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Abstract The linear theory of MHD resonant waves in inhomogeneous plasmas is re-
viewed. The review starts from discussing the properties of driven resonant MHD waves.
The dissipative solutions in Alfvén and slow dissipative layers are presented. The impor-
tant concept of connection formulae is introduced. Next, we proceed on to non-stationary
resonant MHD waves. The relation between quasi-modes of ideal MHD and eigenmodes of
dissipative MHD are discussed. The solution describing the wave motion in non-stationary
dissipative layers is given. It is shown that the connection formulae remain valid for non-
stationary resonant MHD waves. The initial-value problem for resonant MHD waves is con-
sidered. The application of theory of resonant MHD waves to solar physics is discussed.
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1 Introduction

The last decade has seen an avalanche of observations of MHD waves in the solar at-
mosphere. It is clear now that MHD waves are ubiquitous in the solar atmosphere. For latest
reviews on observations see e.g. Banerjee et al. (2007); De Moortel (2009); Mathioudakis
et al. (2010). This has triggered new theoretical research for explaining and interpreting the
observed properties. A special point of attention is whether these MHD waves are slow, fast
or Alfvén waves. Matters are complicated by the non-uniformity of the plasma in the so-
lar atmosphere. In a uniform plasma of infinite extent the MHD waves can be put in well
separated boxes. However, in non-uniform plasmas this clear cut division is often lost as the
MHD waves can have mixed properties. The debate on the nature of MHD waves in the solar
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atmosphere has gained new momentum when several groups, e.g. De Pontieu et al. (2007),
Okamoto et al. (2007) in space-borne, and Tomczyk et al. (2007) and Jess et al. (2009) in
ground-based observations reported the detection of Alfvén waves in the solar atmosphere.
Apparently, there is no general consensus about the presence of Alfvén waves in the solar
atmosphere. For example Erdélyi and Fedun (2007) highlight the ambiguity in the interpre-
tation of the space-borne observations and show with forward modelling that some of the
space-borne observations are more consistent with kink waves, while Van Doorsselaere et
al. (2008) argued strongly against the possible presence of Alfvén waves in the solar corona
emphasizing that Alfvén waves cannot be anything but torsional. Jess et al. (2009) carried
out rigorous tests when interpreting their observations as torsional Alfvén waves. It is very
unlikely that Alfvén waves in their pure form as discovered by Alfvén (1942) exist at all in
the solar atmosphere. Conventional theory of Alfvén waves requires a uniform plasma of
infinite extent with a constant unidirectional magnetic field. Since the plasma structures in
the solar atmosphere have a finite extent and are almost as a rule inhomogeneous it would
be surprising to discover pure Alfvén waves in the solar atmosphere. In addition the ba-
sic characteristic of the ideal Alfvén wave is that the total pressure in the plasma remains
constant during the passage of the wave. For inhomogeneous medium, however, the total
pressure, in general, couples with the dynamics of the motion, and the assumption of ne-
glect of total pressure perturbations becomes invalid. However, that does not mean that the
concept of Alfvén waves is obsolete. In general in an inhomogeneous plasma MHD waves
have mixed properties which can be traced back to the properties of the classic slow, fast and
Alfvén waves in a homogeneous plasma of infinite extent. The degree to which the classic
properties are present in a given MHD wave depends on the background through which the
MHD wave propagates. When an MHD wave that starts off as, e.g., a predominantly fast
magneto-sonic wave propagates through an inhomogeneous background it can change into
an MHD wave with equally strong fast and Alfvén properties and eventually turn into a pre-
dominantly Alfvén wave. Here a predominantly fast magneto-sonic wave refers to a wave
with the gradient of pressure as the main restoring force and plasma pressure and magnetic
pressure being in phase. A predominantly Alfvén wave refers to a wave with the magnetic
tension force as its dominant restoring force. A first objective of this review is to make it
clear that in non-uniform plasmas MHD waves in general have mixed wave properties and
that in non-uniform plasmas they cannot be put in clearly separated boxes as is done for
homogeneous plasmas of infinite extent. The second objective is to point out that resonant
slow and Alfvén waves are a natural consequence of the non-uniformity of the plasma that
supports the MHD waves. The third objective is to point out that because of the MHD wave
coupling discrete MHD waves with frequencies in the slow and Alfvén continuous parts of
the spectrum are transformed into damped quasi-modes.

Resonant MHD waves are important for the solar atmosphere for several reasons. They
have attracted attention because it was realized that resonant absorption of e.g. Alfvén waves
is an efficient means for dissipating energy of MHD waves in nonuniform plasmas. It was
first studied as means for the supplementary heating of fusion plasmas (see e.g. Tataronis
and Grosmann 1973; Grossmann and Tataronis 1973; Chen and Hasegawa 1974a; Hasegawa
and Chen 1974) and subsequently proposed as a mechanism for heating magnetic flux tubes
in the solar corona by Ionson (1978). Since the original suggestion, resonant absorption
has remained a popular mechanism for explaining the heating of the solar corona (see
e.g. Wentzel 1979b; Ionson 1985; Hollweg 1988; Hollweg and Yang 1988; Hollweg 1990;
Goossens 1991; Poedts and Kerner 1992; Steinolfson and Davila 1993; Ofman et al. 1995;
Erdélyi and Goossens 1995). Resonant absorption has been considered as a possible expla-
nation of the observed loss of power of acoustic oscillations in sunspots (e.g. Hollweg 1988;
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Lou 1990; Goossens and Poedts 1992; Stenuit et al. 1993; Erdélyi and Goossens 1994;
Keppens et al. 1994).

