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Abstract Diffusive shock acceleration is the theory of particle acceleration through multi-
ple shock crossings. In order for this process to proceed at a rate that can be reconciled with
observations of high-energy electrons in the vicinity of the shock, and for cosmic rays pro-
tons to be accelerated to energies up to observed galactic values, significant magnetic field
amplification is required. In this review we will discuss various theories on how magnetic
field amplification can proceed in the presence of a cosmic ray population. On both short
and long length scales, cosmic ray streaming can induce instabilities that act to amplify the
magnetic field. Developments in this area that have occurred over the past decade are the
main focus of this paper.

Keywords Cosmic rays · Instabilities · Acceleration of particles

1 Introduction

The theory of diffusive shock acceleration (DSA) originates from the idea originally posed
by Fermi (1949) that cosmic rays are scattered by waves to be isotropic in their local
frame. Scattering was proposed to happen in clouds where a turbulent magnetic field
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would isotropise the cosmic rays. Since on average head-on collisions are more frequent,
a net acceleration occurs that naturally creates a powerlaw. Diffusive shock acceleration,
proposed by various authors in the late seventies (Axford et al. 1977; Krymskii 1977;
Bell 1978a, 1978b; Blandford and Ostriker 1978) is the discovery that this acceleration
proceeds much faster in the vicinity of a shock. When crossing the shock, the first collision
is always head on, thus allowing the acceleration to proceed at a significantly faster rate,
making it an attractive mechanism to accelerate cosmic rays to high energies. The faster the
shock velocity, the larger the energy gains upon transition of the shock. The theory predicts a
powerlaw with a spectral index that matches quite closely the observed powerlaw of cosmic
rays arriving on Earth.

The first argument that pointed to supernova remnants (SNRs) as the prime sources of
Galactic cosmic rays was based on the energy budget (Baade and Zwicky 1934). The energy
required to replenish the cosmic rays against their losses from the Galaxy amounts to about
10 % of that available in SNRs. However, it was not until the late seventies that a theory
on how to transfer kinetic energy efficiently into the acceleration of cosmic rays had been
developed. As shown in this review, even though the basic test particle theory is simple, the
intrinsic nonlinearity of this process makes it a difficult one to grasp in full and more work
needs to be done to understand the process from start to finish.

The strong support that DSA can work as the major mechanism to accelerate cosmic rays
came from observations of the thin X-ray rims at the blast waves of SNRs. The magnetic
field required to confine the cosmic rays in the vicinity of the shock is much higher than
the mean interstellar magnetic field (Achterberg et al. 1994; Vink and Laming 2003; Völk
et al. 2005). Originally it was proposed that the magnetic field could be amplified resonantly
(Lerche 1967; Kulsrud and Pearce 1969; Wentzel 1974; Skilling 1975b), but it is not clear
that the magnetic field will be able to grow beyond δB/B0 ≈ 1 when the resonance condition
is lost, as would be required in order to explain the observations. In the past decade, a number
of theories has arisen that could potentially explain amplification of the magnetic field to
values corresponding to those observed in supernova remnants.

However, there is no reason to believe that only SNR shocks accelerate particles. Shocks
are abundant in the universe on all scales, and how and when they become efficient ac-
celerators is an active area of current research. Locally, cosmic rays are accelerated in he-
liospheric plasmas. On larger scales, evidence exists for accelerated electrons in the lobes
of radio galaxies, as suggested early on by Blandford and Rees (1974) and backed up by
more detailed observations and modelling (e.g. Carilli et al. 1991; Croston et al. 2009;
Blundell and Fabian 2011). Furthermore clusters of galaxies have been observed to con-
tain nonthermal radio emission suggesting active particle acceleration (Bagchi et al. 2006;
Ferrari et al. 2008).

Support for DSA on much larger scales has only recently been discovered with detailed
and spectral observations in radio wavelengths of Megaparsec scale shocks (van Weeren
et al. 2010). The spectral hardening downstream from the supposed shock front in these
systems indicates that active acceleration proceeds at the shock front itself. The shocks are
believed to be the result of mergers of clusters of galaxies. The magnetic field deduced
from the radio observations indicate a field strength of the order of µG, which is much
higher than would normally be expected in the intra-cluster medium (Brüggen et al. 2011).
This is an additional indication that the process of DSA and magnetic field amplification is
intrinsically linked and occurs at shocks on all scales. Because of the scales of these shocks
potentially protons can be accelerated to energies of 1019 eV, although no direct evidence
has been found yet. Magnetic field amplification through streaming cosmic rays has also
been suggested as a source for primordial magnetic fields (Miniati and Bell 2011).
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On the Galactic scale, in addition to SNRs, shocks around superbubbles have been
discussed as accelerators (e.g. Bykov and Fleishman 1992; Bykov and Toptygin 2001;
Parizot et al. 2004; Binns et al. 2008; Butt 2009; Ferrand and Marcowith 2010). Super-
bubbles are formed as a result of cumulative outflows from an assembly of massive stars,
possibly enforced by the supernova explosions themselves. The outer region thus formed
is a shock of large proportions that could potentially be a cosmic ray accelerator, or var-
ious multiple shocks can consecutively act to accelerate particles, which may modify the
resulting spectral index.

Although in reality many deviations arise due to e.g. nonlinear modification of the shock
structure, magnetic field obliquity, geometric effects, time-dependence, and magnetic field
amplification, the basic theory still holds. However, in order to be able to compare the the-
ory with observations, all of the complicating factors need to be taken into account. In this
review, we focus on the advances in theory that have been made over the past decade. More
specifically, we will discuss how the amplified magnetic field required for efficient accel-
eration is a direct result of DSA and the presence of cosmic rays. Details of the other pro-
cesses can be found in earlier review articles (Drury 1983; Blandford and Eichler 1987;
Malkov and O’C Drury 2001; Hillas 2005).

In Sect. 2 we will briefly review the original theory of diffusive shock acceleration and
demonstrate how the process naturally results in a power law cosmic ray spectrum. In
Sects. 3–5 we will discuss a number of theories that couple diffusive shock acceleration
to magnetic field amplification. We will mainly focus on the most recent theories. In Sect. 6
we will discuss possible deviations from the source spectrum as a result of shock obliquity,
nonlinearity, and time-dependence. We refer to other chapters in this book for a treatments
of DSA in relativistic shocks (Spitkovsky 2012, this issue), and to the observational insights
and developments (Helder et al. 2012, this issue).

2 Diffusive Shock Acceleration

The powerlaw in energy that results from diffusive shock acceleration can be understood in
different ways, highlighted by different authors in its period of discovery. A crucial point is
that the cosmic rays isotropise on either side of the shock due to small-angle scattering off
magnetic field fluctuations. The faster the isotropisation, the faster the particle can recross
the shock. Every time the shock is crossed, a net energy gain is received by the particle
crossing the shock. Although the acceleration efficiency depends on the effective scattering
efficiency, the resulting spectrum is independent of the diffusion coefficient. In many cases
the most efficient scattering rate of Bohm diffusion, where the mean free path is of the order
of the gyroradius, is used in order to generate cosmic rays with the high energies that are
observed.

An intuitive way of approaching the problem is by evaluating the number of particles that
is located at the shock versus the number of particles that escape downstream. Only particles
that do not escape qualify for the next round of acceleration. This is the approach originally
described by Bell (1978a) and described as the microscopic approach in the review by Drury
(1983). The macroscopic approach, originating from Krymskii (1977), Axford et al. (1977),
Blandford and Ostriker (1978), derives the acceleration and resulting powerlaw from the
distribution function, requiring continuity at the shock. Below we will briefly summarise
both methods and we refer to the original papers or Drury (1983) for a more extensive
treatment.
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The distribution of relativistic particles can be described by the Vlasov-Fokker-Planck
equation:
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The distribution can be separated into an isotropic part (f0), and anisotropic parts to
arbitrarily high order:
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Mostly, the diffusion approximation is used, in which the first order anisotropy (f1 = fivi/v)
is used and eliminated, to arrive at a distribution that depends on the isotropic cosmic ray
density (f0) alone.
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where we used κ = c2/(3ν) for the diffusion coefficient.
From Eq. (5), far upstream the steady state solution (∂t = 0 and ∂u/∂z = 0) implies that

f0 should have the form
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to have a bound solution, where we use that in the shock frame u = −u1. Or alternatively,

c

3
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Downstream the steady state solution gives

f = f0(p). (8)

At the shock the solutions have to connect, giving the boundary condition:
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Using the boundary condition for the far upstream we can replace cf1/3 with u1f0, giving:
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which results in requiring that the cosmic ray density follows a powerlaw distribution:

f0 ∝ p−q (11)
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with

q = 3u1/(u1 − u2) = 3r/(r − 1), (12)

where r = u1/u2 represents the compression ratio at the shock. This powerlaw is valid in the
test particle approach, for a planar shock, where the magnetic field is parallel to the shock
normal. More details can be found in the original papers (Krymskii 1977; Axford et al. 1977;
Blandford and Ostriker 1978).

An alternative approach was used by Bell (1978a) to derive the powerlaw distribution
of shock accelerated particles. It is based on the microscopic physics and is helpful to get
insight in how the powerlaw may change depending on escape probability and probability
of crossing the shock, which will be useful in understanding the physics of the later sections.

The flux of particles downstream is just the number of particles n that are advected with
the downstream flow velocity u2: nu2. The number of particles crossing the shock front per
unit time from upstream to downstream in case of an isotropic distribution is half the number
of particles moving towards the shock, and their average velocity over angle is again half
of the shock velocity, giving for the flux nc/4. The fraction of particles not returning to the
shock is therefore nu2/(nc/4) = 4u2/c. The probability of recrossing the shock can be high:
Pret = 1 − 4u2/c.

The energy gain of a particle crossing the shock from upstream to downstream can be
calculated by transforming the momentum of the particle in the upstream to the downstream
frame: p′ = p(1+ (u1 −u2) cos θ/c) such that the average change in momentum is 2p(u1 −
u2)/(3c). The energy gain from downstream to upstream is exactly the same, as u1 and u2

are interchanged and the angle of integration runs to the opposite side, yielding an extra
−1. Thus the gain of momentum after a complete cycle is Δp = 4p(u1 − u2)/(3c). After
k cycles, the number of particles has decreased as n = n0(1 − 4u2/c)

k and the momentum
has increased as p = p0(1 + 4(u1 − u2)/(3c))k . The number of particles as a function of
momentum can be found to be
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≈ −4u2/c
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where r again is the compression ratio r = u1/u2, such that:

n
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(14)

and the differential energy spectrum is:

ndp ∝ p−(r+2)/(r−1)dp. (15)

In terms of the distribution function we arrive at the same answer as from the macroscopic
approach, since:

f0 = n

4πp2
∝ p−3r/(r−1). (16)

For a more detailed treatment we refer to the original papers and earlier reviews (Bell
1978a, 1978b; Drury 1983).
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3 Magnetic Field Amplification: Resonance Regime

In the theory of diffusive shock acceleration cosmic rays are accelerated by crossing and
recrossing a shock, as shown in the previous section. On each cycle of crossing recrossing
between upstream and downstream the cosmic ray energy increases by a small fraction
∼ us/c where us is the shock velocity. For acceleration to PeV energies a cosmic ray (CR)
has to cross the shock ∼ 10c/us times. A shock propagating into a purely uniform magnetic
field cannot accelerate CR to PeV because charged particles pass easily through the shock
and escape upstream or downstream making only one pass through the shock and gain little
energy. Arguably, it was the realisation that charged particles are not free to escape the shock
environment that provoked the development of the theory of shock acceleration in the late
1970’s.

Fast and efficient CR acceleration by the Fermi mechanism requires that particles are
multiply scattered by magnetic fluctuations in the acceleration source (e.g. shock). Magnetic
field amplification due to the resonant cosmic-ray streaming instability was studied in the
context of galactic cosmic-ray origin and propagation since the 1960s (see e.g. Kulsrud and
Cesarsky 1971; Wentzel 1974; Achterberg 1981; Berezinskii et al. 1990; Zweibel 2003). It
was proposed by Bell (1978a) as a source of magnetic turbulence in the test particle DSA
scenario.

