeVore
methods reproduce the input field more accurately in most of the cases, see e.g., Fig. 6.
Among the DeVore methods, accuracy is improved mostly for better solutions of the Laplace
equation defining the potential field, Eq. (8). Other details of implementation, such as the
definition of derivative and integrals, play a minor role.

Coulomb methods, need to impose the solenoidality of the vector potential in the entire
volume, and may suffer more from the inconsistent boundary values for Laplace/Poisson
equations that the methods solve. In this respect, the Coulomb_SY strategy of divergence
cleaning is not as efficient as the parametric tuning of the integration constants (the cf

constants of Sect. 2) employed by Coulomb_JT (see Figs. 7f and 8d). On the other hand,
the accuracy of the Coulomb_SY method in the construction of the vector potentials is
found in all tests performed here to be always better than that of the Coulomb_JT method.
Therefore, the accuracy of the vector potential is not directly influenced by the accuracy
with which the gauge condition is satisfied. The computation of A poses in general more
difficulties for Coulomb methods than that of Ap, in a way contrary to the DeVore methods.
In particular, the Coulomb_JT method seems to be sensitive to current on the boundaries (as
MHD-un show, see Fig. 5), possibly, because they yield inconsistent boundary values for
Eqs. (10), (13). The Coulomb_GR method, finally, has mostly issues in computing an A that
reproduces the field accurately enough, which result in the largest departures of HV from
average values of all methods.

In the tests presented here it is clearly found that the fulfillment of the Coulomb gauge is
quite variable among the Coulomb methods. However, using the LL test case as a reference,
we find that an average value of the fractional flux of 〈|fi(A)|〉 below 10−3 yields helicity
values comparable with those from DeVore methods (e.g., within 0.8 % in the moderate-
resolution case of n = 64, see Sect. 4.1).
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Hence, in a balance between accuracy and applicability, a clear advantage of DeVore
methods over Coulomb methods is that the gauge can be imposed exactly in the former,
whereas it need to be insured numerically on the latter. This translates into simpler and
more efficient implementations of the method, and to more accurate estimations of HV .
On the other hand, the Coulomb gauge yields generally simpler analytical expression of
more straightforward interpretation by eliminating those terms that depend on the divergence
of the vector potentials. This offers, for instance, a possibility of a better comparison and
integration with FI methods. Also, the Coulomb gauge allows a natural interpretation of
helicity in terms of Gauss linking number, see e.g., Berger (1999) and references therein,
which is an interpretation tool often used in helicity studies.

9 Comparison with Discrete Flux-Tubes Methods

On the grounds of the discussion of the previous sections, and with the limitations there
specified, we consider here one of the FV methods, namely the DeVore_GV one, to give
the correct value of helicity, and we compare the DT methods against it. As discussed in
Sect. 2.3, the comparison between DT and FV methods is by necessity limited to the esti-
mated helicity value, given the different level of approximation and required information of
the two groups of methods.

9.1 Twist-Number Method

The twist-number method needs identifiable flux-rope structures in order to be applied. The
dependence of the method on some of its parameters (e.g., on the choice of the QSL surface
defining the flux rope and on the location of the axes of the flux rope, see Sect. 2.3.1) is
specific to the method and requires a testing strategy that is different from the one applicable
to the other FV methods. Therefore, we defer that discussion to a separate dedicated paper,
in preparation at the time of writing, where the TN method is tested using TD, MHD-st and
MHD-un cases, as well as some nonlinear force-free field models (Guo et al. 2017). Here,
we only report the results of the application of the TN method to the TD cases.

The Q map (as defined by Eq. (24) in Titov et al. 2002) defining the QSL used to identify
the flux rope volume is shown in the left panel of Fig. 9 in the N = 3 case. We select 100
sample field lines, which are randomly distributed within the QSL, for the magnetic flux
rope. We compute the twist of each field line referred to the axis as described in Sect. 2.3.
The (nonnormalized) twist of the magnetic flux rope Htwist defined in Eq. (32) is computed
as the average of the twist of the sample field lines, and the uncertainties are computed by the
standard deviation of their distribution (see Table 6). An example of the twist distribution of
the sample magnetic field lines as a function of the distance from the flux rope axis is given
in the right panel of Fig. 9.

