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Abstract Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC)
has been one of the most stimulating concepts to come out of statistical mechanics and con-
densed matter theory in the last few decades, and has played a significant role in the de-
velopment of complexity science. SOC, and more generally fractals and power laws, have
attracted much comment, ranging from the very positive to the polemical. The other pa-
pers (Aschwanden et al. in Space Sci. Rev., 2014, this issue; McAteer et al. in Space Sci.
Rev., 2015, this issue; Sharma et al. in Space Sci. Rev. 2015, in preparation) in this special
issue showcase the considerable body of observations in solar, magnetospheric and fusion
plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in
approaches to modeling and understanding multiscale plasma instabilities. This very broad
impact, and the necessary process of adapting a scientific hypothesis to the conditions of
a given physical system, has meant that SOC as studied in these fields has sometimes dif-
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fered significantly from the definition originally given by its creators. In Bak’s own field of
theoretical physics there are significant observational and theoretical open questions, even
25 years on (Pruessner 2012). One aim of the present review is to address the dichotomy
between the great reception SOC has received in some areas, and its shortcomings, as they
became manifest in the controversies it triggered. Our article tries to clear up what we think
are misunderstandings of SOC in fields more remote from its origins in statistical mechanics,
condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfeld’s original
papers.

The idea of self-organized criticality seems to me to be, not the right and unique
solution to these and other similar problems, but to have paradigmatic value, as the
kind of generalization which will characterize the next stage of physics. [. . . ] In the
21st century one revolution which can take place is the construction of generalizations
which jump and jumble the hierarchies, or generalizations which allow scale-free or
scale-transcending phenomena. The paradigm for the first is broken symmetry, for the
second self-organized criticality.

(Anderson 2011, p. 112)

This is a very complicated case, Maude. You know, a lotta ins, lotta outs, lotta what-
have-you’s. And, uh, lotta strands to keep in my head, man. Lotta strands in old
Duder’s head.

(Coen and Coen 1998)

1 Introduction and Synopsis

The late Per Bak’s concept of Self-Organized Criticality (SOC), first stated in his seminal
papers with Chao Tang and Kurt Wiesenfeld (Bak et al. 1987, 1988a, in the following abbre-
viated to BTW) has been extremely stimulating, with over 6600 citations since 1987. SOC
continues to live a number of parallel lives in various fields, such as statistical mechanics,
seismology (e.g. Bak et al. 2002), materials science (e.g. Altshuler et al. 2001), condensed
matter theory (e.g. Wijngaarden et al. 2006), ecology (e.g. Malamud et al. 1998), evolution
(e.g. Sneppen et al. 1995), high energy astrophysics (e.g. Negoro et al. 1995; Dendy et al.
1998; Mineshige and Negoro 1999; Audard et al. 2000), neuroscience (e.g. Bédard et al.
2006; Chialvo 2010) and sociology (e.g. Hoffmann 2005).

In particular, SOC has become a research field in laboratory fusion plasmas, solar physics
and magnetospheric physics, reviewed in the complementary papers (Aschwanden et al.
2014, in this issue; McAteer et al. 2015, in this issue; Sharma et al. 2015, in preparation).
Like them, our own paper results from two workshops at the International Space Science
Institute in 2012 and 2013 (http://www.issibern.ch/teams/s-o-turbulence/).

Despite its success, however, SOC has often divided opinions, even among experts. It has
attracted significant criticism (e.g. Perković et al. 1995; Krommes 2000; Frigg 2003; Stumpf
and Porter 2012), some of it deserved, some of it polemical, to such a degree that some au-
thors in condensed matter physics will avoid mentioning it altogether (e.g. Alvarado et al.
2013). Although numerous reviews (Turcotte 1999; Alstrøm et al. 2004; Sornette 2006; Dhar
2006) and several book-length surveys of theory (Jensen 1998; Pruessner 2012; Christensen
and Moloney 2005) and applications (Hergarten 2002; Aschwanden 2011; Rodríguez-Iturbe
and Rinaldo 2001) exist, the enduring “hectic air of controversy” (Jensen 1998, p. 125) has

http://www.issibern.ch/teams/s-o-turbulence/
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Fig. 1 A schematic representation of the range of perceptions of SOC in the literature, from the most minimal
at the center to the most visionary. As explained in the text, the hatched core is the proposal that a mechanism
exists in nature whereby some systems tune themselves to a phase transition. This mechanism has sometimes
been promoted as the primary (or even single) cause of fractals in nature (second circle). Some authors have
regarded fractals and power laws as synonymous (third circle), and proposed that SOC was needed as the
underlying mechanism for the latter as well, despite the many alternative explanations in many cases. The
outermost region considers contingency in nature as the signature of SOC

ensured that many people remain uncertain both of SOC’s long term status, and of its net
contribution to science. This will undoubtedly also be true for many readers of Space Sci-
ence Reviews, browsing the group of papers centered on SOC in space and plasma physics
that are collected in this issue.

Our contribution to the present volume aims to both complement the surveys of SOC
in space and lab plasmas in the accompanying papers and to address this controversy. We
first, in Sect. 2, discuss why the multiscale avalanching paradigm, of which SOC is the best
known example, is relevant to both space and laboratory plasmas. We then, in Sect. 3, clarify
just what kind of “SOC” we are talking about in this paper, by distinguishing as briefly as
we can between the main different perceptions of SOC (see Fig. 1) that one can find in
various research disciplines, including space plasma physics. The first of these pictures is
BTW SOC, the SOC that was introduced in BTW’s original papers. It has a theoretical core
underpinning it which not only remains essentially intact but also has been substantially
clarified over 25 years, and so it is the SOC which we discuss in the rest of the paper.

We thus continue by re-examining BTW SOC’s foundations. We do so by reference to,
and quotes from, the key original papers, in search of BTW’s original claims, in order to
understand the interpretations (and misinterpretations) which have been made of them. We
first revisit BTW’s motivation for introducing the SOC idea, which they stated most clearly
in Bak and Chen (1989). In Sects. 4, 5, and 6, closely following this key1 paper, we will
recap the reasoning which led BTW to their postulate, showing how it does in fact give a
relatively precise definition of SOC.

Section 7 then brings us up to date by linking the preceding discussion to the contempo-
rary literature on SOC. In so doing we identify the necessary and sufficient conditions for
SOC. Not differentiating necessary and sufficient conditions is, we believe, one source of
the erroneous beliefs (sometimes found in the literature) that everything that is avalanching
must be critical and self-organized, or, conversely, that everything that displays long-ranged
correlations or a power law must be an instance of (self-organized) criticality.

These errors in logic, as well as a loose interpretation of BTW’s core idea have helped
to create the divergence of versions of SOC noted above and some of the controversy that

1And relatively little-known compared to the BTW papers of 1987–1988.
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has tended to surround SOC. In Sect. 8 we address some of the most prominent of these,
giving our own views about some misconceptions and subsequent conflicts that have arisen.
This section is an opinion piece insofar as we will try to point out and clarify certain issues,
which we think have caused unnecessary problems in the past.

We then balance our discussion of controversy by noting that in several areas of science
SOC has been a success story. Section 9 thus discusses how this has happened, in a con-
text most relevant to our paper. We briefly discuss how SOC has provided a paradigm for,
and thereby consolidation of, existing observations which lacked context, in solar, magneto-
spheric and fusion plasma physics. Finally, we offer some concluding remarks and perspec-
tives on future research in Sect. 10.

The Appendix discusses, in a fairly self-contained manner, the more technical topic of
scaling, intended to complement our discussion of SOC by setting the BTW worldview,
SOC and its foundation in some of its broader theoretical context. It may be omitted in a
first reading. In it we discuss the general ideas of scaling, which underpin a whole range
of disciplines such as critical phenomena and dynamical systems, as well as methods, like
dimensional analysis (e.g. Buckingham 1914).

Our team of authors has a somewhat unique perspective in that our previous involvement
with SOC and complexity ranges from condensed matter theory (Jensen 1998; Pruessner
2012), where the SOC concept originated, to solar astrophysics (Crosby et al. 1993; Watkins
et al. 2009), complex plasma physics both in the coupled, magnetosphere and turbulent so-
lar wind (Chapman et al. 1998; Watkins et al. 1999, 2001; Lui et al. 2000; Chapman and
Watkins 2001; Freeman and Watkins 2002; Watkins 2002) and in fusion reactors (Chapman
et al. 2001; Dendy et al. 2007), and SOC-inspired (or informed) cross-disciplinary com-
plexity research in the environmental sciences (Watkins and Freeman 2008; Watkins 2013;
Graves et al. 2014). We have thus tried to cater both for readers interested in the theoretical
foundations of SOC and those concerned with its applications to nature. We hope we have
clarified that SOC remains a strong, relevant, scientific theory, even if it is not always “how
Nature works”.

Some readers will, rightly, read parts of this contribution as an opinion piece; however,
we have tried to support our views by quotes and references wherever possible. Readers
with a background in statistical mechanics may be interested in the historical context that
led to the development of SOC, in particular Sects. 4–7, but also Sect. 8 for the controversies
surrounding SOC. Those from the plasma physics community will probably be interested
in Sects. 2, 5, 7, 8 and 9 with a focus on applications in plasma physics. Those who are
mostly interested in the controversies surrounding SOC will benefit particularly from read-
ing Sects. 3–6 and 8. We obviously believe that the other sections, in particular the conclu-
sions in Sect. 10, are of broad interest and certainly worth reading, but most of the sections
are fairly self-contained, inviting the reader to make their own selection. We have tried to
facilitate this by prefacing the most technical sections by bullet point summaries of what
they contain.

2 Why Is Multiscale Avalanching a Relevant Paradigm for Plasmas?

Any new paradigm prompts experimental testing and examination. In the Popperian account
of science (Popper 1963), this process is idealized as one of theoretical conjecture and exper-
imental refutation. The living process of science often needs to be more pragmatic (Ziman
2002). New theoretical conjectures can prompt ordering of observations in new ways which
in turn can lead to new insights. In this more pragmatic view, new observational insights can
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stand in their own right, independent of the original theoretical conjecture, indeed, the orig-
inal conjecture can be heavily modified, or ultimately abandoned. The pragmatic approach
is particularly prevalent in the sciences of observed natural systems typified by geology,
seismology and astronomy, where there are limitations on the possibility of controlled ex-
periments. Experimental refutation, or indeed, confirmation, is often, to some extent, supple-
mented by a search for order and pattern in a broad, inhomogeneous collection of observed
phenomena. Theoretical insight then plays a key role in informing the patterns for which we
search in the data. Arguably, SOC has played such a role in the observed phenomenology of
plasmas both in astrophysics and in the laboratory.

Over the last two decades (see e.g. Dendy and Helander 1997; Perrone et al. 2013 and
references therein) it has been recognized that key emergent phenomenology in confined
tokamak plasma experiments for fusion cannot be explained from the physics of plasmas
that are quasilinear, or that are close to equilibrium. These confined plasmas show transi-
tions between multiple, metastable states, and reconfiguration and transport and release of
energy in a bursty, intermittent manner. These plasmas support multiple possible instabil-
ities which can lead to energy release, while the energy release itself occurs on multiple
scales. The underlying physics of individual instabilities, and of collective nonlinear phe-
nomena such as that of structure formation, turbulence and reconnection, is common across
astrophysical plasmas. Furthermore, astrophysics offers natural confined plasmas: planetary
magnetospheres with either intrinsic or induced confining magnetic fields, and stars, where
the confinement is gravitational. These confined plasmas are particularly well diagnosed in
our own solar system, and these much larger, astronomical systems support a sufficient range
of spatio-temporal scales that the statistics of burst sizes can be resolved. The availability of
the paradigm of SOC has led to observational testing (Lui et al. 2000; Uritsky et al. 2002) of
the conjecture that these burst sizes are distributed as power laws both in solar flares (Crosby
et al. 1993; Aschwanden 2011), and in the detailed morphology of earth’s aurora (Chapman
et al. 1998).

All of these systems share common features, they are driven, dissipating and far from
equilibrium, releasing energy in a bursty intermittent manner on multiple scales, and there
are many detailed routes to instability that can lead to this energy release and reconfigura-
tion. In SOC parlance, one might describe this as “multiscale avalanching”. Furthermore, de-
tailed event analysis of the onset of energy release, for example in solar flares, or substorms
in the earth’s magnetosphere, reveals that the threshold to instability is slowly approached
under driving, and the subsequent reconfiguration is fast. Implicitly there is a separation of
timescales—slow driving and fast relaxation, which we will see below is typical of SOC
systems.

Practically, one can consider two approaches to the physics of such a system. One is to
address the detailed plasma physics of an energy release event in isolation. The relevant
questions are then: what is the cause of the onset of the instability? What is the specific
instability mechanism? The approach is by modeling and numerical simulations, i.e. solving
the fullest tractable set of plasma physics equations, and comparison to (suitably selected)
observed events against which to test the theory. This approach is best suited to physics
which occurs on one specific spatio-temporal scale.

Alternatively, one can consider the situation where the physics on all scales is equally
important, and is, furthermore, strongly coupled. Homogeneous turbulence is a classic ex-
ample of such a process, though distinct from SOC (Chapman and Watkins 2009; Chapman
et al. 2009). In this case the “bottom up” approach of solving for the dynamics of individ-
ual events is intractable. Instead, one can look to the success of the renormalization group
approach (Wilson 1971, 1979) in critical phenomena. Here, one needs to characterize the
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fundamental local interaction, and how it coarse-grains as more and more elements in the
system are aggregated. Central to the structure of such a model is self-similar scaling (the
system looks the same on all scales subject to a rescaling), leading to power law distributions
of (event) sizes and power law (long-range) correlations as the key observable. Importantly,
a broad range of different detailed, microscopic interactions, on coarse-graining, lead to the
same collective behavior, thus one expects the same essential phenomenology to be ubiqui-
tous.