CR streaming along magnetic field lines excite unstable growth of Alfven waves
with wavelengths comparable with the CR Larmor radius (Kulsrud and Pearce 1969;
Wentzel 1974; Skilling 1975a, 1975b, 1975c). The Alfven waves consist of circularly po-
larised distortions to the magnetic field lines. CR gyrating along the field lines in spatial
resonance with the fluctuations are strongly scattered and consequently execute a random
walk along a field line. The appropriate model for CR transport in the shock environment is
diffusion instead of free propagation. CR cross a shock many times with a statistical prob-
ability that naturally results in a E−2 energy spectrum for cosmic rays (Krymskii 1977;
Axford et al. 1977; Bell 1978a; Blandford and Ostriker 1978), as shown in Sect. 2.

The theory of wave excitation and CR scattering had previously been applied to CR
propagation through the Galaxy. Skilling set out the coupled equations for the wave energy
density I and the CR distribution function f . When applied to a steady state wave and CR
precursor ahead of a shock the equations take the form:
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where vA is the Alfven speed, p is the CR momentum, and rg is the CR Larmor radius.
In back-of-the-envelope terms, 4πcp4f/3 is the CR pressure. I is the ratio of the energy
density in the Alfven waves (δB2/4π ) to the energy density of the unperturbed field B0,
I = 2δB2/B2

0 . Further details of the equations can be found in Skilling (1975a, 1975b,
1975c), and a solution of the precursor equations can be found in Bell (1978a). The dominant
physics of the interaction between CR and the Alfven waves is on the one hand that wave
growth is driven by the CR pressure gradient and on the other hand that the CR diffusion
coefficient is inversely proportional to the wave energy density with mean free path Λ given
by Λ = 4rg/3I . The equation for wave evolution can be integrated to give

I = 2
us

vA

4πcp4f/3

ρu2
s

. (18)
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For a characteristic interstellar magnetic field (B ∼ 3 µG) the Alfven speed is around
vA ∼ 10 km s−1, so us/vA is of the order of 103 for the outer shock of a young super-
nova remnant (SNR). To account for the energy density of Galactic CR, acceleration by
SNR must be efficient and the energy transfer into CR at a SNR shock has to be in the range
0.1−0.5ρu2

s (Baade and Zwicky 1934; Longair 2010). In terms of Eq. (18) this gives I � 1,
which would correspond to a perturbed field δB greatly exceeding the zeroth order field B0.
Naively this implies a diffusion coefficient much less than rgc and a CR scattering mean
free path much less than the Larmor radius (Λ � rg). The linear instability depends upon
a resonance between the CR Larmor radius and the Alfven wavelength. This resonance is
destroyed when δB approaches B0, in which case the instability cannot be resonantly driven
and the instability is expected to saturate at about δB ∼ B0. The linear equations lose va-
lidity when I ∼ 1, but Eq. (18) suggests that instabilities driven by CR streaming may be
able to amplify magnetic field far beyond its initial ambient value. In the next sections we
will turn to instabilities that do not rely on the resonance condition and may continue well
beyond δB/B0 ∼ 1.

4 Magnetic Field Amplification: Short Wavelength Regime

4.1 A Non-linear Estimate of the Amplified Magnetic Field

A more basic understanding of the opportunity for magnetic field amplification can be de-
rived as follows. According to Eq. (17) the rate at which the wave energy density I grows is
≈ vA∂Pcr/∂z where Pcr is the CR pressure. This can be interpreted as a force ∂Pcr/∂z push-
ing against magnetic fluctuations at the Alfvén velocity vA. Provided the CRs are coupled to
the magnetic field fluctuations and the fluctuations propagate at about the Alfvén speed this
equation is approximately valid even when the spatial resonance between the wavelength
and the Larmor radius breaks down.

In the linear regime it makes sense to think of the magnetic fluctuations mov-
ing at the Alfvén velocity. In the non-linear regime, the fluctuations no longer take
the form of linear waves, but still they can be estimated to move at a velocity vf ∼
vA ∼ (magnetic pressure/density)1/2. Energy transfer to the fluctuations occurs at a rate
vf ∂Pcr/∂z, and the equation for growth of the turbulent energy density Uf associated with
the fluctuations is

us∂Uf /∂z = vf ∂Ps/∂z, (19)

where Ps is the CR pressure at the shock. Assuming that vf = (Uf /ρ)1/2 and Uf = B2/4π

as for Alfvén waves, the turbulent energy density at the shock is

B2

4π
≈ 1

4

(
Pcr

ρu2
s

)2

ρu2
s . (20)

If the CR acceleration efficiency is Ps ≈ 0.1ρu2
s this leads to an estimated magnetic

field of the order of 100 µG in young SNR in good agreement with observations (Vink
and Laming 2003; Berezhko et al. 2003; Völk et al. 2005). For a fixed acceleration effi-
ciency Pcr ∝ ρu2

s , the amplified magnetic field is proportional to ρ1/2us , see Bell and Lucek
(2001) for a more detailed model. A later improved analysis of field amplification suggests
a stronger dependence on shock velocity, B ∝ ρ1/2u

3/2
s , as discussed in Sect. 4.5 (Bell 2004,

2009).
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Fig. 1 Dispersion relation for
the non-resonant instability
vA = 6.6 × 103ms−1,
us/c = 1/30. ω is in units of
u2
s /crg and k in units of r−1

g

where rg is the Larmor radius of
the lowest energy CR.
Reproduced from Bell (2004)

4.2 A Non-resonant Instability

Equation (20) sidesteps the requirement for a resonance between the Larmor radius and
the instability wavelength and subsequent theoretical developments have shown that the
resonance is not essential for the amplification of magnetic field by CR streaming. The same
linearisation of the Vlasov equation that gives rise to the resonant instability also identifies
a non-resonant instability as first demonstrated by Bell (2004). Bell (2004) simplified the
problem by using the MHD equations to treat the thermal plasma as a magnetised fluid. A
kinetic Vlasov treatment is retained for the CR. The CR exert a force on the MHD plasma
through the reaction on the jcr ×B force, which is equal and opposite in most of the unstable
regime, the details of which will be discussed in Sect. 4.3. Here jcr is the CR electric current
density, and the CR trajectories are calculated in the magnetic and electric fields calculated
by the MHD model.

The coupled Vlasov-MHD equations give a linear dispersion relation containing two dif-
ferent instabilities for the two different circular polarisations and wavenumbers k parallel to
the zeroth order magnetic field. The resonant instability occurs when the circular polarisa-
tion is such that CR moving in the same direction as jcr gyrate resonantly around the zeroth
order field in the same sense as the helical perturbations in the magnetic field, which we
will refer to as the left-hand polarisation. A stronger non-resonant instability is found in the
opposite (right-hand) circular polarisation.

The dispersion relation for the non-resonant instability is plotted in Fig. 1 for a power-
law CR distribution f (p) ∝ p−4 for p1 < p < p2 where f (p) is non-zero between momenta
p1 and p2. The resonant and non-resonant instabilities have similar growth rates when k ≈
r−1
g , that is when the inverse wavenumber k−1 is approximately equal to the Larmor radius

of CR with the lowest momentum p1. The lowest momentum CR are the most important
because they carry most of the electric current. At wavelengths less than rg there are few
CR in spatial resonance with the helices in the magnetic field and the growth rate of the
resonant instability decreases as k increases. In contrast, the non-resonant instability does
not depend on resonance and its growth rate instead increases with increasing k. The non-
resonant growth rate increases with k until tension in the magnetic field overpowers the
driving force, that is when jcr × B = B × (k × B)c/4π and kB ∼ 4πj/c.

The essential difference between the resonant and non-resonant linear instabilities can
be explained as follows. In both cases the background MHD fluid motions are driven by the
jcr × B force. jcr and B have unperturbed zeroth order components, jcr0 and B0, and first
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order perturbed components jcr1 and B1 respectively. The jcr × B driving force has two first
order components, jcr0 × B1 and jcr1 × B0. The resonant instability is driven by jcr1 × B0

where jcr1 is the perturbed CR current which is especially strong when the CR trajectories
respond resonantly to a helical magnetic field with a wavelength equal to the CR Larmor
radius. On the other hand, the non-resonant instability is driven by the other first order force
jcr0 × B1. In the non-resonant instability only the uniform zeroth order current jcr0 matters
and there is no requirement for a resonance with the CR Larmor radius.

Because the non-resonant instability is driven by the zeroth order CR current, we can
derive a growth rate while omitting the first order current from the analysis. The response
of the CR trajectories to the perturbed fields can be ignored, and hence there is no need
to solve the Vlasov equation for CR. It is sufficient to solve the MHD equations for the
thermal plasma with sole addition of the jcr0 × B1 force in the MHD momentum equation.
The MHD mass conservation equation can also be omitted since the instability is transverse
and the density is unperturbed, ρ1 = 0. Similarly the thermal plasma pressure is unperturbed.
The first order equations are then

ρ
∂u1

∂t
= −jcr0 × B1

c
− 1

4π
B0 × (∇ × B1),

∂B1

∂t
= ∇ × (u1 × B0). (21)

u1 can be eliminated between the equations to give

∂B2
1

∂t2
− 1

4πρ
(B0 · ∇)2B1 = − 1

ρc
(B0 · ∇)(jcr0 × B1). (22)

Harmonic solutions B1 ∝ exp[i(kz − ωt)] with k parallel to B0 in the z direction, gives
a dispersion relation

ω2 − k2v2
A = ±kB0jcr0

ρc
. (23)

In the absence of a CR driving current jcr0 = 0, this is the dispersion relation for an
Alfvén wave. The right hand side of the dispersion relation creates an instability provided
kB0jcr0/ρc > k2v2

A and the negative sign is chosen for ± corresponding to the non-resonant
polarisation. If k2v2

A > |kB0jcr0/ρc|, the tension in the field lines overpowers the driving
term and the dispersion relation is that for non-growing Alfvén waves with a modified phase
velocity. The neglect from the analysis of the jcr1 × B0 ignores the tendency of CR to fol-
low the field lines on wavelengths greater than the CR Larmor radius and therefore omits
the reduced instability for krg < 1 that is seen in Fig. 1. For wavenumbers k in the unsta-
ble range r−1

g < k < 4πjcr0/B0c, equivalent to r−1
g < k < B0jcr0/(ρv2

Ac), the instability is
purely growing with a growth rate

γ =
(

kB0jcr0

ρc

)1/2

(24)

and a maximum growth rate, determined by the tension in the magnetic field,

γmax = 1

2

(
4π

ρ

)1/2
jcr0

c
. (25)

The CR current jcr0 in the precursor is related to the CR pressure by

jcr0 = e(us/c)Pcr/p1 ln(p2/p1).
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If the CR acceleration efficiency is defined by Pcr = ηρu2
s , the number of e-foldings for the

fastest growing mode is

γmaxτpc = κ

κB

ηMA

2 ln(p2/p1)
, (26)

where ωg is the CR Larmor frequency, MA is the Alfven Mach number M2
A = 4πρu2

s /B
2,

κ/κB is the ratio of the CR diffusion coefficient to the Bohm coefficient, and τpc =
(c2/u2

s )ω
−1
g is the time taken for the shock to propagate a distance equal to the scaleheight of

the CR precursor if Bohm diffusion applies. Since MA ∼ 103 for a young SNR propagating
into an interstellar magnetic field, and overall CR efficiencies must be 10–50 %, the number
of instability e-folding times is much greater than one. The term κ/κB introduces an element
of self-regulation since the number of e-foldings is greater if the magnetic fluctuations are
small and diffusion is greater than Bohm. This may be important at the foot of the precursor
where the instability has not had the opportunity to grow. If scattering is weak, CR escape a
relatively large distance upstream, initiate instable growth far ahead of the shock and remedy
the lack of a perturbed magnetic field able to scatter the CR.