Since the TN method approximates the total helicity by the self-helicity only, Fig. 10
compares the not-normalized value of HV,J of Eq. (6) from the DeVore_GV method with
the Htwist from the TN method. A more extensive view of the comparison is reported in
Table 6.

We find that the accuracy of the estimation increases for higher resolutions and higher
twist. In particular, in the N = 3 case, Htwist has the same value of HV,J within errors. In the
other cases, larger differences between the TN method and DeVore_GV method are present.
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Fig. 9 Application of the TN method to the TD N = 3 case. Left: a vertical slice of the Q map in the xz-plane
at y = 0 corresponding to the middle of the flux rope along its axis. Red (blue) plus sign indicates the position
of the axis (sample field lines). Right: twist of the sample magnetic field lines along the distance, r , from the
origin

Table 6 Helicity in the twist
(upper) and resolution (lower)
TD tests, computed with the
FV-DeVore_GV method (2nd to
4th column), and with the TN
method (5th column). Note that
HV , HV,J , and Htwist are not
normalized

TD case HV HV HV,J Htwist

(FV-DeVore_GV) (TN)

N = 0.1 −0.0057 −2.23147 0.00084 −0.16 ± 0.06

N = 0.5 −0.0290 −8.33340 −0.08374 −0.66 ± 0.13

N = 1 −0.0782 −7.21022 −0.55240 −0.50 ± 0.05

N = 3 −0.0527 −1.78752 −0.08976 −0.087 ± 0.020

� = 0.03 −0.0782 −7.20592 −0.54921 −0.56 ± 0.06

� = 0.06 −0.0782 −7.21022 −0.55240 −0.50 ± 0.05

� = 0.12 −0.0782 −7.21039 −0.55444 −0.49 ± 0.05

Fig. 10 Application of the TN method to the TD-twist (a) and resolution (b) tests. The two curves represent
the values of Htwist of Eq. (32) for the TN method, and of the (nonnormalized) value of HV,J for the
DeVore_GV method
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By contrast, the not-normalized values of the total helicity HV = −7.2 for DeVore_GV for
the case N = 1, i.e., the total helicity is two orders of magnitude larger than the current
helicity in the N = 1 case.

We conclude that the quantity Htwist provided by the TN method is an estimation of HV,J

rather than of H (or equivalently HV ), likely because no modeling of the mutual helicity
part is included. Moreover, the accuracy of the method is higher for highly twisted structures,
above N = 1 in out tests. For N = 3, the correct value of HV,J is reproduced.

9.2 Connectivity-Based Method

As for the TN method, the CB method can be compared to FV methods only regarding the
estimated helicity values. However, we test here for the first time some of the assumptions
made in the derivation of the CB method (force-freeness and minimal connectivity-length
principle, see Sect. 2.3.2), and their impact on the obtained helicity values. These novel
comparisons are made possible by the reliability assessment of FV methods discussed in
the previous sections. Moreover, the comparison of the CB methods with the FI methods is
discussed in detail by Pariat et al. (2017).

The connectivity-based method is designed for applications to solar magnetograms with
a complex flux distribution and an unknown coronal magnetic field. If the lower boundary
includes only two connected partitions the code automatically uses the linear force-free field
approach of Georgoulis and LaBonte (2007), in which a single value of the force-free pa-
rameter α is used for the entire volume. When the NLFF mode switches on, the CB method
has the possibility to replaces the total photospheric magnetic flux by the connected mag-
netic flux, namely the one included in the magnetic connectivity matrix, see Sect. 2.3. The
CB code was tuned to use almost the entire flux of the magnetograms in all case presented
here, except when differently explicitly stated.

When applied to the TD cases, where currents are localized, the CB in LFF-mode tends
to pick up mostly the potential field component. On the other hand, when applied to the LL
cases, where a large-scale α is present, the CB method yields values of HV that are three
to four times larger than FV methods. This overestimation effect in case of the LFF field
approximation was also reported by Georgoulis et al. (2012). For these two sets of tests,
where a single dipole appears, the CB method is hampered by the limitations of the linear
force-free theory. Hence, we do not report further on such applications here.

