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Abstract The present paper reviews recent advances in the theory of nonlinear driven mag-
netohydrodynamic (MHD) waves in slow and Alfvén resonant layers. Simple estimations
show that in the vicinity of resonant positions the amplitude of variables can grow over the
threshold where linear descriptions are valid. Using the method of matched asymptotic ex-
pansions, governing equations of dynamics inside the dissipative layer and jump conditions
across the dissipative layers are derived. These relations are essential when studying the ef-
ficiency of resonant absorption. Nonlinearity in dissipative layers can generate new effects,
such as mean flows, which can have serious implications on the stability and efficiency of
the resonance.
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1 Introduction

The dynamical response of the plasma in the solar atmosphere to rapid changes can be
manifested through wave propagation along and across the magnetic field. Many of these
waves are in the magnetohydrodynamic (MHD) threshold (waves with periods much larger
than the ion collisional time and wavelengths much larger than the mean free path of ions)
and they are observable by the new generation of space- and ground-based telescopes in
almost all regions of the solar atmosphere (for extensive reviews on wave observation see,
e.g., Acton et al. 1981; Nakariakov and Verwichte 2005; Banerjee et al. 2007; Mathioudakis
et al. 2010, this issue).

One of the most fundamental characteristics of solar and space plasmas is their very
high degree of inhomogeneity along and across magnetic fields. It is well known that the
properties of MHD waves are strongly modified by the plasma inhomogeneity. In particular,
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when the inhomogeneity of the medium is transversal to the direction of wave propagation
a new phenomenon, called resonant absorption, can appear.

While homogeneous plasmas have a spectrum of linear eigenmodes which can be di-
vided into slow, fast and Alfvén subspectra, with the slow and fast subspectra having dis-
crete eigenmodes and the subspectrum of Alfvén waves being infinitely degenerated, in
inhomogeneous plasmas the three subspectra are substantially changed. The infinite degen-
eracy arises because in the case of resonant Alfvén waves the eigenfrequency is the same
for all values of longitudinal wavevector. According to spectral theories of waves in inho-
mogeneous plasmas (see, e.g., Goedbloed 1983; Goedbloed and Poedts 2004) the spectra of
slow and Alfvén waves become continuous while the spectrum corresponding to fast waves
becomes discrete. Eigenfunctions that correspond to frequencies in the continuum spectra
are improper as they contain a non-square integrable singularity at the resonant position.

According to resonant wave theories, effective energy transfer between an energy carry-
ing wave and the plasma occurs if the frequency of the wave falls into the slow or Alfvén
continuum, i.e. at the slow or Alfvén resonances. For more details on linear theory of reso-
nant absorption see Goossens et al. (2010, this issue).

The process of resonant interaction of waves and the possibility of energy transfer be-
tween global and local waves has been studied intensively for the past few decades. First
resonant absorption was studied as a means of supplementary heating fusion plasmas, but
was later rejected due to technical difficulties (see, e.g., Tataronis and Grossman 1973;
Chen and Hasegawa 1974; Poedts et al. 1989; van Eester et al. 1991).

In the Earth’s magnetosphere resonant MHD wave coupling is believed to generate low
frequency pulsation or energize ULF waves (see, e.g. Lanzerotti et al. 1973; Southwood
1974; Southwood and Hughes 1983; Ruderman and Wright 1998; Erdélyi and Taroyan 2003;
Taroyan and Erdélyi 2002, 2003a, 2003b). Within the context of solar physics Ionson (1978)
was the first who proposed resonant absorption as a possible mechanism for coronal heating.
His idea was further developed in the last few decades by many authors (see, e.g. Kuperus
et al. 1981; Davila 1987; Hollweg 1991; Goossens 1991; Ofman and Davila 1995; Erdélyi
and Goossens 1994, 1995, 1996; Erdélyi 1997, 1998; Ballai et al. 2000, etc.), however it
became clear soon that resonant absorption alone cannot explain the very high temperature
of the corona. Resonant absorption was also applied to explain the loss of power in p-modes
when interacting with sunspots in the solar photosphere (see, e.g., Hollweg 1988; Lou 1990;
Goossens and Poedts 1992; Spruit and Bogdan 1992; Erdélyi and Goossens 1994; Keppens
et al. 1994; Erdélyi 1996; Tirry et al. 1998a, 1998b).

Recently resonant absorption acquired a new application to coronal seismology where
the rapid damping (with damping times of the order of a few periods) of kink oscillations
in coronal loops is explained in terms of resonant interaction of global kink modes and
the local Alfvén waves (Ruderman and Roberts 2002; Goossens et al. 2002, 2006; Dy-
mova and Ruderman 2006; Erdélyi and Verth 2007; Verth and Erdélyi 2008; Terradas et
al. 2010). Coronal seismology is dependent on theoretical relations (dispersion relations)
which link plasma parameters, such as the plasma density, to wave parameters, such as the
wave frequency, in a precise way. Generally, plasma parameters are determined from wave
parameters, which themselves are determined observationally. The dispersion relations for
many plasma structures under the assumptions of ideal MHD are well known; they were de-
rived long before accurate EUV observations were available (e.g. Edwin and Roberts 1983;
Roberts et al. 1984) using simplified models within the framework of ideal and linear MHD.
Although the realistic interpretation of many observations are made difficult by the spatial
and temporal resolution of present satellites not being adequate, considerable amount of
information about the state of the plasma and the structure and magnitude of the coronal
magnetic field have been already obtained.
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At resonance, amplitudes of oscillations (i.e. the energy density) can grow without lim-
its, however even a small amount of dissipation is able to prevent the unlimited increase of
the amplitude. The presence of dissipation causes transforming the wave energy into heat.
On the other hand solar and space plasmas are media with very high Reynolds numbers
(i.e. weakly dissipative media), which means that the dissipation is an important ingredient
in the description of dynamics only in a narrow region around the resonant magnetic sur-
faces called dissipative layer. Outside this layer the dynamics is described by ideal MHD.
This natural structuring of the domain of interest allows us to use the method of matched
asymptotic expansions (Nayfeh 1981; Bender and Országh 1991) to describe the problem
of resonant absorption of MHD waves. The essence of this method resides in solving ideal
MHD equations outside the dissipative layer, the non-ideal equations inside the dissipative
layer (which contains the resonant surface), and matching the two sets of solutions in over-
lapping regions (for details see the review by Goossens et al. 2010, this issue).

The dissipation of energies in the solar atmosphere is a delicate problem as the dom-
inance of a certain process over all other possible ones depends on the region where the
dynamics will be described and also on the very physics of the problem under considera-
tion. That is why the dynamics of waves in the solar atmosphere is going to be influenced by
different dissipation mechanisms in, e.g. the photosphere and solar corona. A full analysis of
particular dissipative mechanisms used in the present paper will be given in the next section.

Nonlinearity was systematically overlooked in many studies related to wave dynamics
because the mathematical treatment of nonlinear problems is cumbersome, and because the
complicated mathematical analysis can often obscure the physics and, therefore, make the
results unusable for observers. Dynamics occurring over extended scales (as in the solar
atmosphere) are likely to encounter situations which can lead to the increase in amplitudes
resulting in breakdown of linear description. Very often the wave amplitudes can increase
due to the change of the medium properties, e.g. acoustic waves propagating from the pho-
tosphere to the corona can steepen into shocks due to the decrease of the density with height.

A great advantage in tackling the complicated problem of resonant absorption is the
notion of connection formulae introduced for the first time by Sakurai et al. (1991). The
accuracy of the method by numerics was addressed by Stenuit et al. (1995). This approach
assumes that the thin dissipative layer is treated as a surface of discontinuity with the dy-
namics at both sides of the discontinuity fully described by the ideal MHD. The system of
non-ideal MHD equations describing the dynamics inside the dissipative layer is used to ob-
tain the connection formulae that serve as boundary conditions at the surface of discontinuity
in the same way as the Rankine-Hugoniot jump conditions for shocks.

A great deal of understanding of the process of resonant absorption came from numeri-
cal investigations (see, e.g., Ofman et al. 1994; Ofman and Davila 1995, 1996; Poedts and
Goedbloed 1997), where issues like higher dimension resonance, time evolution of the res-
onance or randomly driven resonance were discussed in great detail.

The paper is organized as follows. In Sect. 2 we introduce the equations used to describe
the dynamics of waves and present the mathematical and physical tools employed in the
mathematical presentation of the problem. In Sect. 3 we introduce scalings and dimension-
less quantities required to quantify the importance of nonlinearity. The problem of nonlinear
slow resonant waves is presented in Sect. 4, where we describe the nonlinear character of
waves and we provide the jump conditions near the resonance. In Sect. 5 we show that there
are two particular cases where the jump conditions can be simplified into an explicit form.
The problem of nonlinear resonant Alfvén waves is discussed in Sect. 6. As an application
to the nonlinear theory reviewed in this paper we will apply the equations to study the effi-
ciency of resonance in the limiting cases of weak and strong nonlinearity in Sect. 7. A direct
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consequence of the nonlinear framework used in our analysis is the generation of mean
shear flows at both resonances, which will be presented in Sect. 8. Finally our findings are
summarised in Sect. 9.

2 Basic Equations

Solar and space plasmas are far from being an ideal environment with the plasma dynamics
being affected by many dissipative and dispersive effects. As stressed earlier, the right choice
of dissipative mechanism depends on the location where a particular physical phenomenon
takes place as well as on the nature of this phenomenon. For the present paper, we are going
to consider viscosity, electrical resistivity and thermal conduction. Dissipative processes are
weak in the solar atmosphere; this means that the diffusion coefficients are small. The rate
of dissipation, however, is dependent on the local spatial scales.

Many phenomena (e.g. resonant absorption, current sheets or turbulences) are inherently
non-ideal and very often nonlinear as they are strongly influenced by dissipative and/or
dispersive effects. In particular, dissipation is important for nonlinear dynamical processes
because large-scale motions rapidly lead to the formation of small-scale structures, which
corresponds to singularities in the ideal theory.