Resonant MHD waves have become important for the transverse oscillations that are
observed in coronal loops (Aschwanden et al. 1999, 2002; Nakariakov et al. 1999; Schrijver
and Brown 2000; Schrijver et al. 2002; Aschwanden 2006). These transverse oscillations
are often triggered by a nearby solar flare and are interpreted as kink MHD waves. Kink
refers to azimuthal wave number equal to 1 (m = 1). A kink wave is required to explain the
observations since MHD waves with their azimuthal wave number equal to 1 are the only
modes that displace the axis of the loop and the loop as a whole. A striking property of these
transverse waves is their fast damping with damping times of the order of 3–5 periods.

Resonant absorption is a strong contender as a damping mechanism that offers a
consistent explanation of this rapid damping (see e.g. Ruderman and Roberts 2002;
Goossens et al. 2002a; Van Doorsselaere et al. 2004; Terradas et al. 2006a, 2006b;
Aschwanden et al. 2003; Arregui et al. 2007a, 2007b, 2008a; Goossens et al. 2008). Res-
onant absorption relies on the transfer of energy from a global MHD wave to local res-
onant Alfvén waves. If this mechanism is indeed operational then this means that the ob-
served transverse oscillations have Alfvénic properties in at least part of the oscillating loop.
Time dependent studies of damped coronal loop oscillations due to an initial perturbation
with the damping mechanism of resonant absorption were carried out by e.g. Ruderman
and Roberts (2002), Terradas et al. (2006a, 2007), Arregui et al. (2007c), and reviewed
by Terradas (2009). Recent studies (Morton and Erdélyi 2009, 2010; Morton et al. 2010;
Erdélyi et al. 2010) show interesting results as far as MHD damping is concerned. However,
more research is needed before definite conclusions can be drawn.

Resonant Alfvén waves are means for transferring energy of footpoint motions into coro-
nal loops (see e.g. De Groof and Goossens 2000, 2002; Goossens and De Groof 2001;
De Groof et al. 2002). Resonant MHD waves are important in relation to damped oscil-
lations observed in prominences (see e.g. Arregui et al. 2008b; Soler et al. 2009a) and even
in partially ionized plasmas (Soler et al. 2009b). This latter case exemplifies the amazingly
robust character of resonant Alfvén MHD waves. Resonant MHD waves can play a role
as means for damping global solar oscillations when they interact with the chromospheric
magnetic field (see e.g. C̆adez̆ et al. 1997; Tirry et al. 1998a; Pintér and Goossens 1999;
Van Lommel and Goossens 1999; Van Lommel et al. 2002; Pintér et al. 2007). Reso-
nant MHD waves and instabilities can operate in plumes (see e.g. Tirry et al. 1998b;
Andries et al. 2000; Andries and Goossens 2001a, 2001b) or in the magnetopause and
magnetotail (see e.g. Lanzerotti et al. 1973; Southwood 1974; Chen and Hasegawa 1974b,
1974c; Inhester 1986; Kivelson and Southwood 1986; Southwood and Kivelson 1986;
Smith et al. 1986; Ruderman and Wright 1998; Taroyan and Erdélyi 2002, 2003a, 2003b;
Erdélyi and Taroyan 2003) and produce instabilities with the instability thresholds smaller
than those in the classical Kelvin-Helmholtz instabilities.

In what follows we shall be concerned both with driven MHD waves and with eigen-
modes of the system. The study of driven slow and Alfvén waves involves forced oscil-
lations in dissipative MHD. This means that the time-dependent non-linear equations of
dissipative MHD have to be integrated in the presence of a time-varying force term. Most
studies have used linear theory of wave motions superimposed on an ideal equilibrium state.
Even in the context of linear MHD, often the time integration is circumvented by consider-
ing the asymptotic or stationary state of the slow and Alfvén waves. In the asymptotic state
all the perturbed quantities oscillate with the same frequency as the incoming wave, so that
the time dependence can be removed out of the mathematical formulation. Detailed results
based on large-scale numerical simulations of the asymptotic state of Alfvén wave heat-
ing were obtained by Grossmann and Smith (1988) in ideal MHD, by Poedts et al. (1989a,
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1989b, 1990a, 1990b), in resistive MHD, and by Erdélyi and Goossens (1994, 1995) in
visco-resistive MHD. Time-dependent computations of Alfvén wave heating in linear dissi-
pative MHD have been carried out by e.g. Poedts et al. (1990c), Poedts and Kerner (1992),
Steinolfson and Davila (1993), Ofman et al. (1995) and Wright and Rickard (1995).

This review paper is organized as follows. In Sect. 2 we discuss the mixed properties
of MHD waves in non-uniform plasmas in ideal MHD. We point out that MHD waves in
their pure form as they are known for idealized uniform plasmas of infinite extent, hardly
ever occur in real situations with inhomogeneous plasmas. Often the phenomenon of MHD
waves with mixed properties is referred to as coupling of waves although there is only one
wave present which has different properties in different parts of the plasma. However, since
the term coupled waves is so popular in the solar physics community and since we are
confident that the people who use this term understand its meaning, we shall also use it.
In Sect. 3 we turn to resonant Alfvén and slow waves in static equilibria and aim to show
that these waves are a natural phenomenon and hard to avoid in inhomogeneous plasmas.
Resonant Alfvén and slow waves are first discussed in ideal MHD with a static equilibrium.
The main result of those subsections is that, in ideal MHD, resonant Alfvén waves have
singular spatial behaviour. In the subsequent two subsections it is shown how the singular
behaviour of resonant waves is removed by including dissipation in the system for slow and
Alfvén resonances, respectively. In Sect. 4 the properties of resonant waves within a steady
plasma are discussed. In Sect. 5 we shall discuss the phenomenon of quasi-modes in non-
uniform plasmas, and the initial value problem for resonant waves. Section 6 gives a short
summary of this review.