In the MHD-st and MHD-un cases, instead, the magnetogram is complex enough to have
more than one connectivity domain. The CB method worked in the NLFF mode for all
snapshots at all times, in both MHD-st and MHD-un cases. Figure 11a shows an example of
the flux partition and of the resulting connectivity matrix for the MHD-st case at t = 150.

Figure 12 compare the CB method with the DeVore_GV finite volume method.
In the MHD-st case (Fig. 12a), between t = 50 and t = 95, the of HV values obtained

by the CB method match reasonably well those from the DeVore_GV one, within a factor 2
at most. Starting from t = 95 onwards, however, the HV values obtained by the CB method
settle on a lower, roughly constant value HV = 0.016, on average. At the end of the sim-
ulations this average is about eight times lower than the value reached by the DeVore_GV
method.

On the other hand, in the MHD-un case (Fig. 12b), the agreement between the De-
Vore_GV and the CB methods is very good (within 9 % on average, from t = 95 onwards),
and the two curves overlap for most of that phase. A local maxima in the CB curve is even
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Fig. 11 Application of the CB method to the MHD-st case. (a) Magnetic connectivity of the MHD-emer-
gence stable model at t = 150 used for the calculation of magnetic helicity in the CB method. The partitioned
normal magnetic field component on the lower (assumed photospheric) boundary is shown in gray-scale, with
black/white contours outlining positive/negative-polarity partitions. The flux-weighted centroids of the par-
titions are denoted by crosses. Magnetic connections are projected on the lower boundary by colored lines,
with different colors denoting different connected-flux contents. The connected flux includes approx. 93.6 %
of the total flux present in the field of view. (b) The force-freeness metric σJ as a function of the height of
the bottom boundary for MHD-st at t = 155. The vertical orange dotted line represents the location of the
bottom boundary in the tests of Sect. 9.2, corresponding to z = 8.9

present at the time of the eruption, very much the same as for the DeVore_GV method. How-
ever, this is not distinguishable from previous, even more pronounced ones, and it would be
challenging to identify the time of the eruption only as a decrease of HV in the CB time se-
ries. As a matter of fact, the examination of the time evolution of the magnetic field at z = 0
in the MHD-st and MHD-un simulations shows that there is very little differences between
the two cases. Since the CB method aims at an approximate estimation of helicity that is
based only on the flux distribution at the (photospheric) bottom boundary at a given time,
the task of distinguishing MHD-st from MHD-un based only on the field on that one plane is
a very arduous one, indeed. This is probably the reason why the CB method provides similar
average values of HV for both the MHD-st (equal to 0.015, from t = 95 onwards) and the
MHD-un case (equal to 0.070 on the same time interval).

Besides the similarity of the MHD-st and MHD-un field distributions at z = 0, differ-
ences with the DeVore_GV method may have several origins. First of all, the CB-method
approach yields a minimal value of helicity for a given photospheric configuration. In this
sense, it is expected that the CB HV -curves lay, on average, below the DeVore_GV ones, as
they do at varying levels in all panels of Fig. 12.

Secondly, the CB method models the coronal field as a discrete collection of a finite
number of constant-α flux tubes. Hence, it can be expected to have better chances of success
if the magnetic field is force-free. Figure 11b shows at a representative time, however, that
in large part of the volume of the MHD-st case the field is not force-free, as quantified
by the relative ratio of the current that is perpendicular to the field in the volume, σJ ≡
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Fig. 12 Comparison of HV between the CB and the DeVore_GV method applied to the MHD-st (a, c) and
MHD-un cases (b, d) in the full domain (a, b) and in the reduced, more force-free domain (c, d). In panels
(c), (d) CB method (blue crosses), the CB method with 3D connectivity information included (green crosses),
and the DeVore_GV method (red squares). Note that the DeVore_GV values (c, d) are not the same as (a, b)
and in Fig. 4 because the considered volume is different

(
∫
V |J⊥|dV)/(

∫
V |J|dV). In particular, the value of σJ computed for increasing heights of

the bottom boundary decreases from 0.7 to 0.25 in the first 20 pixels above the bottom
boundary.