Viscosity and thermal conductivity are linked to hydrodynamical processes, while electri-
cal conductivity and Hall dispersion are related to the presence of the electric and magnetic
fields. In the context of solar physics, the general effect of dissipation and dispersion is to
relax the accumulation of wave energy in a system. The relaxation can be performed by, e.g.
converting the wave energy at resonance into heat by viscous or resistive dissipation or ther-
mal conduction (via resonant absorption), or the dispersion of energy over a larger area by
the Hall effect. The relaxation caused by dissipation and dispersion prevents the formation
of singularities (entities abhorred by nature).

The key quantities in our discussion are the dimensionless products ωiτi and ωeτe , where
ωi(e) is the ion (electron) cyclotron frequency and τi(e) is the mean ion (electron) collision
time. Since viscosity is mainly due to ions, the product ωiτi is important in describing vis-
cosity. On the other hand, thermal and electrical conductivity are effects attributed mainly
to electrons, so the product ωeτe appears in the description of these two dissipative mecha-
nisms.

The classical Braginskii (1965) expression for the viscosity tensor reads

S =
4∑

i=0

ηiSi , (1)

where the coefficients η0, η1 and η2 describe viscous damping and η3 and η4 are non-
dissipative coefficients related to wave dispersion due to the finite ion gyroradius. The quan-
tities Si are given in terms of the unit vector along the equilibrium magnetic field and the
velocity vector. The viscous force in plasmas is given by ∇ · S. In general the expressions
for ηi (i = 1, . . . ,4) and Si are quite complicated and we do not write them down. The
coefficient of compressional viscosity η0 is given by

η0 ≈ ρkBT τi

mp

, (2)

where ρ and T are the density and temperature of the plasma, kB is the Boltzmann constant
and mp is the proton mass. When ωiτi � 1 as in the solar photosphere, the other coefficients
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in (1) are given by

η1 ≈ η2 ≈ η0, η3 ≈ 2η4 ≈ 0.8η0(ωiτi). (3)

It can be seen that η3, η4 � η0, so that the last two terms in (1) can be neglected. Then the
viscous force is given by the approximate expression

Fvis = ∇ · S ≈ η0

(
∇2v + 1

3
∇∇ · v

)
, (4)

where v is the plasma velocity. This expression for the viscous force is isotropic in the sense
that the force is independent of the magnetic field direction.

In the solar chromosphere and, especially in the corona, the condition ωiτi � 1 is satis-
fied. In this case the remaining four dissipative coefficients are given by

η1 = η0

4(ωiτi)2
, η2 = 4η1, η3 = η0

2ωiτi

, η4 = 2η3. (5)

Now η1, η2, η3, η4 � η0, so that, in particular, the compressional viscosity strongly domi-
nates the shear viscosity. As a result all terms in (1) can be neglected in comparison with the
first one, and we arrive at the following approximate expression for the viscous force,

Fvis = ∇ · S ≈ η0∇ ·
(

b0 ⊗ b0 − 1

3
I

)
[3b0 · (b0 · ∇)v − ∇ · v]. (6)

Here b0 is the unit vector in the magnetic field direction, I is the unit tensor, and f⊗g denotes
the dyadic product of vectors f and g.

However, (6) can be used only in slow dissipative layers. The compressional viscosity is
identically zero for Alfvén waves. As a result, it cannot remove the ideal Alfvén singularity
(Ofman et al. 1994; Erdélyi et al. 1995; Ruderman and Goossens 1996; Mocanu et al. 2008).
When studying the motion in Alfvén dissipative layers we have to keep the second and third
terms in (1). On the other hand, in spite that η1, η2 � η0, we can neglect the first term in
(1). As for the fourth and fifth terms, they can be neglected because they do not provide
dissipation (see Erdélyi 1996). In addition, we can neglect the spatial variation of the unit
vector in the magnetic field direction, b, in the Alfvén dissipative layer. As a result, we
obtain the following expression for the viscous force,

Fvis ≈ η1∇ · (S1 + 4S2)

≈ η1{∇2v + 3b0∇2(b0 · v) + 4b0b0 · ∇∇ · v

+ 3(b0 · ∇)[(b0 · 3∇) + ∇(b0 · v)] + ∇[b0 · ∇(b0 · v)]
− 15b0b0 · ∇[(b0 · ∇(b0 · v)]}, (7)

which is still rather complicated. However, in Alfvén dissipative layers ∇ · v ≈ 0 which en-
ables us to neglect the third term on the right-hand side of (7). In addition, in Alfvén dissipa-
tive layers large gradients can develop only in the direction perpendicular to the equilibrium
magnetic field. This observation enables us to neglect also the fourth, fifth and sixth terms
on the right-hand side of (7). Finally, the dominant component of the velocity in Alfvén
dissipative layers is the component orthogonal to the equilibrium magnetic field, while the
component along the magnetic field remains small. This means that we can also neglect the
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second term on the right-hand side of (7). As a result the very simple expression for the
viscous force that can be used in Alfvén dissipative layers is

Fvis ≈ η1∇2v. (8)

The wave energy can be also dissipated due to thermal conduction. In what follows we
assume that the ions end electrons have equal temperatures. In this case the general expres-
sion for the heat flux q is given by

q = −κ‖∇‖T − κ⊥∇⊥T − κ∧b0 × ∇T , (9)

where κ‖, κ⊥ and κ∧ are the parallel, perpendicular and skew coefficients of thermal con-
duction, ∇‖ = b0(b0 · ∇), ∇⊥ = ∇ − b0(b0 · ∇), and T is the plasma temperature related to
the plasma density, ρ, and pressure, p, by the ideal gas law,

p = kB

mp

ρT . (10)

For the electron-proton plasmas, the expression for κ‖ is given by

κ‖ ≈ 3k2
BρT τe

mpme

, (11)

where me is the electron mass. When ωeτe � 1 as in the lower part of the solar photosphere,
κ⊥ ≈ κ‖ and κ∧ ∼ (ωeτe)κ‖ � κ‖. As a result the approximate expression for the heat flux
reads

q = −κ‖∇T . (12)

This expression is isotropic in the sense that it is independent of the magnetic field direction.
When ωeτe � 1 as in the solar chromosphere and corona, κ⊥ ∼ (ωeτe)

−2κ‖ � κ‖, κ∧ ∼
(ωeτe)

−1κ‖ � κ‖, and the first term in (9) strongly dominates over two other terms. Therefore
we can use the approximate expression for the heat flux

q = −κ‖∇‖T . (13)

We now see that the heat flux is in the magnetic field direction, and magnetic surfaces act as
thermal insulators.

We write the expression of the generalized Ohm’s equation in the form

E + v × B = j
σ

+ mp

ρe
j × B, (14)

where e is the elementary electrical charge, σ the electrical conductivity, j the electrical
current density, and E and B are the electric and magnetic field, respectively. The first term
on the right-hand side of (14) is related to the plasma resistivity. It disappears in the limit
of infinitely conducting plasmas where σ → ∞. The second term on the right-hand side
of (14) describes the Hall current related to the account of the ion inertia. A more general
form of Omh’s equation contains also the term proportional to B × (j × B) related to the so-
called Cowling conductivity (see, e.g. Priest 2000). This term is identically zero for a fully
ionized plasma, while in partially ionized plasmas, can be important only when the electron
gyrofrequency is large and the plasma is sufficiently rarified, so that the mean collision time
between electrons and neutrals is large. On this ground we disregard this term. In what
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follows we neglect the displacement current in Maxwell’s equations and use Ampere’s law
to relate the electrical current density and magnetic field,

μ0j = ∇ × B, (15)

where μ0 is permeability of free space.
In our analysis we use the system of MHD equations

∂ρ

∂t
+ ∇ · ρv = 0, (16a)

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p + 1

μ0
(∇ × B) × B + Fvis, (16b)

∂B
∂t

= −∇ × E, (16c)

∂

∂t

(
p

ργ

)
+ v · ∇

(
p

ργ

)
= −γ − 1

ργ
L. (16d)

In these equations Fvis is given either by (4), (6) or (8), and E is given by (14); γ is the ratio
of specific heats or adiabatic index, and L is the loss function given by

L = ∇ · v − j2

σ
− S : ∇v, (17)

where S is the viscosity tensor and the colon indicates the double summation,

S : ∇v = Sij

∂vi

∂xj

. (18)

Recall that the magnetic field is solenoidal, i.e.

∇ · B = 0. (19)

This equation can be considered as an initial condition imposed on the magnetic field be-
cause, if it is satisfied at t = 0, then it follows from (16c) that it is satisfied for any t > 0. If
we neglect the Hall term in (14) then the induction equation (16c) reduces to

∂B
∂t

= ∇ × (v × B) + η∇2B, (20)

where η = 1/μ0σ is the coefficient of magnetic diffusion. These equations must be sup-
plemented by the Ohm’s law (14) expressing the connection between the electric field and
magnetic field.

3 General Discussion and Dimensionless Parameters

Traditionally the importance of dissipative processes in MHD is characterized by dimension-
less parameters calculated as ratio of corresponding dissipative terms to dynamical terms.
The importance of viscosity is quantified by the viscous Reynolds number. In the previous
section we have seen that the coefficients of compressional and shear viscosity can be quite
different, so that we have to introduce two Reynolds number, one related to compressional
and another to shear viscosity,

Rc
e = ρ∗V L

η0
, Rs

e = ρ∗V L

η1
, (21)
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where V is a characteristic speed, usually taken to be equal to the phase speed of waves,
L a characteristic length, and ρ∗ a characteristic density. Of course, where the viscosity is
isotropic, Rc

e = Rs
e = Re and Fvis is given by (4). The characteristic length L plays a very

important role in (21). Far from resonant layers it can be taken to be equal to the wavelength.
Typically in the solar corona we obtain very large values of Rc

e and Rs
e , which enables us to

neglect viscosity, for example, Rs
e = 103–104 and Rs

e = 1012–1014.
The importance of resistivity is characterised by the magnetic Reynolds number defined

as

Rm = V L

η
. (22)

For the solar corona typically Rm = 1012–1014.
Finally, the importance of thermal conduction is characterised by the Péclet number

which is given by

Pe = kBρ∗V L

mpκ‖
. (23)

This number is very large in the solar photosphere (108–109), but it can be of the order of
100 in the solar corona.