2 Resonant MHD Waves with Mixed Properties

The main aim of this section is to present the relevant equations for linear resonant MHD
waves in a static equilibrium and to point out that, in inhomogeneous plasmas, linear res-
onant MHD waves have mixed properties. The phenomenon of resonant MHD waves with
mixed properties or coupling of MHD waves was discussed by Goossens et al. (2002b,
2009), Goossens (2008). It is clearly at work in, e.g., De Groof and Goossens (2000, 2001,
2002), De Groof et al. (2002), Arregui et al. (2003, 2004a, 2004b).

The focus of the present review is on the asymptotic state of driven Alfvén and slow
waves in linear MHD and on the resonantly damped quasi-modes in ideal MHD, which are
counterparts of eigenmodes in dissipative MHD. In both cases all perturbed quantities can
be put proportional to

exp(−iωt), (1)

where ω > 0 is the frequency of the incoming wave or the external forcing term in a driven
problem, while ω is complex with a negative imaginary part in the eigenvalue problem at
least for a static plasma. In a steady plasma the wave can become over-stable (see Sect. 4).
The asymptotic state is, in principle, only valid for t → +∞, but in practice it gives an
accurate description for t � ttran where ttran ∝ (Rm)1/3, Rm is the magnetic Reynolds number,
and the coefficient of proportionality depends on the geometrical and physical parameters
of the equilibrium state (see Kappraff and Tataronis 1977; Poedts et al. 1990b). In the driven
problem the frequency is real and prescribed while, in the eigenvalue problem involving
resonantly damped quasi-modes, the frequency is complex and unknown.

The present review is concerned with resonant MHD waves in 1-dimensional magnetic
flux tubes. Spatial variations of the equilibrium quantities in different directions affect the
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waves in different ways. For example in the eigenvalue problem the radial stratification
causes damping (see e.g. Hollweg and Yang 1988; Goossens et al. 1992; Ruderman and
Roberts 2002; Van Doorsselaere et al. 2004), while axial stratification affects the periods
of oscillation (see e.g. Andries et al. 2005a, 2005b, 2009a, 2009b; Arregui et al. 2005;
Goossens et al. 2006; Dymova and Ruderman 2005, 2006a, 2006b; McEwan et al. 2006,
2008; Verth and Erdélyi 2008; Ruderman et al. 2008).

It is evident that these two effects should be combined and that there is a need for studying
resonant waves in 2-dimensional equilibrium states. However, it is necessary to have a clear
understanding of waves in simple 1-D equilibrium configurations before embarking on more
complicated resonant MHD wave problems in 2-D equilibrium states.

The steady equilibrium state of the flux tube is idealized as a cylindrically symmetric col-
umn of plasma. We use a system of cylindrical coordinates r, ϕ, z with the z-axis coinciding
with the axis of symmetry of the cylinder. The components of the equilibrium magnetic field
B = (0,Bϕ,Bz), the components of the equilibrium velocity field v = (0, vϕ, vz), as well as
the pressure p and density ρ are functions of the radial coordinate r only. They satisfy the
radial force balance equation

d

dr

(
p + B2

2μ0

)
= ρ

v2
ϕ

r
− B2

ϕ

μ0r
, B2 = B2

ϕ + B2
z , (2)

where μ0 is the magnetic permeability of free space. Note that the magnetic surfaces are
cylinders r = const.

The linear displacements superimposed on a generally steady background state are gov-
erned by the linearized versions of the resistive MHD equations,

∂ρ ′

∂t
= −∇ · (ρv′ + ρ ′v), (3a)

ρ

[
∂v′

∂t
+ (v · ∇)v′ + (v′ · ∇)v

]
+ ρ ′(v · ∇)v′

= −∇p′ + 1

μ
(∇ × B) × B′ + 1

μ
(∇ × B′) × B, (3b)

ρ

[
∂T ′

∂t
+ v · ∇T ′

]
= −ρv′ · ∇T − (γ − 1)ρT ∇ · v′, (3c)

∂B′

∂t
= ∇ × (v′ × B) + ∇ × (v × B′) + η∇2B, (3d)

p′

p
= ρ ′

ρ
+ T ′

T
, (3e)

where η is the coefficient of magnetic diffusion, and prime denotes an Eulerian perturbation.
Equations (3) describe linear motions on a steady background. In the present section we shall
confine our attention to linear motions on a static background so that v = 0. This condition
will be relaxed in Sect. 4 where issues related to equilibrium flows will be investigated and
reviewed in details. We have given the equations for linear motions on a steady background
in the present section in order to avoid duplication of equations.
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Eventually we shall have to use dissipative MHD to model the resonant behaviour of slow
and Alfvén waves as dissipative terms are needed to remove the ideal singularity. Electrical
resistivity is a prime candidate in this respect (very similar results are obtained if viscosity is
taken to be the dissipation mechanism as was shown by Erdélyi and Goossens (1994, 1995)
who considered resonant absorption in an inhomogeneous visco-resistive plasma under solar
conditions). However the large values of the viscous and magnetic Reynolds numbers in the
solar atmosphere imply that the dissipative terms in the MHD equations are unimportant
except in narrow layers. In the case of resonant Alfvén waves the dissipative terms are only
important in a narrow layer around the position where the frequency of the wave equals
the local Alfvén frequency. A similar principle applies to resonant slow waves where the
resonant layer is defined around the position where the frequency of driving waves equals
the local slow (or often referred to as cusp) frequency. Outside these narrow layers the MHD
waves are accurately described by the equations of ideal MHD.

Since the equilibrium quantities depend on r only we can Fourier-analyze the perturbed
quantities with respect to ϕ and z and prescribe them proportional to

exp[i(mϕ + kzz)]. (4)

Here m (an integer) and kz are the azimuthal and axial wave numbers. As the time-
dependence exp(−iωt) has already been factored out the perturbed quantities are functions
of r only and the partial differential equations are reduced to ordinary differential equations.