4.3 Return Currents and Energy Transfer

In the above analysis the force on the background thermal plasma was included as −jcr × B.
To conserve momentum the force on the background plasma is equal and opposite to the
force on the CR. Another way of looking at this is that the force on the background plasma
is exerted through the return current jt that the background thermal plasma must carry to
neutralise the current carried by the CR, jt ≈ −jcr . The difference between jt and −jcr is
given by the Maxwell equation when the displacement current is neglected: jt = −jcr +c∇×
B/4π in which case jt × B = −jcr × B − B × (∇ × B)c/4π . jt and jcr very nearly cancel
out where the instability is strong. However, their non-cancellation at small wavelengths
gives rise to the magnetic tension that limits the instability to the range k < B0jcr0/ρv2

Ac.
At longer wavelengths the thermal return current follows a path very close to that of the CR
current.

A necessary condition for CR-driven instability is that the thermal particles are strongly
magnetised with Larmor radii much smaller than the wavelength and that the CR should
have a Larmor radius comparable with or larger than the wavelength so they are not tied
to magnetic field lines. If the thermal particles are frozen-in to the magnetic field it is not
immediately obvious how one can have a jt × B force with a current jt unaligned with
the magnetic field. The difficulty is resolved through the theory of cross-field drifts. The
jt × B force imparts an acceleration to the plasma. This acceleration can be viewed as being
equivalent to a gravitational force. A charged particle in a gravitational field executes a cross
field drift, and similarly in this case a cross field drift arises through the Lorentz force, which
produces the current density jt .

Another conundrum is how energy is extracted from the CR current to drive the tur-
bulence and amplify the magnetic field. The jcr × B cannot extract energy from the CR
because magnetic field only deflects particles and cannot change their energy. The solution
here comes from the second order electric field cE2 = −u1 × B1. E2 is anti-parallel to jcr0

and reduces the CR energy which is transferred to the second order magnetic energy density
B2

1/8π and kinetic energy density ρu2
1/2.
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4.4 The Non-resonant Instability in 3 Dimensions

In the case of a parallel shock, the zeroth order CR current is parallel to the zeroth order
magnetic field and the above theory for k aligned with B0 can be applied directly. A more
general theory is needed for an oblique shock where k and B0 are not parallel. The dispersion
relation for general orientations of k, j and B0 was derived by Bell (2005) for wavelengths
shorter than the CR Larmor radius, i.e. krg > 1:

{
γ 2 + (k̂ · b̂)2k2v2

A

}{
γ 4 + γ 2k2

(
v2

A + c2
s

) + (k̂ · b̂)2k4v2
Ac2

s

}
= γ 4

0

{
γ 2 + (ĵ · k̂)2k2c2

s + [
(k̂ · b̂)2 + (k̂ · ĵ)2 − 2(k̂ · ĵ)(b̂ · ĵ)(k̂ · b̂)

]
k2v2

A

}
, (27)

where vA = B0/(4πρ0)
1/2 is the Alfven speed, cs = (∂P/∂ρ)1/2 is the sound speed, γ 4

0 =
(k · B0)

2j2/ρ2
0c

2, and a hat denotes a unit vector: k̂ = k/|k|, b̂ = B0/|B0|, ĵ = jcr/|jcr |.
The terms involving kvA are important at the short wavelength limit when magnetic field
tension is important as in the case of k aligned with B0. The terms involving kcs represent
additional short wavelength compressibility effects that are not present when k, B0 and jcr
are all parallel. The terms in kvA and kcs are important only at short wavelengths. At longer
wavelengths they can be neglected and the growth rate simplifies to

γ =
[

(k · B0)jcr

ρ0c

]1/2

. (28)

The instability grows most rapidly for wavenumbers parallel to the magnetic field but the
growth rate is independent of the mutual orientation of the magnetic field B0 and the CR
current jcr .

The insensitivity of the growth rate to the angle between magnetic field and CR current
implies that the instability is present for perpendicular as well as parallel shocks. In fact,
the growth rate is faster for perpendicular shocks because the CR current is larger than that
upstream of parallel shocks. In the precursor of a parallel shock the CR drift at the shock
velocity relative to the thermal plasma to give a current density parallel to the shock normal
of jcr = ncreus where ncr is the CR number density. In contrast, for a perpendicular shock
the CR current density is larger in the direction perpendicular to the shock normal. The
CR current density at a perpendicular shock can be calculated from the first moment of the
Vlasov-Fokker-Planck (VFP) equation in the diffusive limit in which the one-dimension CR
distribution function takes the form f (p, z, t) = f0(|p|, z, t) + f1(|p|, z, t) · (p/|p|).

∂f1

∂t
+ c

∂f0

∂z
+ ec

p
E

∂f0

∂p
+ eB

p
× f1 = −νf1, (29)

where ν represents angular scattering by small scale fluctuations. For a mono-energetic CR
distribution at a perpendicular shock, the CR current density in the precursor can be sepa-
rated into a component j|| normal to the shock and a component j⊥ that is perpendicular to
the magnetic field and the shock normal:

j|| = 1

3

νωg

ω2
g + ν2

rg

L
ncrec, j⊥ = 1

3

νωg

ω2
g + ν2

Λ

L
ncrec, (30)

where ncr is the CR number density, L is the scalelength of the precursor, Λ = c/ν is the
CR mean free path, and rg = c/ωg is the CR Larmor radius.
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The components j|| and j⊥ of the CR current density correspond to the CR drift velocities
in the local upstream fluid rest frame. In steady state, j|| = ncreus and j⊥ = (Λ/rg)ncreus .
The large scale field is relatively unimportant when the mean free path is comparable with
the Larmor radius Λ ∼ rg (Bohm diffusion) since the distinction between parallel and per-
pendicular shocks is then relatively minor, and the scaleheight in both cases is L ∼ (c/us)rg .
Bohm diffusion corresponds to the smallest possible mean free path. More usually, the mean
free path can be expected to be greater than the Larmor radius and the cases of parallel and
perpendicular shocks become quite different. From the above equations, the precursor scale-
height ahead of a perpendicular shock is reduced to L ∼ (rg/Λ)(c/us)rg , and j⊥ exceeds j||.
j⊥ results from the non-cancellation of gyratory currents in the CR density gradient in the
precursor. Since j⊥ is greater than j||, the instability is driven more rapidly at a perpendicu-
lar shock than at a parallel shock. However, the time during which the instability can grow
is reduced because the scaleheight L is smaller at a perpendicular shock. The increased
growth rate and the reduced time for growth cancel out and the number of linear e-foldings
is the same for both parallel and perpendicular shocks. Hence the non-resonant instability
is equally effective for all shocks whether they are perpendicular, parallel or oblique. From
Eq. (28), in any of these cases fastest linear growth occurs for wavenumbers parallel to
the large scale magnetic field, independent of its orientation to the shock normal. Unsta-
ble growth and magnetic field amplification at perpendicular shocks has been demonstrated
numerically in particle-in-cell simulations by Riquelme and Spitkovsky (2010).

4.5 Non-linear Magnetic Field Amplification

A linear instability takes a small perturbation δB on the magnetic field and amplifies it until
it becomes comparable with the zeroth order field B0. When δB ∼ B0, the linear assumption
that second order terms in δB can be neglected becomes untenable. A crucial question is
whether the non-linear terms cause the instability to saturate and stop growing, or whether
the magnetic field grows further to a magnitude much greater than B0. In the context of
CR acceleration, the field has to continue growing beyond δB/B0 ∼ 1 if diffusive shock
acceleration is to explain the presence of PeV CR in the Galaxy. Furthermore, saturation
at δB/B0 ∼ 1 is insufficient to explain the large magnetic fields inferred from X-ray ob-
servations of synchrotron emission at an SNR shock. Therefore it is crucial to ascertain
not only that linear growth is sufficiently fast but also that the instability continues to grow
non-linearly beyond δB/B0 ∼ 1 to generate fields exceeding 100 µG at SNR shocks.

Fortunately the non-resonant instability has the unusual property of continuing rapid
growth into the non-linear regime. Remarkably, in the restricted geometry of a monochro-
matic circularly polarised wave with wavenumber k, zeroth order uniform magnetic field
B0 and uniform CR current jcr all parallel, the linear equations remain valid into the non-
linear regime and the instability continues to grow exponentially to arbitrary amplitude at
the linear growth rate. In this special case, slabs of plasma with frozen in magnetic field
continue to be accelerated in directions perpendicular to k, B0 and jcr . In practice other
modes with different k also grow and these interfere to slow the growth. For example, an
exponentially expanding spiral field in one part of the plasma is likely to collide with an
expanding spiral field seeded in a different part of the plasma. The spirals cannot in general
pass through each other and their growth is limited. However, the presence of exponentially
growing non-linear modes is a strong hint that growth to large amplitude is possible. Lucek
and Bell (2000) showed numerically that the magnitude of the magnetic field can increase
by at least an order of magnitude. 3D MHD simulations by Bell (2004) showed similar or
larger growth before the calculation was terminated when magnetic structures expanded to
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Fig. 2 Comparison of structures of density and magnitude of magnetic field. 2D slice through a 3D simula-
tion. Reproduced from Bell (2005)

the size of the periodic computational box. In Bell (2004) the instability grew exponentially
at the expected rate until δB/B0 ∼ 1, whereafter it continued to grow but more slowly.

The linear eigenmodes of the instability consist of spirals of magnetic field with a pre-
ferred helicity. The evolution of this basic configuration into the non-linear regime can be
seen in Fig. 4 of Bell (2004). Initially small spirals and loops of magnetic field grow non-
linearly in radius. Collisions between neighbouring spirals produce walls of strong magnetic
field surrounding cavities of very weak magnetic field. The field is far from uniform and does
not conform to conventional pictures of randomly phased Fourier modes in k-space. Because
the magnetic field is frozen in to the background plasma, the density and magnetic field have
closely correlated structures of walls and cavities as shown in Fig. 2, which reproduces two
frames from Figs. 2 and 3 of Bell (2005). The same wall-cavity structure has been found by
Reville et al. (2008), Zirakashvili et al. (2008) in MHD simulations, and by Riquelme and
Spitkovsky (2009) and Ohira et al. (2009) in particle-in-cell simulations.

The growth of large scale structures resulting from the expansion of the small scale struc-
tures provides a natural way of producing structures on the scale of a CR Larmor radius.
These are especially important since CR are most effectively scattered by fields on this
scale. Fields on smaller scales may explain the amplified fields observed at SNR shocks,
but they cannot by themselves provide the strong CR scattering needed to accelerate CR
to PeV energies. Reville et al. (2008) have modelled CR transport in non-linear CR-driven
magnetic fields calculated with a 3D MHD code. They show that the amplified field does
inhibit CR transport and reduces diffusion to less than Bohm diffusion in the initial magnetic
field. The generation of magnetic structures on large scales is an active field of research (see
Sect. 5), and other sources of turbulence contribute to the overall magnetic field structure
in SNR (Giacalone and Jokipii 2007; Zirakashvili and Ptuskin 2008; Beresnyak et al. 2009;
Inoue et al. 2009; Schure et al. 2009).

It is clear from analyses and simulations that magnetic field amplification continues far
into the non-linear regime. In some circumstances amplification may be limited by the time
for which the jcr × B driving force operates. In the case of a shock precursor this limiting
time is the time L/us it takes for the precursor of scalelength L to be overtaken by the shock.
However, two conditions have emerged as requirements for unstable growth. One is that the
scale size k−1 of magnetic structures should not exceed the CR Larmor radius, otherwise the
CR follow the field lines and jcr × B becomes small since jcr is parallel to B. The second
is that the magnetic tension B × (∇ × B)c/4π ∼ kB2c/4π should not exceed the jcr × B
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driving force. These conditions reduce to k > eB/pc and k < 4πjcr/Bc respectively. For
both conditions to be satisfied simultaneously we need B2/4π < pjcr/e. Using the expres-
sion for jcr derived in the discussion between Eq. (25) and (26) in Sect. 4.2, this reduces to
an estimate for the saturated magnetic energy density producable in the non-linear phase of
the non-resonant instability.

(
B2

4π

)
sat

∼ us

c

ηρu2
s

ln(p2/p1)
. (31)

This estimate is a good match to observations of the magnetic field in SNR (Vink 2008;
Bell 2009), but other explanations are possible for the same data (Malkov et al. 2011).