The classic triumphs of the renormalization group (RG) in critical phenomena (Wilson
1971, 1979) have been for systems in equilibrium. Extensions of the RG approach to non-
equilibrium, either relaxing to equilibrium or staying far from it, have been developed suc-
cessfully over the last 40 years or so (e.g. Chang et al. 1992), but a successful application
to plasma physics remains elusive (though see for example Balescu 1997). It is for these di-
verse plasma systems that SOC offers considerable attractions as a paradigm. As we will see
in Sect. 6, SOC introduces dynamics by enforcing a separation of time scales, i.e. the build-
up to instability is slow, while relaxation is fast. This fast relaxation leads to avalanche-like,
bursty energy release on a broad range of scales. The dynamics of an avalanche is fundamen-
tally multiscale, it occurs by coupling across many spatial scales in the system. Importantly,
the statistics of energy release events, indeed, the dynamics, are not sensitive to the details
of the instability, thus in a plasma where many instabilities and routes to instability are pos-
sible, one expects to see the same, robust emergent behavior. Indeed, one could identify a
paradigm for SOC in plasmas, or perhaps more accurately, “multiscale avalanching”, based
on these properties alone, which are sufficient to provide a new, insightful framework for
ordering the observations.

3 Perceptions and Receptions of SOC

The interaction of BTW’s papers and their many readers has led to nested2 perceptions
of SOC, as illustrated in Fig. 1. We can summarize these as essentially four, in order of
increasing ubiquitousness:

• Self-tuned phase transitions can (and do) exist in nature—The core idea of SOC, clearly
enunciated by Bak and Chen (1989), which was presented as a dynamical origin of spatio-
temporal fractals in nature.3

• All fractals in nature are caused by SOC—A much more sweeping claim, but one which
a reader could have been forgiven for inferring from the abstract of the same paper (Bak
and Chen 1989).

• All power laws are caused by SOC—An even more sweeping claim, never to our knowl-
edge made by Bak, but which many readers might easily have inferred from reading the
discussion of Zipf’s law in the first chapter of his book (Bak 1996).

2Although nested, we accept that at least the outermost region, clearly the boldest claim, is not necessarily a
superset of the claims inside.
3Interestingly Milovanov and Iomin (2014, see also Milovanov 2013) have asserted that in some contexts
the core idea of SOC as a self-tuned phase transition can be further demonstrated using their topological ap-
proach. They used a backbone map onto a Cayley tree, and the formalism of the discrete Anderson nonlinear
Schroedinger equation (DANSE). The DANSE has been used to describe physical systems including Bose-
Einstein condensates and arrays of nonlinear waveguides, but its theoretical interest is more far-reaching,
because it “also serves as a paradigmatic model for a wide class of physical problems where interplay of
nonlinearity and disorder is important” (Pikovsky and Shepelyansky 2008).
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• The contingency of nature is caused by SOC—See for example the abstract of Bak and
Paczuski (1995), and Bak’s (2000) review of Buchanan (2000).

The clear divergence between these pictures of SOC, and the fact that all of them have had
at least some adherents, has had some important consequences. An ever increasing diversity
and confusion about claims, proofs and evidence resulted in a muddled perception of the
status of SOC; of how it explains natural phenomena; and which ones. To this day, except
for computational confirmation of the core claim, there is no unambiguous, unquestioned
evidence for any of the claims above, even though they inspired much research. However, it
is also fair to say that experimental, observational, numerical and analytical work is homing
in to corroborate at least the core claim.

Whether correct or not in its generality, the first picture, the core SOC idea, was from the
outset relatively tightly defined, being formulated in the language of mathematical physics
and condensed matter theory. It was actively pursued and debated by these communities
from the outset, and has been the subject of several book length treatments including those
of two of the present authors (Jensen 1998; Pruessner 2012).

The second and third pictures have long been known to be wrong,4 and yet have at the
same time been widely influential. Being at the same time a target for criticism and polemic,
and a source of creative misunderstanding, they provide an interesting present-day example
for historians and philosophers of science of how error and miscommunication can some-
times have positive as well as negative side effects.

The fourth, and most visionary, picture essentially expressed a new paradigm for com-
plexity science, which we may call “complexity and contingency from criticality” as op-
posed to contingency from low dimensional chaos. Bak put this vision clearly, late in his
life, in his review of Buchanan (2000):

The tool of history, certainly, is story-telling after the fact. Why is this? Why does it
make no useful theoretical predictions? Why is it, in other words, that “Life is under-
stood backwards, but must be lived forwards”, as philosopher Søren Kierkegaard put
it. [. . . ]
Buchanan wants us to know that we live in a special time in which new ideas are
beginning to make it possible to see why history is the way it is. Surprisingly, perhaps,
the ideas it uses find their origin not in history, but in theoretical physics. He proposes
to explain why history is and even must be punctuated by dramatic, unpredictable
upheavals. He promotes a theory declaring that all past efforts to perceive cycles,
progressions and understandable patterns of change in history have necessarily been
doomed to failure.
[. . . ]
“Contingency is the affirmation of control by immediate events over destiny, the king-
dom lost for want of a horseshoe nail,” as biologist Stephen J. Gould has observed.
And contingency is the hallmark of the critical state.

(Bak 2000, 56–57)

This fourth interpretation of SOC is arguably at least as interesting as the first, though
much more speculative. It is, however, of much less importance to the astrophysical plasma
context of the present paper. We will thus concentrate entirely on the first, and will only

4See e.g. the extensive discussions in (Jensen 1998; Sornette 2006). Chapter 14 of the latter gives a par-
ticularly useful comprehensive overview of power laws observed in nature which are caused by processes
that are fundamentally different from SOC, and contrasts these with various mechanisms for SOC in the
accompanying Chap. 15.
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discuss the second and third erroneous perceptions when we need to explain how they have
confused the issue.

4 BTW’s Stated Motivation: “A Dynamical Theory of the Physics
of Fractals”

In this section we describe BTW’s aims in proposing SOC, and how Bak and Chen in their
1989 Mandelbrot Festschrift paper (Bak and Chen 1989):

• Quoted the widespread evidence for spatial fractals, and power law spatial correlation
functions, and echoed Kadanoff’s call for a physical explanation,

• Remarked on the parallel unsolved time domain problem of “1/f ” noise,
• Proposed the bold idea that natural complex systems could self-organize to a particular

kind of state that produced these effects, analogous with those seen in laboratory “critical”
systems near a phase transition-hence Self Organized Criticality.

Spatial Fractals: In their 1989 paper, Bak and Chen gave what we believe to be the clear-
est statement of the original SOC idea. They first noted the evidence for the widespread
existence of spatial fractals:

The importance of Mandelbrot’s discovery that fractals occur widespread in nature
can hardly be exaggerated. Many things which we used to think of as messy and
structureless are in fact characterized by well-defined power law spatial correlation
functions. By now, we are so used to seeing fractals that we are tempted to feel that
we understand them. But do we simply have to accept their existence as “God-given”
without further explanation or is it possible to construct a dynamical theory of the
physics of fractals?

(Bak and Chen 1989, p. 5)

It is important to note that the power laws of concern to Bak and Chen were in the cor-
relations between fluctuations in space, rather than the general question of power law size
distributions in nature, a point we will return to (e.g. Sect. 7). BTW used power law distribu-
tion functions as proxy for power law correlations, making that link explicit at an early stage
(Bak et al. 1988a, p. 369). In general, it is by no means clear that size distributions with no
clear connection to spatial correlation (or avalanches), such as those of fractured frozen pota-
toes (Oddershede et al. 1993), the distribution of lunar crater sizes (Head 3rd et al. 2010),
or the length of queues in Britain’s National Health Service (and her pubs) (Smethurst and
Williams 2001; Freckleton and Sutherland 2001) would (or should) ever have been seriously
intended to be in the remit of BTW’s SOC. We would argue that it remains unhelpful to try
to define a notion of “SOC” that is sufficiently elastic to encompass them.

Fractals in time and 1/f noise: Bak and Chen went on to highlight the ubiquity of fractals
in time:

There is another ubiquitous phenomenon which has defied explanation for decades.
The signal (water, electrical current, light, prices, . . . ) from a variety of sources has
a power spectrum decaying with an exponent near unity at low frequencies . . . This
type of behavior is known as “1/f ” noise, or flicker noise.

(Bak and Chen 1989, p. 5)
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The “1/f ” noise which BTW referred to was discovered by Schottky, early in the 20th
century. A 1/f power spectrum is generally regarded as the fingerprint of (temporal) corre-
lations so strong that any future state must be considered a function of the system’s entire
history (Jensen 1998, p. 9). This remains true for generalized 1/f spectra, i.e. across a range
of power law dependences of the power spectrum on f .

It is important to realize that rather than “defying” explanation, it had in fact been the
subject of many explanations (e.g. van der Ziel 1950; Schick and Verveen 1974; Weissman
1988), but that BTW found these unsatisfying and lacking in generality. In magnetospheric
physics the presence of “1/f ” spectra in geomagnetic indices and other ground-based mag-
netic measurements (Tsurutani et al. 1990; Weatherwax et al. 2000) was, early on, one of
several key supporting pieces of evidence of SOC.

The SOC postulate: A perceived need to unify the above two aspects of fractality, and,
importantly, a claimed absence of existing ways to do so, led BTW to postulate the idea of
SOC. Apparently, they were guided by the observation of scaling in space and time (fractals
and generalized 1/f noise) in equilibrium and non-equilibrium critical phenomena, such as
the Ising Model (Stanley 1971; Hohenberg and Halperin 1977). Bak and Chen put it this
way:

Strangely enough, just as those working on fractal phenomena in nature never seem
to be interested in the temporal aspects of the phenomenon, [. . . ] those working on
“1/f ” noise never bother with the spatial structure of the source of the signal. We
believe that those two phenomena are often two sides of the same coin: they are the
spatial and temporal manifestations of a self-organized critical state.

(Bak and Chen 1989, p. 5)

Bak and Chen prefaced this (already very bold) claim in the paper with one of the most mem-
orably terse abstracts in the history of science, which may be called the “SOC postulate”:
“Fractals in nature originate from self-organized critical dynamical processes”, expanded
on by a comment on the first page where they said:

We see fractals as snapshots of systems operating at the self-organized critical state.
(Bak and Chen 1989, p. 5)

The gap between the relatively specific idea of explaining space-time fractal avalanching
phenomena and therefore spatio-temporal correlations,5 and the aspiration that many per-
ceived to explain any fractal in space or time, or even any power law distribution, has been
a perennial problem, and a key source of the controversy and misunderstandings that still
surround SOC.

5 Self-organization, the SOC Postulate and BTW’s Definition of SOC

Having seen in the previous section what the problem (spacetime fractals) that BTW sought
to solve was, we now will show in more detail how the solution (the SOC hypothesis) was
meant to do so. In the following section, we will summarize four key points about the sci-
entific program followed by BTW when they formulated SOC:

• They argued that spatial and temporal scaling must usually be unavoidably connected.

5See, however, the discussion at the end of Sect. 8.1.
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• They posited that in contrast to phase transitions (or chaos) seen at a fixed point in control
parameter space there must be a more robust (and thus widespread) new kind of spa-
tiotemporal critical behavior which resulted from self-organization and for which their
sandpile was the exemplar (i.e. SOC).

• They identified conditions for SOC behavior to be seen in a system; later recast by Jensen
as “slowly driven interaction dominated and thresholded”, and also highlighted the role
of dissipation in maintaining such a state.

• And they asserted that spacetime fractals were snapshots of the SOC state.

Rather than the impossibly broad, and with hindsight unnecessary, goal of explaining all
power laws in nature with one mechanism, a close rereading of Bak and Chen (1989) (as
well as Bak et al. 1987, 1988a, in which the SOC concept was launched) shows quite clearly
that the aim of SOC was to unify dynamically evolving spatial and temporal fractals. BTW
were taking as a cue Kadanoff’s (1986) famous question “Fractals: Where’s the Physics?”,
which itself had been aimed at a fractal “industry” which was experiencing its first wave
of enthusiasm at that point. In a volume of papers dedicated to Mandelbrot, Bak and Chen
(1989) responded equally boldly and provocatively to Kadanoff that: “Fractals in nature
originate from self-organized critical dynamical processes”. Beyond the immediate goal lay
the even more ambitious one of accepting the challenges posed by two Nobel Laureates:
Phil Anderson’s (1972) celebrated essay “More is different” on complexity science, and
Ken Wilson’s (1979) invitation to a wider adoption of what is arguably the most powerful
tool in statistical mechanics, the renormalization group.

Firstly, they argued that spatial and temporal scaling were intrinsically linked, i.e. that
the scaling historically observed in time series as 1/f noise (van der Ziel 1950) is related to
the spatial scaling that became prominent with the advent of Mandelbrot’s (1983) fractals
(e.g. Feder 1988, p. 7):

Actually, for those (like us) who are brought up as condensed matter physicists it is
hard to believe that long-range spatial and temporal correlations can exist indepen-
dently. A local signal cannot be “robust” and remain coherent over long times in the
presence of any amount of noise, unless stabilized by the interactions with its en-
vironment. And a large, coherent spatial structure cannot disappear (or be created)
instantly. For an illustration, think of the temporal distribution of sunshine, which
must be correlated with the spatial distribution of clouds, through the dynamics of
meteorology.

(Bak and Chen 1989, p. 5)

It has been argued subsequently, however, that scaling in time is rather common (Grinstein
et al. 1990) in non-equilibrium, and even in equilibrium dynamics, which is otherwise “a
rotten place to hunt for generic scale invariance” (Grinstein 1995, p. 262). In other words,
space and time fractality need not in fact be related. Prior knowledge that one is dealing
with a spatially extended, and importantly, connected, system may make such a connection
more likely. The precise way to check, at least in principle, is to measure a spatiotemporal
correlation function

C(r, t) = 〈
f (r0, t0)f (r0 + r, t0 + t)

〉 − 〈f 〉2 (1)

and check if one has scaling (i.e. algebraic rather than exponential dependence) in both r

and t .
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It is interesting with hindsight that as early as 1967 Mandelbrot had realized that scaling
in time, and thus “1/f ” noise, need not always be attributed to the kind of stationary long
range dependence seen in his own fractional Gaussian noise models. An alternative model,
which was only (in his words) “conditionally” stationary, was the fractional renewal process
he discussed in Mandelbrot (1967). It seems likely that his awareness that several funda-
mentally different yet plausible mechanisms for “1/f ” noise already existed would have
contributed to his evident lack of enthusiasm for SOC6

Secondly, the concept of criticality (Sect. 6) was invoked to explain the scaling (the
Appendix) that was seen in nature, drawing heavily on the established theory of contin-
uous (i.e. second order) phase transitions, but contrasting it with the new feature of self-
organization (see the quote of Bak and Chen 1989, p. 5 below, “[T]here is one area of
physics . . . the critical state is self-organized.”). Self organization was an essential feature
of the argument, in order to explain why critical behavior is apparently so common in nature.
The traditional notion of criticality placed it firmly at a singular point in parameter space,
which had to be accessed by ultra-fine tuning, such as careful adjustment of the temperature
in a zero-gravity environment (Lipa et al. 1996).7 In contrast, self-organized critical systems
would be dynamically attracted to a state where they display scaling, i.e. long-range corre-
lations in time and space dominate and so bring about a new, effective interaction and global
features very different from the microscopic physics: More is indeed different.