In order to test how important is the force-free assumption in this case, we repeat the HV
calculation with the CB and DeVore_GV methods in a reduced volume starting at z = 8.9,
where σJ at this height has dropped to the value 0.29, see Fig. 11b. The corresponding
curves are shown by the blue crosses in Fig. 12c and d for MHD-st and MHD-un, respec-
tively. Since the volume is now changed, also the corresponding DeVore_GV estimations
are recalculated for this reduced, more force-free volume. In the MHD-st case, the average
CB HV after t = 95 is 0.07, which is 3.5 times smaller than the final value obtained by the
DeVore_GV method (against a factor 8 of the full-volume case). In the MHD-un case in
Fig. 12d, the curves obtained by the two methods are slightly closer than in the full-volume
case of Fig. 12b, although only marginally (the ratio of the end values being 1.5). Hence, the
application to the more force-free, upper part of the volume improves the match between the
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CB and the DeVore_GV results, markedly so in the MHD-st case, which is a clear indication
that the fulfillment of the force-free requirement may help to partially compensate for the
HV underestimation in Fig. 12a.

Thirdly, the connectivity map between flux partitions is obtained by the CB method as
part of the minimization method discussed in Sect. 2.3. However, when the 3D coronal field
is available, the true connectivity map can be constructed from the numerical simulation,
and the influence of the minimization tested. The result of such a test are represented by
the green symbols in Fig. 12c and d, for the stable and unstable cases, respectively (again
in the reduced, more force-free volume). It must be noticed that using the 3D information
implies a decrease of the amount of flux included in the connectivity matrix to 60–80 %,
compared to the 95 % or more employed in the two cases above, since tracking of field
lines intersecting the lateral and top boundaries cannot be completed in the CB method,
even in case these lines return to the simulation volume by intersecting a different boundary
location. The contribution of these lines is, then, ignored.

In general, Fig. 12c demonstrates that the knowledge of the true connectivity in
the MHD-st case improves the matching between CB and DeVore_GV methods. The
CB-average (after t = 95) HV value is slightly above 0.10, which results in just a factor
two between the corresponding end values. In the MHD-un case, differences with the stan-
dard application of the CB method that does not used the three-dimensional connectivity
information are less significant, except for a slight increase of the mismatch with the De-
Vore_GV method (e.g., the ratio between end values of HV obtained by the two methods
is down to 1.9). Such relatively small variations can be explained in terms of reduced con-
nected flux. We also recall that, for the CB method, an error analysis by Moraitis et al. (2014)
is available that was not included in the discussion presented in this article. It is likely that
some of the fluctuations discussed above fall within the error estimation provided by that
analysis.

In conclusion, in the MHD-un case the agreement between CB and DeVore_GV (and, by
extension, FV) methods is within 10 %, which is very good considering the much more lim-
ited amount of information that the CB method requires. On the other hand, in the MHD-st
case the helicity is significantly under-estimated, by a factor eight at the end of the simu-
lation. The deficit in HV that the CB method shows in the MHD-st case, can be partially
ascribed to the exiguous differences between the MHD-st and MHD-un cases in terms of
flux distributions at z = 0. Additionally, the field at that plane is not quite force-free, and the
CB results are shown to improve for a more force-free test volume. Furthermore, the mini-
mization of the connectivity matrix seems to represent connectivity fairly well, in the sense
that the implementation of the full three-dimensional information, although improving the
CB estimation in the MHD-st case, does not entirely remove the under-estimation of HV .