5 Magnetic Field Amplification: Long Length Scales

As shown in the previous section, the non-resonant Bell instability can act efficiently to
amplify magnetic fields on scales smaller than the gyroradius. However, in order to accel-
erate cosmic rays to higher energies, the magnetic field should also be amplified on scales
beyond the cosmic ray gyroradius, which is the ‘long-wavelength regime’ discussed in this
section. In 2011 various papers have been published on possible instabilities that act to
amplify the magnetic field on these scales (Bykov et al. 2011b; Schure and Bell 2011a;
Reville and Bell 2012), on which we will focus in this section. We will also briefly dis-
cuss other long-wavelength instabilities (firehose and acoustic), but for a more exten-
sive review refer to the original papers or reviews (see e.g. Blandford and Eichler 1987;
Malkov and O’C Drury 2001; Bykov et al. 2011a).

5.1 Current-Driven Stress-Tensor Instability

The small-scale instability is essentially a fluid instability. The cosmic ray current is regarded
to be of such scales that it is unperturbed by the non-resonant growth of small-scale magnetic
fields. When looking at growth of magnetic field on scales larger than the gyro-radius, this
assumption no longer holds since the CR trajectories follow the field lines and perturbations
to the current in perpendicular directions should be taken into account.

One way to determine this effect on the stability of the plasma is by including higher
order anisotropic terms in the kinetic equation. The feedback between the cosmic ray parti-
cles and the magnetic field in the plasma proceeds through forces acting on the momentum
equation. The j × B forces arise when components of the cosmic ray current, or rather the
induced return current in the plasma, are perpendicular to local components of the magnetic
field. Gradients in the perpendicular current require taking into account higher-order compo-
nents of the distribution function, at least the stress tensor, effectively representing gradients
in the current.

The distribution function of relativistic particles can be written as:

∂t f + v · ∇f + e

m

(
E + v × B

c

)
· ∇vf = ∇v · (D · ∇vf), (32)

where f is the particle distribution in phase space, v the particle velocity, and D = v2ν
2 (I− n̂n̂)

the diffusion tensor with ν the collision frequency, I the identity matrix, and n̂ the unit vector
in the direction of the corresponding tensor component.
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The collisions, represented in the parameter ν, are not actual collisions in such tenuous
systems, but effectively act in the same way. What we mean with collisions is the cumula-
tive effect of small-angle scattering as a result of the Lorentz force of the perturbed current
and magnetic field. When they are fluctuating on the same scale, the Lorentz force is effec-
tively deviating the path of the cosmic rays. Multiple of these small-angle scatterings result
in isotropisation. The length and time scales on which this occurs is represented in the pa-
rameter ν, which represents the scattering frequency in terms of the particle velocity over
the mean free path. In Bohm diffusion this is taken to be of the order of the gyrofrequency.
The short-wavelength non-resonant instability acts to amplify the field on scales that can
efficiently deflect the low-energy cosmic rays. In effect, the parameter ν thus describes the
momentum exchange of the small-scale instability and can be used to determine its influence
on the long range.

The distribution of cosmic rays is dominated by the isotropic component: f0, but also
contains an anisotropic part, to increasing order f = f0 + f1 · v/v + f2 · vv/v2 +· · · . f1 can be
viewed as the directional component of the cosmic ray distribution, or as the gradient of f0,
and acts like a current. f2 is the pressure tensor, of which the isotropic part of the diagonal
is normally included in the f0 term. Anisotropy in the diagonal can be responsible for the
firehose instability. Off-diagonal terms embody the stress-tensor and reflect gradients in the
current. Each higher order is a factor of u/c smaller than the previous order, where u is the
drift velocity. Evaluation of the transport equation to zeroth order, being the isotropic part,
and first and second order anisotropies, gives the following system of equations, where we
ignore any contribution of higher (3rd) order:

∂tf0 = − c

3
∇ · f1, (33)

∂t f1 + c∇f0 + e

mc
(B × f1) + νf1 + 2

5
c∇ · f2 = 0, (34)

[
c

(
∇f1 − 1

3
∇ · f1I2

)
+ 2e

mc
(B × f2) + 3νf2

]
2

= 0. (35)

Here I2 is the second order unity tensor, and [. . .]2 indicates a summation of the permutations
for ijk in two ways divided by 2, such that we get a symmetric tensor with components that
satisfy fij = fji . In principle also higher order terms can be used in the evaluation, but it
turns out these have no significant effect on the instability (Schure and Bell 2011a). This
system of equations can be closed in combination with the MHD equations:

∂tB = ∇ × (u × B), (36)

ρ∂tu = jth × B
c

− ∇P − ∇ · Π + νρcr (ucr − u), (37)

where ρcr is the mass density of the relativistic particles, and ucr − u is the drift speed of
the cosmic rays relative to the plasma, which to zeroth order is equal to us . Since jth =
−jcr + c/(4π)∇ × B the momentum equation (Eq. (37)) has to satisfy:

ρ∂tu = − jcr × B
c

+ 1

4π
(∇ × B) × B − ∇P − ∇ · Π + νρcr (ucr − u). (38)

In systems relevant for efficient diffusive shock acceleration, the upstream plasma can be
considered cold and isotropic, such that ∇P = 0 and ∇ · Π = 0. Additionally, the second
term on the r.h.s. is much smaller than the other terms, and only contributes at very short
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wavelengths where the magnetic tension is sufficient to quench the instability. If we further-
more use that jcr = ncreus = ef1c/3, divide both sides by ρ, and write n = ncr/ni the ratio
between cosmic ray- and background nucleons, the momentum equation can be expressed
in terms of f1 as follows:

∂tu = − ne

3mp

(f1 × B) + c

3
νnf1. (39)

For a linear analysis it suffices to look at the first order perturbation, for which the above
can be expressed, using Eq. (34), as:

∂tu(1) = −nc

3

(
∂t f1(1) + c∇f0(1) + 2

5
c∇ · f2(1)

)
, (40)

where the subscripts between brackets indicate unperturbed (0) or perturbed (1) variables.
Both of the two above equations are instances of the momentum conservation, viewed

either through the forces j×B and frictional force ρνu, or through the pressure gradient and
divergence. Feeding this into the induction equation, we can express the perturbed magnetic
field in terms of f1 and f2:

∂2
t B(1) = ∂t (B(0) · ∇)u(1) = −nc

3
(B(0) · ∇)

(
∂t f1(1) + c∇f0(1) + 2

5
c∇ · f2(1)

)
, (41)

where we assumed a homogeneous background magnetic field, incompressibility, and u(0) =
0. For the rest of this section we consider a parallel shock in the z-direction, such that
B(0) = B(0)ẑ, and we consider modes parallel to the original field, such that k · B(0) = 0.

Equations (34)–(41) can then be combined (see Schure and Bell 2011a) to arrive at the
dispersion relation:

ω2 = ±Ω2

(
k2c2

5(3ν ∓ iωg)
− iω

)/(
ν ∓ iωg + k2c2

5(3ν ∓ iωg)

)
, (42)

where ω is the complex frequency, k the wavenumber, c speed of light, ν the effective
scattering frequency, ωg the gyrofrequency, and Ω = √

kj0B(0)/(ρc) contains the driving
(return) current j0 and is the growth rate of the non-resonant Bell instability. The upper
signs correspond to the left-handed polarisation (which is the polarisation of a gyrating
proton), and the lower signs to the right-hand polarisation. This dispersion relation is valid
in the linear regime as long as the Alfvénic stress due to (∇ × B) × B is small (for the
parameters used to plot Fig. 3 beyond krg ≈ 1000). Also, since ω is always small compared
to k2c2/(5(3ν ∓ iωg)), it can in practise be ignored on the right hand side of Eq. (42).

The terms including factors of k2 result from the inclusion of the stress tensor. Effects
from the small-scale non-resonant instability are included through ν, the effective scattering
frequency. Scattering on small scales is expected to arise earlier than on long scales, since the
growth rate increases rapidly for krg � 1. Bohm diffusion is the regime where the effective
scattering frequency is of the same order as the gyrofrequency, i.e. ν ≈ ωg . We plot the
growth rate as a function of wavenumber for different values of ν/ωg in Fig. 3, for both
the left-hand (dashed) and the right-hand polarisation (for the full plots of the dispersion
relation see the original paper: Schure and Bell 2011a).

This method recovers the Bell (2004) growth rate for the right-hand polarisation in the
regime where kc � ωg . The resonant instability is only approximately captured in the mono-
energetic approach (as can be seen from the peak around krg ≈ 2 in Fig. 3), which is why the
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Fig. 3 Growth rate of the
tensor-mediated instability, from
Schure and Bell (2011a). The
solid (dashed) lines indicate the
right- (left-) hand mode. The
different colours give the growth
rates for different values of the
effective collisionality of the
cosmic rays, which aids in
coupling the cosmic ray
momentum equation to the
momentum equation of the
plasma

familiar k-dependent growth rate around krg = 1 is not present in this representation. Care
should be taken when including the resonant instability to do the momentum integration
with an appropriate upper limit for p, so as to not overestimate the growth rates on the long-
wavelength end. It can be seen that both modes are unstable. Which of the polarisations
dominates depends on the ratio ν/ωg ; for ν/ωg < 1/

√
3 the left-hand mode dominates, and

vice versa for higher collisionality. When the collisionality is zero, ν = 0, only the left-
hand mode is unstable and purely growing. The current-driven long-wavelength instability
depends on the mediation of the short-scale instability through the stress-tensor and the
‘collisionality’.

Self-consistency between the equations for the cosmic rays and for the fluid are crucial
in deriving the dispersion relation. In the following analysis we show that omission of the
force due to friction in the momentum equation, as can often be done in other circumstances,
would result in a completely different dispersion relation that shows a much more rapid
growth and only declines at long wavelengths as

√
k. This is a result of an unbalanced

frictional force, that results in the νf1 term remaining in the momentum equation (Eq. (40))
as a consequence of there not being a similar term in the momentum equation for the fluid.
This results in the following erroneous dispersion relation:

ω2 = ±Ω2

(
ν − iω + k2c2

5(3ν ∓ iωg)

)/(
ν − iω ∓ iωg + k2c2

5(3ν ∓ iωg)

)
. (43)

The difference is only an additional ν in the nominator. For large k, the additional ν can
be ignored such that on the short scales the result does not change. However, on the long-
wavelength end the additional ν would change the result. To lowest order in k (thus ignoring
the k2 contribution from f2), and in the limit ω � ωg , the growth rate would change to:

γ =

√√√√Ω2ν(
√

ν2 + ω2
g ∓ ν)

2(ν2 + ω2
g)

. (44)
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In the limit where ν � ωg , both modes would have similar growth rates, which would
read:

γ =
√

νωg

2(ν2 + ω2
g)

Ω =
√

ν

2ωg

Ω =
√

νkj0B0

2ωgρc
(ν � ωg). (45)

It should be stressed this is not a physical solution.

5.2 Ponderomotive Instability

Bykov et al. (2011b) presented a long-wavelength instability that results from averaging the
kinetic equation for the relativistic particles, the equations of the bulk plasma motions and
the induction equation over the ensemble of the short scale fluctuations produced by CR
instabilities in the collisionless regime e.g. by the fast Bell instability. To derive the growth
rates of the modes in the long-wavelength regime kΛ < 1, with Λ = rg/(ν/ωg) the mean
free path, the dispersion relation as in Eq. (61) derived from the collisionless kinetic equation
approach is not appropriate.

In the presence of the short-scale fluctuations, the momentum exchange between the CRs
and the flow in the hydrodynamic regime, results in a ponderomotive force that depends on
the CR current in the mean-field momentum equation of bulk plasma (Bykov et al. 2011b).
As a result, there exist transverse growing modes with wavevectors along the initial magnetic
field with growth rates that are proportional to the turbulent coefficients determined by the
short scale fluctuation:

γ ≈
√

π
√〈b2〉
2B0

kj0ν

ρcωg

, (46)

where
√〈b2〉 is the magnitude of the short-scale amplified magnetic field and which holds

for both polarisations. The magnetic field amplification in that regime only weakly depends
on the shock velocity (γ τ ∝ u

−1/2
s as follows from Eq. (48) in Bykov et al. (2011b), see also

Schure and Bell (2011b)), that is important for the evolution of the maximal energy of CRs
accelerated by DSA. In the intermediate regime, ν/ωg < krg < 1, the growth rate can be
approximated as:

γ = 4πk

√〈
v2

〉
, (47)

where
√〈v2〉 is the amplitude of the short-scale turbulent bulk velocity.