As their conclusion, as mentioned above, they proposed “the SOC postulate”:

The explanation is that open, extended, dissipative dynamical systems may go au-
tomatically to the critical state as long as they are driven slowly: the critical state is
self-organized. We see fractals as snapshots of systems operating at the self-organized
critical state.

(Bak and Chen 1989, p. 5)

The first sentence refers to features of SOC systems, which have subsequently been sum-
marized by Jensen as “slowly driven interaction dominated threshold [(SDIDT)] systems”
(Jensen 1998, p. 126). Bak and Chen stressed openness as a required system property be-
cause at a stationary state the flux of otherwise conserved particles towards dissipative
boundaries was perceived early on as a mechanism by which fluctuations and correlations
are communicated throughout the system:

Note that Eq. (3.2) conserves
∑

n zn except at the boundary, so that any “excess z”
must be transported to the boundary for global relaxation to occur.

(Bak et al. 1988a, p. 368)

6In an interview in 1998 with Bernard Sapoval, archived by the Web of Stories project (http://webofstories.
com), he remarked that: “. . . criticality goes beyond what I had in mind. In fact, I think perhaps it goes beyond
what is necessary. I have not made up my mind on self-organized criticality, because the characteristic of the
question of magnets is that there is a parameter like temperature. At a certain critical temperature very special
things happen. The characteristic of phenomena like prices or like turbulence, there’s no parameter. Therefore
to embed a prime [sic] without a parameter in one which has a parameter, and then argue that this parameter
somehow arranges to take its own value is presupposing something that is beyond reality. I mean there are
no non-critical situations. So I have not made up my mind about the power of this metaphor. The idea that
dependence can be global, that variance can be infinite, and in fact that everything that has been taken as finite
without any question in physics or in statistics can, in fact be divergent or zero [. . . ] is something that did not
depend upon any broader conjecture about the causes of these phenomena. It comes out of efforts to describe
them and has been made unavoidable by those efforts.” [Our italics]
7In the language of dynamical systems and the renormalization group, critical phenomena as observed at
phase transitions (Domb et al. 1972–2001) are characterized by a fixed point that is repulsive in several
directions and therefore accessible only from a very narrow basin of attraction.

http://webofstories.com
http://webofstories.com
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As a result, “The boundary cannot be scaled out in the limit of large system sizes as is
usually done in statistical physics” (Paczuski and Bassler 2000).

As well as open boundaries which do not disappear in the large system limit, Bak and
Chen also emphasized dissipation, which should be understood from a dynamical systems
perspective. In the presence of dissipation, dynamical systems explore a greater amount
of phase space, than they would if subject to the constraint of energy conservation. When
the statement about “dissipative dynamical systems” above was written, in Bak and Chen
(1989), despite the comment on the flux of a conserved quantity, conservation in the sandpile
dynamics had not yet received much attention and the focus still lay with the apparent lack
of conservation when sand grains slip down a hill thereby reducing potential energy. Hwa
and Kardar (1989) and Grinstein et al. (1990) put particle conservation on the map, the latter
demonstrating that conserved dynamics in conjunction with non-conserved noise (or with
conserved noise and spatial anisotropy) will generically produce scale invariance.

An interesting distinction between BTW’s SOC model and classic forward cascade de-
scriptions of fluid turbulence such as Kolmogorov’s 1941 model is thus that dissipation in
the former takes place at the boundaries and thus on large scales, while in the latter case it
is the smallest (Chapman and Watkins 2009).

In Sect. 7 we will discuss the sufficient and necessary conditions for SOC. It remains
now to comment on the second sentence in the quote above from Bak and Chen, “We see
fractals as snapshots of systems operating at the self-organized critical state.” One could
quite legitimately read this as “we see all fractals as . . . ” rather than “we see such fractals as
. . . ”. The former reading is fully in line with the concise abstract of the paper: “Fractals in
nature originate from self-organized critical dynamical processes.” Bak and Chen (1989) but
nonetheless it is unlikely that BTW really believed that all fractals needed SOC to explain
them.

While either version of the claim is bold, it is certainly correct that fractal-like structures
in time and space are exactly what characterizes critical systems, so that a claim that (some)
naturally occurring fractals in “open, extended, dissipative dynamical systems” are self-
organized, is in fact identical to a claim that open, extended, dissipative dynamical systems
can develop into a critical state.

6 Criticality and Minimal Stability

Considerable confusion has arisen over the years from the several meanings of the word
“critical” in the phrase “Self-Organized Criticality”. The word “critical” has a very clear
technical meaning in statistical mechanics and the theory of phase transitions. That this was
indeed the intended meaning in Bak et al.’s newly coined term “Self-Organized Critical-
ity”, is clear from rereading their (Bak et al. 1987, 1988a) papers. Unfortunately, in these
same papers the word “critical” was occasionally also used in a more colloquial sense of a
threshold.

In this section we clarify and distinguish three distinct meanings of the word “critical”:

• critical spatiotemporal correlations, such as those seen at phase transitions
• critical thresholds, and
• the value of a global (control) parameter at the critical point.

and illustrate them by use of BTW’s famous sandpile model.
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Fig. 2 The one-dimensional BTW Model on a lattice of size L = 5 (for illustrative purposes, this system is
ridiculously small, much bigger systems are normally studied in SOC). Particles which are about to move are
shown hatched, particles which are about to appear somewhere are shown in gray. The current configuration
is h = {5,5,4,2,2} and h = {6,5,3,3,1} after the update indicated. One gray particle is going to be added
by the external driving on site i = 1, which takes place only if no toppling occurs somewhere in the systems,
such as the ones on site 5 or from site 3 to 4. The slope exceeds the threshold at two sites, i = 3 and i = 5.
When the latter topples, one particle will be lost by dissipation at the boundary, as if h6 = 0 permanently

6.1 The BTW Model

In order to fully appreciate the distinction between “critical” in the technical and in the loose
sense, it is instructive to introduce the famous8 BTW sandpile model, illustrated in Fig. 2.
On a one-dimensional grid of sites i = 1,2, . . . ,L it is defined as follows: Each site i carries
a number hi of grains. If the slope hi − hi+1 at site i exceeds a threshold, hi − hi+1 > 1,
then one grain is moved from i to i + 1, so that hi → hi − 1 and hi+1 → hi+1 + 1, thereby
decreasing the slope at i and increasing the slope at up- and down-stream sites and thus
triggering further updates. The totality of these updates constitutes an avalanche, which is
triggered by adding a particle at a randomly chosen site i (known as the external drive), so
that hi → hi + 1, and carries on until none of the sites exceeds the threshold any more. Only
then the driving resumes. In Fig. 2 the driving takes place at site i = 1 and a further toppling
takes place at site 3 with h3 = 4 to site 4 with h4 = 2 prior to the update. The (virtual) edge
site L+ 1 carries a stack of height hL+1 = 0 by definition and is never updated, i.e. particles
are dissipated here, as indicated in Fig. 2.

The sandpile model in one dimension has some very distinctive features and its (very
simple) behavior then differs significantly from that seen in dimensions greater than unity.
In that case, a local, scalar slope (rather than a gradient) is introduced. In two dimensions
sites are labeled (i, j) with i, j ∈ {1, . . . ,L} and carry a local slope z(i,j). If that exceeds a
threshold, say 3, then z(i,j) is reduced by 4, i.e. z(i,j) → z(i,j) − 4, and the slope at all four
nearest neighbors increased by one unit, i.e. z(i±1,j±1) → z(i±1,j±1) +1. Boundary conditions
are such that (virtual) sites outside the lattice are not updated, i.e. slope units are being lost.

The density of these slope units, ζ = ∑
ij z(i,j)/L

2 may be thought of as a control parame-
ter which is generated by the pile rather than externally imposed: If it is big, then avalanches
can be expected to be large—some sites surely exceed the threshold if ζ does. If ζ is small,
avalanches will be small as well. The external drive increases ζ , at least temporarily, whereas
dissipation at boundaries decreases it. Because large avalanches promote dissipation, they
reduce the control parameter, whereas small ones may leave it unchanged. In other words,

8Independently invented in the earthquake context by Katz (1986).
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large avalanches can be expected9 to occur at comparatively large ζ , typically reducing ζ ,
whereas small avalanches occur at low ζ . This feedback has been suggested to be at the
heart of SOC (Tang and Bak 1988b; Dickman et al. 1998). Because ζ is a global average,
its fluctuations will decrease with increasing system size L, eventually “pinching” it at its
mean.10

6.2 The Meaning of “Criticality”

The behavior of the sandpile model is reminiscent of the behavior of a system undergoing
a continuous phase transition (e.g. Stanley 1971; Yeomans 1994; Christensen and Moloney
2005). Phase transitions have been one of the centers of attention in statistical mechanics for
well over one hundred years. They normally occur in a system as some control parameter,
such as the temperature, is changed.

Critical spatiotemporal correlations: One particular class of phase transitions, so called
continuous or second-order phase transition, have the peculiar feature that at the critical
point, that is for some special value of the control parameter, correlations become long
ranged (follow a power law) and, equivalently, fluctuations occur on all length scales, i.e.
there is no characteristic size and the size distribution of the fluctuations displays a power
law dependence with a non-trivial exponent. Moreover, an observable indicates the onset
of long-range order, whose presence distinguishes two different phases. Traditionally, that
observable goes by the name of the “order parameter”. It is a suitably but not uniquely
defined quantity that vanishes in one phase (the disordered or high-temperature phase) and is
finite in the other (the ordered or low-temperature phase). The susceptibility, which measures
fluctuations and equivalently (by the linear response theorem) the response of the order
parameter to a small external perturbation, diverges with the system size. This is known as
critical behavior, a critical phenomenon or just criticality.

The term self-organized criticality refers to exactly that last, technical usage of criticality.
Bak and Chen explicitly referred to the long range spatial correlations:

[T]here is one area of physics where the relation between spatial and temporal power
law behavior is well established. At the critical point for continuous phase transitions,
the correlation function for the order parameter decays spatially as r2−d−η and tem-
porally as t−d/z.11 But in order to arrive at the critical point, one has to fine-tune an
external control parameter such as the temperature or the pressure, in contrast to the

9The inversion of this narrative, namely ζ being large as a consequence of small avalanches and ζ being small
as a consequence of large avalanches, is equally convincing—numerics suggests further subtleties (Peters and
Pruessner 2009).
10The reader may be wondering why we did not consider ζ to be an order parameter, rather than a control
parameter, as it is the response of the system to the externally controlled drive. If the BTW model had been
a bit more like a conventional critical system than it has in fact turned out to be, presumably one would also
find that the spatiotemporal correlation function:

C(r, t) = 〈
z(r0, t0)z(r0 + r, t0 + t)

〉 − 〈z〉2 (2)

exhibited algebraic behavior at criticality. We would then have had the analogy: ζ = magnetization, z = local
spin, and the external drive = temperature.

Instead, in our discussion above, and for example also in Peters and Pruessner (2009), ζ is seen as the
control parameter that drives an activity (topplings). The density of the activity of topplings is then the order
parameter of an absorbing state phase transition.
11As the two point correlation functions are normally expected to decay like r−(d−2+η)G(rz/t) it is in order

to remark that the temporal dependence would normally expected to be t−(d−2+η)/z .
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phenomena above which occur universally without any fine-tuning. The explanation
is that open, extended, dissipative dynamical systems may go automatically to the
critical state as long as they are driven slowly: the critical state is self-organized.

(Bak and Chen 1989, p. 5)

Bak, Tang and Wiesenfeld also explain what makes criticality so relevant and so attractive:

At the critical point there is a distribution of clusters of all sizes; local perturbations
will therefore propagate over all length scales, leading to fluctuation lifetimes over all
time scales. A perturbation can lead to anything from a shift of a single pendulum to an
avalanche, depending on where the perturbation is applied. The lack of a characteristic
length leads directly to a lack of a characteristic time for the resulting fluctuations.

(Bak et al. 1987, p. 382)

Criticality in SOC however is not reached by setting a control parameter to a “critical”
value:

The criticality in our theory is fundamentally different from the critical point at phase
transitions in equilibrium statistical mechanics which can be reached only by tuning
of a parameter, for instance the temperature. The critical point in the dynamical sys-
tems studied here is an attractor reached by starting far from equilibrium: The scaling
properties of the attractor are insensitive to the parameters of the model. This robust-
ness is essential in our explaining that no fine tuning is necessary to generate 1/f

noise (and fractal structures) in nature.
(Bak et al. 1987, p. 381)

Critical thresholds: Unfortunately a second, looser meaning of “critical” has led to confu-
sion. It refers to the threshold that is frequently thought to govern the microscopic dynamics
of SOC systems, and can be found in the same publications as those quoted above.

This will cause the force on a nearest-neighbor pendulum to exceed the critical value
and the perturbation will propagate by a domino effect until it hits the end of the array.

(Bak et al. 1987, p. 382)

Here “critical value” refers to the threshold beyond which activity sets in. We would discour-
age this usage of “critical” and instead urge the use of the alternative, “threshold value”. We
suggest to refrain from combining it with “critical”, as in “critical threshold”.

Critical global control parameters: In a subtle variation of the first meaning of “critical”
mentioned above, a third, technical meaning refers to a global control parameter taking a
critical value:

If the slope is too large, the pile is far from equilibrium, and the pile will collapse
until the average slope reaches a critical value where the system is barely stable with
respect to small perturbations.

(Bak et al. 1987, p. 382)

Because it was hitherto unclear whether there were generally order and control parameters
in SOC and, if so, what they were, one could possibly interpret this quote also as referring
to a global order parameter which reaches the value characteristic of criticality.