10 Conclusions

In this work we review, benchmark, and compare the currently available methods for the
computation of the relative magnetic helicity, HV , in finite volumes. Given that the three-
dimensional magnetic-field solutions we use are common for all tested methods, the problem
essentially reduces to computing the vector potential of a given discretized input magnetic
field. The considered methods group into Coulomb (∇ · A = 0) and DeVore (Az = 0) meth-
ods, according to the gauge in which the vector potentials are written. A total of six dif-
ferent implementations including three Coulomb methods (Coulomb_JT, Coulomb_SY, and
Coulomb_GR) and three DeVore methods (DeVore_SA, DeVore_KM, and DeVore_GV) are
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included which differ in the equations they solve and/or in their numerical implementations.
Details of these implementations can be found in Thalmann et al. (2011) (Coulomb_JT),
Yang et al. (2013b) (Coulomb_SY), Rudenko and Anfinogentov (2014) (Coulomb_GR),
Valori et al. (2012) (DeVore_GV), Moraitis et al. (2014) (DeVore_KM), and in Sect. 2.2
(DeVore_SA). Accordingly, a different level of numerical complexity and computational
effort is required to solve for the vector potentials, with the Coulomb methods being es-
sentially far more demanding than DeVore methods (see Sect. 2). As a case in point, the
Coulomb_GR method could not be tested on cases above 1283 pixels due to the large run-
ning time required by its current implementation.

The tested methods are put under severe strain by choosing a variety of numerical test in-
put fields that are considered to be relevant for helicity studies in solar-physics applications,
from 3D force-free equilibria (LL and TD of Sects. 4.1 and 4.2, respectively), to snapshots of
time-dependent non-force-free MHD simulations of flux emergence (Sect. 4.3). Depending
on details of the test field being studied, the accuracy in the computation of HV by different
methods is found to vary to some extent, especially for Coulomb methods. We can, however,
definitely conclude that in solar-like cases practically all FV methods converge to the same
helicity value within few percent.3 Such a spread is likely to be overrun by other sources of
errors in applications to observed—and reconstructed—coronal fields, but it is definitely to
be considered in helicity estimations of numerical simulations.

More in detail, the helicity values HV in the most relevant test of time-dependent MHD
evolution in a coronal model volume (i.e., the MHD-st and MHD-un tests of Sect. 4.3) show
a very good agreement of few percent between different methods, somewhat independently
of the details in the vector potentials computation, see e.g., Fig. 4. Such errors are as small as
0.2 % in the case where the field is slowly evolving, and always below 3 % even in the highly
dynamical eruptive phase. Similarly, excluding the Coulomb_GR case, despite differences
in the accuracy of the vector potential computation, helicity values computed by different
methods for the TD-twist case are within 2 %. In other words, when helicity computations
are applied to numerical volumes as in this article, differences in the way HV is computed
can amount to 3 % at most.

Such an agreement is tested and verified to hold independently of the dynamical evolution
of the field and consistently throughout the MHD evolution of an eruption, thereby justifying
the application of FV methods to the study of helicity in numerical simulations, and for
benchmarking other helicity computation methods. For instance, Pariat et al. (2017) employs
finite volume methods to benchmark helicity-flux integration methods applied to MHD-st
and MHD-un evolution, where the flux of helicity is estimated by the photospheric evolution
of the field.

In addition to finite volume methods, we also include other two methods that use (Guo
et al. 2010, TN) or optionally make use of (Georgoulis et al. 2012, CB) the 3D information of
the magnetic field in the volume, see Sect. 9. The TN method estimates the helicity content
of a field by parametrically fitting a flux rope to it. Therefore, it is applicable to tests that
include an identifiable flux rope, namely to TD, MHD-st, and MHD-un cases. For the TD
cases, we find that the TN method yields relatively accurate estimations of twist and possibly
of HV,J in high-twist cases, but not of the total helicity HV . A report on the application of
the TN method to other cases, including the MHD-st and MHD-un ones, is in preparation
by Guo et al. (2017).

3From this statistic, the Coulomb_GR method is excluded.
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The CB method is designed to be applied to complex photospheric flux distributions
with an unknown coronal magnetic field, where a multi-polar partition of the flux yields
a coronal field approximated by a collection of flux tubes of constant Jz/Bz. In addition,
a minimal free energy and the corresponding relative helicity are sought. Cases like the
LL and TD have a too simple connectivity for the CB method, which then falls back to a
single flux-tube, purely linear approximation of the (force-free) field. In the more complex
MHD-un case, the CB method provides an estimation of the helicity that is, on average,
within 10 % of the one obtained by FV methods. This is a positive result given that the CB
method employs only the photospheric information, whereas FV methods use the full 3D
information about the coronal field. The MHD-st case poses more difficulties to the coronal
field approximation within the CB method, which, in this case, underestimate significantly
the helicity content of the field.