The phenomenon of coupling of MHD waves or alternatively the phenomenon of MHD
waves with mixed properties and part of the basic physics of resonant slow and Alfvén waves
can be understood in the context of linear ideal MHD. In what follows ξ is the Lagrangian
displacement and ξr is its radial component. In the present configuration the radial direc-
tion is the direction normal to the magnetic surfaces. The components in magnetic surfaces
respectively perpendicular, ξ⊥, and parallel, ξ‖, to the magnetic field lines are defined as

ξ⊥ = (ξϕBz − ξzBϕ)/B, ξ‖ = ξ · B/B. (5)

In what follows we also use the Eulerian perturbation of total pressure, P ′, defined as

P ′ = p′ + B · B′/μ0, (6)

with p′ being the Eulerian perturbation of kinetic plasma pressure. Note that ξ⊥ is the char-
acteristic quantity for the Alfvén waves, ξr for the fast magneto-sonic waves and ξ‖ for the
slow waves.

All but two of the perturbed variables can be eliminated from the linear ideal MHD equa-
tions leading to a set of two first-order differential equations for the radial component of the
Lagrangian displacement, ξr , and the total pressure perturbation P ′. The remaining wave
quantities can be expressed in terms of these two quantities (although there is one impor-
tant exception). For understanding the mixed properties of the MHD waves the algebraic
expressions for ξ⊥, ξ‖ and for the compression ∇ · ξ are essential. The relevant equations are

D
d(rξr)

dr
= C1rξr − C2rP

′, (7a)

D
dP ′

dr
= C3ξr − C1P

′, (7b)
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ρ(ω2 − ω2
A)ξ⊥ = i

B
CA, (7c)

ρ(ω2 − ω2
C)ξ‖ = ifB

B

v2
S

v2
S + v2

A

CS, ρω2ξ‖ = ifB

B
δp, (7d)

∇ · ξ = −ω2CS

ρ(v2
S + v2

A)(ω2 − ω2
C)

, (7e)

where δp is the Lagrangian variation of plasma pressure. It is defined as

δp = p′ + dp

dr
ξr . (8)

The differential equations (7a) and (7b) for ξr and P ′ were first obtained in this
form by Appert et al. (1974) (see also Sakurai et al. 1991a; Goossens et al. 1995;
Tirry and Goossens 1996; Erdélyi and Fedun 2010). The Cartesian version of (7) with a
horizontal magnetic field, the equilibrium quantities varying in the vertical direction, and no
gravity are given by, e.g. Csík et al. (1997), while the same equations with gravity in the
vertical direction included are given by Tirry and Goossens (1996), Tirry et al. (1998a) and
Pintér et al. (2007). Goossens et al. (1992), Erdélyi et al. (1995), Erdélyi (1997) derived the
corresponding equations for a steady state equilibrium, i.e. for an equilibrium with a back-
ground steady flow. The issues related to resonant absorption with background bulk motion
is discussed in Sect. 4. The coefficient functions D, C1, C2, and C3, and the coupling func-
tions CA and CS depend on the equilibrium quantities and on the frequency ω. They take
the form

D = ρ(v2
S + v2

A)(ω2 − ω2
A)(ω2 − ω2

C), (9a)

C1 = 2

μ0r
B2

ϕω
4 − (v2

S + v2
A)(ω2 − ω2

C)
2mfB

μ0r2
Bϕ, (9b)

C2 = ω4 − (v2
S + v2

A)(ω2 − ω2
C)

(
m2

r2
+ k2

z

)
, (9c)

C3 = D

[
ρ(ω2 − ω2

A) + 2Bϕ

μ

d

dr

(
Bϕ

r

)]

+ 4ω4B4
ϕ

μ2
0r

2
− 4ρ(v2

S + v2
A)(ω2 − ω2

C)ω2
A

B2
ϕ

μ0r2
, (9d)

CA = gBP ′ − 2fBBϕBzξr

μ0r
, CS = P ′ − 2B2

ϕξr

μ0r
. (9e)

In (9) vS is the adiabatic sound speed, vA is the Alfvén speed, ωA is the local Alfvén fre-
quency, and ωC is the local cusp frequency. They are defined as

v2
S = γp/ρ, v2

A = B2/(μ0ρ), (10a)

ω2
A = f 2

B/(μ0ρ), ω2
C = v2

Sω
2
A/(v2

S + v2
A), (10b)
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fB = k · B, gB = mBz/r − kzBϕ, k = (0,m/r, kz). (10c)

In a nonuniform plasma v2
S , v2

A, ω2
A, and ω2

C are functions of position.
Equations (7) define an eigenvalue problem with ω2 as eigenvalue parameter when they

are supplemented with boundary conditions. In a driven problem ω is prescribed. Equa-
tions (7a) and (7b) define what we might want to call fast magneto-sonic waves since the fast
waves are primarily associated with motions normal to the magnetic surfaces. Equation (7c)
defines Alfvén waves since Alfvén waves in their ideal version as they were discovered by
Alfvén (1942) have motions in the magnetic surfaces perpendicular to the magnetic field
lines. Finally, (7d) defines the slow magneto-sonic waves with motions along the magnetic
field lines. The second version of this equation is given to show that the parallel motions
are driven by the plasma pressure force. In a pressureless plasma there are no parallel mo-
tions since the Lorentz force has no component parallel to the magnetic field. The functions
CA and CS are called the coupling functions for the good reason that they couple the four
equations of (7). For example the equation for what we like to call the pure Alfvén waves is
coupled with the two equations that we associate with fast magneto-sonic waves. The fact
that the equations are coupled also means that there are no pure fast magneto-sonic waves
and no pure Alfvén waves. The MHD waves have mixed properties or in somewhat ambigu-
ous terminology the waves are coupled. The mixing of the fast, Alfvén and slow properties
depends on the values of the functions CA and CS . In general the functions CA and CS

are non-zero and depend on position. This means that a wave propagating through a non-
uniform plasma can start off as a predominantly fast wave, subsequently can change into a
wave that has both fast and Alfvén properties, and eventually can turn into a predominantly
Alfvénic wave. The fact that MHD waves have mixed properties and that they have different
appearances in different parts of the plasma is due to the inhomogeneity of the plasma. In an
inhomogeneous plasma this behaviour is hard to avoid. The coupling function CA and the
local Alfvén frequency ωA play an essential role in the analysis of resonant Alfvén waves.