In traditional critical phenomena, the global control parameter would be the critical tem-
perature, or a critical probability etc., but here it is the average slope, which seems to link
also to the second meaning, because it is the average over some local dynamical feature. In
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contrast to the first meaning, “critical” in the quote above refers to the value some parameter
attains so that the system maintains criticality, e.g. divergent susceptibility. “Self-Organized
Criticality” would then refer to the self-organization of the presumed control parameter to its
critical value, rather than the self-organization of the system to display criticality. The dif-
ference between the two is obviously subtle, but very important. The former interpretation
emphasizes the existence of a critical point and the self-organization of a control parameter
to that value, whereas the latter focuses on the appearance of the system as critical. Al-
though we believe that the name SOC refers to the latter (the system displaying criticality),
in Sect. 7 we briefly discuss BTW arguments that a critical point exists and that the system’s
dynamics drives that control parameter towards that value.

6.3 Minimal Stability

Further confusion has arisen from the usage of the term “minimally stable”, alluding to
chaotic behavior which was being explored in the literature under the headline “edge of
chaos” (e.g. Langton 1990; Kauffman and Johnsen 1991; Ray and Jan 1994; Melby et al.
2000).

Our picture of 1/f spectra is that it reflects the dynamics of a self- organized crit-
ical state of minimally stable clusters of all length scales, which in turn generates
fluctuations on all time scales.

(Bak et al. 1987, p. 384)

In fact, SOC was introduced using the terminology of “minimally stable states” (Tang et al.
1987), which lose stability by even the tiniest perturbation anywhere. The language and the
basic concept draw on the theory of dynamical systems.

This seems to be the obvious interpretation of “minimally stable”, namely a state where
the smallest perturbation leads to a system-wide relaxation. That is in fact the case in the one-
dimensional sandpile model, which develops into a state where (almost) all sites have a slope
corresponding to the threshold value. However, the one-dimensional sandpile is exceptional
in that respect:

[W]e consider for pedagogical reasons an example in one spatial dimension. In this
case the spatial degrees of freedom “decouple” and the system ends up in the least
stable metastable state. This minimally stable state is a trivial critical state with no
spatial patterns and uninteresting temporal behavior.

(Bak et al. 1988a, p. 365)

In higher dimensions, a small perturbation may lead to a response by the system at any scale.
In contrast to “least stable metastable state”, the term “minimally stable” in the context of
SOC refers to the possibility of system-wide events. Bak et al. (1987) illustrated that very
clearly in their Fig. 1, where every site is shaded that takes part in a particular avalanche.
Some sites among these clusters surely have a slope below the threshold, so even though
labeled “minimally stable” the system shown is not in a state where any charge anywhere
would result in a system-wide avalanche or, in fact, necessarily any avalanche at all.

In fact, later studies make it abundantly clear that the average value of the dynamical
variable (the local degree of freedom subject to interaction, see below) in SOC systems is
normally well away from the threshold. For example, in two dimensions, the sandpile model
has been conjectured (Grassberger quoted by Dhar 2006, finally confirmed analytically by
Caracciolo and Sportiello 2012) to have average height of 17/8 = 2.125, well below the
threshold of 3, and the Abelian Manna Model (Manna 1991; Dhar 1999b) with threshold 1
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in one dimension has average height 0.9488(5) (Dickman et al. 2001), expected to drop to
1/2 with increasing dimension (Huynh et al. 2011).

In summary, the system’s “critical” features which Bak et al. claimed to have been self-
organized are long-ranged correlations and divergent susceptibility to external perturbations.
SOC systems organize themselves to a state where they look very much like those at a critical
point, as if they were undergoing a phase transition. What BTW did not mean, and did not
imply, is that the system organizes itself into a state where every local degree of freedom
is close to some threshold. This happens to be the case for the one-dimensional sandpile
model, but this should be regarded as a coincidence, not least because the one-dimensional
sandpile model shows no interesting features otherwise. Bak et al. left it open whether the
apparent control parameter reaches some critical value. In fact, a successful theory of SOC
suggests (Dickman et al. 2001) that the control parameter fluctuates about its critical value.

7 The Necessary and Sufficient Conditions for SOC

The separation of cause and effect has long been problematic in much of the debate sur-
rounding SOC, so we now set out arguments for,

• three necessary features that a system needs to exhibit in order to qualify as SOC
• and three sufficient ingredients comprising a mechanism (SDIDT) that produces SOC

and we attempt to decide if SOC and SDIDT are synonymous.

7.1 SOC’s “Phenotype”: The Necessary Conditions to Observe It

As explained above, in Sect. 6, BTW regarded SOC as a critical phenomenon in the tradi-
tional sense of statistical mechanics, i.e. a system displaying non-trivial scaling (scaling that
deviates from what is generated by simple dimensional analysis, see the Appendix). While
this can be seen in many different observables, and in fact, in SOC is often observed in in-
tegrated, global quantities, such as avalanche sizes and durations, scaling should manifest
itself in particular through the presence of long-ranged spatio-temporal correlations. The
term “long-ranged” alludes to the fact that, again, these correlations should display power
law scaling and not decay like, say, an exponential. Demanding direct evidence for the scal-
ing of spatio-temporal correlations is a technical challenge, as explained in the Appendix.

One key aspect of SOC, however, deviates strongly from traditional (tuned) critical phe-
nomena (see the quote above in Sect. 6.2, “[T]here is one area . . . continuous phase tran-
sitions . . . without any fine-tuning . . . critical state is self-organized.” from Bak and Chen
(1989, p. 5), in that these always require tuning to a critical point, i.e. a precise setting of
one or more parameters to a specific finite value.12

The dynamics of SOC systems is supposed to drive them to the critical point without the
need of such external “tweaking” of a control parameter. Prior to the advent of SOC, some
systems were known, in particular growth phenomena (e.g. the KPZ equation, Kardar et al.
1986), that did display non-trivial scaling without external tuning of a control parameter (and
certainly in the presence of competing length scales). BTW, however, argued that although a
critical point exists in SOC systems, the dynamics itself drives the system towards a critical
point, which otherwise would only be reached by external tuning of a control parameter:

12The finiteness (neither vanishing nor infinite) is crucial, because any finite value provides a scale which
other characteristic scales can compete with, and which allow the formation of dimensionless ratios of quan-
tities, that can be raised to arbitrary powers. Only in the presence of such competing length-scales can one
expect to see non-trivial scaling exponents, see the Appendix.
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The critical point in the dynamical systems studied here is an attractor reached by
starting far from equilibrium: The scaling properties of the attractor are insensitive
to the parameters of the model. This robustness is essential in our explaining that no
fine tuning is necessary to generate 1/f noise (and fractal structures) in nature. [. . . ]
In a sense, the dynamically selected configuration is similar to the critical point at
a percolation transition where the structure stops carrying current over infinite dis-
tances, or at a second-order phase transition where the magnetization clusters stop
communicating.

(Bak et al. 1987, p. 381)

A suitable mechanism of self-organization to a critical point, in some ways reminiscent
of earlier suggestions by Tang and Bak (1988a,b), was put forward and made explicit by
Vespignani et al. (1998, also Dickman et al. 1998). Its verification remains subject to ongo-
ing research.

Having made the case for “truly self-organized, truly critical” SOC systems, it remains
to remark that even so, every finite system still has an inherent scale, namely the system
size itself. This is obviously also the case in traditional critical phenomena, but there the
control parameter can be tuned away from the critical point. In such tuned systems the
phenomena observed and the measurements taken can therefore approximate the infinite
system (or “thermodynamic limit”), at least in principle, arbitrarily well, by increasing the
system size ever more, as the control parameter is tuned closer and closer to the critical
value. This is not the case in SOC systems, which are (supposed to be) located right at
the critical point with the result that all observables that display any form of scaling, or
which are expected to be divergent in the thermodynamic limit, will depend on the system
size. This dependence is called finite size scaling, a well known and understood aspect of
traditional critical phenomena (Barber 1983, see also the discussion in the Appendix).

The key-features of a system in the SOC state, their phenotype, can thus be summarized
as

1. Non-trivial scaling (finite size scaling; no dependence on a control parameter).
2. Spatio-temporal power law correlations.
3. Apparent self tuning to the critical point (of a possibly identified, underlying continuous

order phase transition).

where the first and the second item may be seen as aspects of the same feature: criticality.
Apart from the many proposed SOC systems, one candidate-system that seems to fulfill

(some of) the above features is invasion percolation (Wilkinson and Willemsen 1983) which
predated SOC and was likened to it early on by Grassberger and Manna (1990). It clearly
displays non-trivial scaling (namely that of percolation), it clearly displays spatial correla-
tions, and (with suitable definition of the dynamics) also correlations in time. In fact, much
like traditional SOC models, its burst-like evolution may be regarded as one possible form
of intermittency—an aspect of many complex systems, to be further discussed below. How-
ever, such avalanches do not appear in cycles of charge and relaxation, but are part of an ever
increasing region invaded by a cluster (Sornette et al. 1995). In other words, invasion perco-
lation does not develop into a stationary state (in the statistical sense).13 What is more, even
when invasion percolation displays the scaling of ordinary percolation, there is no sugges-
tion of any self-tuning taking place. Rather, invasion percolation sits right at the critical point

13Invasion percolation is nonstationary in the same way that an ordinary Brownian random walker is nonsta-
tionary. It keeps growing with time, similar to the way in which the random walker keeps wandering further
and further away from x = 0, leading to 〈x2〉 ∝ t .
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by definition. In that sense, invasion percolation resembles Brownian motion, which offers a
rich variety of power law correlated features (although not strictly non-trivial), without any
apparent self-tuning (Sornette 2006; Milovanov 2013).

7.2 SOC’s “Genotype”: The Sufficient Conditions to Generate It

Above we have relied heavily on the original, early work by BTW to define SOC phe-
nomenologically. The features listed above are in fact all the necessary conditions for
SOC—with “necessary” taken strictly in the logical sense (they define SOC: if and only
if all of them are observed, one is faced with SOC). The sufficient conditions for SOC then
point to a cause of SOC, asking for the system’s key ingredients in order to produce those
SOC characteristics, and are in a sense its genotype. A lot of the research into SOC cen-
ters precisely around these sufficient conditions; the early hunt for different members of
the BTW universality class (e.g. Zhang 1989; Manna 1991) was clearly motivated by this
question.

The most obvious key-ingredient of any SOC model is the presence of non-linearities in
the interaction, so that the response is not a simple, linear function of the size of the external
perturbation. 14 In most SOC models the non-linearity is realized as a threshold in the inter-
action, i.e. activity can spread only when some local dynamical variable exceeds a threshold.
We note that the algorithms for BTW’s sandpile model and the Edwards-Wilkinson (EW,
Edwards and Wilkinson 1982) model of deposition are the same except that BTW SOC has
thresholded diffusion whereas EW has simple diffusion.

When the threshold is overcome, interactions between neighboring dynamical variables
take place (often referred to as “topplings”) and as a result bursts of activity occur in the
form of avalanches, which can involve the system in its entirety. These avalanches spread
because the interaction in a toppling can induce a neighboring local dynamical variable to
overcome a threshold, even when prior to the interaction it was not very close to being
“triggered”. In the presence of thresholds, avalanching is thus naturally expected. Of the
sufficient conditions listed below, avalanching is therefore the most likely candidate to be
superfluous, because it is implied by the other conditions, and in fact may be listed with the
necessary ones, in the sense that it is part of the definition of SOC beyond the immediate
meaning of just these three letters.

Surveying the wealth of systems (supposedly) displaying SOC, a very strong candidate
for our final key-ingredient is the separation of the time scales of driving and relaxation,
which is implied already in the original definition of the BTW model (Bak et al. 1987).
SOC systems are slowly driven, so that the characteristic time scale of the driving does
not interfere with the internal, fast time scale of the relaxation. In computer models and
generally when the relaxation occurs in bursts or avalanches, the separation of time scales
can be completed.15

If one insists on intermittent relaxation in the form of avalanches, then it is obvious that
the driving must be sufficiently slow as not to disturb the avalanche while it is running
(Chapman and Watkins 2009; Chapman et al. 2009), otherwise continuous activity will re-
sult (Corral and Paczuski 1999) and individual avalanches are no longer discernible without
the use of, say, some arbitrary threshold.

14Without non-linearity, trivial exponents follow. In that sense, demanding non-triviality implies non-linearity
of an interaction which dominates the global behavior of the system.
15Yet, in some systems a second separation is necessary (Drossel and Schwabl 1992; Clar et al. 1996) which
amounts to a careful adjustment to parameters (Pruessner and Jensen 2002b; Bonachela and Muñoz 2009).
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Fig. 3 Slowly driven, interaction dominated threshold (SDIDT) systems are a subset of interaction domi-
nated threshold (IDT) systems. Interpreting slow drive as implying intermittency, SDIDT coincides (roughly)
with the list of sufficient conditions, 4–6, for SOC. All SDIDT may therefore be expected to display SOC,
as indicated by both (a) and (b). In the latter Venn diagram, however, all SOC belongs to SDIDT, i.e. SDIDT
and therefore conditions 4–6 are not only sufficient, they are also necessary. It may well be, however, that con-
ditions 4–6 are not complete, i.e. they are only a subset of the sufficient conditions. In that case, (c) applies,
where SOC is a subset of the larger class of SDIDT

In particular in the earlier days of SOC, some debate (Dickman et al. 1998; Bröker and
Grassberger 1999) evolved around the question whether the demand of a separation of time
scales amounts to a form of tuning or global supervision (by a “babysitter”, Dickman et al.
2000, or a “farmer” Bröker and Grassberger 1999), thereby rendering SOC a tuned type of
criticality after all.

We thus summarize the sufficient conditions so far (the “genotype”, to draw that parallel)
as

4. Non-linear interaction (required by 1), normally in the form of thresholds.
5. Avalanching (intermittency, expected in the presence of thresholds and slow driving).
6. Separation of time scales (obvious requirement to sustain distinct avalanches).

We hypothesize that every system that simultaneously fulfils these three conditions will
display SOC according to its definition in 1–3, and vice versa.

Together with the “phenotypical” conditions 1–3 listed above one might summarize all
six of them by defining SOC as “Slowly driven, avalanching (intermittent) systems with
non-linear interactions, that display non-trivial power law correlations (cutoff by the system
size) as known from ordinary critical phenomena, but with internal, self-organized, rather
than external tuning of a control parameter (to a non-trivial value).”

7.3 Must SOC and SDIDT Always be the Same?

We believe that the most promising instances of SOC, in particular computer and theoretical
models, fulfill these criteria. If they are really sufficient (but see below) and implied by the
necessary conditions,16 i.e. they are complete and not too narrow, then fulfilling conditions
1–3 implies fulfilling conditions 4–6 and vice versa.