The ponderomotive instability is a multi-layered phenomenon and the underlying physics
is not immediately clear. In the intermediate regime, the growth rate (Eq. (47)) is indepen-
dent of the CR current which suggests that it is not directly driven by CR streaming. In-
stead, the growth time is equal to the time taken to cross a distance 1/k at the characteristic
turbulence velocity. This suggests that the magnetic field in this regime grows as a result
of field-line stretching by already existing turbulent motions. The long wavelength regime
(Eq. (46)) is complicated because it includes magnetic field on three different scales: (i) B0

on a scale comparable with or greater than the wavelength, (ii) the magnetic field
√〈b2〉

associated with the turbulence, and (iii) the small scale magnetic field causing the scattering
represented by the collision frequency ν. The challenge is to see why all three fields are
important for the instability. It is also important to check that the j × B momentum transfer
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between CR and the fluid is treated self-consistently in each case since errors in total mo-
mentum conservation can lead to an incorrect growth rate as shown in Sect. 5.2. In the next
section we review the filamentation instability which is also due to the presence of turbulent
magnetic field on scales smaller than krg ∼ 1. A further challenge is to ascertain whether
there is any overlap in underlying physics between the ponderomotive and filamentation
instabilities.

5.3 Filamentation Instability

The expansion of the loops generated by the non-resonant instability on small scales can
give rise to a further filamentation instability. Because the cosmic rays are focussed into fil-
aments, the cosmic ray current locally increases. As a result magnetic fields around the loops
further grow in strength, which again aids to focus the cosmic rays and increase the current.
This was recently derived analytically and shown numerically by Reville and Bell (2012).
The growth rate turns out to be independent of wavelength. Again, the Vlasov equation is
used to determine the distribution of cosmic rays. The local electric field can be expressed
in terms of the vector potential such that:

E = us∇A‖/c, (48)

with A‖ the magnitude of the vector potential parallel to the shock normal. Using this, the
distribution function can be written as:

∂f

∂t
+ c

p
p

· ∇f + e∇(usA‖/c) · ∂f

∂p
= 0. (49)

Since it can be safely assumed that ∂f/∂p < 0, the cosmic-ray number density is locally
larger when A‖ is positive and can be written as a function of position:

ncr = n0 + eusA‖
c2

∫
8πpf0dp, (50)

where n0 = ∫
4πp2f0dp and f0 the isotropic part of the distribution function. Using further

that jcr = ncreus and the MHD equations, the evolution of the filamentation can be expressed
in terms of the cosmic ray current as follows (see Reville and Bell 2012):

∂2jcr

∂t2
= e2n0

p1

u2
s

c2

B2
⊥

ρc
jcr + ([

(u · ∇)u
] · ∇)

jcr − (u · ∇)
∂jcr

∂t
. (51)

The first term on the right-hand side is independent of the wavenumber and obviously dom-
inates the other terms on long scales. Its growth rate is:

γ = e
us

c

√
B2

⊥
ρc

n0

p1
=

(
us

c

)2(
Ucr

ρu2
s

)1/2
eB⊥

p1
√

ln(p2/p1)
, (52)

for a cosmic ray spectrum with a power law slope q = 4 with a given minimum (p1)and max-
imum (p2) momentum cut-off. The requirement on the cosmic rays driving the instability is
that they are not trapped within the cavities, such that p1c � eA‖us/c, with A‖ the vector
potential. This condition was also assumed when deriving the instability. The growth rate
is linearly dependent on the value of the amplified small-scale magnetic field and decreases
upstream of the shock when p1 increases and Ucr decreases.
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When compared to the non-resonant growth rate on small scales, the growth rates are
equal when

krg = us

c

〈B2
⊥〉

B2
0

. (53)

Non-linear simulations of the non-resonant instability indicate that the amplified field can
reach values of 30B0 (Bell 2004; Riquelme and Spitkovsky 2009), such that the above
condition can be satisfied for krg > 1. Filling in numbers comparable to those used in the
previous sections, the instability operates provided that:

Ecr ≥
(

B⊥
100 µG

)(
kmax

2 × 1015 cm

)−1(
us

109 cm/s

)
TeV. (54)

When compared to the growth rate of the long-wavelength instability, they become compa-
rable when:

krg =
(

5us

c

〈B2
⊥〉

B2
0

)1/3

. (55)

Thus, for the longest wavelengths, the filamentation instability may dominate if the small-
scale field is sufficiently amplified and as long as condition 54 is satisfied.

5.4 Firehose Instability

The short-wavelength non-resonant instability in Sect. 4.2 was driven by the current, i.e.
the first order anisotropy in the cosmic ray distribution. Asymmetry in the second order
anisotropy, the pressure tensor, can drive the firehose or mirror instability. It is distinctly
different from the long-wavelength instability that was discussed in Sect. 5.1: that one was
driven by the current, and the stress-tensor (off-diagonal terms of the pressure tensor) and
small-scale collisions mediate this driving source to cause instability on long length-scales
and the opposite (left-hand) polarisation.

Again, we will have to consider the distribution function up to second order anisotropy,
which we can write in the form

f (p) = N

4π

[
1 + 3

us

c
μ + δ

2

(
3μ2 − 1

)]
, (56)

where θ—particle pitch-angle, μ = cos θ , δ(p)—is the magnitude of the second harmonic
anisotropy, which is normally of the order of u2

s /c
2. Indeed, it is the second harmonic

anisotropy that constitutes the source of the CR-firehose instability on the magnetic field
amplification. It is instructive to summarize the growth rates for magnetic instabilities that
the quasi-linear theory predicts for weakly anisotropic CR distributions of the above form.
Following the standard linear analysis of the kinetic equation in the intermediate regime
rg/Λ < x0 < 1 (see e.g. Bykov et al. 2011b), with Λ again being the mean free path, one
may get the following dispersion relation if collisions can be neglected:

ω2

v2
ak

2
=

[
1 ∓ k0

k

{
(A0 − 1) + δc

us

A1

}]
, (57)
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A0,1(x1, x2) =
∫ p2

p1

σ0,1(p)N(p)p2dp, (58)

σ0(p) = 3

4

∫ 1

−1

(1 − μ2)

1 ∓ xμ
dμ, (59)

σ1(p) = 3

4

∫ 1

−1

(1 − μ2)μ

1 ∓ xμ
dμ, (60)

where k0 = 4π
c

encr us

B0
, x = krg(p), x1 = krg(p1), x2 = krg(p2), and δ is the magnitude of the

second order anisotropy. The signs ± correspond to the two opposite circularly polarized
modes under investigation. The second term on the right hand side is the instability that
is driven by the cosmic ray current, and has a non-resonant form (Bell 2004, see previous
section) when krg is large, and a resonant form around krg of the order (1) (e.g. Achterberg
1981; Zweibel 2003; Pelletier et al. 2006; Marcowith et al. 2006; Amato and Blasi 2009,
and the references therein). The last term in the r.h.s. of Eq. (57) represents the CR firehose
instability. In the long-wavelength regime xm � 1 a simplified form of Eq. (57) can be
derived

ω2

v2
ak

2
= 1 ∓ k0rg0

5

[
x2 ± δc/us ln(p2/p1)

(1 − (p2/p1)−1)

]
. (61)

The growth rate of the firehose instability due to the CR pressure anisotropy is found in the
last term of Eq. (61). It requires that the parallel pressure exceeds the perpendicular pressure
such that P‖ > P⊥ + B2/(4π) (for more details see e.g. Bykov et al. 2011a).

5.5 Instabilities Driven by the Cosmic Ray Pressure Gradient in the Shock Precursor

On scales large compared to the gyro-radius (i.e. scales where the driving particles are
strongly magnetised) the action of the cosmic rays can be simplified to a bulk force on
the background plasma which is just given by the gradient of the cosmic ray pressure,

Pcr =
∫

pv

3
4πp2f (p)dp. (62)

This follows naturally from considerations of momentum balance, the above pressure inte-
gral being just the flux of momentum associated with the cosmic rays.

The interesting thing about this bulk force is that it is not related in any simple way to the
local density either of mass or of scattering centres (this is a consequence of the collective
nature of the electro-magnetic interactions in the plasma). A gravitational field, by contrast,
would produce a force that is always strictly proportional to the local mass density (this is
just Einstein’s equivalence principle). Similarly a flux of particles interacting by two-body
scatterings would produce a force that is proportional to the density of scattering centres,
radiation pressure resulting from Thompson scattering on electrons being an example. No
such simple relation holds for the cosmic ray scattering, which is a complicated function of
the power-spectrum of structure in the magnetic field on scales comparable to the particle
gyro-radius and, to lowest order, can be calculated using the methods of quasi-linear theory.
For our purposes it is enough to just assume that there is some effective diffusion coefficient
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κ(p) and that on the scales of interest to us the cosmic ray transport can be represented as a
simple diffusion process with a flux proportional to the local gradient,

∂f

∂t
+ u · ∇f = 1

3
∇ · up

∂f

∂p
+ ∇ · (κ∇f ), (63)

where κ is the diffusion tensor (often approximated as a scalar diffusion coefficient).
A given element of background plasma, of local density ρ experiences an acceleration

∂u

∂t
= − 1

ρ
∇Pcr (64)

and thus, even if the cosmic ray pressure is very uniform, local small-scale variations in
density induce acceleration fluctuations which in turn lead to velocity fluctuations which
can feed back into density fluctuations. The usual approach to studying instabilities, where
one assumes a uniform steady background and then does a Fourier analysis of the modes,
fails in this case because the non-stationary and non-uniform nature of the shock precursor
region is the ultimate source of free energy driving the instability. Indeed the very question
of how to define an instability in such a system is an interesting one with no obvious answer.

In Drury and Falle (1986) a solution to these problems was developed based on a two-
scale expansion of the governing equations. In this approach one looks at small wave-length
high-frequency modes propagating on a smoothly varying background. In the absence of
the cosmic ray pressure the basic modes are then just sound waves and the wave amplitude
satisfies a conservation equation for the wave action (this follows from Noether’s theorem
because in the high-frequency limit the precise phase of the wave becomes unimportant, and
there is thus an asymptotic symmetry related to the arbitrariness of the phase angle). In the
case of one spatial dimension this is

∂A
∂t

+ ∂

∂z

[
(u ± cs)A

] = 0, (65)

where the wave action A is the acoustic wave energy density divided by the local co-moving
frequency, cs is the sound speed and the sign of ± corresponds to left- and right-travelling
modes.

Including cosmic ray effects in the two-fluid approximation it is then possible to show
(see Drury and Falle 1986) that the wave action equation acquires a non-zero right hand
side,

∂A
∂t

+ ∂

∂z

[
(u ± cs)A

] = A
[
−γcrPcr

ρκ
± ∂Pcr/∂z

csρ

(
1 + ∂ lnκ

∂ lnρ

)]
, (66)

where γcr is an effective adiabatic index for the cosmic rays and ∂ lnκ/∂ lnρ is the extent to
which fluctuations in density induce fluctuations in the diffusion coefficient.

The first term is a linear damping term related to the cosmic ray diffusion, as derived
earlier by Ptuskin (1981). More interesting for our purpose is the second term which is a
potentially de-stabilising term related to the cosmic ray pressure gradient. By formulating
the problem in this way it is possible to clearly separate out the conservative effects of
the changing background, encapsulated in the conservation of wave action, from the non-
conservative effects of the cosmic ray pressure. This gives a precise instability criterion,

1

ρcs

∂Pcr

∂z

(
1 + ∂ lnκ

∂ lnρ

)
>

γcrPcr

ρκ
. (67)
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A gradient in the cosmic ray pressure can arise when the cosmic rays make up a significant
fraction of the total pressure, and is of interest in the shock precursor region of an efficiently
accelerating shock wave.