The situation with the resistivity and thermal conduction is similar to that of viscos-
ity. Usually we can neglect them far from dissipative layers and consider plasmas as infi-
nitely conducting (σ → ∞) and their motions as adiabatic. However, these two dissipative
processes can be again very important inside the dissipative layer.

Linear theory predicts the existence of slow and Alfvén dissipative layers (e.g. Goossens
et al. 2010). When the dominant dissipative processes are the isotropic plasma viscosity
and resistivity, as in the solar photosphere, it is convenient to introduce the total isotropic
Reynolds number, Ri , defined by

1

Ri

= 1

Re

+ 1

Rm

. (24)

Let us also introduce the dimensionless wave amplitude far from a dissipative layer, ε � 1.
Then linear theory predicts that the amplitudes of perturbations of certain variables called
‘large variables’ in a slow dissipative layer embracing the slow resonant position are of the
order of εR

1/3
i . The linear theory can be used to describe the motion in the slow dissipative

layer only when dissipation in this layer strongly dominates over nonlinearity. Estimates
show that the ratio of the largest typical nonlinear term in the MHD equations to the largest
dissipative term is of the order of (see, e.g. Ruderman et al. 1997a)

Ni = εR
2/3
i . (25)

The linear description is only valid when Ni � 1. In the solar photosphere, however, ε =
10−2–10−3 and Ri � 106, so that Ni � 10. This estimate clearly shows that the motion in
slow dissipative layers is strongly nonlinear in the solar photosphere.

In the solar corona the dominant dissipative processes affecting slow waves are the com-
pressional viscosity and thermal conduction (recall that it is strongly anisotropic and the
heat flux is parallel to the magnetic field). To characterise both dissipative processes simul-
taneously we introduce the total anisotropic Reynolds number defined by (see, e.g. Ballai et
al. 1998a)

1

Ra

= 1

Rc
e

+ 1

Pe

. (26)
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Linear theory predicts that the amplitude of large variables in dissipative layers is of the
order of εRa , while the ratio of the largest nonlinear term in the MHD equations to the
largest dissipative term is of the order of

Na = εR2
a. (27)

Again, the linear description is only valid when Na � 1. In the solar corona for a typical
ε = 10−2–10−3 and Ra � 100, we obtain Na � 10, and the motion in slow dissipative layers
in the solar corona is strongly nonlinear.

Viscosity and resistivity are also the dominant dissipative processes in the Alfvén dissi-
pative layer in the solar photosphere. Hence their importance can be characterized by Ri .
Since the quasi-Alfvénic motion in Alfvén dissipative layers practically do not perturb the
plasma temperature, thermal conduction is not important in these layers. In addition, com-
pressional viscosity also does not operate in Alfvén dissipative layers, the dominant dissipa-
tive processes in these layers in plasmas with strongly anisotropic viscosity like in the solar
corona are the shear viscosity and resistivity. These two processes can be simultaneously
described by the total Alfvén Reynolds number RA defined by an equation similar to (24)
but with Rs

e substituted for Re . Applying the same formal procedure as that resulted in (25)
we obtain a similar estimate for the ratio of the typical largest nonlinear term in the MHD
equations to the largest dissipative term NA. On the basis of this estimate we conclude that
the linear description of Alfvén dissipative layers breaks down as soon as ε � R

−2/3
A . How-

ever, as it will be explained later, this conclusion is wrong as in Alfvén dissipative layers the
largest nonlinear terms in the MHD equations cancel each other.

4 Governing Equation for Motion in Slow Dissipative Layers

In what follows we adopt Cartesian coordinates x, y, z and assume that the equilibrium
quantities depend on x only, while the equilibrium magnetic field is unidirectional and paral-
lel to the yz-plane. In the equilibrium plasma is at rest. We only consider a two-dimensional
problem and assume that perturbations of all quantities are independent of y.

In order to derive the equation governing the wave motion inside slow dissipative layers
we need to use the matching conditions with the solution of linear ideal MHD equations
outside the dissipative layer, which we will call the external solution. Hence, before we
embark on the derivation of the governing equation for slow dissipative layer we briefly
discuss this external solutions.

To obtain the external solution we write all variables in the system of MHD equations as
a sum of an equilibrium quantity and their Eulerian perturbation

p = p0 + p′, ρ = ρ0 + ρ ′, B = B0 + b. (28)

We substitute these expressions in the ideal MHD equations and linearize them with respect
to perturbations. We Fourier-analyse the obtained linear equations with respect to z and t

and take all quantities proportional to exp(ikz − iωt). Finally, we eliminate all the variables
from these equations in favour of the x-component of velocity, u, and the total pressure
perturbation P = p′ + B0 · b/μ0 to obtain the system of two first-order ordinary differential
equations of the form

du

dx
= iωP

F
,

dP

dx
= ikρ0DAu

V
. (29)
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In these equations V = ω/k is the phase velocity and

F = ρ0DADC

V 4 − V 2(v2
A + c2

S) + v2
Ac2

S cos2 α
, (30)

DA = V 2 − v2
A cos2 α, DC = (v2

A + c2
S)(V

2 − c2
T cos2 α), (31)

where the Alfvén vA, the sound cS , and cusp cT , speeds are defined as

v2
A = B2

0

μ0ρ0
, c2

S = γp0

ρ0
, c2

T = v2
Ac2

S

v2
A + c2

S

, (32)

with α being the angle between B0 and the z-axis, i.e. cosα = B0z/B0.
The system of (29) has two regular singular points, xA and xc . The first point is defined

by the equation DA(xA) = 0 and corresponds to the Alfvén resonance. The second point is
defined by the equation DC(xc) = 0 and corresponds to the slow or cusp resonance. Using
Fröbenius expansions one can show that the asymptotic behaviour of solution in the vicinity
of these points is given by P ∼ const and u ∼ const × ln |x − xA,c|. Hence, P is a regular
function in the vicinity of the Alfvén and slow singularity. The asymptotic behaviour of other
quantities can be determined from the linearized MHD equations. Hence, in the vicinity of
the Alfvén resonance, this behaviour is given by (see, e.g. Sakurai et al. 1991; Ofman et al.
1994; Erdélyi and Goossens 1995; Erdélyi 1997, 1998)

u ∼ const × ln |x − xA|, v‖ ∼ const, v⊥ ∼ const

x − xA

,

bx ∼ const × ln |x − xA|, b‖ ∼ const, b⊥ ∼ const

x − xA

,

ρ ′ ∼ const, p′ ∼ const, P ∼ const,

(33)

where v‖ is the velocity component parallel to the equilibrium magnetic field, and v⊥ is
the velocity component perpendicular both to the equilibrium magnetic field and to the x-
direction. These two quantities are defined by

v‖ = v · B0/B0, v⊥ = v · (B0 × ex)/B0, (34)

where ex is the unit vector in the x-direction. The quantities b‖ and b⊥ can be determined
in a similar way. The asymptotic behaviour of perturbations at slow resonance are (see, e.g.
Sakurai et al. 1991; Ballai et al. 2000a)

u ∼ const × ln |x − xc|, v‖ ∼ const

x − xc

, v⊥ ∼ const,

bx ∼ const × ln |x − xc|, b‖ ∼ const

x − xc

, b⊥ ∼ const,

ρ ′ ∼ const

x − xc

, p′ ∼ const

x − xc

, P ∼ const.

(35)

The obvious result of (33) is that the most singular variables at x = xA are v⊥ and b⊥
and here they have a 1/x singularity. Due to their behaviour at the resonant position they are
called the large variables. In accordance with (35), the large variables at the slow resonant
position xc are v‖, b‖, ρ ′ and p′.
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An important consequence of (33) and (35) is that the perturbation of the total pres-
sure, P , does not change across the dissipative layer. The physical reason for this behaviour
resides in the fact that since the dissipative layer is thin, i.e. its inertia is very small, the
acceleration of the dissipative layer is finite, the total force applied to it has to be small. This
implies that the total pressure at the two sides of the dissipative layer has to be almost the
same. If we denote the thickness of the dissipative layer as � and the characteristic length of
the problem as L, then the variation of the total pressure across the dissipative layer is zero
in the zero-order approximation with respect to the small parameter �/L. The conclusion
that there is no jump of total pressure perturbation across the dissipative layer is obtained
here on the basis of ideal MHD. This conclusion is confirmed by the linear theory of dissi-
pative layers based on dissipative MHD (e.g. Goossens et al. 1995 for Alfvén resonance and
Erdélyi 1997 for slow resonance).

The linear theory suggests the following physical picture of wave motion in slow dissi-
pative layers. The global motion of the plasma is in exact resonance with slow waves at the
ideal resonant position, and it is in quasi-resonance with slow waves in a narrow dissipative
layer embracing the resonant position. The variation of the external total pressure acts as a
driver of slow waves in the dissipative layer. Hence, the aim of nonlinear theory is to derive
the equation governing the nonlinear evolution of slow waves in the dissipative layer.

Ruderman et al. (1997a) were the first who considered this problem. In their analysis
they assumed that the only dissipative processes operating in the plasma are resistivity and
isotropic viscosity, and both dissipative processes are weak, i.e. dissipation is characterized
by Ri � 1. They considered the motion in the form of a propagating wave with permanent
shape, so that perturbations of all variables depend on the linear combination θ = z − V t

rather than z and t separately. The phase speed of slow waves at xc is equal cT c cosα, where
the subscript ‘c’ indicates that a quantity is calculated at x = xc , so V = cT c cosα. Finally,
Ruderman et al. (1997a) assumed that perturbations of all variables are periodic with respect
to θ with the period (wave length) equal to L. Later Ruderman and Erdélyi (2000) general-
ized this derivation to allow slow time variation of the wave shape, so that perturbations of
all variables are functions of x, θ and ‘slow’ time τ . In what follows we briefly outline this
derivation.