Conditions 4–6 may also be interpreted as a paraphrase of “slowly driven, interaction
dominated threshold (SDIDT) systems” (see Sect. 5), with intermittency implied by the slow
drive. That SDIDT is sufficient for the occurrence of SOC was conjectured earlier (Jensen
1998, p. 126) and was well received in the plasma science community, Sect. 9, although
sometimes with much reduced emphasis on slow drive. Such systems are shown as IDT
in the Venn diagrams Fig. 3. There are several models considered for their supposed SOC
behavior, which either lack any obvious driving or whose driving is subject to conditions

16It is a strong claim that a system that organizes itself to a critical point is necessarily intermittent.
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beyond just being slow (Wilkinson and Willemsen 1983; Moßner et al. 1992; Pruessner and
Jensen 2002b, 2004; Bonachela and Muñoz 2009). To this day, SOC models are studied
with finite drive (Corral and Paczuski 1999), i.e. as IDT models in their own right. The Venn
diagrams Fig. 3 exclude the possibility of all IDT being SOC, as the only overlap of SOC and
IDT amounts to SDIDT, indicating that slow drive may not only be a sufficient condition for
SOC, but also a necessary one, which sits well with the notion that finite driving introduces
a finite scale and therefore possibly a cutoff.

While the relation between SDIDT and IDT is an obvious one, the relation between
SDIDT and SOC is less clear. According to the list above, points 4–6, SDIDT systems
should display SOC (as indicated in Fig. 1.3(a) and 1.3(b)) but that SOC phenomena are
restricted to SDIDT is a much stronger statement, as illustrated in Fig. 1.3(b). If we identify
criteria 4–6 with SDIDT and they are not too narrow (in that sense truly minimal), then there
is no SOC outside SDIDT, i.e. Fig. 1.3(b) and not Fig. 1.3(a) is the correct representation of
the status quo of SOC.

Given, however, that some supposed SOC models, like the Forest Fire Model lack scaling
(Pruessner and Jensen 2002a), a more realistic concern is that conditions 4–6 are incomplete,
so only some particular SDIDT systems display SOC, as shown in Fig. 1.3(c). It remains one
of the most important questions in SOC to complete the list of sufficient conditions without
making them too narrow.

8 Why Then is SOC Controversial?

In response to the points we have made above, a natural question may already be occurring
to the reader: “If, as you claim, SOC was originally relatively clearly defined, and if one can
now define necessary and sufficient conditions for it, why was it (and is still) controversial”?
This is a good question, and there are many reasons, of which we identify the following as
particularly important:

• Uncertainty and miscommunication about what the essential SOC claim in fact was; con-
fusion between the phenomena to be explained and the mechanism proposed as their
explanation; and, as a consequence, confusion about what to look for as experimental
“proof”, and what to look for as potential application of the theory.

• SOC models and supposed occurrence of SOC in nature are easy to test for badly and
difficult to test for well. To this day, outside the field of tuned phase transitions, really
solid empirical evidence for scale invariance in nature by lab experiment or analysis of
observational data is actually quite limited even when its “ubiquity”, as recognized by
Mandelbrot and Bak, is the very motivation for the field. Debates thus continue over the
ubiquity of fractals, particularly spatio-temporal fractals and avalanches (e.g. Avnir et al.
1998).

• Many of the SOC models are highly idealized and do not even attempt to capture the
basic interactions of a natural system. Rather than the caricature of magnetism in the Ising
model, or the way in which a shell model encapsulates the symmetries of turbulence, they
often consist of a set of rules in the vein of a cellular automaton, designed to display
spatio-temporal scale invariance. However, at closer inspection many fail to display the
desired features.

• “Human Factors”: Citation and priority of Mandelbrot and others ruffled some feathers,
while SOC may have been a distraction from other important and prior work on spatio-
temporal fractality.
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• Confusion about the deterministic nature and predictability in some SOC models, and the
natural phenomena they were supposed to apply to. On the one hand, the prime example
of SOC was the sandpile model which evolves according to deterministic rules, on the
other hand, Bak and Tang (1989, p. 15636) concluded (about earthquakes) that “there is
virtually no hope for ever making specific predictions”.

• There are alternative explanations even within other theoretical work on critical phenom-
ena for “dirty power laws” and “fat tails”, such as “plain old criticality” (Perković et al.
1995) or “sweeping of an instability” (Sornette 1994).

In the following, we address these points in further details.

8.1 Confusion

As discussed in Sect. 3 and Fig. 1, the relatively clear core claim of SOC (of the possibility
of self-tuned phase transitions in nature) was sometimes coupled with a perception that SOC
aims to explain all fractals or even all power laws. That claim was not made initially, though
some proponents of SOC later nourished that belief even in their popular writing. In Bak’s
own “How Nature Works” (Bak 1996) power laws of possible relevance to SOC (such as
solar flare X rays) and others almost certainly irrelevant to SOC (such as Zipf’s law of word
length) were mentioned side by side. This had the unfortunate consequence of obscuring the
fact that the power law distributions in avalanche sizes and durations were only proxies for
the power law correlation functions that BTW described as a crucial aspect of the unification
of spatio-temporal fractals that they were seeking (Bak et al. 1988b, also Sects. 4 and 7).

This already serious problem was compounded by a confusion of the proposed expla-
nation (SOC and its dynamics) with the explanandum (the thing to be explained, namely
[ubiquitous] spatio-temporal fractals). For as soon as the dynamics of SOC processes is ac-
cepted as the universal explanation for the phenomenon of spatio-temporal fractals, every
observation of such fractals becomes an instance of “SOC at work”. Worse, observation of
scaling may be seen as evidence for the validity of SOC as an explanation, and (by associ-
ation or a leap of faith) of the boldest of all SOC claims (Fig. 1), that the contingency of
nature derives from SOC.

At first, measuring event size distributions may have been a necessary evil, as correla-
tions are so much harder to acquire and analyze (see the Appendix), at least in numerical
simulations and from observational data. Over the years, in the absence of an easy way of
measuring correlations, the literature as a whole moved towards the notion of power law
distributions as a replacement (rather than a proxy, as discussed in Sect. 4) for power law
correlations. To a large extent the distinction was forgotten and the significance of the latter
associated with the former. Statistical mechanics provides a systematic link between the two
in the form of a sum-rule, akin to the one relating susceptibility and correlation functions
in, say, the Ising Model (Stanley 1971, p. 120, and in SOC, Pruessner 2012, Sect. 8.5.4.1).
Yet, the relation between the two is strained by technicalities and it is often far from obvi-
ous which correlation function is expected to display (power law) scaling if an observable
representing a spatio-temporal integral (such as the avalanche size defined as the activity
integrated in time and space) follows a power law distribution. Power law distributions are
therefore often a proxy for something unknown.

Nevertheless, a significant number of papers in the wider literature accepted the notion
that every observation of a power law readily signals the presence of long ranged (i.e. power
law) spatio-temporal correlations. In some cases, power law distributions are “trivial” in that
they arise without non-trivial interaction and correlations (see the Appendix). For example,
some directed sandpile models display power law scaling in the avalanche size distribution,
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but no spatial correlations whatsoever (Pruessner 2004a). It is fair to assume that the propo-
nents of SOC were well aware of the difference between “power law distributions” on the
one hand and “power law correlations” on the other. It is probably also fair to assume that
they were fully aware of the core claim of SOC being an hypothesis subject to an ongoing
investigation.

Above we have tried to draw a line between power laws observed in event size distribu-
tions and power laws observed in correlations. Not every power law event size distribution
is indicative of power law correlations. Traditionally, at least in statistical mechanics, the
emphasis has been on the latter, as power law correlations indicate long ranged correlations,
which normally (if exponents are not too large) signal cooperative phenomena. They are
interesting, because the whole is then more than its parts, i.e. the system cannot then be
completely described by decomposing it into smaller compartments or components.

The distinction between “spatio-temporal (power law) correlations” and “spatio-temporal
fractals” is even more blurred: Clearly, fractal spatio-temporal structures imply non-trivial,
long-ranged (i.e. power law) spatio-temporal correlations. The converse connection, how-
ever, is quite loose, as it is far from clear as to what to expect to be fractal in the presence
of power law correlations. Is it justified to assume that fractal features of less tangible ob-
jects (such as spatio-temporal activity patterns) indicate an underlying fractal structure of
the constituent parts of the system?

8.2 Ubiquity, Universality, Generality

The argument “. . . it is hard to believe that long-range spatial and temporal correlations can
exist independently . . . [a]nd a large, coherent spatial structure cannot disappear (or be cre-
ated) instantly.” (Bak and Chen 1989, p. 5, as quoted in Sect. 5), is a reasonable one and
won many supporters. It rests on the realization that surely long-range correlations cannot
be confined to a particular dimension, rather they feed through to all space and time dimen-
sions. That perception, however, has long been revised: In equilibrium critical phenomena,
certain dynamics or algorithms (Swendsen and Wang 1987; Wolff 1989) evolve spatial frac-
tals essentially with little or no temporal correlations. Vice versa, temporal correlations do
not necessitate spatial correlations, as illustrated by, say, directed sandpile models (Dhar
and Ramaswamy 1989; Pruessner 2004a), which carry no spatial correlations and yet dis-
play memory. In fact, Grinstein (1995, p. 267) called temporal correlations “in the presence
of a local conservation law [. . . ] difficult to avoid”. In other words, if SOC is expected in the
simultaneous presence of spatial and temporal correlations, then the existence of both has to
be ascertained, because one does not imply the other.

As mentioned several times throughout this piece, it is notoriously difficult to measure
long range spatio-temporal correlations in situ or even numerically (but see below) and
therefore many authors resorted to measuring spatio-temporal integrals of observables, such
as avalanches sizes, durations and areas. The scaling of the distribution of these event sizes,
say the avalanche size, can be related to the scaling of a correlation function, say the activity
propagator, measuring the spreading of “activity” in the system some time after a triggering
event at some “seeding point” in the system (Pruessner 2015). Alternatively, the avalanche
size can be expressed in terms of the spatially averaged activity (Lübeck 2004; Pruessner
2012, Sect. 9.3.4 and McAteer et al. 2015). Less directly, the width of the interfacial mapping
(Paczuski and Boettcher 1996; Pruessner 2003) of the Oslo Model (Christensen et al. 1996),
which is related to the scaling of the probability density function of the avalanche size, scales
exactly like the height-height correlation function of that interface (Barabási and Stanley
1995). It is probably fair to say, that it is difficult enough to extract from experiments and
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observations any scaling or fractality, which are therefore seen as “good enough” substitute
or, more accurately, symptoms of the long range spatio-temporal correlation supposedly
causing them.

Where fractals and scaling are suspected in natural phenomena, observational support is
often very limited (Avnir et al. 1998, e.g.), both in terms of length and time scales spanned
by the data as well as its robustness. Broad distributions are frequently found, but there are
few phenomena, which offer sufficiently detailed and broad data to support power law scal-
ing beyond reasonable doubt. It is difficult to reconcile the efforts that have been spent on
experiments, data gathering and analysis with the claim that scaling or just power laws are
ubiquitous in nature. One may therefore ask, rather provocatively: Is there really a (ubiqui-
tous) problem to solve?

Unless one accepts the claim that SOC is the basis of scaling in nature, SOC itself (not
just scaling) as defined in Sect. 7 is difficult to identify in a natural phenomenon or exper-
iment directly. If anything, SOC has been offered as an explanation for certain scaling to
appear spontaneously. At the theoretical end, none of even the computer models which are
widely accepted as displaying all the hallmarks of SOC (see Sect. 8.3) has been solved or
even only systematically approximated. In fact, there is not even a mean field theory that
makes any quantitative reference to SOC taking place in spatially extended systems with
some form of boundary at finite distances.

In summary, SOC was conceived as an explanation of a ubiquitous natural phenomenon,
but it turns out that observational or experimental evidence is very difficult to come by. Hard
evidence for SOC is mostly due to numerical modeling. To this day, there is no complete
theory of SOC and it remains unclear why a phenomenon, that should be observable under
generic conditions is so rarely seen.

In that particular respect, SOC has shared the fate of the “directed percolation universality
class” (e.g. Hinrichsen 2000a; Ódor 2004), which, although widely accepted to apply to
an enormously large class of phenomena (Janssen 1981; Grassberger 1982), ranging from
catalytic chemical reactions or to epidemic spreading, still has very little experimental and
observational support (Hinrichsen 2009, however see the laboratory experiments beginning
with Takeuchi et al. 2007 and accompanying news coverage e.g. Hinrichsen 2000b, and the
intriguing observational claim of Wanliss and Uritsky 2010).

8.3 Paradigmatic Versus Good Models

SOC has been introduced and motivated by the sandpile model, which is given in the form
of a set of updating rules as used for the description of cellular automata. The initial nu-
merical analysis revealed what was then coined “Self-Organized Criticality” and 1/f noise,
later revised to be 1/f 2 by Jensen et al. (1989, also Christensen et al. 1991). The model
itself was early on revised to display the Abelian property (Dhar 1990), which is beneficial
to both numerical and theoretical analysis. Over the years, it became increasingly clear that
the sandpile model has some rather unfortunate features, in particular, that its supposed scal-
ing behavior could never be fully determined (e.g. Manna 1990; Lübeck and Usadel 1997;
De Menech et al. 1998; Dorn et al. 2001); The prime model of Self Organized Critical-
ity turns out not to display much of that notorious Criticality after all. On the other hand,
it offers a vast array of secondary features that had very interesting large scale properties
which have been characterized analytically, such as waves (e.g. Ivashkevich et al. 1994),
the average slope (e.g. Jeng et al. 2006), (static) height-height correlation function (e.g. Jeng
2005) or solvable variants with anisotropy (Dhar and Ramaswamy 1989). None of this work,
unfortunately, makes reference to scaling of avalanches, large scale activity correlations or
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spatio-temporal fractals, although the sandpile model certainly carries similar visual appeal
(Creutz 2004).