There is one exception to this phenomenon of coupling of MHD waves or MHD
waves with mixed properties. For axi-symmetric MHD waves with azimuthal wave num-
ber (m = 0) in a 1-dimensional cylindrical equilibrium model with a straight field Bϕ = 0
there is no interaction or coupling between the sausage (m = 0) fast and slow waves and
torsional (m = 0) Alfvén waves. For a straight magnetic field the ideal MHD equations for
linear MHD waves (7) take the following simplified form

D
d(rξr)

dr
= −C2rP

′, (11a)

dP ′

dr
= ρ(ω2 − ω2

A)ξr , (11b)

ρ(ω2 − ω2
A)ξϕ = im

r
P ′, (11c)

ρ(ω2 − ω2
C)ξz = ikz

v2
S

v2
S + v2

A

P ′, ρω2ξz = ikzδp
′, (11d)

∇ · ξ = −ω2P ′

ρ(v2
S + v2

A)(ω2 − ω2
C)

. (11e)



Resonant MHD Waves in the Solar Atmosphere 297

For a straight field the ϕ and the z-direction are the directions in the magnetic surfaces
respectively perpendicular and parallel to the magnetic field lines. As before the r-direction
is normal to the magnetic surfaces. Hence, for a straight field, ξϕ = ξ⊥ is the characteristic
quantity for the Alfvén waves and ξz = ξ‖ for the slow waves. As before ξr characterizes the
fast magneto-sonic waves. The coupling function CA is now

CA = mBzξr

r
P ′. (12)

For an equilibrium with a straight magnetic field, the Eulerian perturbation of total pressure
P ′ is the quantity that couples the Alfvén waves to the magneto-sonic waves except for
m = 0. For m = 0 the coupling function CA = 0. Hence equation (11c) becomes decoupled
from the remaining equations for m = 0,

ρ(ω2 − ω2
A)ξϕ = 0. (13)

This means that we have pure Alfvén waves for m = 0 in a non-uniform cylindrical plasma
with a straight field. The axi-symmetric MHD waves are decoupled in torsional Alfvén
waves and sausage magneto-sonic waves. For an axi-symmetric non-uniform 1-dimensional
cylindrical plasma this is the only case where pure Alfvén waves show up in the analysis.
Each magnetic surface oscillates with its own local Alfvén frequency. The Cartesian version
of these torsional Alfvén waves were studied by Heyvaerts and Priest (1983) in the context
of coronal heating by phase mixing of shear Alfvén waves.

It is instructive to consider the case of a uniform cylindrical plasma of infinite extent in
order to assess the effect of non-uniformity. In the case of a uniform plasma ω2

A is a constant
and we have a solution for any m

ω2 = ω2
A (14)

with

ξϕ 	= 0, ξr 	= 0, ξz = 0, P ′ = 0, ∇ · ξ = 0. (15)

The only constraint that the solutions (14)–(15) have to satisfy is ∇ · ξ = 0. This can be done
in many ways. The only restoring force is the magnetic tension force

T = −ρω2
A(ξr lr + ξϕ lϕ) = −ρω2

Aξ , (16)

where lr and lϕ are the unit vectors in the r and ϕ-direction. In a cylindrical plasma in an
infinite and uniform environment there are pure Alfvén waves for any value of the azimuthal
wave number m. It is because of non-uniformity that there are no pure Alfvén waves for
m 	= 0 which have P ′ = 0 and ∇ · ξ = 0 everywhere.

Spruit (1982) and Goossens et al. (2009) compared the magnetic pressure force and the
magnetic tension force to decide whether the MHD waves are predominantly fast or Alfvén.
For a straight field the equation of motion can be written as

−ρω2ξh = ∇hP
′ − T,

T = −ρω2
Aξh,

ρω2ξz = ikzδp
′,

where ξh = ξr1r + ξϕ1ϕ is the displacement vector in horizontal planes and ∇h is the gra-
dient operator in horizontal planes perpendicular to the constant vertical magnetic field.
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The component of the displacement parallel to the magnetic field ξz is solely driven by
plasma pressure and unaffected by magnetic pressure force and the magnetic tension force.
Goossens et al. (2009) denote the ratio of any of the two relevant components of the pressure
force to the corresponding component of magnetic tension force by 
(ω2)


(ω2) = ω2 − ω2
A

ω2
A

. (17)

In a non-uniform plasma 
 depends on position, so that the nature of the MHD wave changes
according to the properties of the plasma it travels through. In a uniform plasma 
 is a
constant and the nature of the wave does not change as the MHD wave always sees the same
environment. Note that in ideal MHD 
(ω2) = 0 at positions where ω2 = ω2

A.

3 Driven Resonant Waves

The aim of this section is to point out that resonant MHD waves are a natural phenomenon
in non-uniform plasmas. In view of the previous discussion on mixed properties the reader
is warned that the waves under study, although they are called resonant Alfvén waves, are
not pure Alfvén waves in the whole of the plasma. Actually they are not pure Alfvén waves
anywhere but they are extremely good approximations to the idealized concept of a pure
Alfvén wave on the so-called resonant surface.