Finite volume methods can be used when the magnetic field is known in the entire vol-
ume of interest. However, in applications to solar observations, the magnetic field is typically
known only on a surface at photospheric heights, and only with limited accuracy. Hence, in
order to know the magnetic helicity in a given coronal volume, a model need to be computed
that approximates the coronal field on the base of its photospheric values, which introduce
an additional dependence to the estimated HV values. The impact on helicity values of the
employed coronal model, being it from a nonlinear force-free extrapolation or from a data-
driven simulation, is yet to be tested. Alternatively, the CB method can be used, as it is
designed for such cases. A further alternative would be to compute the flux of helicity pass-
ing through the “photospheric plane” in time. Reviewing and benchmarking FI methods for
the estimation of the helicity flux is the subject of Pariat et al. (2017).
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Appendix A: Decomposition of the Magnetic Energy

The method that we employ to quantify the error in the solenoidal property (Valori et al.
2013) is basically a numerical verification of Thomson’s theorem, and allows to quantify
the effect of a (numerical) finite divergence of the magnetic field in terms of associated
energies. In order to obtain such a decomposition, the magnetic field is firstly separated
into a potential and a current carrying part. Secondly, each part is additionally split into a
solenoidal and a nonsolenoidal contribution, using a Helmholtz decomposition. As a result,
the magnetic energy E is split into

E = Ep,s + EJ,s + Ep,ns + EJ,ns + Emix, (43)

where Ep,s and EJ,s are the energies associated to the potential and current-carrying
solenoidal contributions, Ep,ns and EJ,ns are those of the nonsolenoidal contributions, and
Emix is a nonsolenoidal mixed term, see Eqs. (7), (8) in Valori et al. (2013) for the corre-
sponding expressions. All terms in Eq. (43) are positively defined, except for Emix. For a
perfectly solenoidal field, it is Ep,s = Ep, EJ,s = E − Ep, and Ep,ns = EJ,ns = Emix = 0, i.e.,
Thomson’s theorem is recovered.

In most of the analysis in this article we consider a single number for characterizing the
energy associated to nonsolenoidal components of the field, given by

Ediv = Ep,ns + EJ,ns + |Emix|, (44)

which generally overestimates such errors by hindering possible cancellations. However,
since we consider numerically accurate models, we neglect such overestimations, unless
explicitly stated. In that case, also the sum with sign Ens is considered, corresponding to
Eq. (44) with Emix instead of |Emix|. The full decomposition for each test case considered
in the article can be found in Table 7. Also, in the article we associate the free energy of the
field with the solenoidal component of its current-carrying part, i.e., Efree = EJ,s.

For a given discretized field, the accuracy of the decomposition can be easily quantified
by checking to what precision the sum of the right hand side of Eq. (43) reproduces the total
energy E, normalized to E. In relative terms, such an error is smaller than 10−7 in all cases
discussed in this article. In this article, all energy contributions are normalized to the total
energy, E, of the test case in exam.

Appendix B: Accuracy of Vector Potentials

In addition to the metrics Eqs. (38), (39), we include here also the remaining

CVec =
∑

i Xi · Yi

(
∑

i |Xi |2 ∑
i |Yi |2)1/2

(45)

CCV = 1

N

∑
i

Xi · Yi

|Xi ||Yi | (46)

εM = 1 − 1

N

∑
i

|Yi − Xi |
|Xi | (47)
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Table 7 Energy metrics of test cases, see Appendix A. The first two columns indicate the test field
identification label and the total magnetic energy in model units [E]. The following columns indicate
the potential/solenoidal [Ep,s], current-carrying/solenoidal [EJ,s], potential/nonsolenoidal [Ep,ns], current-
carrying/nonsolenoidal [EJ,ns], nonsolenoidal mixed [Emix] contributions normalized to the corresponding
total magnetic energy, E. The last column contains the average fractional flux [〈|fi(B)|〉]. In the text, any
contribution Exx is intended to be normalized to E, i.e., it is here indicated as Exx/E, for each test case
separately