If we introduce a length-scale for the cosmic ray pressure,

∂Pcr

∂z
= Pcr

L
(68)

the condition for instability can be written as

L <
κ

γcrcs

(
1 + ∂ lnκ

∂ lnρ

)
. (69)

Noting that in a shock precursor L ∼ κ/us where us is the shock velocity, it is clear that
the shock precursor region will be generically unstable at high shock Mach numbers un-
less ∂ lnκ/∂ lnρ is identically −1. This is confirmed by numerical simulations of modified
shocks in the two-fluid approximation which exhibit instabilities unless the product ρκ is
artificially kept constant. Indeed it was this phenomenon in the early calculations of Dorfi
which led to the discovery of the instability. It should be noted that the instability only oper-
ates as a fluid element is advocated through the precursor, so the maximum growth is limited
to an amount of order exp(M) which can however be very large for high Mach numbers.

In addition to the acoustic modes there are also non-propagating entropy modes. The en-
tropy of each fluid element is conserved and therefore the entropy modes can not grow, at
least until secondary shocks form. The modes do couple to acoustic modes which can then
be amplified. Such entropy modes are perhaps better thought of as dense clumps in pressure
equilibrium with their surroundings and the differential acceleration forces resulting from
the cosmic ray pressure will set these in motion relative to their less dense surroundings. This
motion will then be transmitted to the surroundings in the form of acoustic waves which,
when propagating parallel to the shock normal, will be amplified unless the diffusion coef-
ficient scales inversely with the density according to the above analysis. If we now consider
the very special case of a sinusoidal density perturbation with wave vector perpendicular to
the shock normal, it is clear that it too will induce motions unless the diffusion is constant
and independent of density. Thus in three dimensions it is impossible to fully stabilize a
clumpy shock precursor. The condition for parallel stability implies transverse instability
and vice-versa.

It is also worth noting, as pointed out by Giacalone and Jokipii (2007), that even with
no precursor effects a clumpy upstream medium will induce strong post-shock vorticity
and down-stream magnetic field amplification. The above analysis indicates that similar
processes can work upstream if there is a strong cosmic-ray precursor and thus produce
magnetic field amplification by what is in essence a bulk hydrodynamic effect. The scales
on which this takes place can be large compared to the particle gyro-radii and is determined
by the characteristic length-scales of the initial density fluctuations.

6 Deviations from the “-2” Power Law Index

6.1 The Spectral Index at Oblique Shocks

The relative motion of upstream and downstream scatterers imparts energy to CR as they
bounce back and forth across a shock. By Lorentz transformation, the mean fractional en-
ergy gain is us/c on each passage from upstream to downstream and back to upstream for
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a strong non-relativistic shock. As discussed in Sect. 2, the resulting CR spectrum is deter-
mined by the statistical distribution of the number of times a CR crosses the shock before
escaping downstream. CR cross the shock at a rate nsc/4 where ns is the CR number density
at the shock. This is balanced by the rate n∞us/4 at which CR advect away downstream of
the shock, where n∞ is the CR number density far downstream. Hence the fractional num-
ber of CR lost after each crossing is (n∞/ns)(us/c). In the limit of small shock velocity, the
VFP equation dictates that n∞ = ns and the fractional number lost is us/c. When combined
with the fractional energy gain of us/c, a power law CR distribution results with differen-
tial energy spectrum n(E)dE ∝ E−γ dE where γ = 2. If, as we show below, ns can differ
from n∞, the spectral index is

γ = 1 + n∞/ns. (70)

The above argument predicts a universal E−2 spectrum for all high Mach number non-
relativistic shocks, whether they are perpendicular, parallel or oblique. However, the argu-
ment depends on the result that n∞ = ns . It has been clear for a while that this breaks down
when the shock velocity is relativistic (e.g. Achterberg et al. 2001, and Spitkovsky 2012,
this issue), but it has recently been shown (Bell et al. 2011) that departures from this spec-
trum occur at shock velocities as low as ∼ c/30 as found in young supernova remnants. The
departure is particularly strong for shocks that are nearly perpendicular and when the CR
mean free path Λ is larger than the Larmor radius rg . As shown in the previous section,
the precursor scaleheight at a perpendicular shock is L ∼ (rg/Λ)(c/us)rg . According to this
formula, the upstream scaleheight can be very short causing a discontinuity in the CR den-
sity gradient across the shock. Kinetic theory does not allow discontinuities to occur over
distances less than a CR Larmor radius since CR gyration imposes a smoothing distance of
a Larmor radius on the CR distribution function. If the precursor scaleheight is not much
larger than the Larmor radius, the overall CR change in density across the shock takes place
partly downstream as well as upstream. The result is that the CR density ns at the shock is
less than the density far downstream n∞, the spectral index γ is greater than two, and the
CR spectrum is steepened as indicated by Eq. (70).

In contrast, solution of the VFP equation shows that the spectrum is flattened if the shock
is oblique and more than 10–20◦ from perpendicular, depending on the shock velocity. Com-
pression at the shock increases the perpendicular component of the magnetic field because
it is frozen in to the background plasma, whereas the parallel component of the field is un-
changed by the shock. Consequently the magnetic field increases in magnitude and changes
direction at an oblique shock. The change in field acts as a partial magnetic mirror which
reflects back upstream some CR trying to cross the shock into the downstream plasma. The
shock acts as a partial snowplough, pushing CR ahead of it. This produces a local excess in
the CR number density at the shock such that ns > n∞, and the CR spectrum is flattened in
accordance with Eq. (70) giving γ < 2.

Clearly, the universal strong shock spectrum, γ = 2, does not hold for young SNR
shocks. This is consistent with radio observations which exhibit significantly steepened
spectra in very young SNR expanding at high velocity (Bell et al. 2011). The effect is not
confined to high velocity shocks. The crucial parameter is the ratio of the shock velocity to
the velocity of the accelerating particle, so the spectra of sub-relativistic particles accelerated
by heliospheric shocks may be expected to show a related departure from γ = 2.

6.2 Non-linearity and Time-Dependence

From observations only direct evidence of acceleration of electrons in supernova remnant
blast wave exists through the observation of narrow synchrotron rims in X-ray and radio-
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synchrotron emission from a more extended region. In theory there is no reason why protons
and heavier nuclei would not be accelerated through the same process. Gamma-ray observa-
tions are currently hinting towards observations of escaping nuclei interacting with molecu-
lar clouds, and perhaps also in situ protons at SNR shock waves. Protons could potentially be
much more abundant (estimates of a factor 1000 are not uncommon), due to easier injection
and less radiation losses, and may reach higher energies. Efficient proton acceleration would
therefore have important consequences on the shock structure and temperature. The non-
linear effects due to cosmic rays constituting a significant fraction of the energy at the shock
have been widely discussed and modelled (Ellison et al. 1995; Malkov 1997; Blasi 2002;
Kang and Jones 2005; Amato and Blasi 2006; Vladimirov et al. 2008; Kang et al. 2009;
Patnaude et al. 2009; Caprioli et al. 2010; Ferrand et al. 2010). Especially towards the
higher-energy end of the spectrum, the spectral index can significantly flatten due to the
higher overall compression ratio that is probed by the more energetic cosmic rays. On
the low-energy end spectral steepening can occur, although this is only important in low-
Mach number shocks unless almost all of the energy goes into cosmic rays (e.g. Vink et al.
2010). It may be important to consider in simulations of clusters of galaxies, in which low-
Mach number shocks appear to accelerate particles (Ryu et al. 2003; Pfrommer et al. 2006;
Vazza et al. 2009). The transfer of energy to cosmic rays may further be seen in tem-
perature deviations behind the shock, where part of the energy that was supposed to
heat the plasma has effectively gone into a cosmic ray component (Helder et al. 2009;
Patnaude et al. 2009).

Whether a shock can be an efficient accelerator, and what the resulting cosmic ray spec-
trum looks like, is also dependent on the environment the shock is running into. A core-
collapse SNR will have a different evolution of the shock velocity from a SNR evolving in a
homogeneous medium as may be the case for most Type Ia SNe. The time-dependent evolu-
tion will determine the cumulative spectrum (Schure et al. 2010). The environment may in
some cases also affect the damping through ion-neutral collisions (Reville et al. 2007), the
detectable emission through various energy-exchange processes (e.g. Raymond et al. 2011)
or through surrounding molecular clouds enhancing the target density for pion creation from
escaping cosmic ray protons (e.g. Ohira et al. 2011).

Apart from magnetic field amplification, progress has been booked on the theory of DSA
that deviates from the ideal case. The powerlaw of the cosmic rays in reality is a complex
addition of time-dependence, shock obliquity and shock speed, as has been discussed in
Sect. 6.1. The theory on how cosmic rays may escape upstream is also under active devel-
opment, with recent papers by Drury (2011), Ohira and Ioka (2011).

7 Discussion and Conclusion

The importance of magnetic field amplification has been recognised since the early devel-
opments of the theory of DSA, and in the past decade significant progress has been made
in this field. Driven by observations that strongly indicate amplification of factors 10–100,
various theories have been developed to explain this intrinsically nonlinear process. A dis-
tinction between scales shorter and longer than the gyroradius of the driving cosmic rays is
made. Most rapid amplification can be achieved on short scales, but amplification on longer
scales is paramount in accelerating cosmic rays to the PeV energies that they are believed
to gain in galactic sources. Currently, SNRs still seem the best candidate, but the process is
independent of the type of shock wave and other sources may well contribute. The nonlin-
ear behaviour of the various instabilities remains an area of active research and more work
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is required to satisfactorily decide in which regimes various instabilites operate and dom-
inate. Also the saturation level needs to be determined. Observations that determine more
precisely direction, degree of polarisation, on different length and time scales could aid in
constraining the theory. The high-energy end of the emission spectrum can be better probed
with the current observatories that operate over a range of wavelengths in the gamma-ray
regime. Most notably the low-energy end as probed by Fermi-LAT, as well as Cherenkov
telescopes for the high-energy end, such as HESS. The next generation telescopes, such as
CTA, will certainly be extremely useful, if the observed energy is pushed up high enough to
really distinguish between electron- and proton- based emission processes. High-resolution
radio measurements of magnetic field strength, and polarimetry in the X-ray band, are other
items on the wish list.

Acknowledgements We would like to acknowledge ISSI for their support during, and the organisation
of, the workshop on particle acceleration in cosmic plasmas. K.M.S. and A.R.B. acknowledge support from
the UK Science Technology and Facilities Council grant ST/H001948/1; and from the European Research
Council under the European Community’s Seventh Framework Programma (FP7/2007-2013)/ERC grant
agreement no. 247039. A.M.B. was supported in part by the RAS Programs, by the RFBR grant 11-02-
12082-ofi-m-2011, and also by the Russian government grant 11.G34.31.0001 to the Saint-Petersburg State
Politechnical University.

References

A. Achterberg, On the propagation of relativistic particles in a high beta plasma. Astron. Astrophys. 98,
161–172 (1981)

A. Achterberg, R.D. Blandford, S.P. Reynolds, Evidence for enhanced MHD turbulence outside sharp-
rimmed supernova remnants. Astron. Astrophys. 281, 220–230 (1994)

A. Achterberg, Y.A. Gallant, J.G. Kirk, A.W. Guthmann, Particle acceleration by ultrarelativistic
shocks: theory and simulations. Mon. Not. R. Astron. Soc. 328, 393–408 (2001). doi:10.1046/
j.1365-8711.2001.04851.x

E. Amato, P. Blasi, Non-linear particle acceleration at non-relativistic shock waves in the presence
of self-generated turbulence. Mon. Not. R. Astron. Soc. 371, 1251–1258 (2006). doi:10.1111/
j.1365-2966.2006.10739.x

E. Amato, P. Blasi, A kinetic approach to cosmic-ray-induced streaming instability at supernova shocks. Mon.
Not. R. Astron. Soc. 392, 1591–1600 (2009). doi:10.1111/j.1365-2966.2008.14200.x

W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in International Cosmic
Ray Conference, vol. 11 (1977), p. 132

W. Baade, F. Zwicky, Cosmic rays from super-novae. Proc. Natl. Acad. Sci. 20, 259–263 (1934).
doi:10.1073/pnas.20.5.259

J. Bagchi, F. Durret, G.B.L. Neto, S. Paul, Giant ringlike radio structures around Galaxy Cluster Abell 3376.
Science 314, 791–794 (2006). doi:10.1126/science.1131189

A.R. Bell, The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978a)
A.R. Bell, The acceleration of cosmic rays in shock fronts. II. Mon. Not. R. Astron. Soc. 182, 443–455

(1978b)
A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon.