3.1 Resonant Alfvén Waves in Ideal MHD

The aim of this section is to discuss resonant MHD waves in ideal MHD in a static plasma
equilibrium. The effect of plasma bulk motion, i.e. background equilibrium flows, on reso-
nant MHD waves are discussed in Sect. 4. The main result of this subsection is that resonant
Alfvén waves have singular spatial solutions in ideal MHD. Equations (8) have regular sin-
gular points at the zeroes of the coefficient function D. As a consequence we have mobile
regular singular points at the positions r where

ω2 = ω2
A(r), ω2 = ω2

C(r). (18)

The first equality in (18) defines the Alfvén resonance point, while the second equality
defines the slow resonance point. Since ω2

A(r) and ω2
C(r) are functions of position, these

two equations define two continuous ranges in the spectrum which are classically referred
to as the Alfvén continuum and the slow continuum. The local Alfvén frequency ωA(r)

maps out the Alfvén continuous part of the linear spectrum

[minωA(r),maxωA(r)], (19)

and the local cusp frequency ω2
C(r) maps out the slow continuum. In a non-uniform plasma

with an Alfvén velocity vA(r) and an Alfvén frequency ωA(r) that depend on position the
Alfvén continuous part of the spectrum is a natural and unavoidable phenomenon. So are the
resonant Alfvén waves that are associated with this Alfvén continuous part. Actually there
are infinitely many Alfvén continuous parts since an Alfvén continuous part exists for every
value of the azimuthal wave number m ≥ 0. For a straight field the Alfvén continuous parts
are degenerate with respect to m; for a twisted field they depend on m.



Resonant MHD Waves in the Solar Atmosphere 299

Let us now discuss the spatial solutions of the MHD wave with a frequency in the Alfvén
continuum. This review follows the analysis by Sakurai et al. (1991a), Goossens et al.
(1995), Goossens and Ruderman (1995), Tirry and Goossens (1996) and Erdélyi (1997).
The starting point is to focus on a frequency in the Alfvén continuum and to determine the
spatial behaviour of the corresponding perturbation close to the resonant point where the
condition ω2 = ω2

A(rA) is satisfied. The analysis that follows below does not say anything
about the spatial solutions of the MHD wave far away from the resonant point. Since we
know that MHD waves have mixed properties, the MHD wave might resemble a fast MHD
wave far away from the resonant point. For example in the application by Sakurai et al.
(1991b), the MHD wave far away from the resonant point was a fast magneto-sonic wave.
It is convenient to introduce the new radial variable s defined as

s = r − rA. (20)

Sakurai et al. (1991a) and Goossens et al. (1995) use series expansions of the coefficient
functions around s = 0 to obtain simplified versions of the relevant differential equations.
These simplified versions are valid in the interval [−sA, sA] around the point of resonance
where the linear Taylor polynomial is a valid approximation of ω2 − ω2

A(r); hence sA has to
satisfy

sA �
∣∣∣∣ (ω2

A)′

(ω2
A)′′

∣∣∣∣ . (21)

The simplified versions of (8) close to the Alfvén resonance point are:

s�A

dξr

ds
= gB

ρB2
CA(s), (22a)

s�A

dP ′

ds
= 2fBBϕBz

μ0rAρB2
CA(s), (22b)

s�Aξ⊥ = i
CA

ρB
, (22c)

where CA, CS , fB and gB are defined by (9e) and (10c). In (22) all equilibrium quantities
are evaluated at s = 0 (r = rA), and

�A = d

dr
(ω2 − ω2

A)

∣∣∣
r=rA

. (23)

The right-hand members of (22a) and (22b) have the coupling function CA(s), which is a
linear combination of ξr and P ′, as a common factor. This is a key point in the analysis
of resonant Alfvén waves. The differential equation for the coupling function CA(s) is (see
Sakurai et al. 1991a):

s
dCA(s)

ds
= 0. (24)

It follows from this equation that dCA/ds = const × δ(s), where δ(s) is the Dirac delta-
function. Goedbloed (1983) has shown that, in a planar equilibrium with a straight magnetic
field, the large solutions of ξr and P ′ (i.e. solutions containing logarithmic terms) have to
be continuous. This implies that, in this case, dCA/ds = 0, so that CA = const (note that,
in the case considered by Goedbloed (1983), CA = mBzP

′/rA). To our knowledge there is



300 M. Goossens et al.

no similar proof for a cylindrical equilibrium model with an asymmetric twisted magnetic
field, so that we make the conjecture that dCA/ds = 0 also in this case. Then it follows that

CA(s) ≡ gBP ′ − 2fBBϕBzξr

μ0rA

= const. (25)

Condition (25) is the fundamental conservation law at the Alfvén resonance point first ob-
tained by Sakurai et al. (1991a). The fundamental conservation law (25) tells us that the
coupling function CA(s) that determines the degree of coupling between fast waves and
Alfvén waves is to a first approximation constant in the vicinity of the resonant point. Since
CA(s) is constant, the solution to (22) is

ξr (s) = gB

ρB2�A

CA ln |s| +
{
ξ−, s < 0,

ξ+, s > 0,
(26a)

P ′(s) = 2fBBϕBz

μ0rAρB2�A

CA ln |s| +
{
P ′−, s < 0,

P ′+, s > 0.
(26b)