To obtain the governing equation that simultaneously describes both nonlinear and dissi-
pative effects we formally take Ni ∼ 1, so that Ri ∼ ε−3/2. This assumption is formal in the
sense that one can consider Ni � 1, in which case we can neglect nonlinearity in compar-
ison with dissipation, and Ni � 1, in which case we can neglect dissipation in comparison
with nonlinearity. Linear theory predicts that the characteristic thickness of the dissipative
layer is LR

1/3
i ∼ ε1/2. This implies that it is convenient to introduce the stretching variable

ξ = ε−1/2(x − xc) in the dissipative layer. It is also practical to introduce the ‘slow’ time
τ = ε1/2t .

The nonlinear interaction of the wave motion with the plasma in the dissipative layer
causes the mean flow in the yz-plane with the amplitude of the order of ε1/2. Hence, it is
convenient to split the velocity components in the mean and oscillating parts,

v‖ = v̄‖ + ṽ‖, v⊥ = v̄⊥ + ṽ⊥, v̄‖ = 〈v‖〉, v̄⊥ = 〈v⊥〉, (36)

where the mean value of a period function f (θ) over the period is defined by

〈f (θ)〉 = 1

L

∫ L

0
f (θ) dθ.

It follows from (35) that, in the dissipative layer, v‖ ∼ ε1/2, b‖ ∼ ε1/2, ρ ′ ∼ ε1/2, p′ ∼ ε1/2,
u ∼ ε ln ε, bx ∼ ε ln ε, v⊥ ∼ ε, b⊥ ∼ ε, and P ∼ ε. Since | ln ε| is much smaller than any
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negative power of ε for ε � 1, in what follows we consider ln ε as a quantity of the order of
unity and we look for the solution to the dissipative MHD equations in the form of power
series expansions with respect to ε1/2. We write this expansions in the form f = ε1/2f1 +
εf2 + · · · for p′, ρ ′, ṽ‖, b‖, v̄‖ and v̄⊥, and in the form g = εg1 + ε3/2g2 + · · · for u, ṽ⊥, bx ,
b⊥ and P .

Substituting the power series expansions in the dissipative MHD equation we obtain
in the first order approximation a solution that recovers the results of the linear theory.
The compatibility condition for the equations of the second order approximation gives the
governing equation for the wave motion in the slow dissipative layer,

2
∂ṽ‖
∂t

− �c(x − xc)

V

∂ṽ‖
∂θ

+ �ṽ‖
∂ṽ‖
∂θ

− λi

∂2ṽ‖
∂x2

= −c2
T c cosα

ρ0cv
2
Ac

dP

dθ
, (37)

where

�c = d

dx
(V 2 − c2

T cos2 α)

∣∣∣∣
x=xc

, (38)

� = v2
Ac[(γ + 1)v2

Ac + 3c2
Sc] cosα

(v2
Ac + c2

Sc)
2

, λi = η0

ρ0c

+ c2
T cη

v2
Ac

. (39)

When deriving (37) we considered that ṽ‖ ≈ ε1/2ṽ‖1. In (37) P is considered as a given
function and it is determined by the solution to the linear ideal MHD equations outside the
dissipative layer.

As we have already mentioned, the main idea of connection formulae is to consider the
dissipative layer as a surface of discontinuity and use the expressions for the jumps of P and
u across the dissipative layer as the boundary conditions for the system of (29). The jump
of total pressure is the same as in linear theory (see, e.g., Hollweg 1987; Sakurai et al. 1991;
Goossens and Ruderman 1995; Ruderman and Goossens 1996),

[P ] = 0, (40)

where, in general, the jump of a function f across the dissipative layer is defined by

[f ] = lim
ξ→∞{f (ξ) − f (−ξ)}

(recall that ξ = ε−1/2(x −xc)). To calculate the expression of [u] we use the relation between
u and ṽ‖ obtained in the first order approximation in the process of derivation of (37), i.e.

∂u

∂x
+ c2

T c cosα

v2
Ac

∂w

∂θ
= 0, (41)

where we have assumed u ≈ εu1 and ṽ‖ ≈ ε1/2ṽ‖1. It immediately follows from (41) that

[u] = −c2
T c cosα

v2
Ac

P
∫ ∞

−∞

∂ṽ‖
∂θ

dx. (42)

In the above equation P denotes the Cauchy principal part of the integral which is used since
ṽ‖ ∼ x−1 as x → ∞, so that the integral in (41) is divergent.

In linear theory the jump in the normal component of velocity, [u], can be obtained
explicitly in terms of P . In contrast, in the nonlinear theory we, in general, cannot solve (37)
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analytically and obtain an explicit expression for [u], which makes the connection formulae
perhaps less practical. However we will see in Sect. 5 that there is one exception.

Ballai et al. (1998a) extended the derivation by Ruderman et al. (1997a) where the dom-
inant dissipation processes are compressional viscosity and thermal conduction along the
magnetic field lines. They formally assumed that Na ∼ 1, so that Ra ∼ ε−1/2. Only the
motion periodic with respect to θ has been considered. Using the same procedure as one
adopted by Ruderman et al. (1997a), Ballai et al. (1998a) obtained that the governing equa-
tion for the motion in slow dissipative layers is

�c(x − xc)

V

∂ṽ‖
∂θ

− �ṽ‖
∂ṽ‖
∂θ

+ λa

∂2ṽ‖
∂θ2

= c2
T c cosα

ρ0cv
2
Ac

dP

dθ
, (43)

where now

λa = η0V
2(2v2

Ac + 3c2
Sc)

2

3ρcv
2
Acc

2
Sc(v

2
Ac + c2

Sc)
+ (γ − 1)2mpκ‖V 2

γρ0ckBc2
Sc

. (44)

The main difference between (44) and (37) is in the terms describing the effect of dissipation,
which is the last term on the right-hand side of (44), where it is proportional to the second
derivative with respect to θ , while in (37) the corresponding term is proportional to the
second derivative with respect to x. Another difference is that (44) does not contain the
derivative with respect to time. This is related to the fact that Ballai et al. (1998a) did not
allow slow time variation of the wave shape in the dissipative layer. The extension of the
derivation to include this effect is straightforward.

The derivation of governing equations for wave motion in slow dissipative layers has
been extended to include the effect of steady flow (Ballai and Erdélyi 1998), cylindrical
equilibrium (Ballai et al. 2000b) and the twist of magnetic field lines (Ballai and Erdélyi
2002; Erdélyi and Ballai 2002).

Recently, Clack and Ballai (2008) generalized the derivation of governing equation for
the wave motion in slow dissipative layers in order to take the Hall effect into account.
The ratio of the second term on the right-hand side of the generalized Ohm’s equation (14)
describing the Hall effect to the first term describing the plasma resistivity is of the order
of ωeτe . In the solar corona typically ωeτe � 106, so that the Hall term strongly dominates
over the resistive term. In classical MHD the magnetic field is frozen in the plasma when
the plasma is infinitely conducting. When the Hall term is taken into account the magnetic
field is frozen in the electronic component of an infinitely conducting plasma, while the
ions can drift with respect to the magnetic field lines. Hence, to account for the Hall term is
equivalent to the account of ion inertia. The MHD theory where the Hall effect is taken into
account is called the Hall MHD.

Clack and Ballai (2008) repeated the derivation carried out by Ballai et al. (1998a) how-
ever in the framework of the Hall MHD. As a result they obtained that the dynamics of
waves inside the dissipative layer is governed by

�c(x − xc)

V

∂ṽ‖
∂θ

− �ṽ‖
∂ṽ‖
∂θ

+ λa

∂2ṽ‖
∂θ2

+ ha

∂ṽ‖
∂x

∂ṽ‖
∂θ

= c2
T c cosα

ρ0cv
2
Ac

dP

dθ
, (45)

where

ha = η(ωeτe)k
2V tanα

c2
Sc + v2

Ac

. (46)
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In case when the dominant dissipative processes are the compressional viscosity and thermal
conduction the characteristic thickness of slow dissipative layers given by the linear theory
is

δa
c = kV λa

|�c| . (47)

This result is easily obtained assuming that the first and third terms in (4) are of the same
order. Using (47) we obtain that the ratio of the second nonlinear term proportional to ha in
(4) to the first nonlinear term proportional to � is of the order of

β(ωeτe)

Rm

(
β

Rc
e

+ 1

Pe

)−1

,

where the plasma-beta is defined by β = c2
Sc/v

2
Ac . In particular, in the corona, where β �

0.01, Pe ∼ 100 < Rc
e , Rm = 1012–1014 and ωeτe ∼ 107, this ratio does not exceed 10−5.

Probably, it can be more pronounced in the chromosphere where ωeτe is already quite large,
but Rm is much smaller than in the corona.

5 Explicit Connection Formulae

As we have seen in the previous subsection, in general, the first connection formula, which
expresses the continuity of the total pressure, is given in the explicit form no matter what is
the value of the nonlinearity parameter in a slow dissipative layer (see (40)). In contrast, we
cannot write down an explicit expression for the jump of the normal component of velocity
[u], in general. Instead, to find [u], we first need to solve the governing equation for ṽ‖,
then substitute ṽ‖ in (42) and calculate the integral in this equation. As a result, we cannot
separate solutions in the resonant layer and in the external regions. Instead, we have to solve
the linear ideal MHD equations in the external regions and the governing equation for ṽ‖ in
the dissipative layer simultaneously using the connection formulae (40) and (42) to connect
the solutions. This makes solving any problem involving nonlinear slow resonance quite
complicated.

However, there are two exceptions when we can obtain the second connection formula
in an explicit form. The first one is the linear theory. In this case the connection formulae
for the cylindrical geometry have been derived by Erdélyi et al. (1995). These formulae are
easily translated to the planar geometry. We do not give these formulae here because our
aim is to study nonlinear effects in dissipative layer, but refer to Goossens et al. (2010) in
this volume.

The second exceptional case is the limit of very strong nonlinearity, when nonlinearity
in a slow dissipative layer strongly dominates over dissipation (Ni � 1 or Na � 1). In this
case the explicit expression for [u] has been derived by Ruderman (2000). In what follows
we briefly outline the derivation of this expression and the main points. Note that Ruderman
(2000) assumed that the equilibrium magnetic field is in the z-direction. Here we consider
the general case when the equilibrium magnetic field has both y and z-component, the angle
between the z-axis and the equilibrium magnetic field being α.