Not. R. Astron. Soc. 353, 550–558 (2004). doi:10.1111/j.1365-2966.2004.08097.x
A.R. Bell, The interaction of cosmic rays and magnetized plasma. Mon. Not. R. Astron. Soc. 358, 181–187

(2005). doi:10.1111/j.1365-2966.2005.08774.x
A.R. Bell, Particle acceleration in supernova remnants. Plasma Phys. Control. Fusion 51(12), 124004 (2009).

doi:10.1088/0741-3335/51/12/124004
A.R. Bell, S.G. Lucek, Cosmic ray acceleration to very high energy through the non-linear amplification by

cosmic rays of the seed magnetic field. Mon. Not. R. Astron. Soc. 321, 433–438 (2001)
A.R. Bell, K.M. Schure, B. Reville, Cosmic ray acceleration at oblique shocks. Mon. Not. R. Astron. Soc.

418, 1208–1216 (2011). doi:10.1111/j.1365-2966.2011.19571.x
A. Beresnyak, T.W. Jones, A. Lazarian, Turbulence-induced magnetic fields and structure of cosmic ray

modified shocks. Astrophys. J. 707, 1541–1549 (2009). doi:10.1088/0004-637X/707/2/1541

http://dx.doi.org/10.1046/j.1365-8711.2001.04851.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04851.x
http://dx.doi.org/10.1111/j.1365-2966.2006.10739.x
http://dx.doi.org/10.1111/j.1365-2966.2006.10739.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14200.x
http://dx.doi.org/10.1073/pnas.20.5.259
http://dx.doi.org/10.1126/science.1131189
http://dx.doi.org/10.1111/j.1365-2966.2004.08097.x
http://dx.doi.org/10.1111/j.1365-2966.2005.08774.x
http://dx.doi.org/10.1088/0741-3335/51/12/124004
http://dx.doi.org/10.1111/j.1365-2966.2011.19571.x
http://dx.doi.org/10.1088/0004-637X/707/2/1541


Diffusive Shock Acceleration and Magnetic Field Amplification 517

E.G. Berezhko, L.T. Ksenofontov, H.J. Völk, Confirmation of strong magnetic field amplifica-
tion and nuclear cosmic ray acceleration in SN 1006. Astron. Astrophys. 412, 11–14 (2003).
doi:10.1051/0004-6361:20031667

V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel, V.S. Ptuskin, Astrophysics of Cosmic Rays (1990)
W.R. Binns, M.E. Wiedenbeck, M. Arnould, A.C. Cummings, G.A. de Nolfo, S. Goriely, M.H. Israel, R.A.

Leske, R.A. Mewaldt, E.C. Stone, T.T. von Rosenvinge, The OB association origin of galactic cosmic
rays. New Astron. Rev. 52, 427–430 (2008). doi:10.1016/j.newar.2008.05.008

R. Blandford, D. Eichler, Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys.
Rep. 154, 1–75 (1987). doi:10.1016/0370-1573(87)90134-7

R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. Lett. 221, 29–32
(1978). doi:10.1086/182658

R.D. Blandford, M.J. Rees, A ‘twin-exhaust’ model for double radio sources. Mon. Not. R. Astron. Soc. 169,
395–415 (1974)

P. Blasi, A semi-analytical approach to non-linear shock acceleration. Astropart. Phys. 16, 429–439 (2002).
doi:10.1016/S0927-6505(01)00127-X

K.M. Blundell, A.C. Fabian, The X-ray and radio-emitting plasma lobes of 4C23.56: further evidence of
recurrent jet activity and high acceleration energies. Mon. Not. R. Astron. Soc. 412, 705–710 (2011).
doi:10.1111/j.1365-2966.2010.17608.x

M. Brüggen, A. Bykov, D. Ryu, H. Röttgering, Magnetic fields, relativistic particles, and shock waves in
cluster outskirts. Space Sci. Rev. 271 (2011). doi:10.1007/s11214-011-9785-9

Y. Butt, Beyond the myth of the supernova-remnant origin of cosmic rays. Nature 460, 701–704 (2009).
doi:10.1038/nature08127

A.M. Bykov, G.D. Fleishman, On non-thermal particle generation in superbubbles. Mon. Not. R. Astron.
Soc. 255, 269–275 (1992)

A.M. Bykov, I.N. Toptygin, A model of particle acceleration to high energies by multiple supernova explo-
sions in OB associations. Astron. Lett. 27, 625–633 (2001). doi:10.1134/1.1404456

A.M. Bykov, D.C. Ellison, M. Renaud, Magnetic fields in cosmic particle acceleration sources. Space Sci.
Rev. 32 (2011a). doi:10.1007/s11214-011-9761-4

A.M. Bykov, S.M. Osipov, D.C. Ellison, Cosmic ray current driven turbulence in shocks with efficient particle
acceleration: the oblique, long-wavelength mode instability. Mon. Not. R. Astron. Soc. 410, 39–52
(2011b). doi:10.1111/j.1365-2966.2010.17421.x

D. Caprioli, E. Amato, P. Blasi, Non-linear diffusive shock acceleration with free-escape boundary. Astropart.
Phys. 33, 307–311 (2010). doi:10.1016/j.astropartphys.2010.03.001

C.L. Carilli, R.A. Perley, J.W. Dreher, J.P. Leahy, Multifrequency radio observations of Cygnus A—Spectral
aging in powerful radio galaxies. Astrophys. J. 383, 554–573 (1991). doi:10.1086/170813

J.H. Croston, R.P. Kraft, M.J. Hardcastle, M. Birkinshaw, D.M. Worrall, P.E.J. Nulsen, R.F. Penna, G.R.
Sivakoff, A. Jordán, N.J. Brassington, D.A. Evans, W.R. Forman, M. Gilfanov, J.L. Goodger, W.E.
Harris, C. Jones, A.M. Juett, S.S. Murray, S. Raychaudhury, C.L. Sarazin, R. Voss, K.A. Woodley,
High-energy particle acceleration at the radio-lobe shock of Centaurus A. Mon. Not. R. Astron. Soc.
395, 1999–2012 (2009). doi:10.1111/j.1365-2966.2009.14715.x

L.O. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous
plasmas. Rep. Prog. Phys. 46, 973–1027 (1983). doi:10.1088/0034-4885/46/8/002

L.O. Drury, Escaping the accelerator: how, when and in what numbers do cosmic rays get out of supernova
remnants? Mon. Not. R. Astron. Soc. 415, 1807–1814 (2011). doi:10.1111/j.1365-2966.2011.18824.x

L.O. Drury, S.A.E.G. Falle, On the stability of shocks modified by particle acceleration. Mon. Not. R. Astron.
Soc. 223, 353 (1986)

D.C. Ellison, M.G. Baring, F.C. Jones, Acceleration rates and injection efficiencies in oblique shocks. Astro-
phys. J. 453, 873 (1995). doi:10.1086/176447

E. Fermi, On the origin of the cosmic radiation. Phys. Rev. 75, 1169–1174 (1949). doi:10.1103/
PhysRev.75.1169

G. Ferrand, A. Marcowith, On the shape of the spectrum of cosmic rays accelerated inside superbubbles.
Astron. Astrophys. 510, 101 (2010). doi:10.1051/0004-6361/200913520

G. Ferrand, A. Decourchelle, J. Ballet, R. Teyssier, F. Fraschetti, 3D simulations of supernova rem-
nants evolution including non-linear particle acceleration. Astron. Astrophys. 509, 10 (2010).
doi:10.1051/0004-6361/200913666

C. Ferrari, F. Govoni, S. Schindler, A.M. Bykov, Y. Rephaeli, Observations of extended radio emission in
clusters. Space Sci. Rev. 134, 93–118 (2008). doi:10.1007/s11214-008-9311-x

J. Giacalone, J.R. Jokipii, Magnetic field amplification by shocks in turbulent fluids. Astrophys. J. Lett. 663,
41–44 (2007). doi:10.1086/519994

E.A. Helder, J. Vink, C.G. Bassa, A. Bamba, J.A.M. Bleeker, S. Funk, P. Ghavamian, K.J. van der Heyden,
F. Verbunt, R. Yamazaki, Measuring the cosmic-ray acceleration efficiency of a supernova remnant.
Science 325, 719 (2009). doi:10.1126/science.1173383

http://dx.doi.org/10.1051/0004-6361:20031667
http://dx.doi.org/10.1016/j.newar.2008.05.008
http://dx.doi.org/10.1016/0370-1573(87)90134-7
http://dx.doi.org/10.1086/182658
http://dx.doi.org/10.1016/S0927-6505(01)00127-X
http://dx.doi.org/10.1111/j.1365-2966.2010.17608.x
http://dx.doi.org/10.1007/s11214-011-9785-9
http://dx.doi.org/10.1038/nature08127
http://dx.doi.org/10.1134/1.1404456
http://dx.doi.org/10.1007/s11214-011-9761-4
http://dx.doi.org/10.1111/j.1365-2966.2010.17421.x
http://dx.doi.org/10.1016/j.astropartphys.2010.03.001
http://dx.doi.org/10.1086/170813
http://dx.doi.org/10.1111/j.1365-2966.2009.14715.x
http://dx.doi.org/10.1088/0034-4885/46/8/002
http://dx.doi.org/10.1111/j.1365-2966.2011.18824.x
http://dx.doi.org/10.1086/176447
http://dx.doi.org/10.1103/PhysRev.75.1169
http://dx.doi.org/10.1103/PhysRev.75.1169
http://dx.doi.org/10.1051/0004-6361/200913520
http://dx.doi.org/10.1051/0004-6361/200913666
http://dx.doi.org/10.1007/s11214-008-9311-x
http://dx.doi.org/10.1086/519994
http://dx.doi.org/10.1126/science.1173383


518 K.M. Schure et al.

E.A. Helder, J. Vink, A.M. Bykov, Y. Ohira, J.C. Raymond, R. Terrier, Observational signatures of particle
acceleration in supernova remnants. Space Sci. Rev. (this issue) (2012)

A.M. Hillas, Topical Review: Can diffusive shock acceleration in supernova remnants account for high-energy
galactic cosmic rays? J. Phys. G, Nucl. Phys. 31, 95 (2005). doi:10.1088/0954-3899/31/5/R02

T. Inoue, R. Yamazaki, S.-i. Inutsuka, Turbulence and magnetic field amplification in supernova remnants:
interactions between a strong shock wave and multiphase interstellar medium. Astrophys. J. 695, 825–
833 (2009). doi:10.1088/0004-637X/695/2/825

H. Kang, T.W. Jones, Efficiency of nonlinear particle acceleration at cosmic structure shocks. Astrophys. J.
620, 44–58 (2005). doi:10.1086/426855

H. Kang, D. Ryu, T.W. Jones, Self-similar evolution of cosmic-ray modified shocks: the cosmic-ray spectrum.
Astrophys. J. 695, 1273–1288 (2009). doi:10.1088/0004-637X/695/2/1273

G.F. Krymskii, A regular mechanism for the acceleration of charged particles on the front of a shock wave.
Dokl. Akad. Nauk SSSR 234, 1306–1308 (1977)

R. Kulsrud, W.P. Pearce, The effect of wave-particle interactions on the propagation of cosmic rays. Astro-
phys. J. 156, 445 (1969). doi:10.1086/149981

R.M. Kulsrud, C.J. Cesarsky, The effectiveness of instabilities for the confinement of high energy cosmic
rays in the galactic disk. Astrophys. Lett. 8, 189 (1971)

I. Lerche, Unstable magnetosonic waves in a relativistic plasma. Astrophys. J. 147, 689 (1967).
doi:10.1086/149045

M.S. Longair, High Energy Astrophysics (2010)
S.G. Lucek, A.R. Bell, Non-linear amplification of a magnetic field driven by cosmic ray streaming. Mon.