As far as “real sandpiles” are concerned, experimental studies failed to detect robust scal-
ing (Jaeger et al. 1989; Held et al. 1990), although, as one may argue, expecting otherwise
would stretch the name “sandpile model” beyond its intention as aide-memoire. One should
remember that even the first SOC papers discussed a coupled harmonic oscillator model as
well as the sandpile. Interestingly, the ricepile experiment (Frette et al. 1996) and the ri-
cepile or Oslo model (Christensen et al. 1996) both fared much better in that respect. As
far as granular media is concerned, the Oslo model has probably the best experimental sup-
port (Frette et al. 1996; Ahlgren et al. 2002; Aegerter et al. 2003; Lőrincz and Wijngaarden
2007).

The Oslo Model is, in fact, a representative of an entire universality class (Nakanishi and
Sneppen 1997), often referred to as the Manna universality class. Equally, the Manna Model
(Manna 1991; Dhar 1999a) displays most clearly all features one could possibly expect from
a self-organized critical model (Sect. 7):

• Firstly, robust, reproducible finite size scaling without dependence on any control param-
eter or details of the definition of the model (Dickman et al. 2002), such as the underlying
lattice structure (Huynh et al. 2011).

• Secondly, spatio-temporal correlations, which were initially measured through integrated
observables (avalanche size, duration, area, radius of gyration etc.). While temporal cor-
relations are less of a concern (e.g. Pickering et al. 2012, for correlations on the slow time
scale), spatial correlations can be extracted with some patience (McAteer et al. 2015).

• Thirdly, apparent self-tuning to a critical point, that can be characterized in its own right,
i.e. as a regular critical point without invoking SOC (Vespignani et al. 1998; Dickman
et al. 2001).

In fact, it seems that two important theoretical tools are within reach for the Manna Model:
an ε-expansion (Huynh and Pruessner 2012), and a field-theoretic description which also re-
veals the universality class of a tuned variant (the conserved directed percolation universal-
ity class according to Rossi et al. 2000). The Manna Model also fits the list of “ingredients”
of an SOC Model in Sect. 7: Thresholds, intermittency and separation of time scales. The
universality class of the Manna Model is remarkably large (Pruessner 2012, pp. 177–181),
containing even fully deterministic models (de Sousa Vieira 1992; Paczuski and Boettcher
1996).

Going back to 1/f -noise as the motivation and root of SOC, Jensen (1990) introduced
a fully deterministic lattice gas inspired by experimentally observed 1/f spectra in super-
conductors. Simulations of this model exhibit 1/f spectra and the dissipation take place
on fractal-like structures. However, recently it was realized that the model does not display
self-organization to criticality (Giometto and Jensen 2012), but requires tuning to reach the
critical point of the (conserved directed percolation) absorbing state phase transition. It is
probably fair to say that despite its long history (van der Ziel 1950) 1/f -noise is no longer a
motivation for SOC, possibly because of the confusion about its actual meaning (1/f versus
1/f α) and also the possibility, at least in contemporary computer models, to characterize
correlations directly in the time domain rather than indirectly via the power spectrum.

8.4 Distraction and Priority

Some of the early papers in SOC paid insufficient attention to, and so may have led other
people to neglect, related (and previous) relevant work. Bak and Chen openly declared that
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they could see little collaboration between those working on fractals and those working on
1/f noise (“[. . . ] those working on fractal phenomena [. . . ] never [. . . ] seem to be inter-
ested in the temporal aspects, [. . . ] those working on “1/f ” noise never bother with the
spatial structure of the source of the signal” Bak and Chen 1989, as quoted in Sect. 4).
Yet, laboratory critical phenomena already linked space and time, for example via critical
slowing down, which is exactly the concept used to understand dynamical critical behavior
(e.g. Yeomans 1994) in SOC. There was also work on the link between spatial and tem-
poral fractality by Mandelbrot himself (Mandelbrot and Wallis 1969) prior to his work on
spatio-temporal cascades in turbulence beginning in the 1970s (Mandelbrot 1972).

In the early days, some scientists may have perceived SOC as an aggressive foray into
their established scientific fields, an attempted “hostile takeover”, which contributed to the
notion of “physicist hubris” (also Maddox 1994). The Bak-Sneppen Model, for example,
was introduced to the biologist audience by summarizing their own achievements and con-
trasting them with those of the authors: “However, there is no theory deriving the conse-
quences of Darwin’s principles for macroevolution. This is a challenge to which we are
responding” (Sneppen et al. 1995, p. 5209). Plenty of similar examples can be found in
the literature, some witty, some outright rude (“Is biology too difficult for biologists?” Bak
1998). His fellow complexity scientists Cosma Shalizi and Bill Tozier at the Santa Fe Insti-
tute penned an amusing riposte to this tone in their preprint “a simple model of the evolution
of simple models of evolution” (Shalizi and Tozier 1999).

8.5 Predictability

Predictability has a somewhat ambiguous status in SOC. In their second paper, BTW argued
for 1/f to be the result of a superposition of independent avalanche durations (Bak et al.
1988a, p. 369), as originally suggested by van der Ziel (1950). In other words, indepen-
dence of events was an assumption at the very foundation of SOC as an explanation of 1/f

noise. Although convenient for a straight-forward quantitative relationship between 1/f α

exponent and avalanche duration distribution, however, independence is not needed for the
argument about the origin of 1/f noise. Once introduced, the implied lack of predictability
and generally contingency became an important feature, a “selling point”, very early, for ex-
ample in the work on earthquakes mentioned above, but also as part of the wider perspective
of SOC:

The [SOC] system exhibits punctuated equilibrium behavior, where periods of stasis
are interrupted by intermittent bursts of activity. Since these systems are noisy, the ac-
tual events cannot be predicted; however, the statistical distribution of these events is
predictable. Thus, if the tape of history were to be rerun, with slightly different random
noise, the resulting outcome would be completely different. Some large catastrophic
events would be avoided, but others would inevitably occur. No “quick-fix” solution
can stabilize the system and prevent fluctuations. If this picture is correct for the real
world, then we must accept fluctuations and change as inevitable.

(Bak and Paczuski 1995, p. 6690)

Although the authors stress here that it is the noise that is inherently unpredictable, its input
is “amplified” even in fully deterministic SOC systems, because of their high susceptibil-
ity to external perturbation, which is characteristic for chaotic systems (e.g. the famous
“butterfly-effect”) and those at a critical point:

At several points the earthquake is almost dying, and its continued evolution depends
on minor details of the crust of the earth far from the place of origin. Thus in order
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to predict the size of the earthquake, one must have extremely detailed knowledge on
very minor features of the earth far from the place where the earthquake originated.

(Bak and Tang 1989, p. 15636)

On the other hand, long temporal correlations, both at the fast time scale within an
avalanche and the slow time scale between avalanches, mean that the system maintains
a memory of past activity. In systems where a globally conserved quantity is released in
sudden bursts, this is immediately obvious: A slow external drive will eventually “run out
of steam” to sustain large events in quick succession. In these cases, one can expect anti-
correlations (Welinder et al. 2007). In general, long temporal correlations allow for particu-
larly good predictability, at least of big events. This does not contradict the notion of large
susceptibility, which indicates that the variance of responses to an external perturbation is
particularly broad. Clearly, all of these observables are probabilistic by nature.

In a Nature debate on earthquake prediction, Bak (1999) later qualified and clarified his
views on predictability:

[T]he earthquakes in SOC models are clustered in time and space, and therefore also
reproduce the observation O4 [seismicity is not Poissonian]. This implies that the
longer you have waited since the last event of a given size, the longer you still have to
wait; as noted in Main’s opening piece, but in sharp contrast to popular belief!
[. . . ] For the longest time-scales this implies that in regions where there have been no
large earthquakes for thousands or millions of years, we can expect to wait thousands
or millions of years before we are going to see another one. We can ‘predict’ that it
is relatively safe to stay in a region with little recent historical activity, as everyone
knows. There is no characteristic timescale where the probability starts increasing, as
would be the case if we were dealing with a periodic phenomenon.
[. . . ] Unfortunately, the size of an individual earthquake is contingent upon minor
variations of the actual configuration of the crust of the Earth, as discussed in Main’s
introduction. Thus, any precursor state of a large event is essentially identical to a
precursor state of a small event. The earthquake does not “know how large it will be-
come”, as eloquently stated by Scholz. Thus, if the crust of the earth is in a SOC state,
there is a bleak future for individual earthquake prediction. On the other hand, the
consequences of the spatio-temporal correlation function for time-dependent hazard
calculations have so far not been fully exploited!

(Bak 1999)

In the same piece, Bak also acknowledged (and rejected) a differing perception of SOC:

The [SOC] phenomenon is fractal in space and time, ranging from minutes and hours
to millions of years in time, and from meters to thousands of kilometers in space.
This behavior could hardly be more different from Christopher Scholz’s description
that “SOC refers to a global state . . . containing many earthquake generating faults
with uncorrelated states” and that in the SOC state “earthquakes of any size can occur
randomly anywhere at any time”.

(Bak 1999)

It seems that the understanding of predictability in SOC became more differentiated over
time. While initially the insight prevailed that stochasticity and susceptibility made SOC
systems inherently unpredictable, that view made way for a better understanding of correla-
tions. SOC systems do not signal the onset of a large event and may not even do so while the
event occurs. Yet, event sizes remain correlated over very long time, allowing probabilistic
predictions, such as the likelihood of two particularly large events occurring consecutively.
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In SOC-inspired research in solar physics, waiting time distributions (WTDs) are the
most prominent format of predictions. They are defined as the probability density function of
the waiting times between consecutive events. A Poisson process produces an exponentially
decaying waiting time distribution (van Kampen 1992), which is therefore often used as the
fingerprint for a lack of correlations. However, non-stationary point processes may give rise
to (apparent) power law tails in the WTD (Aschwanden 2011, Chap. 5). In the literature
WTDs based on observations of solar flares have given varying results depending on the
observational period, the X-ray wavelength, and whether individual active regions are con-
sidered in the analysis. Crosby et al. (1998) found no correlation between the elapsed time
interval between successive deka-keV solar flares arising from the same active region, and
the peak intensity of the flare. This observation was taken to be in support of the solar flare
SOC model by Lu and Hamilton (1991). In contrast, based on soft X-ray flare observations,
Boffetta et al. (1999) found that the WTD displayed power law behavior in contradiction
with the SOC model by Lu and Hamilton, which predicts Poisson-like statistics.

To put this apparent mismatch in perspective, we want to emphasize that Poissonian
waiting times, or more generally, lack of correlations are by no means typical in SOC. For
example, the Omori-law of earthquakes (Omori 1894; Utsu 1961; Utsu et al. 1995) plays
a very prominent rôle (Olami and Christensen 1992; Hergarten and Neugebauer 2002) in
the analysis of the SOC model by Olami et al. (1992). One can only speculate whether the
presence of Poissonian waiting times, P(t) = λ exp(−λt) for a process with rate λ, may
have been confused with a power law distribution of waiting times, in the limit of small λ

(namely with large cutoff), as λ exp(−λt) = t−1G(λt) with G(x) = x exp(−x), the scaling
function.

8.6 Alternative Scenarios

There have also been a number of successful attempts to provide alternative explanations
for (apparent) critical behavior without tuning of a control-parameter. Sornette (2006) has
collected a number of scenarios under which apparently critical behavior can be observed
without invoking SOC. One described very early (Sornette 1994) suggests that an ordinary
critical phenomenon is causing the scaling behavior, yet no self-organization takes place
beyond the system’s tendency to remain close to the critical point: The system “sweeps
back and forth” across the critical point in an oscillatory fashion.

Peters and Neelin (2006) performed an analysis reminiscent of one done when dealing
with equilibrium continuous phase transitions. They studied precipitation of rain by iden-
tifying the water vapor density as the control parameter (in analogy with the temperature
in a ferromagnetic phase transition) and identified the amount of precipitation as the order
parameter. In addition they plotted the variance of the precipitation, and also how frequently
the atmosphere is found at a given vapor density, which they call the residence time. The
outcome is a set of diagrams which exhibit many similarities to how the order parameter
and susceptibility behave in standard continuous phase transitions. The precipitation picks
up abruptly at a certain vapor density and in the vicinity of this density they find that the
fluctuations in the precipitation (corresponding to the susceptibility) peaks.

However, as the atmosphere does not self-tune to a particular critical value of the vapor
density, but rather is found in a range of vapor densities. The near critical behavior is re-
lated to the residence time having a peak near the value of the vapor density at which the
precipitation has a sharp increase and the fluctuations in the precipitation peaks.

This analysis may be interpreted in the following way. The dynamics of the precipitation
pulls the atmosphere around the critical value of the vapor density as vapor may build up
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beyond the critical value and rain showers can take the vapor density back down below the
critical value. As a result the atmospheric systems moves around a certain vapor density at
which precipitation becomes very likely but sharp tuning to a critical state does not take
place.

A very similar analysis and scenario was found for the activity of the brain in resting
state as measured by fMRI by Tagliazucchi et al. (2012). These authors analyzed the brain
activity from the perspective of percolation and found that the brain moves around in the
vicinity of a three dimensional percolation transition for the voxel activity measured by an
fMRI scanner.

These results may suggest that at least in some situations the SOC phenomenology in
reality consists of dynamics that by itself drives the system to the neighborhood of some
critical transition but, which, because of coupling between the dynamics and the order pa-
rameter, is unable to fine tune to the exact critical state. In an attempt to provide a theoret-
ical foundation of SOC, it has been argued (Vespignani et al. 1998; Dickman et al. 1998,
but Pruessner and Peters 2006) that this is a matter of system size: As the system size is
increased, the dynamics is eventually “pinched” at the critical point. In the case of precipita-
tion it appears that the order parameter (amount of rain) is able to pull the control parameter
(vapor density) below the critical value and that the control parameter (due to the build up of
super critical vapor densities by evaporation) can grow above the critical value. This seems
to be similar to the dynamical cause (Pruessner and Jensen 2002a) that breaks the scaling of
the Drossel and Schwabl (1992) forest fire model.

9 SOC in the Wild: How Has SOC Inspired Research on Space and
Fusion Plasmas?

The previous section may read like a catalogue of woe, and it is important to see things in
perspective. A theory as bold as SOC was bound to be controversial, so we will now balance
the controversy with a very brief sketch of how the research fields of three of the authors
(Chapman, Crosby and Watkins), in solar system and laboratory fusion plasmas, have been
inspired by the SOC paradigm into new and productive directions. We direct the reader in
search of more detail to the companion papers (Aschwanden et al. 2014, in this issue; McA-
teer et al. 2015, in this issue; Sharma et al. 2015, in preparation), the reviews of Chapman
and Watkins (2001), Watkins et al. (2001), Watkins (2002), Freeman and Watkins (2002),
Vassiliadis (2006), Dendy et al. (2007), Perrone et al. (2013), the book by Aschwanden
(2011), and references therein, among many possible sources.