In what follows we consider that the dominant dissipative processes are the isotropic
viscosity and plasma resistivity. We assume that the motion is periodic with respect to the
coordinate z, so that the wave motion in the dissipative layer is described by (37) with the
time derivative equal to zero. Let us introduce the modified nonlinearity parameter

N = ε3/2(kx0)
2Ri, (48)



Nonlinear Effects in Resonant Layers in Solar and Space Plasmas 435

where x0 is the characteristic spatial scale of inhomogeneity, k = 2π/L, and L is the period
with respect to z. The condition that nonlinearity dominates over dissipation in the dissipa-
tive layer is written as N � 1. Let us introduce the dimensionless variables

ϑ = kθ, σ = − (x − xc) sign(�c)

δc(2N)1/3
,

q = V �ṽ‖
δc|�c|(2N)1/3

, Q = 2c3
T c�P cos2 α

ρ0cv
2
Ac|�c|δc(2N)2/3

,

(49)

where

δc =
[

V

k|�c|
(

η0

ρ0c

+ c2
T c

v2
Ac

η

)]1/3

(50)

is the characteristic thickness of slow dissipative layer given by the linear theory. In the new
variables (37) with ∂ṽ‖/∂t = 0 is rewritten as

2σ
∂q

∂ϑ
+ 2q

∂q

∂ϑ
− 1

N

∂2q

σ 2
= −dQ

dϑ
. (51)

Now q is a periodic function of ϑ with the period 2π . Since 〈ṽ‖〉 = 0 it follows 〈q〉 = 0. It
is easy to see that this restriction on q is compatible with (51). Let us look for the solution
to (51) satisfying this condition in the form of asymptotic expansion with respect to the
small parameter 1/N ,

q =
∞∑

n=0

N−nq(n). (52)

Let us assume that the function Q(ϑ) (and, consequently, P (ϑ)) takes its maximum value in
the interval [0,2π] at exactly one point ϑM . We denote this value as QM and the maximum
value of P as PM . This assumption implies that Q(ϑM + 2πn) = QM , and Q(ϑ) < QM

when ϑ �= ϑM + 2πn, where n is any integer number. Ruderman (2000) has shown that,
under this condition, there is a quantity σ0 > 0 so that the function q(0) can be written as

q(0) =
{−σ + [QM − Q(ϑ)]1/2, ϑM ≤ ϑ < ϑS,

−σ − [QM − Q(ϑ)]1/2, ϑS < ϑ ≤ 2π + ϑM,
(53)

for |σ | < σ0. The quantity ϑS is a function of σ implicitly defined by

σ = D(ϑS) ≡ 1

2π

∫ ϑS

ϑM

[QM − Q(ϑ)]1/2 dϑ − 1

2π

∫ 2π+ϑM

ϑS

[QM − Q(ϑ)]1/2 dϑ. (54)

Equation (54) determines q(0) for ϑM ≤ ϑ ≤ ϑM + 2π . We use the periodicity of q(0) with
repsect to ϑ to define it beyond this interval. When |σ | > σ0, the function q(0) satisfies the
condition

q(0)(−σ,ϑ) = −q(0)(σ,ϑ). (55)

Ruderman (2000) has shown that, in the zeroth order approximation, the wave energy
dissipation in the resonant layer occurs in slow MHD shocks inside this layer rather than
in the whole layer as it occurs in the linear theory. The shape of shocks is defined by the
equation ϑ = ϑS(σ ) + 2πn, where n is any integer number. The typical dependence of q(0)
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Fig. 1 The typical dependence
of q(0) on ϑ at fixed σ , |σ | < σ0
(the figure was adapted from the
study by Ruderman 2000)

Fig. 2 The typical shape of slow
shocks in the resonant layer (the
figure was adapted from the
study by Ruderman 2000)

on ϑ at fixed σ , |σ | < σ0, is shown in Fig. 1. Figure 2 displays the typical shape of slow
shocks in the resonant layer. With the aid of Fig. 2 it is easy to understand that (53) is
equivalent to

q(0) =
{−σ − [QM − Q(ϑ)]1/2, −σ0 ≤ σ < D(ϑ),

−σ + [QM − Q(ϑ)]1/2, D(ϑ) < σ ≤ σ0.
(56)

Once again, this equation defines q(0) for ϑM ≤ ϑ ≤ ϑM + 2π , while q(0)is extended peri-
odically beyond this interval.

Now we are in a position to calculate [u]. Using (49) we rewrite (42) as

[u] = −kcT cδ
2
c |�c|(2N)2/3

v2
Ac�

∂

∂ϑ
P

∫ ∞

−∞
q(0) dσ. (57)

We note here that, due to the relation (55), the integrals of q(0) over (−∞,−σ0) and (σ0,∞)

cancel out each other. Then, using (54) and (56), we obtain

P
∫ ∞

−∞
q(0) dσ =

∫ σ0

−σ0

q(0) dσ = −2D(ϑ)[QM − Q(ϑ)]1/2

= − 1

π
[QM − Q(ϑ)]1/2

{∫ ϑ

ϑM

[QM − Q(ϑ̃)]1/2 dϑ̃

−
∫ 2π+ϑM

ϑ

[QM − Q(ϑ̃)]1/2 dϑ̃

}
. (58)

Substituting this result into (57) and returning to the original dimensional variables, we
eventually arrive at

[u] = 2kV 3c2
T c

ρ0cv
4
Ac|�c|

d

dθ

{
[PM − P (θ)]1/2

×
(∫ θ

θM

[PM − P (θ̃)]1/2 dθ̃ −
∫ 2π+θM

θ

[PM − P (θ̃)]1/2 dθ̃

)}
. (59)
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This is the second connection formula for a strongly nonlinear slow resonant layer. Recall
that PM is the maximum value of P , PM = P (θM), and k = 2π/L, where L is the period
with respect to θ .

Although we have used (37) to derive (59), the derivation and expression for [u] are ex-
actly the same in the case where the dominant dissipative processes are the compressional
viscosity and thermal conduction, and the plasma motion in slow dissipative layers is de-
scribed by (43).

On the basis of analysis presented in this section we can make one very important quali-
tative conclusion. The linear theory predicts that the dimensionless amplitude of large vari-
ables in slow dissipative layer is of the order of εR

1/3
i in plasmas where the dominant dis-

sipative processes are isotropic viscosity and resistivity, and of the order of εRa in plasmas
where the dominant dissipative processes are the compressional viscosity and thermal con-
duction (recall that ε is the dimensionless amplitude of wave motion far from the resonant
position). Hence, in accordance with linear theory, the amplitude of wave motion in slow
dissipative layers tends to infinity in the limit of vanishing dissipation.

However, it follows from the analysis in this section that, in accordance with nonlinear
theory just outlined, the amplitude of wave motion in slow dissipative layers is of the order
of ε1/2 in the limit of very small dissipation. Hence, nonlinearity causes saturation of the
wave amplitude growth when the dissipative coefficients tend to zero.

6 Nonlinear Effects in Alfvén Dissipative Layers

Resonant Alfvén waves received much more attention than their slow wave counterparts
since for a considerable time it was thought that Alfvén resonance is much more important
in applications to the coronal low-beta plasma then slow resonance. In fact the hunt for
finding Alfvén waves has not yet even been settled, see e.g. Erdélyi and Fedun (2007), Jess
et al. (2009). In the last few years the Alfvén resonance received a new connotation related
to the rapid damping of coronal loop kink oscillations, which is attributed to the resonant
coupling of kink oscillations and local Alfvén waves (see the review by Andries et al. 2009).

Alfvén waves are incompressible and transversal, therefore the dissipative mechanisms
affecting Alfvén waves are the shear viscosity and magnetic resistivity. Under coronal con-
ditions the coefficients describing the magnitude of these mechanisms are very small, how-
ever dissipative terms in the momentum and induction equation can become as large as other
terms in the region containing large spatial gradients.

Since dissipation is only important in a narrow layer embracing the resonant surface, the
dynamics of waves outside the dissipative layer is described by the same system of linear
MHD (29) as in the case of slow waves.

The Alfvén resonant position, xA, is defined by

V = vA(xA) cosα. (60)

In accordance with the linear theory the characteristic thickness of the dissipative layer
embracing the ideal resonant position is given by

δA =
(

V (η1 + ρ0Aη)

kρ0A|�A|
)1/3

, (61)

where now V = vA cosα, and

�A = d

dx
(V 2 − v2

A cos2 α)

∣∣∣∣
x=xA

, (62)
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and the subscript A indicates that a quantity is calculated at x = xA. The estimate
δA ∼ LR

−1/3
A immediately follows from (61), where 1/RA = 1/Rs

e + 1/Rm. In all appli-
cations to solar physics RA is very large ranging from about 106 in the photosphere to up to
1014 in the corona.

Earlier in Sect. 4 we discussed that the large variables in Alfvén dissipative layers are
v⊥ and b⊥. The liner theory predicts that they are of the order of εR

−1/3
A , where ε is the

dimensionless amplitude. In the Alfvén dissipative layer the ratio of the largest nonlinear
terms in the dissipative MHD equations to the largest dissipative terms is of the order of
NA ∼ εR

−2/3
A . On the basis of this estimation we should conclude that nonlinearity starts to

compete with dissipation as soon as NA ∼ 1. However, if we derive the governing equation
for wave motion in Alfvén dissipative layers using the same procedure as one adopted to
derive (37), we obtain a linear equation

(x − xA)
∂ṽ⊥
∂θ

+ V (η1 + ρ0Aη)

ρ0A�A

∂2ṽ⊥
∂x2

= −V sinα

ρ0A�A

dP

dθ
, (63)

where ṽ⊥ is the oscillatory part of v⊥. The fact that (63) does not contain nonlinear terms
despite considering the full nonlinear MHD system of equations is in stark contrast to the
nonlinear description of wave motion in slow dissipative layers presented in the previous
sections. In fact, Clack et al. (2009b) have shown that the linear description of wave motion
in Alfvén dissipative layers remains valid if εR

1/3
A � 1, i.e. if the dimensionless amplitude

of wave motion is much smaller than unity. Hence, the nonlinear description is only needed
when the wave motion amplitude becomes of the order of unity. Once again note a sharp dif-
ference between the slow and Alfvén dissipative layers. In slow dissipative layer the motion
becomes strongly nonlinear as soon as its amplitude becomes of the order of ε1/2.