The jumps in ξr and P ′ are due to dissipative effects and will be dealt with in the following
subsection. The component in the magnetic surfaces and perpendicular to the magnetic field
lines, ξ⊥, has a 1/s-singularity and a δ(s) contribution which dominate the ln |s| singular-
ity and the jump found for ξr and P ′. The singularities in the solutions are due to the fact
that the ideal MHD equations do not have any dissipation and assume zero Larmor radius.
The dominant singularities in the solution reside in the components in the magnetic surfaces
and perpendicular to the magnetic field lines (see also Goedbloed and Poedts 2004). The
dominant dynamics of the wave is contained in ξ⊥ and the wave is polarized in the mag-
netic surfaces perpendicular to the magnetic field lines. The nonuniform plasma supports
an Alfvén wave that is confined to the magnetic surface where the dispersion relation for
Alfvén waves in a uniform plasma is locally satisfied. The confinement of the Alfvén wave
is not absolute. The Alfvén wave is linked to the outside world as it is coupled to a wave
with components normal to the magnetic surfaces. From a dynamic point of view the wave
can be regarded as an almost pure Alfvén wave confined to its resonant magnetic surface and
polarized perpendicular to the magnetic field lines. From the point of view of the energetics
ξr , the component normal to the magnetic surfaces, is essential since it is this quantity which
provides the unidirectional transfer of energy to the resonant surface.

Let us now return to the conservation law at the Alfvén resonance point. In an equilibrium
with a straight magnetic field (Bϕ = 0), the conservation law (25) reduces to

[P ′] = 0, (27)

where the square brackets denote the jump of a quantity across the resonant surface,

[f ] = lim
s→+0

{f (s) − f (−s)}. (28)

The solution (26) for ξr remains unchanged, while P ′ can be considered to be constant
across the point of resonance. Also the coupling function CA is identically zero for m = 0
so that pure torsional Alfvén waves exist with ξr = 0, P ′ = 0, ξz = 0 in agreement with (26).

In an equilibrium with a twisted magnetic field the conservation law (25) implies that the
jumps in P ′ and ξr are related by

[P ′] = 2fBBϕBz

gBμ0rA

[ξr ]. (29)
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The jump for P ′ is proportional to Bϕ . In an equilibrium model with a twisted magnetic
field, both total pressure P ′ and ξr undergo a jump even for m = 0. This ties in with the
fact that, for a twisted magnetic field, the MHD waves always have mixed properties. For
an equilibrium with a curved magnetic field Goossens et al. (1995) pointed out that the
conservation law (25) expresses the balance between the total pressure gradient and the
inward tension force generated by the displacement, ξ⊥, of the equilibrium magnetic field.
In an equilibrium with a curved magnetic field coupling of Alfvén waves and fast waves is
due to both the Eulerian perturbation of total pressure P ′ and the tension force.

3.2 Resonant Slow Waves in Ideal MHD

In this subsection we address the second equality in (18). This equality defines the slow
resonance point. In a non-uniform plasma the local cusp frequency ωC(r) maps out the slow
continuous part of the linear spectrum,

[min ωC(r), max ωC(r)]. (30)

The analysis for determining the spatial solutions of an MHD wave with its frequency in the
slow continuum is similar to that given for resonant Alfvén waves. Again we follow Sakurai
et al. (1991a). The new radial variable s is now defined as

s = r − rC. (31)

with rC the position of the slow resonance point where the condition ω2 = ω2
C(rC) is satis-

fied. The simplified versions of (7) close to the slow resonance point are:

s�C

dξr

ds
= μ0ω

4
C

B2ω2
A

CS(s), (32a)

s�C

dP ′

ds
= 2ω4

C

rCB2ω2
A

CS(s), (32b)

s�Cξ‖ = i fB

ρB�C

v2
S

v2
S + v2

A

CS(s). (32c)

In (32) all equilibrium quantities are evaluated at s = 0 (r = rC ), and

�C = d

dr
(ω2 − ω2

C)

∣∣∣
r=rC

. (33)

A similar analysis as for resonant Alfvén waves leads to the fundamental conservation law
for slow continuum modes that the coupling function CS(s) is a constant:

CS(s) ≡ P ′ − 2B2
ϕξr

μ0r
= const. (34)

Since CS(s) is constant, the solution to (32) is:

ξr (s) = μ0ω
4
C

B2ω2
C

CS ln |s| +
{
ξ−, s < 0,

ξ+, s > 0,
(35a)
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P ′(s) = 2ω4
C

rCB2ω2
A�C

CS ln |s| +
{
P ′−, s < 0,

P ′+, s > 0.
(35b)

The jumps in ξr and P ′ are due to dissipative effects and will be dealt with in the following
subsection. The component in the magnetic surfaces and parallel to the magnetic field lines,
ξ‖, has a 1/s singularity and a δ(s) contribution which dominate the ln |s| singularity and
the jump found for ξr and P ′. The singularities in the solutions are due to the fact that
the ideal MHD equations do not have any dissipation. The dominant singularities in the
solution reside in the components in the magnetic surfaces and parallel to the magnetic field
lines. The dominant dynamics of the wave is contained in ξ‖ and the wave is polarized in
the magnetic surfaces parallel to the magnetic field lines. A nonuniform plasma supports
a slow wave that is confined to the magnetic surface where the dispersion relation for the
accumulation point of frequencies of slow waves in a uniform plasma is locally satisfied.
The confinement of the slow wave is not absolute. The slow wave is linked to the outside
world as it is coupled to a wave with components normal to the magnetic surfaces. From a
dynamic point of view the wave can be regarded as an almost pure slow wave confined to its
resonant magnetic surface and polarized parallel to the magnetic field lines. From the point
of view of the energetics ξr , the component normal to the magnetic surfaces, is essential
since it is this quantity which provides the unidirectional transfer of energy to the resonant
surface.