Several problems in space plasma physics resemble SOC. One clear example is the wide-
band distribution of solar flare energies, and solar flares remain one of the most intriguing
examples of SOC-like behavior. Most likely caused by a magnetic instability that triggers a
magnetic reconnection process in a large range of sizes and time scales, solar flares produce
emission in almost all wavelengths (e.g. gamma-rays, hard X-rays, soft X-rays, extreme
ultraviolet, Hydrogen α emission, radio wavelengths, and sometimes even in white light).
Datlowe et al. (1974), Lin et al. (1984) and Dennis (1985) were some of the first to deter-
mine frequency distributions of solar flare hard X-ray observations (see Crosby et al. 1993
for a historical summary).

From micro- and nano-flares to the largest flares the flare energy power law distribution is
found to cover over eight orders of magnitude (Aschwanden 2011). The energy distribution
contains all flare sizes, independently of the mechanism by which the released energy is
converted. Like the Gutenberg-Richter law in seismicity these observations predated SOC,
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and Lu and Hamilton (1991) proposed a model based on BTW’s sandpile to reproduce them.
In their model each solar flare is considered an avalanche event in a critical system. The way
the magnetic energy is redistributed, how the system is driven (the “loading mechanism”),
and the “incorporation” of magnetohydrodynamics (MHD) have all been further developed
by others, and interesting SOC-inspired variants have also been proposed such as the cascade
of reconnecting loops studied by Hughes et al. (2003).

Following Lu and Hamilton (1991) several workers began analyzing frequency distri-
butions on large solar flare datasets in the context of SOC (e.g. Crosby et al. 1993, 1998;
Lee et al. 1993; Georgoulis et al. 2001). Many studies also followed that used solar flare
observations in other wavelengths. Crosby et al. (1998), for example, subdivided solar flare
X-ray data according to a parameter and determined frequency distributions on the resulting
sub-sets, revealing positive correlations in the parameters. In the context of model valida-
tion, observational results such as these put constraints on models that need to be able to
reproduce the observations.

Turning now to the Earth’s local plasma environment, the magnetosphere, our readers,
whether space scientists or not, will know of the dramatic auroral displays seen over Earth’s
polar regions. These reveal a range of intricate patterns, and many phenomena have been
identified in them on a wide range of temporal and spatial scales, from seconds to hours,
and from one to thousands of kilometers (e.g. panels A to C of the figure in Freeman and
Watkins (2002)). In the early 1990s some researchers began to focus on whether there might
be “universal” aspects to auroral structure. As well as chaotic nonlinear dynamics, SOC
was a natural avenue for this inquiry, and several parallel lines of attack developed. We
will mention just a few papers here, a more comprehensive bibliography of early work on
magnetospheric SOC can be found in Watkins et al. (2001).

One strand was experimental. Takalo et al. (1993) for example computed structure func-
tions (as also widely used in turbulence research and surface growth) on the auroral electrojet
(AE) index.17 They found a scaling region between about 1 minute and 2 hours. The scale
break above 2 hours was attributed to the quasi-periodic interruption of the time series by a
global scale auroral disturbance, the magnetospheric substorm.

A complementary theoretical thread took several forms. The strand most directly inspired
by sandpile models initially involved pointing out the similarities between key properties
of AE, determined by power spectral (e.g. Consolini 1997; Uritsky and Pudovkin 1998) and
threshold exceedance (e.g. Consolini 1997) techniques, and those of existing sandpile mod-
els, both BTW’s and the running sandpile model of Hwa and Kardar (1989). The pioneering
work on power spectra of AE by Tsurutani et al. (1990) that showed it to exhibit a low
frequency “1/f ” region, was now argued to be indicative of SOC. Two new measurements
directly inspired by SOC were the probability density of the time for which the AE index
exceeded any given fixed threshold, the “burst duration”, and burst size (the integrated value
above the threshold for each burst). Both were found to have fat tailed pdfs (e.g. Consolini
1997), for bursts from the minimum measurement scale of 1 min to the longest burst life-
times (of order 1 day). Subsequent work (e.g. Freeman et al. 2000) for both burst duration
found that superposed on the fat tail was another component centered on a fixed scale of
about 100 min, corresponding to the global substorm phenomenon.

In parallel with the above developments in space physics, SOC had also already been
fruitful in fusion research, where the wider properties and dynamics of avalanching sys-
tems are of interest in addition to their statistical properties. It had been noted (e.g. Dendy

17AE is a time series of the peak magnetic perturbation measured on the ground caused by electrical currents
flowing 100 km overhead in the aurora.
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et al. 2007) that magnetically confined tokamak plasma experiments for fusion are driven,
dissipative systems with multiple steady states, anomalous transport, and bursty release of
energy and material. This prompted the development and extensive study of several sand-
pile/avalanche models (surveyed in Dendy and Helander 1997; Perrone et al. 2013) in the
fusion context, specifically to reproduce key observables which are not necessarily power
law avalanche distributions. A key observable in tokamaks is the correlation between the
distinct statistical properties of bursty energy release (edge localized modes) and the con-
finement state of the plasma (low and high confinement states, or L and H modes). This
essential property was captured in a “sandpile with an H mode” (Chapman 2000; Chap-
man et al. 2001). This model also captures aspects of anomalous transport in tokamaks, for
example the observed, unexpected, inward transport against the temperature gradient. This
fusion-relevant model directly followed from one developed (Chapman et al. 1998) to ex-
plore the role of SOC in magnetospheric substorms, and is an example of transfer of ideas
from one research area to another and back. The CDH model (Chapman et al. 1998) which
could be consistent both with fat tailed ionospheric energy dissipation events, and with mag-
netospheric events with a characteristic size provided that they were systemwide events like
the substorm, was inspired by work on inertial sandpiles for tokamaks (Dendy and Helander
1998).

Following Chapman et al. (1998) a more direct observational test was suggested in Lui
et al. (2000), who proposed the use of a threshold exceedance measure to investigate the
spatial structure of the aurora. Using UV images of the aurora from cameras on the Polar
spacecraft, Lui et al. (2000) identified auroral “blobs”, where the auroral emission intensity
exceeded some fixed threshold, during both quiet and substorm intervals. As in the AE index
time series analysis, a fat tailed pdf was found both for number of threshold exceedances
and their areas, with an additional population centered on a fixed scale corresponding to the
global substorm disturbance. It was also realized that unlike the ideal SOC paradigm, that
in such driven dissipative astrophysical confinement systems the driving would be highly
variable, leading to studies of the extent to which the fat tailed avalanche distribution was
robust against this (Watkins et al. 1999).

However, Uritsky et al. (2002) argued that the Lui et al. (2000) approach overestimated
the number of spatio-temporally evolving blobs, because a blob counted in one image at
one time could be the same one counted at another time. These authors thus analyzed Polar
images from spatiotemporally, and claimed that pdfs of maximum blob area or integrated
area over blob lifetime followed power law distributions over the entire observable range
(3–5 orders of magnitude), and similarly for the blob lifetime, maximum dissipated power
and dissipated energy (see also Freeman and Watkins 2002).

The conceptual parallel between avalanches in SOC models with those apparently ob-
served in the aurora is appealing, but an immediate complication resulted from the fact the
aurora is a projection of the dynamic charged particle structure of the near-Earth magneto-
sphere. Because satellite measurements in the tail region of the magnetosphere have shown
bursty bulk flows of charged particles that may be individually correlated with auroral emis-
sions, and may have a scale-free distribution of durations, it was argued Lui et al. (2000),
Uritsky et al. (2002) that these were, essentially, the avalanches.

A somewhat different, and complementary scenario to BTW’s SOC for the dynamic
structure of the magnetosphere was however suggested by Chang (1992). In his picture,
plasma wave resonances create coherent structures of various sizes that merge and interact
to create new structures. He proposed that continual interactions of this type may naturally
self-organize or be forced into a scale-free hierarchy of coherent structures like the order-
ing of spin structures in the Ising model at the critical point. In his view the distinction
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between self-organized and forced criticality is essentially about the nature of the thing that
drives the system (the solar wind in the case of the magnetosphere). As we have shown,
in BTW’s SOC, the driving rate is necessarily very slow compared to the interaction and
merging time scales. Intriguingly the opposite behavior was predicted for some other non-
equilibrium models where the onset of criticality appears above some driving rate (Nicolis
and Malek-Mansour 1984), and something analogous is also seen in turbulence where the
onset of complex behavior occurs above a given value of the Reynolds number. Chapman
and Watkins (2009), Chapman et al. (2009) have clarified this behavior by noticing that the
dimensionless control parameter formed by fuelling rate and dissipation rate in SOC models
is effectively an inverse Reynolds number.

Consideration of the driver has however, as elsewhere in complexity research, raised a
thorny issue: The supply of energy from the solar wind into the magnetosphere has itself
a fractal flavor, because the solar wind is turbulent. Studies (Freeman et al. 2000) using
static measures of fractal property in long-of order years- non-overlapping solar wind and
auroral time series suggested that, at least for the AE index, the scale free behavior might
originate in the solar wind, rather than be self-organized in the magnetotail. Comparisons
using time-dependent measures on shorter-of order months or less-but overlapping, series
however (Uritsky et al. 2001) indicated that an internally generated scale-free component
may coexist with a solar wind. Debate on this topic has continued, and is not unique to
the magnetosphere, but is reminiscent, for example of the debate in theories of punctuated
evolution between the influence of “external” events (such as asteroid impact) on extinctions
and self-organized “internal” extinctions.

Even without an SOC origin, power law distributions can be used to estimate the maxi-
mum strength of natural hazards and are increasingly being used by reinsurance companies
and governments to assess the risks they pose. The space industry is no exception to this
trend, as when building spacecraft such information is essential when designing the space-
craft shielding which mitigates against extreme events as well as the long-term effects of
space weather.

10 Summary and Conclusion

Readers who have made it to the end of this article may now appreciate why our first epi-
graph quoted the Dude from “The Big Lebowski”, as untangling the history, meaning, and
current status of SOC really has required the reader (and authors) to keep track of a “lotta
strands”. This is made even harder by the diversity of the research fields in which these
strands originate, all of which have not only their own notations and traditions, but also very
different ideas about what a good model is, and how to wield Occam’s razor! However, we
hope we have also brought out the reasons why our second epigraph quoted physics Nobelist
Philip Anderson, who described SOC as of “paradigmatic value, as the kind of generaliza-
tion which will characterize the next stage of physics”. In our concluding section we now
try to draw out two specific issues, about the current status of the SOC conjecture and ac-
companying theory and the testability of SOC in space and lab plasmas respectively, and
give our views on these.

10.1 SOC Theory: Where Do We Stand?

SOC was conceived by Bak, Tang and Wiesenfeld against the background of condensed
matter theory, statistical mechanics and, to lesser extent, dynamical systems, with the inten-
tion to explain spatio-temporal fractals in nature. The initial core claim, that some spatio-
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temporal fractals (i.e. long time and range correlations) are produced by systems that are
organizing themselves to a continuous phase transition, where such correlations are typi-
cal, was soon extended to encompass a much greater spectrum of phenomena. Considerable
confusion has grown over the years as to what has been established by and about SOC,
to what extent it has been confirmed analytically, numerically, by observation in nature or
experimentally, where it applies and what it aims to explain.

There are few systems that display SOC in all its glory, but they do exist and they provide
clear evidence that it works in precisely the way originally envisaged. SOC may be at work
in some natural phenomena, such as earthquakes, solar flares and precipitation, but SOC is
almost certainly not ubiquitous. To some, more traditionally-minded communities, in par-
ticular in condensed matter theory, the phenomenon of SOC nevertheless comes as a great
surprise, as spontaneous non-trivial scaling in this area is otherwise confined to systems
displaying generic scale invariance, without intermittency or self-organization to a critical
point, and invariably requiring some scale-free source or input, such as noise.

Despite being hampered by re-interpretations not originally intended by its authors (and
sometimes because of these!), SOC has inspired much research into multiscale phenomena
and has helped bring together disjoint communities, in particular those interested in heavy
tails, spatio-temporal fractals and 1/f noise. All of these were known to specialists (e.g.
van der Ziel 1950; Schick and Verveen 1974; Weissman 1988). but all had relatively low
cross-disciplinary visibility before SOC, as the authors can testify. In the long term this may
be one of the most important legacies of the subject.

While, in some of these areas, the strict definition of SOC has given way to a broader
view and sometimes sweeping claims, it has also provided the very fruitful paradigm for a
much deeper understanding of the phenomena concerned, as researchers became aware of
the distinct possibility that some very simple interactions on a microscopic scale carry over
to and evolve across many different time and length scales, effectively providing the same
basic physics in rescaled form across many scales. In that sense, SOC realized the aspirations
and exhortations of Anderson (1972) and Wilson (1979) in that it provided a framework
to ask questions about the crucial, effective, simple interactions that are present across all
scales of a multiscale phenomenon, and which must therefore be present, detectable and
describable (in bare, unscaled form) at some small scale. SOC stripped away the need for a
detailed microscopic physics and gave way to a more global perspective of the basic physical
principles that govern a phenomenon on every scale.

This perspective of looking for the basic interaction that governs a physical system across
scales is different from classic reductionism, which suggests that the overall phenomenon is
some averaged version of the internal dynamics. SOC suggests that the interaction is present
on all scales, although in some scaled form, as it slowly morphs and evolves in space and
time. In that respect, SOC provides a much sharper quantitative emphasis than some of the
more recent complexity-inspired points of view.