The result that the linear description is valid for the wave motion in Alfvén dissipative
layers is the motion amplitude is much smaller than unity was predicted by Goossens and
Ruderman (1995), but no explanation for this behaviour has been given. Clack and Ballai
(2009a) showed that this result is related to the fact that the largest nonlinear terms in Alfvén
dissipative layers cancel out each other. Using the series expansions with respect to R

−1/3
A

they also showed that the main nonlinear effect in Alfvén dissipative layers is generation of
magnetosonic waves. The ratio of amplitudes of these magnetosonic waves to the amplitude
of Alfvénic motion is of the order of εR

1/3
A � 1.

We do not describe the results of linear theory for Alfvén dissipative layers. They can be
found elsewhere (see e.g. Goossens et al. 1995, 2010).

7 Resonant Interaction of Externally Driven Waves With Inhomogeneous Plasmas

The process of resonant absorption involves the interaction of two oscillating systems which
results in the energy transfer between them. In this context, probably, the most obvious case
is the resonant interaction between an external laterally driven wave and the local oscilla-
tions of the plasma. Resonant interaction between global and local oscillations takes place
if the frequency (or phase speed) of the global wave matches any value from the local slow
or Alfvén continuum, as stated in the Introduction.

The effect of nonlinearity in a slow dissipative layer on the interaction of sound wave
with an inhomogeneous magnetized plasma was first studied by Ruderman et al. (1997b)
and Ballai et al. (1998b) in the approximation of weak nonlinearity in the dissipative layer,
and by Ruderman (2000) in the approximation of strong nonlinearity. In what follows we
briefly outline the analysis carried out in these papers.
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Fig. 3 The sketch of the equilibrium state. The semi-infinite regions I (x < 0) and III (x > x0) contain
homogeneous plasmas penetrated by homogeneous magnetic field, while the plasma and magnetic field in
region II (0 < x < x0) are inhomogeneous. The resonant surface at x = xc is inside the dissipative layer
shown by the shaded strip (adapted from Ruderman et al. 1997b and Ballai et al. 1998b)

We consider the equilibrium schematically shown in Fig. 3 described with use of the
Cartesian coordinates x, y, z. The equilibrium magnetic field is unidirectional, parallel to
the yz-plane, and makes the angle α with the z-axis. The inhomogeneous plasma layer
(region II) occupies the slab 0 < x < x0. It is sandwiched by two semi-infinite regions con-
taining homogeneous plasmas (regions I and III), region I being magnetic-free and region III
being penetrated by homogeneous magnetic field. Obviously the model we use here is very
simplistic. In reality the magnetic structures are much more complicated. However the ap-
proximation we have made will help us to understand the fundamental characteristics of
resonant absorption and its effectiveness. The equilibrium quantities in regions I, II and III
are labelled by subscripts ‘e,’ ‘0’ and ‘i’, respectively.

All equilibrium quantities in region II depend on x only. The equilibrium quantities are
assumed to be continuous and satisfying the condition of the total pressure balance,

pe = p0(x) + B2
0 (x)

2μ0
= pi + B2

i

2μ0
. (64)

This equation, in particular, implies that the ratio of equilibrium densities in regions III and
I is given by

ρi

ρe

= 2c2
Se

2c2
Si + γ v2

Ai

. (65)

The plasma dynamics outside the dissipative layer is described the system of linear ideal
MHD equations. In what follows we consider solutions in the form of propagating waves
with permanent shape, and assume that perturbations of all quantities depend on x and
θ = z − V t . Then the system of linear ideal MHD equations can be reduces to the system of
two equations for the total pressure and x-component of the velocity,

∂u

∂x
= V

F

∂P

∂θ
,

∂P

∂x
= ρ0DA

V

∂u

∂θ
, (66)

where the quantities F and DA are given by (30) and (31). This system is written for re-
gion II. To use it in regions I and III we have to substitute ρ0 by ρe and ρi respectively.

The physical picture of the wave interaction with the inhomogeneous plasma is as fol-
lows. The sound wave incoming from region I interacts with the inhomogeneous plasma in
region II. It is partially reflected back in region I, partially penetrate in region III, and also
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partially absorbed in the dissipative layer. As a result there is an outgoing (or reflected) wave
in region I in addition to the incoming wave and a transmitted wave in region III.

In what follows we assume that the incoming sound wave is monochromatic. We write
its wave vector as k = (χk,0, k). Then its frequency is given by

ω2 = k2c2
Se(1 + χ2). (67)

The solution to (66) describing the incoming wave can be written as

P = εpe cos[k(θ + χx)], u = ε
peχ

ρeV
cos[k(θ + χx)], (68)

where V = ω/k = cSe(1 + χ2)1/2. In general, the outgoing wave will contain not only the
fundamental harmonic, but also the overtones. Hence, the expression for the pressure pertur-
bation in the outgoing wave can be written as P = εpeA(θ − χx), where A is the function
to be determined. Then the general solution to (66) describing the wave motion in region I
is

P = εpe{cos[k(θ + χx)] + A(θ − χx)},
u = ε

peχ

ρeV
{cos[k(θ + χx)] − A(θ − χx)}. (69)

In region III the system of (66) can be reduced to

∂P

∂x
+ κ2

i

∂P

∂θ
= 0, κ2

i = −V 4 − V 2(c2
Si + v2

Ai) + v2
Aic

2
Si cos2 α

(c2
Si + v2

Ai)(V
2 − c2

T i cos2 α)
. (70)

In what follows we assume that there is a resonance position xc in region II, so that V =
cT (xc) cosα. In addition, we consider that cT (x) is a monotonically increasing function in
region II. Then it is straightforward to show that κ2

i > 0, so that the wave motion in region III
is evanescent. Using this result and expanding P in the Fourier series with respect to θ we
can write the solution to (66) decaying as x → ∞ in the form

P =
∞∑

n=−∞
Pn exp[k(inθ − κi |n|(x − x0)], (71)

where, at present, Pn are arbitrary constants. Substituting this result in (66) we obtain that
the x-component of the velocity in region III is given by

u = iV κi

ρi(V 2 − v2
Ai cos2 α)

∞∑

n=−∞
Pn sign(n) exp[k(inθ − κi |n|(x − x0))]. (72)

To obtain the solution in region II we expand P and u in the Fourier series with respect
to θ , and write the Fourier coefficients of these expansions as

Pn(x) = ρeV
2Xn(x), un(x) = iV Yn(x). (73)

Substituting these expressions in (66) we obtain the system of ordinary differential equations
for Xn and Yn,

dXn

dx
= −ρ0(V

2 − v2
A cos2 α)

ρeV 2
nkYn,

dYn

dx
= ρeV

2

F
nkXn. (74)
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Consider the two solutions to this set of equations satisfying the boundary conditions at
x = 0,

X−
1n = 1, Y −

1n = 0, (75a)

X−
2n = 0, Y −

2n = sign(n), (75b)

and the two solutions satisfying the boundary conditions at x = x0,

X+
1n = 1, Y +

1n = 0, (76a)

X+
2n = 0, Y +

2n = sign(n). (76b)

The solutions satisfying boundary conditions (75) are the two linearly independent solutions
to the set of (74) regular in the interval [0, xc). Any other solution regular in this interval can
be written as a liner combination of these two solutions. Similarly, the solutions satisfying
boundary conditions (76) are the two linearly independent solutions regular in the inter-
val (xc, x0]. Any other solution regular in this interval can be written as a liner combination
of these two solutions.

Since the total pressure and x-component of the velocity are continuous at x = 0 and
x = x0, the quantities Xn and Yn satisfy the boundary conditions at x = 0,

Xn = εpe

ρeV 2

(
1

2
δ1|n| + An

)
, Yn = − iεχpe

ρeV 2

(
1

2
δ1|n| − An

)
, (77)

and at x = xc ,

Xn = Pn(x0)

ρeV 2
, Yn = κ sign(n)Pn(x0)

ρi(V 2 − v2
Ai)

, (78)

where δij is the Kronecker delta-symbol, and An and Pn are the coefficients in the expansions
of functions A(θ) and P (x, θ) in the Fourier series with respect to θ . Using these boundary
conditions we immediately obtain that

Xn = εpe

ρeV 2

[(
1

2
δ1|n| + An

)
X−

1n − iχ sign(n)

(
1

2
δ1|n| − An

)
X−

2n

]
, (79a)

Yn = εpe

ρeV 2

[(
1

2
δ1|n| + An

)
Y −

1n − iχ sign(n)

(
1

2
δ1|n| − An

)
Y −

2n

]
, (79b)

in x < xc , and

Xn = Pn(x0)

ρeV 2

(
X+

1n − ςX+
2n

)
, Yn = Pn(x0)

ρeV 2

(
Y +

1n − ςY +
2n

)
, (80)

in x > xc , where

ς = κρeV
2

ρi(v
2
Ai cos2 α − V 2)

. (81)

It follows from the first connection formula, (40), that Xn(x) is continuous at x = xc .
Equations (79) and (80) give the solution in region II. This solution contains the Fourier

coefficients of the unknown function A(θ). Now we are in a position to derive the equation
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for A(θ). For this we calculate the jump of u across the dissipative layer using (79) and (80),
and then compare it with the jump of u given by the second connection formula. As a result
we obtain the integral equation for A(θ).