Not. R. Astron. Soc. 314, 65–74 (2000). doi:10.1046/j.1365-8711.2000.03363.x
M.A. Malkov, Analytic solution for nonlinear shock acceleration in the Bohm limit. Astrophys. J. 485, 638

(1997). doi:10.1086/304471
M.A. Malkov, L. O’C Drury, Nonlinear theory of diffusive acceleration of particles by shock waves. Rep.

Prog. Phys. 64, 429–481 (2001). doi:10.1088/0034-4885/64/4/201
M.A. Malkov, R.Z. Sagdeev, P.H. Diamond, Magnetic and density spikes in cosmic ray shock precursors.

ArXiv e-prints (2011)
A. Marcowith, M. Lemoine, G. Pelletier, Turbulence and particle acceleration in collisionless su-

pernovae remnant shocks. II. Cosmic-ray transport. Astron. Astrophys. 453, 193–202 (2006).
doi:10.1051/0004-6361:20054738

F. Miniati, A.R. Bell, Resistive magnetic field generation at cosmic dawn. Astrophys. J. 729, 73 (2011).
doi:10.1088/0004-637X/729/1/73

Y. Ohira, K. Ioka, Cosmic-ray helium hardening. Astrophys. J. Lett. 729, 13 (2011). doi:10.1088/
2041-8205/729/1/L13

Y. Ohira, B. Reville, J.G. Kirk, F. Takahara, Two-dimensional particle-in-cell simulations of the nonreso-
nant, cosmic-ray-driven instability in supernova remnant shocks. Astrophys. J. 698, 445–450 (2009).
doi:10.1088/0004-637X/698/1/445

Y. Ohira, K. Murase, R. Yamazaki, Gamma-rays from molecular clouds illuminated by cosmic rays es-
caping from interacting supernova remnants. Mon. Not. R. Astron. Soc. 410, 1577–1582 (2011).
doi:10.1111/j.1365-2966.2010.17539.x

E. Parizot, A. Marcowith, E. van der Swaluw, A.M. Bykov, V. Tatischeff, Superbubbles and energetic particles
in the Galaxy. I. Collective effects of particle acceleration. Astron. Astrophys. 424, 747–760 (2004).
doi:10.1051/0004-6361:20041269

D.J. Patnaude, D.C. Ellison, P. Slane, The role of diffusive shock acceleration on nonequilibrium ionization
in supernova remnants. Astrophys. J. 696, 1956–1963 (2009). doi:10.1088/0004-637X/696/2/1956

G. Pelletier, M. Lemoine, A. Marcowith, Turbulence and particle acceleration in collisionless super-
novae remnant shocks. I. Anisotropic spectra solutions. Astron. Astrophys. 453, 181–191 (2006).
doi:10.1051/0004-6361:20054737

C. Pfrommer, V. Springel, T.A. Enßlin, M. Jubelgas, Detecting shock waves in cosmological
smoothed particle hydrodynamics simulations. Mon. Not. R. Astron. Soc. 367, 113–131 (2006).
doi:10.1111/j.1365-2966.2005.09953.x

V.S. Ptuskin, Influence of cosmic rays on propagation of long magneto hydrodynamic waves. Astrophys.
Space Sci. 76, 265–278 (1981). doi:10.1007/BF00687494

J.C. Raymond, J. Vink, E.A. Helder, A. de Laat, Effects of neutral hydrogen on cosmic-ray precursors in
supernova remnant shock waves. Astrophys. J. Lett. 731, 14 (2011). doi:10.1088/2041-8205/731/1/L14

B. Reville, A.R. Bell, A filamentation instability for streaming cosmic rays. Mon. Not. R. Astron. Soc. 419,
2433–2440 (2012). doi:10.1111/j.1365-2966.2011.19892.x

B. Reville, J.G. Kirk, P. Duffy, S. O’Sullivan, A cosmic ray current-driven instability in partially ionised
media. Astron. Astrophys. 475, 435–439 (2007). doi:10.1051/0004-6361:20078336

http://dx.doi.org/10.1088/0954-3899/31/5/R02
http://dx.doi.org/10.1088/0004-637X/695/2/825
http://dx.doi.org/10.1086/426855
http://dx.doi.org/10.1088/0004-637X/695/2/1273
http://dx.doi.org/10.1086/149981
http://dx.doi.org/10.1086/149045
http://dx.doi.org/10.1046/j.1365-8711.2000.03363.x
http://dx.doi.org/10.1086/304471
http://dx.doi.org/10.1088/0034-4885/64/4/201
http://dx.doi.org/10.1051/0004-6361:20054738
http://dx.doi.org/10.1088/0004-637X/729/1/73
http://dx.doi.org/10.1088/2041-8205/729/1/L13
http://dx.doi.org/10.1088/2041-8205/729/1/L13
http://dx.doi.org/10.1088/0004-637X/698/1/445
http://dx.doi.org/10.1111/j.1365-2966.2010.17539.x
http://dx.doi.org/10.1051/0004-6361:20041269
http://dx.doi.org/10.1088/0004-637X/696/2/1956
http://dx.doi.org/10.1051/0004-6361:20054737
http://dx.doi.org/10.1111/j.1365-2966.2005.09953.x
http://dx.doi.org/10.1007/BF00687494
http://dx.doi.org/10.1088/2041-8205/731/1/L14
http://dx.doi.org/10.1111/j.1365-2966.2011.19892.x
http://dx.doi.org/10.1051/0004-6361:20078336


Diffusive Shock Acceleration and Magnetic Field Amplification 519

B. Reville, S. O’Sullivan, P. Duffy, J.G. Kirk, The transport of cosmic rays in self-excited magnetic turbu-
lence. Mon. Not. R. Astron. Soc. 386, 509–515 (2008). doi:10.1111/j.1365-2966.2008.13059.x

M.A. Riquelme, A. Spitkovsky, Nonlinear study of Bell’s cosmic ray current-driven instability. Astrophys. J.
694, 626–642 (2009). doi:10.1088/0004-637X/694/1/626

M.A. Riquelme, A. Spitkovsky, Magnetic amplification by magnetized cosmic rays in supernova remnant
shocks. Astrophys. J. 717, 1054–1066 (2010). doi:10.1088/0004-637X/717/2/1054

D. Ryu, H. Kang, E. Hallman, T.W. Jones, Cosmological shock waves and their role in the large-scale struc-
ture of the universe. Astrophys. J. 593, 599–610 (2003). doi:10.1086/376723

K.M. Schure, A.R. Bell, A long-wavelength instability involving the stress tensor. Mon. Not. R. Astron. Soc.
1451 (2011a). doi:10.1111/j.1365-2966.2011.19529.x

K.M. Schure, A.R. Bell, Confining the high-energy cosmic rays. Mem. Soc. Astron. Ital. 82, 812 (2011b)
K.M. Schure, J. Vink, A. Achterberg, R. Keppens, Evolution of magnetic fields and cosmic ray acceleration

in supernova remnants. Adv. Space Res. 44, 433–439 (2009). doi:10.1016/j.asr.2009.05.010
K.M. Schure, A. Achterberg, R. Keppens, J. Vink, Time-dependent particle acceleration in supernova rem-

nants in different environments. Mon. Not. R. Astron. Soc. 406, 2633–2649 (2010). doi:10.1111/
j.1365-2966.2010.16857.x

J. Skilling, Cosmic ray streaming. I—Effect of Alfven waves on particles. Mon. Not. R. Astron. Soc. 172,
557–566 (1975a)

J. Skilling, Cosmic ray streaming. II—Effect of particles on Alfven waves. Mon. Not. R. Astron. Soc. 173,
245–254 (1975b)

J. Skilling, Cosmic ray streaming. III—Self-consistent solutions. Mon. Not. R. Astron. Soc. 173, 255–269
(1975c)

A. Spitkovsky, Kinetic simulations of collisionless shocks. Space Sci. Rev. (this issue) (2012)
R.J. van Weeren, H.J.A. Röttgering, M. Brüggen, M. Hoeft, Particle acceleration on megaparsec scales in a

merging galaxy cluster. Science 330, 347 (2010). doi:10.1126/science.1194293
F. Vazza, G. Brunetti, C. Gheller, Shock waves in Eulerian cosmological simulations: main properties

and acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 395, 1333–1354 (2009). doi:10.1111/
j.1365-2966.2009.14691.x

J. Vink, Multiwavelength signatures of cosmic ray acceleration by young supernova remnants, in Ameri-
can Institute of Physics Conference Series, ed. by F.A. Aharonian, W. Hofmann, F. Rieger, American
Institute of Physics Conference Series, vol. 1085 (2008), pp. 169–180. doi:10.1063/1.3076632

J. Vink, J.M. Laming, On the magnetic fields and particle acceleration in Cassiopeia A. Astrophys. J. 584,
758–769 (2003). doi:10.1086/345832

J. Vink, R. Yamazaki, E.A. Helder, K.M. Schure, The relation between post-shock temperature, cosmic-
ray pressure, and cosmic-ray escape for non-relativistic shocks. Astrophys. J. 722, 1727–1734 (2010).
doi:10.1088/0004-637X/722/2/1727

A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Turbulence dissipation and particle injection in nonlinear dif-
fusive shock acceleration with magnetic field amplification. Astrophys. J. 688, 1084–1101 (2008).
doi:10.1086/592240

H.J. Völk, E.G. Berezhko, L.T. Ksenofontov, Magnetic field amplification in Tycho and other shell-type
supernova remnants. Astron. Astrophys. 433, 229–240 (2005). doi:10.1051/0004-6361:20042015

D.G. Wentzel, Cosmic-ray propagation in the Galaxy—Collective effects. Annu. Rev. Astron. Astrophys. 12,
71–96 (1974). doi:10.1146/annurev.aa.12.090174.000443

V.N. Zirakashvili, V.S. Ptuskin, Diffusive shock acceleration with magnetic amplification by nonresonant
streaming instability in supernova remnants. Astrophys. J. 678, 939–949 (2008). doi:10.1086/529580

V.N. Zirakashvili, V.S. Ptuskin, H.J. Völk, Modeling Bell’s nonresonant Cosmic-ray instability. Astrophys. J.
678, 255–261 (2008). doi:10.1086/529579

E.G. Zweibel, Cosmic-ray history and its implications for galactic magnetic fields. Astrophys. J. 587, 625–
637 (2003). doi:10.1086/368256

http://dx.doi.org/10.1111/j.1365-2966.2008.13059.x
http://dx.doi.org/10.1088/0004-637X/694/1/626
http://dx.doi.org/10.1088/0004-637X/717/2/1054
http://dx.doi.org/10.1086/376723
http://dx.doi.org/10.1111/j.1365-2966.2011.19529.x
http://dx.doi.org/10.1016/j.asr.2009.05.010
http://dx.doi.org/10.1111/j.1365-2966.2010.16857.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16857.x
http://dx.doi.org/10.1126/science.1194293
http://dx.doi.org/10.1111/j.1365-2966.2009.14691.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14691.x
http://dx.doi.org/10.1063/1.3076632
http://dx.doi.org/10.1086/345832
http://dx.doi.org/10.1088/0004-637X/722/2/1727
http://dx.doi.org/10.1086/592240
http://dx.doi.org/10.1051/0004-6361:20042015
http://dx.doi.org/10.1146/annurev.aa.12.090174.000443
http://dx.doi.org/10.1086/529580
http://dx.doi.org/10.1086/529579
http://dx.doi.org/10.1086/368256

	Diffusive Shock Acceleration and Magnetic Field Amplification
	Introduction
	Diffusive Shock Acceleration
	Magnetic Field Amplification: Resonance Regime
	Magnetic Field Amplification: Short Wavelength Regime
	A Non-linear Estimate of the Amplified Magnetic Field
	A Non-resonant Instability
	Return Currents and Energy Transfer
	The Non-resonant Instability in 3 Dimensions
	Non-linear Magnetic Field Amplification

	Magnetic Field Amplification: Long Length Scales
	Current-Driven Stress-Tensor Instability
	Ponderomotive Instability
	Filamentation Instability
	Firehose Instability
	Instabilities Driven by the Cosmic Ray Pressure Gradient in the Shock Precursor

	Deviations from the "-2" Power Law Index
	The Spectral Index at Oblique Shocks
	Non-linearity and Time-Dependence

	Discussion and Conclusion
	Acknowledgements
	References