Broad, heavy tailed distributions and correlations, whether or not they can justifiably be
called power laws, and regardless of whether they are indicative of scaling, are observed in
many field and pose a challenge. This is because they suggest that phenomena are not con-
fined to a particular length scale and that the physics driving them manages to cross scales.
To understand them better would allow a better quantitative characterization of fluctuations
and associated risks and is likely to point at the relevant underlying physics. SOC is one
such attempt at a better understanding. With all its flaws and shortcomings, it is difficult to
identify a more successful approach.
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10.2 Testing for SOC in Space Plasmas

Having clarified our best current understanding of what an SOC state is, the other key ques-
tion is then, are these solar flare, and other interesting plasma systems, really in this SOC
state? Testing for SOC has mainly been centered on testing for power law statistics of event
sizes. Observationally this presents a fundamental challenge, as the confined plasma systems
are of finite size. The solar corona offers the broadest range of spatial scales and indeed,
here we see power laws over up to 8 decades. Probability distributions of different auroral
“spot” variables (observed in earth’s ionosphere), constructed using the results of ground-
based and satellite camera observations, extend across more than two orders of magnitude
in space (Kozelov et al. 2004), enabling the derived burst variables (which convolve a time
variable) such as size, duration and so forth to span a much larger range. This distinction
between spatial and spatiotemporal scaling ranges has been well known for some time, see
e.g. Avnir et al. (1998). A second challenge is that the developing understanding of how to
precisely test for SOC, as discussed above, has “raised the bar” in terms of what is required
for a truly convincing demonstration. Solid data of spatio-temporal correlations remain out
of reach and thus global measures, such as spatial (activity) integrals have to be used. We
will only touch on some points here, see also (McAteer et al. 2015).

First, it is important to distinguish SOC, or indeed, multiscale avalanching, from tur-
bulence, and this follows from the intrinsic separation of timescales in these systems. The
idealized SOC limit is when the ratio of driving and dissipation is taken arbitrarily small,
and this is in the opposite sense to turbulence (Chapman and Watkins 2009; Chapman et al.
2009). The finite size of these systems makes distinguishing SOC and turbulence in these
plasmas from observations of the scaling properties alone a challenge and this has led to
controversy (Uritsky et al. 2007; Watkins et al. 2009).

Second, one must exclude “trivial” similarity that can occur in linear systems. A simple
Brownian walk is self-similar but does not imply spatio-temporal correlations. An example
of a spatially extended system that incorporates dynamics is the Edwards-Wilkinson model
(Edwards and Wilkinson 1982), where grains are randomly dropped onto a surface which is
smoothed by linear spatial diffusion. In such a model one observes power laws in the sizes
of patches of the surface where the height exceeds a threshold, however the model is linear
and in that sense trivial (Chapman et al. 2004, also the Appendix). However, even escaping
triviality and linearity, MHD plasmas, along with hydrodynamics, exhibit similarity in their
non-linear dynamics, yet are certainly not instances of SOC. Classic examples are non-
linear Alfven waves, shocks and solitons. It therefore does not suffice to look for non-trivial
power law event size statistics per se as the “hallmark” of SOC. As discussed in Sect. 7 it is
necessary, but not sufficient.

Given the difficulties inherent in observational verification of (idealized) self-similarity,
alongside the clear evidence for multiscale bursty energy release and the simultaneous op-
eration of a zoo of plasma processes operating on multiple spatio-temporal scales which are
strongly coupled to each other, the original SOC paradigm can be said to have “mutated” into
a broader concept of “multiscale avalanching” plasma systems. As a concept around which
to order the observations, multiscale avalanching has been a remarkable success. Without the
concepts of plasmas as multiscale systems (e.g. Chang 1992), phenomenologists would still
be restricted to the detailed plasma physics of an energy release event in isolation. Avalanch-
ing, that is, bursty transport and energy release events on multiple scales, is observed to be
ubiquitous in driven, dissipative plasmas, and involves fully non-linear physics, coupling
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across multiple scales. It remains an open, and highly topical problem across astrophysical
and laboratory plasmas.

Acknowledgements GP would like to thank the Kavli Institute for Theoretical Physics for hospitality,
and gratefully acknowledges the kind support by EPSRC Mathematics Platform grant EP/I019111/1. NWW
and SCC acknowledge grants from the Max Planck Society enabling Senior Visiting Scientist positions at
MPIPKS in Dresden, and the warm and stimulating hospitality there of Holger Kantz and the members of his
Time Series Analysis group. Over the years many people have freely shared their thoughts on SOC and other
facets of complexity science with us and contributed greatly to our own view of the subject. We thank them
all: in particular the late Per Bak and Leonardo Castillejo, and others including Gary Abel, Markus Aschwan-
den, John Beggs, Tom Chang, Kim Christensen, Giuseppe Consolini, Daniel Crow, Joern Davidsen, Richard
Dendy, Deepak Dhar, Ronald Dickman, Mervyn Freeman, Martin Gerlach, Peter Grassberger, John Green-
hough, Bogdan Hnat, Pierre Le Doussal, Sven Luebeck, Tony Lui, Sasha Milovanov, Nicholas Moloney,
Maya Paczuski, Ole Peters, Mike Pinnock, Chris Rapley, Alan Rodger, George Rowlands, Kristoffer Rypdal,
Martin Rypdal, Cosma Shalizi, Surjal Sharma, Jouni Takalo, Vadim Uritsky, Alessandro Vespignani, Zoltan
Voeroes, Clare Watt, Dave Waxman and Kay Jörg Wiese.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Dimensional Analysis, Scaling and Self-similarity

Scaling is a continuous symmetry obeyed by certain physical observables. It relates, quanti-
tatively, the value of a physical observable at one set of parameters to its value at another set
of parameters. It comes in two forms: The trivial form is obtained by a dimensional analy-
sis, the non-trivial form is the manifestation of self-similarity, identified most prominently
by the renormalization group, but also accessible numerically and by data analysis (such as
a data collapse).

Scaling is a very powerful concept in physics, because it allows the analysis of a phe-
nomenon on a vastly different scale than it is observed on. What is more, the same fun-
damental physics must be at work at very different scales, which often leads to very deep
insights. The fact, for example, that the electrical force between two charges decays like
1/r2 carries the signature of the dimensionality of the space around us, d − 1 = 2, and is
explained within the framework of Quantum Electrodynamics by the masslessness of the
photon.

Scaling can be applied amazingly broadly, as demonstrated in Buckingham’s (1914)
Π theorem which introduced the method of dimensional analysis more than 100 years
ago. The scaling determined by dimensional analysis is often referred to as trivial: It is
an unavoidable consequence of finding, imposing or assuming a certain physical reality. For
example, assuming that the frequency ω of a frictionless mathematical pendulum depends
only on its length 	, its mass m and the gravitational acceleration g has the immediate con-
sequence that it must necessarily be a constant multiple of

√
g/	.

In the small angle approximation the constant is unity—but even without the small angle
approximation and thus allowing for dependence on the amplitude φ0, dimensional analysis
tells us that the frequency must be of the form ω = f (φ0)

√
g/	, where f (φ0) is an (a priori

unknown) function of φ0. By dimensional analysis, the observable ω obeys the remarkable
symmetry

ω(φ0, 	, g) = T −1ω
(
φ0,L

−1	,L−1T 2g
)
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for all finite, positive, real T and L. In particular, by choosing T = √
	/g and L = 	,

ω(φ0, 	, g) =
√

g

	
ω(φ0,1,1)

and we can identify f (φ0) = ω(φ0,1,1).
Dimensional analysis can only ever give rise to trivial exponents, usually integers or sim-

ple fractions, which are a necessary consequence of the dimension of the quantities used
to describe the physical phenomenon and the assumption that the physical reality of a phe-
nomenon is independent from the choice of units used to describe it.18 We notice that “triv-
ial” is a loaded word, but it is a technical term, used to point to the fact that the scaling ob-
tained is identical to that found in a system without considering the effect of non-linearities
(which otherwise make “all the music”). In such a linear system, solutions can be superim-
posed, suggesting a lack of interaction. One such solution may be the trivial solution, and by
association the linear system and its exponents are therefore called trivial. The term “trivial”
obscures the fact that there are famous examples of dimensional analysis producing pow-
erful and far-reaching results, such as Kolmogorov’s (1941) 5/3 law. Yet, the deep insight
does not consist in the dimensional analysis, but in determining the physical quantities that
enter into a physical phenomenon. Dimensional analysis is only a relatively straight-forward
manifestation of that achievement.

Trivial scaling does not produce the richness and variety of power laws found in nature.
For example, the fractal dimension of percolating clusters on a square lattice is 91/48 (Stauf-
fer and Aharony 1994). This is generally possible in the presence of dimensionless, finite
ratios involving the characteristic length or distance (or, more generally, time) the system is
studied under. In case of the pendulum mentioned above, for example, the initial condition
might be expressed as an initial displacement d of the pendulum, so that φ0 = sin−1(d/	).
In that case, it is no longer obvious how ω scales in 	, everything is possible, at least in
principle.19

The presence of non-trivial power law spatio-temporal correlations indicates on the one
hand that competing scales are present (otherwise exponents are determined by dimensional
analysis), on the other hand that they do not dominate the behavior of the system, in the
sense that their physics does not take over on large spatio-temporal scales. Rather, they
compete with and balance each other. Otherwise a characteristic scale appears, with one
“physics” below and one “physics” above that scale.20 A characteristic scale is present,
for example when spatio-temporal correlations decay (asymptotically) exponentially, say
C(r) = C0 exp(−r/ξ) with some characteristic scale ξ and unknown amplitude C0. The
system “knows” the scale and it can be determined from within, for example as the inverse
slope of the plot of log(C(r)/C(2r)) = r/ξ against r .

When correlations decay like a power law, no such manipulation is possible, say C(r) =
C0(r/ξ)−μ with some unknown exponent μ. Without knowing C0 the length ξ cannot be
extracted. For example C(r)/C(2r) = 2μ. In the presence of power law correlations, there
is a lack of scale from within, in other words, the system is self-similar. Self-similarity
generally manifests itself in the non-trivial scaling of correlation functions.

18Expressing distances in units of time is an everyday example, “It’s four hours to Washington.” vs “It’s 260
miles to Washington.” (Pruessner 2004b)
19To claim that the frequency of a pendulum depends on the absolute value of its initial displacement suggests
a physics different from the one where the frequency depends only on the initial angle.
20In principle, scaling may be found nevertheless, as happens in finite systems, which exhibit power law
correlations on a scale small compared to the system size, beyond which all correlations necessarily vanish.
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Power law correlations are typically observed at transitions, also in dynamical systems,
when a fixed point changes stability. They have been extensively studied within the field
of critical phenomena ever since Onsager’s (1944) solution of the two-dimensional Ising
Model suggested a clash with Landau-theory (Stanley 1971), which produces the same ex-
ponents as dimensional analysis suggests. Power law correlations are generally observed at
continuous transitions, a smooth change of phase as opposed to the sharp, so-called first
order phase transitions as seen when water boils in a kettle. They can be observed in the
spectacular display of critical opalescence in carbon dioxide (Stanley 1971).

As pointed out several times above, correlation functions are difficult to measure directly,
in particular in SOC models which often have open boundaries and are therefore not trans-
lationally invariant. As a result, correlation functions depend not only on the distance, but
on absolute coordinates, so that spatial averaging is not possible. Moreover, correlations
are often very weak, so that the indirect, integrated measures mentioned above, such as the
avalanche sizes and durations, often show clearer signs of scaling.

The exponents characterizing the power laws are usually expected to be universal, i.e.
they are the same in vastly different systems. Because they are characteristics of asymp-
totics, which in turn a determined by basic features of the interactions, exponents are intri-
cately linked to the symmetries of the interactions and the system as a whole. It was one of
the great insights of the renormalization group (Wilson 1971, 1979) that exponents are char-
acteristics of the symmetries involved. Results are particularly strong for phase transitions
in two-dimensional equilibrium systems with discrete symmetries: Conformal field theory
(Langlands et al. 1992; Cardy 1992) and Stochastic Loewner Evolution (Lawler et al. 2001;
Smirnov and Werner 2001) were able to demonstrate that there are exactly 6 universality
classes (Fogedby 2009).

Exponents are not the only universal quantities. Also universal are amplitude ratios, mo-
ment ratios and scaling functions, although in the case of finite size scaling they often depend
on boundary conditions (Barber 1983; Privman et al. 1991). Traditional critical phenomena
consider scaling of an observable in an infinite system as a function of some control parame-
ter, say the magnetization density m as a function of the temperature difference to the critical
value T − Tc , observing m ∝ (Tc − T )β for T < Tc . Alternatively, a system may be tuned
to the critical point and the scaling of a correlation function is studied as a function of the
distance. At the critical point, system wide observables can be studied for their dependence
on the system size, known as finite size scaling, say m ∝ L−β/ν , for a system with linear
extent L. In both cases, a length scale (such as the distance or the size of the system) con-
trols the scaling of the observable in a system right at the critical point. Leaving correlation
functions aside, finite size scaling of some global observables is the only scaling displayed
by SOC. For example, the cutoff sc in the avalanche size distribution scales like sc ∝ LD as
a function of L. The exponent D, the fractal dimension of the characteristic avalanche size,
is expected to be universal.

While exponents are normally not independent, because they are related by scaling rela-
tions, other quantities are, yet the power of universality ties them up in a universality class.
Only a few universality classes are expected to exist, so determining a very small number of
universal quantities determines the whole class.

That is what BTW were envisaging for SOC; universality justifies the study of toy mod-
els:

We choose the simplest possible models rather than wholly realistic and therefore
complex models of actual physical systems. Besides our expectation that the overall
qualitative features are captured in this way, it is certainly possible that quantitative
properties (such as scaling exponents) may apply to more realistic situations, since
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the system operates at a critical point where universality may apply. The philosophy
is analogous to that of equilibrium statistical physics where results are based on Ising
models (and Heisenberg models, etc.) which have only the symmetry in common
with real systems. Our “Ising models” are discrete cellular automata, which are much
simpler to study than continuous partial differential equations.

(Bak et al. 1988a, p. 365)

The early literature responded to that call for universality by offering models in the “BTW
universality class” (Zhang 1989; Manna 1991). The focus quickly shifted to introducing new
universality classes, in particular by breaking symmetries which were thought to be crucial
(e.g. Drossel and Schwabl 1992) and later provided an ordering principle (Biham et al. 1998,
2001; Milshtein et al. 1998; Hughes and Paczuski 2002; Karmakar et al. 2005). One reason
why the subject of SOC remains contentious is the richness of the results found. They often
do not fall clearly in one universality class, in fact, even on the basis of extensive computer
simulations it is often not even possible to determine whether scaling takes place at all, let
alone the exponents (e.g. Dorn et al. 2001). The two computer models, which so far display
the clearest evidence for SOC, the Manna (Manna 1991) and the Oslo Model (Christensen
et al. 1996), are in the same universality class (Nakanishi and Sneppen 1997), clearly not
for trivial reasons.
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