Now we need to make one final remark. The procedure of derivation of the integral
equation for A(θ) described above is only valid when the equilibrium magnetic field is in
the z-direction, i.e. when α = 0. The reason is the following. We have assumed that cT (x)

is a monotonically increasing function and the slow resonant position is determined by the
equation cT (xc) cosα = V . Since vA > cT , we have that vA(xc) cosα > V . Since vA(0) = 0,
this implies that there is at leas one point xA ∈ (0, xc) where vA(xA) cosα = V , i.e. there is at
least one Alfvén resonant position in (0, xc). There is exactly one Alfvén resonant position
when vA(x) is a monotonic function, while there could be a few Alfvén resonant positions
if vA(x) is non-monotonic. In the simplest case when there is exactly one resonant position,
xA < xc , we have to solve the ideal linear MHD equations in three intervals, (0, xA), (xA, xc)

and (xc, x0), use the solution to calculate the jumps of u at xA and xc , and then compare these
jumps with those given by the connection formulae at the slow and Alfvén resonance. The
case where α = 0 is exceptional because in this case there is no Alfvén resonance in spite
that there is xA satisfying vA(xA) = V .

7.1 Approximation of Weak Nonlinearity in Dissipative Layer

Ruderman et al. (1997b) studied the interaction of sound wave with an inhomogeneous
plasma where the dominant dissipative processes are resistivity and isotropic viscosity under
the assumption that α = 0. In the nonlinear theory, in general, we cannot obtain an explicit
expression for [u]. To make analytical progress, however, Ruderman et al. (1997b) assumed
that nonlinearity in the slow dissipative layer is weak and considered the nonlinear term
in (37) as a perturbation. Then they carried out the asymptotic analysis using the modified
nonlinearity parameter N given by (48) as a small parameter. In particular, they calculated
the coefficient of resonant absorption defined as

K = �in − �out

�in
, (82)

where �in and �out are the energy fluxes of the incoming and outgoing sound waves, re-
spectively. They found that

K ≈ KL + N2Kcor, (83)

where KL is the coefficient of resonant absorption given by the linear theory, and N2Kcor

is the nonlinear correction, and obtained the analytical expressions for KL and Kcor in the
approximation of thin inhomogeneous layer (kx0 � 1). We do not give these expressions
here. They can be found in Ruderman et al. (1997b). We only mention that Kcor < 0, so that
nonlinearity suppresses resonant absorption in the thin inhomogeneous layer approximation.

Ballai et al. (1998b) carried out a similar analysis but for plasmas where the dominant
dissipative processes are compressional viscosity and thermal conduction, once again as-
suming that α = 0. They used (kx0)Na as a small parameter, where Na is given by (27).
Ballai et al. (1998b) obtained the expression for K similar to (83), however with (kx0)Na

substituted for N . Once again, Kcor < 0 when kx0 � 1, however the expression for Kcor in
terms of equilibrium quantities is different from that obtained by Ruderman et al. (1997b).
The results obtained by Ruderman et al. (1997b) and Ballai et al. (1998b) clearly show that,



Nonlinear Effects in Resonant Layers in Solar and Space Plasmas 443

while KL remains the same no matter what type of dissipation operates in the slow dissipa-
tive layer, the coefficient of resonant absorption given by the nonlinear theory does depend
on the dissipation type.

In a more recent study Clack and Ballai (2009a) investigated the efficiency of resonant
absorption when inside the dissipative layer the dispersion was of the same order of mag-
nitude as nonlinearity and dissipation. Using the limit of weak nonlinearity these authors
found that the effect of dispersion is to increases the absolute value of the nonlinear correc-
tion (see (83)), i.e. to decreases the net coefficient of absorption. Despite the change in the
nonlinear correction this term still remained small compared to its linear counterpart.

7.2 Approximation of Strong Nonlinearity in Dissipative Layer

In this subsection we review studies about the same problem of absorption of the incoming
wave energy in a slow resonant layer, however under assumption that the wave motion in
the slow dissipative layer is strongly nonlinear. To simplify the analysis we assume that the
equilibrium magnetic field is in the z-direction (α = 0), and region I is magnetic-free. The
latter assumption implies that the incoming wave is a sound wave. The detailed investigation
of this problem is given by Ruderman (2000). Here we only outline his analysis. In what
follows we use the same notation as in Ruderman (2000).

The solution to the linear ideal MHD equations in regions I and III, and in region II out-
side the slow dissipative layer, have been already described above. As it has been explained,
in order to obtain the equation for function A(θ) describing the outgoing wave we have to
calculate [u] using the solution of ideal linear MHD equations outside the dissipative layer,
and then compare it with the expression for [u] given by the second connection formula. In
the case of strong nonlinearity in the dissipative layer this expression is given by (59). As a
result we arrive at the integral equation determining A(θ),

Mr
1 cos(kθ) + χMi

1 sin(kθ) + M[A(θ)]

= 2kζ [SM − S(θ)] 1
2

(∫ θ

θM

[SM − S(θ̃)] 1
2 dθ̃ −

∫ L+θM

θ

[SM − S(θ̃)] 1
2 dθ̃

)
. (84)

Here

S(θ) = Pc(θ)

εpe

, SM = PM

εpe

, ζ = kρeV
6

πρ0cv
4
Ac|�| . (85)

Recall that PM is the maximum value of P in the dissipative layer. The operator M[A(θ)]
is given by

M[A(θ)] =
∞∑

n=1

1

n

[
MnAn exp(inkθ) + M∗

nA∗
n exp(−inkθ)

]
, (86)

where An are the Fourier coefficients of function A(θ), the asterisk indicates the complex
conjugate quantity, and the coefficients Mr

1 , Mi
1 and Mn are expressed in terms of the equi-

librium quantities and the solutions (X±
1n, Y

±
1n) and (X±

2n, Y
±
2n) to the set of (74). We do not

given these expressions here, they can be found in Ruderman (2000). The function S(θ) is
expressed in terms of A(θ) by

S(θ) = X−
11c cos(kθ) + χX−

21c sin(kθ) + L[A(θ)], (87)
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where the operator L[A(θ)] is given by

L[A(θ)] =
∞∑

n=1

[
(X−

1nc + iχX−
2nc)An exp(inkθ) + (X−

1nc − iχX−
2nc)A

∗
n exp(−inkθ)

]
. (88)

Once again, the coefficients X−
1nc and X−

2nc are expressed in terms of the equilibrium quanti-
ties and the solutions to the set of (74). And, once again, we do not given these expressions
here referring to Ruderman (2000) instead.

Since the operators L[A(θ)] and M[A(θ)] are expressed in terms of the Fourier coeffi-
cients of the function A(θ), and these Fourier coefficients, in turn, are expressed in terms of
integrals of the function A(θ), the operators L[A(θ)] and M[A(θ)] are integral operators.
Hence, (84) is the integral equation for the function A(θ).

In spite that (84) being a very complicated nonlinear equation, it has an extremely simple
solution of the form

A(θ) = a cos(kθ + ϕ), (89)

where the quantities a > 0 and ϕ are expressed in terms of the equilibrium quantities and
the solutions to the set of (74). We see that the outgoing wave is monochromatic in spite
that the nonlinearity in the dissipative layer generates higher harmonics. The reason is that
the amplitudes of these higher harmonics damp at distances of the order of thickness of the
dissipative layer, so that only the fundamental harmonic survives at large distances from the
slow resonant position.

Using the solution given by (89) Ruderman (2000) calculated the coefficient of resonant
absorption. It immediately follows from (82) that K = 1 − a2. Note that this expression is
valid regardless whether we use the linear or nonlinear description of plasma motion in the
slow dissipative layer. The nonlinearity only affects the value of a. In general, the set of (74)
can be solved only numerically. However, in the thin inhomogeneous layer approximation
(kx0 � 1) the analytical solution can be obtained in a straightforward way. In that case the
expression for the coefficient of resonant absorption is given by

KNL = 32χζ

χ2 + ς2
+ O(k2x2

0 ), (90)

where we have used the subscript ‘NL’ to indicate that the coefficient of resonant absorption
has been calculated using strongly nonlinear description of the wave motion in the slow
dissipative layer. In (90) the quantity ς is given by (81) with α = 0, and ζ is given by (85).
Note that ζ = O(kx0), so that KNL = O(kx0), which implies that resonant absorption is
weak in the thin inhomogeneous layer approximation. For the ratio of the coefficients of
resonant absorption calculated using linear and strongly nonlinear descriptions we obtain

KNL

KL
= 8

π2
+ O(kx0) ≈ 0.81. (91)

We see that, in the thin inhomogeneous layer approximation, nonlinearity reduces the effi-
ciency of resonant absorption. This result is in good agreement with the results obtained in
the weak nonlinearity approximation and described in the previous subsection.

Ruderman (2000) studied numerically the dependence of KNL/KL on kx0 for different
values of χ and a typical equilibrium. He found that KNL/KL is a non-monotonic function
of kx0. First it grows, takes its maximum at kmx0, and then monotonically decreases. Typi-
cally kmx0 is between 4 and 6, and the maximum value of KNL/KL is larger than 1. However
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the most important result is that, for 0 < kx0 < 10, KNL/KL does not deviate from unity by
mode than 20%. Hence, we conclude that the effect of nonlinearity in slow dissipative layers
on the coefficient of resonant absorption is moderate.

As pointed out previously, the nonlinear coefficient of resonant absorption depends on
particular dissipative processes operating in a slow resonant layer. However, this dependence
disappears in the approximation of strong nonlinearity. This result is related to the fact that,
in the approximation of strong nonlinearity, dissipation in a slow resonant layer occurs not
in the whole volume of this layer, but in slow shocks inside the layer. It is a very well known
property of shocks that, while their internal structure is determined by particular dissipative
processes operating in a shock, the amount of energy dissipated at the shock remains the
same regardless what the dissipative processes are.

Recently Clack et al. (2010) introduced the concept of coupled resonances within the
framework of nonlinear resonant MHD, where the transmitted waves at one of the reso-
nances could play the role of the incoming wave for the second resonance. It is obvious
that due to the β � 1 in the solar corona a coupled resonance (slow+Alfvén) would be
impossible, however in plasmas where the plasma-β is much closer to unity the coupled
resonance could take place. In order to ensure that the second resonance takes place be-
fore the transmitted waves becomes evanescent, the proximity of the two resonances must
be smaller than k−1. When looking at the efficiency of the coupled resonances Clack et al.
(2010) found that the absorption coefficient of the coupled resonance was larger than the
sum of individual coefficients taken separately at the two resonances.