Label E Ep,s/E EJ,s/E Ep,ns/E EJ,ns/E Emix/E 〈|fi(B)|〉 × 105

LL n = 32 5.48e+02 0.78 0.25 2.34e−03 6.52e−04 −3.82e−02 26.43

LL n = 64 5.30e+02 0.76 0.25 2.60e−04 8.22e−05 −1.33e−02 3.34

LL n = 128 5.25e+02 0.75 0.26 2.37e−05 9.15e−06 −3.90e−03 0.62

LL n = 256 5.24e+02 0.75 0.26 2.38e−06 1.32e−06 −1.07e−03 0.27

TD N = 0.1 � = 0.06 4.69e+01 1.00 0.00 1.18e−05 1.02e−05 −1.20e−03 0.39

TD N = 0.5 � = 0.06 3.35e+01 0.98 0.02 1.18e−05 2.68e−05 3.02e−03 0.71

TD N = 1 � = 0.03 1.08e+01 0.81 0.17 3.08e−06 5.94e−04 2.53e−02 0.75

TD N = 1 � = 0.06 1.09e+01 0.81 0.17 1.21e−05 6.12e−04 2.44e−02 1.89

TD N = 1 � = 0.12 1.09e+01 0.81 0.17 6.33e−05 6.78e−04 2.14e−02 6.86

TD N = 3 � = 0.06 3.80e+00 0.85 0.14 1.35e−05 1.16e−04 8.07e−03 1.35

MHD-st t = 50 4.04e+02 0.52 0.50 3.86e−05 3.34e−04 −1.67e−02 9.99

MHD-st t = 85 5.31e+02 0.53 0.48 3.49e−05 3.00e−04 −1.15e−02 13.08

MHD-st t = 120 6.03e+02 0.46 0.55 2.08e−05 2.62e−04 −7.06e−03 13.66

MHD-st t = 155 6.42e+02 0.41 0.59 1.49e−05 2.31e−04 −5.46e−03 12.27

MHD-st t = 190 6.67e+02 0.38 0.62 1.34e−05 2.22e−04 −4.49e−03 12.10

MHD-un t = 50 3.67e+02 0.39 0.62 3.92e−05 2.40e−04 −1.10e−02 11.25

MHD-un t = 80 4.43e+02 0.42 0.58 4.36e−05 2.55e−04 −8.34e−03 22.83

MHD-un t = 110 4.64e+02 0.40 0.60 3.09e−05 2.93e−04 −5.11e−03 27.10

MHD-un t = 140 4.46e+02 0.41 0.59 2.16e−05 2.50e−04 −3.63e−03 32.29

MHD-un t = 150 4.07e+02 0.44 0.56 2.23e−05 2.57e−04 −3.26e−03 46.16

MHD-un t = 160 3.81e+02 0.47 0.53 2.32e−05 3.02e−04 −4.17e−03 43.88

MHD-un t = 190 3.62e+02 0.49 0.51 2.33e−05 3.35e−04 −5.14e−03 32.42

MHD-st-div(B) 0.2 % 4.14e+02 0.50 0.50 3.92e−05 3.14e−04 −1.45e−03 14.95

MHD-st-div(B) 1 % 4.06e+02 0.51 0.50 3.85e−05 1.70e−04 −1.08e−02 9.77

MHD-st-div(B) 2 % 4.03e+02 0.52 0.50 3.88e−05 4.90e−04 −1.98e−02 16.36

MHD-st-div(B) 4 % 4.09e+02 0.53 0.51 4.16e−05 2.25e−03 −3.82e−02 47.11

MHD-st-div(B) 8 % 4.64e+02 0.49 0.57 5.43e−05 9.19e−03 −7.25e−02 85.67

MHD-st-div(B) 14 % 1.01e+03 0.31 0.77 9.64e−05 3.06e−02 −1.12e−01 165.15

respectively the vector correlation, the Cauchy-Schwartz metric, and the complement of
the mean vector error, from Schrijver et al. (2006). We provide the full set of values for
each case considered in the paper in the following tables. In particular, Table 8 reports the
metrics for the LL and TD, Table 9 those for MHD-st and MHD-un, and Table 10 those for
the divergence and gauge tests of Sect. 7.
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