8 Generation of Mean Flows

When a wave propagates through a medium, the nonlinear interaction of the wave and
medium generates flow. This process is very well known in nonlinear acoustics where flows
generated by propagating sound waves are called “acoustic flows” (see e.g. Rudenko and
Soluyan 1977).

We have already mentioned the generation of flows by resonant MHD waves in Sect. 4
when we split the velocity in the slow dissipative layer in the mean and oscillatory parts.
The flows are very important for resonant and diagnostic purposes (see e.g. Doyle et al.
1997; Erdélyi 2006). Ruderman et al. (1997a) derived the formulae determining the jumps
of the derivative of the mean flow across the dissipative layer under the assumptions that
the plasma motion is periodic with the period L, and the dominant dissipative processes are
isotropic viscosity and resistivity. Their study was later extended by Ballai et al. (2000b) for
cylindrical geometries. These formulae determining the jumps can be written as

[
dv̄⊥
dx

]
= sinα

LV

(
1 + ρ0cc

2
T cη

v2
Acη0

)∫ L

0
dθ

∫ ∞

−∞

(
∂ṽ‖
∂x

)2

dx, (92)

[
dv̄‖
dx

]
= − (η0 + ρ0cη)V

η0v
2
AcL cosα

∫ L

0
dθ

∫ ∞

−∞

(
∂ṽ‖
∂x

)2

dx. (93)

When the motion in a slow dissipative layer can be described by the linear dissipative MHD
equations (which is possible if Ni � 1) we can find the explicit expression for the integrals
in (92) and (93) in terms of perturbation of total pressure P . In that case v̄‖ in the slow
dissipative layer is described by (37) with the term proportional the time derivative and the
nonlinear terms (which are the first and third term on the left-hand side) are neglected. This
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linear equation can be easily solved either by the method used by Goossens et al. (1995) or
by the method used by Tirry and Goossens (1996) to obtain

ṽ‖n = − icT cV
2Pn

ρ0cv
2
Ac�c

∣∣∣∣
2πn�c

λiLV

∣∣∣∣
1/3

sign(n�c)F

(
(x − xc)

∣∣∣∣
2πn�c

λiLV

∣∣∣∣
1/3

sign(n�c)

)
, (94)

where ṽ‖n and Pn are the coefficients in the expansions of ṽ‖ and P in the Fourier series
with respect to θ , and the F -function is defined by

F(y) =
∫ ∞

0
exp(iyσ − σ 3/3) dσ. (95)

Changing the order of integration and using the Parseval identity yields

1

L

∫ L

0
dθ

∫ ∞

−∞

(
∂ṽ‖
∂x

)2

dx = 2
∞∑

n=1

∫ ∞

−∞

∣∣∣∣
∂ṽ‖n
∂x

∣∣∣∣
2

dx. (96)

Using (94) and (95) it is not difficult to obtain that

∫ ∞

−∞

∣∣∣∣
∂ṽ‖n
∂x

∣∣∣∣
2

dx = 2π2c2
T cV

3n|Pn|2
ρ2

0cv
4
Ac|�c|Lλi

. (97)

Substituting (96) and (97) in (92) and (93) we arrive at

[
dv̄⊥
dx

]
= 4π2c2

T cV
2 sinα

ρ0cv
4
Ac|�c|Lη0

∞∑

n=1

n|Pn|2, (98)

[
dv̄‖
dx

]
= −4π2c4

T cV
2(η0 + ρ0cη) cosα

ρ2
0cv

6
Ac|�c|Lη0

(
η0

ρ0c

+ c2
T cη

v2
Ac

)−1 ∞∑

n=1

n|Pn|2. (99)

It is instructive to estimate the order of magnitude of these jumps. It is not difficult to show
that both jumps are of the order of (V/L)N2

i Re R
−4/3
i . It is interesting that, although the

amplitude of the wave motion in the dissipative layers is small, the jumps given by (98)
and (99) can be quite large if Re � Rm, i.e. if the magnetic Prandtl number, Pm = η0/ρ0cη,
is small. Simple estimates show that these jumps are larger or of the order of V/L when
1 � Rm � Re and Re � ε−2.

To find the profiles of the components of the mean velocity we need to impose boundary
conditions far away from the dissipative layer. For example, if there are rigid walls at x = ±a

where the condition of adhesion has to be satisfied, then the components of the mean velocity
take the simple form

v̄⊥ =
{ [ dv̄⊥

dx
] x−a

2 , x < 0,

−[ dv̄⊥
dx

] x+a
2 , x > 0,

v̄‖ =
{ [ dv̄‖

dx
] x−a

2 , x < 0,

−[ dv̄‖
dx

] x+a
2 , x > 0.

(100)

It is worth mentioning that the derivations carried out in cylindrical geometry by Ballai et
al. (2000b) resulted in some analogue relations for the jump in the mean flow components,
but the properties of the mean flow generated by the nonlinear resonant slow waves are the
same. This means that the results presented here are rather robust.
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Although the dynamics of waves at the Alfvén resonance can be described within the
framework of linear MHD with great accuracy, the process of resonance can produce a mean
flow even in this later case. The problem of mean flow generation at the Alfvén resonance
was recently studied by Clack and Ballai (2009b). In this case the jump in the oscillatory
part of he parallel and perpendicular components of velocity are given as

[
dv̄⊥
dx

]
= k2 sin3 α

2νρ2
0a|�a|

∞∑

n=1

n|Pn|2, (101)

and
[

dv̄‖
dx

]
= −k2 sin2 α cosα

2νρ2
0a|�a|

∞∑

n=1

n|Pn|2. (102)

For the particular case of α = π/4 Clack and Ballai (2009b) found that these jumps scale
as ε1/2V/L. For example, if the dimensionless amplitude ε = O(10−4) then the predicted
mean shear flow is of the order of 10 km s−1 in both upper chromosphere and solar corona.
This value is comparable with observed values of bulk flow in coronal loops. However, we
should keep in mind that the important difference between these two types of flows is their
range; mean shear flows are rather localised while bulk motion of plasma occurs often along
the entire coronal loop length.

Studies have been carried out to investigate the properties of shear flows, however, nearly
all of these have been numerical due to analytical complications when considering nonlin-
earity, turbulence and resonant absorption simultaneously. Numerical studies have found
that shear flows could give rise to Kelvin-Helmholtz instability at the narrow dissipative
layer (see, e.g. Terradas et al. 2008). This instability can drive turbulent motions and, in
turn, locally enhance transport coefficients which can alter the efficiency of heating (see,
e.g. Karpen et al. 1994; Ofman et al. 1994; Ofman and Davila 1995). The generation of
mean shear flow can supply additional shear enhancing turbulent motions.

9 Conclusions

Resonant absorption is a mechanism that ensures the effective transfer of energy between
interacting systems. In solar and space plasmas resonant absorption is used in conjunction
with the interaction of global waves and oscillations with inhomogeneous plasmas. Although
the initial purpose of resonant absorption to be the phenomenon explaining the heating of
solar corona seems these days a bit too optimistic, the advances of observational evidences
of the last couple of years showed that resonant absorption is still a remarkable and bril-
liant mechanism on its own, able to explain a series of delicate effects occurring in the solar
atmosphere and beyond. In particular, observations show that many solar waveguides are
dynamic (e.g., there is a background cooling or heating, bulk motions, etc.) where the char-
acteristic time of this dynamism is comparable to perturbation time scales (see e.g. Morton
and Erdélyi 2009, 2010; Morton et al. 2010). There is a fundamental question of how linear
and non-linear resonant absorption works in such systems.

The present review highlighted the progress made in the field of nonlinear resonance in
the last 15 years. Simple estimations outlined in this paper show that near resonances the
amplitudes of oscillations can grow considerably and only a nonlinear description is ade-
quate to describe accurately the physics. Luckily, as summarised in the present review, these
nonlinear additives to the effectiveness of absorption (compared to the linear counterpart)
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are not so significant. In general, nonlinearity tends to decrease the net coefficient of absorp-
tion. In the case of resonant Alfvén waves, results show that the linear approach can give
rather accurate results, with no need of using a mathematically more cumbersome nonlinear
description.

We also showed that nonlinearity can have additional effects to the change in the ab-
sorption coefficient. Due to the nonlinear absorption of wave momentum in the vicinity of
resonance, a shear mean flow is generated that is continuous across the layer containing the
resonant surface, while its derivative has a jump. Simple estimations of the magnitude of the
mean shear flow show that in the solar corona and upper chromosphere this mean flow is
of the order of 10 km s−1, a flow comparable with the existing bulk motion of the plasma
in coronal loops. The generated shear flows can trigger instabilities that can enhance locally
the transport coefficients, i.e. the effectiveness of resonance.

The analysis on the nonlinear resonant absorption reviewed here contains several sim-
plifying assumptions that helped us progress in the analytical study of the process of non-
linear resonance. It is obvious that considerable advances in this field can be made only
using numerical simulations. One way to extend the existing theories is the study of non-
linear absorption in 2-D geometries. Further, all presented theories assumed (and that is
true for all studies of resonant absorption, including linear cases) that the interacting waves
are monochromatic, however it is more likely that waves in nature do not depend on one
single wavenumber, but they depend on a spectrum of values meaning that resonant absorp-
tion would occur for all those wavenumbers for which the resonant condition is satisfied
(some encouraging numerical studies were carried earlier by Ofman and Davila 1996 and
Ofman et al. 1998). It remains to be seen what subtle effects the mean shear flow has on the
resonance, probably through numerical simulations. It also known through numerical inves-
tigations (see e.g. Ofman et al. 1998) that the resonant absorption leads to the modification
of the loop density structure in the nonlinear regime, thus affecting the location, dynamics,
and evolution of the resonant absorption layer, as well as the heating of the loop. This aspect
still needs further investigation for the cases presented in our paper. Last but not least, as
mentioned earlier, it is rather interesting to estimate resonant absorption in dynamic solar
waveguides in future works.

The abundance of high resolution observations and the extended numerical possibilities
available will play an essential role in the progress of resonant absorption’s study and its ap-
plicability in explaining other phenomena occurring in solar and space plasmas predicting a
bright future for this simple, yet fundamental effect in inhomogeneous space and laboratory
plasmas.
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