3.3 Resonant Alfvén Waves in Resistive MHD

The aim of the present subsection is to review how the singular solutions for the resonant
Alfvén waves found in ideal MHD are modified by dissipation. For this purpose it suffices to
consider non-zero electrical resistivity since this removes the singularity present in the ideal
equations. There is no interest in the equations that govern arbitrary linear displacements of
a cylindrical plasma in resistive MHD. The focus is on the subclass of linear displacements
that correspond to resonant Alfvén waves in ideal MHD. This restriction makes a significant
simplification of the equations of resistive MHD possible. The effects of dissipation are
generally small and only important in the vicinity of the ideal resonance called dissipative
layer. In this dissipative layer the derivatives of the perturbed quantities with respect to r are
much larger than those with respect to z and ϕ. In addition the derivatives of equilibrium
quantities can be neglected in comparison with the derivatives of the perturbed quantities
with respect to r . Therefore we retain in the dissipative terms only the r-derivatives of the
perturbed quantities while we neglect those of the equilibrium quantities.

The dissipative counterparts of (7) were obtained by Sakurai et al. (1991a) (see also
Goossens et al. 1995) for Alfvén resonance, while they were obtained by Erdélyi (1997) and
Goossens and Ruderman (1995) for slow resonance, and by Erdélyi et al. (1995) and Erdélyi
(1997) for both resonances in steady states. For the Alfvén resonance they read

Dη

d(rξr)

dr
= C1rξr − C2rP

′, (36a)

Dη

dP ′

dr
= C3ξr − C1P

′, (36b)

(
ω2

η − ω2
A

)
ξ⊥ = i

ρB
CA, (36c)
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where Dη and ω2
η are differential operators defined as

Dη = ρ(v2
S + v2

A)(ω2
η − ω2

A)(ω2 − ω2
C), ω2

η = ω2

(
1 − iη

ω

d2

dr2

)
. (37)

Equations (36) are the equations that govern the resonant linear displacements of a cylin-
drical plasma in resistive MHD. Equations (36a) and (36b) for ξr and P ′ are a set of two
differential equations of third order. They are formally the same as (7a) and (7b), but the
coefficient function D is replaced by the differential operator Dη . The singularities are re-
moved from the equations, but the order of the set of differential equations is raised from 2
(in ideal MHD) to 6 (in non-ideal MHD), and, in addition, the coefficient of the derivative of
highest order is proportional to η. Equation (36c) is the resistive generalization of (7c). They
are formally the same, but the ideal quantity ω2 is now replaced by the second order differ-
ential operator ω2

η. As a consequence the resistive equation for ξ⊥ is a differential equation
of second order for which s = 0 is not a singular point.

We now focus on how solutions to the set of dissipative MHD (36) are obtained in the
vicinity of the critical point rA defined by the condition ω2

A(rA) = ω2. Series expansions of
the coefficient functions around s = 0 are used to obtain simplified versions of the dissipative
MHD differential equations. Just as in ideal MHD these simplified versions are valid in the
interval [−sA, sA] around the point of resonance where the linear Taylor polynomial is a
valid approximation of ω2 − ω2

A(r); hence sA has to satisfy again the inequality (17). All
the remaining equilibrium quantities are replaced by their values at s = 0. The simplified
versions of (36) are

D2
η,s

dξr

ds
= gB

ρB2
CA(s), (38a)

D2
η,s

dP ′

ds
= 2fBBϕBz

μ0rAρB2
CA(s), (38b)

D2
η,sξ⊥ = i

CA(s)

ρB
, (38c)

where D2
η,s is the second order differential operator defined by

D2
η,s = s�A − iωη

d2

ds2
. (39)

Equations (38) are the resistive generalizations of the ideal equations (22). The ideal factor
s�A is now replaced by the second order differential operator D2

η,s = s�A − iωη d2/ds2.

The ideal singularity at s = 0 is obviously absent from the resistive equations (38). As in (22)
all equilibrium quantities are evaluated at s = 0 (r = rA). The resistive counterpart of (24) is

D2
η,s

dCA(s)

ds
= 0. (40)

Here also the ideal singularity is absent.
Dissipation is important when the terms s�A and ωηd2/ds2 on the left hand sides of (38)

are comparable. This results in a dissipative layer with a thickness measured by the quantity
δA given by

δA =
(

ωη

|�A|
)1/3

. (41)
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The thickness of the dissipative layer therefore scales as (η/|dωA/dr|)1/3, a result already
obtained by Kappraff and Tataronis (1977) and Hollweg and Yang (1988), and numerically
verified by Poedts et al. (1990a). In view of the very large values of the magnetic Reynolds
number in the solar corona we have that

sA

δA

 1. (42)

Inequality (42) is important as it implies that the interval of validity of the simplified versions
of the dissipative MHD equations embraces the dissipative layer and in addition contains two
overlap regions to the left and the right of the dissipative layer where ideal MHD is valid.
A graphical schematic overview of the dissipative layer and the two overlap regions is shown
in Fig. 1 of Stenuit et al. (1998). Goossens et al. (1995) introduced the scaled variable τ ,

τ = s

δA

, (43)

which is of order of unity in the dissipative layer, but, in view of inequality (42), s → ±sA

corresponds to τ → ±∞. With this new variable (38) and (40) can be rewritten as

D2
τ

dξr

dτ
= i

gB

ρB2|�A|CA, (44a)

D2
τ

dP ′

dτ
= i

2fBBϕBz

ρB2μ0rA|�A|CA, (44b)

D2
τ

dCA

dτ
= 0, (44c)

D2
τ ξ⊥ = −CA

δA|�A|ρB
, (44d)

where the differential operator D2
τ is given by

D2
τ = d2

dτ 2
+ i sign(�A)τ. (45)

Equations (44a) and (44b) were first derived by Sakurai et al. (1991a). They did not obtain
the differential equations for CA and ξ⊥ in dissipative MHD. Sakurai et al. (1991a) were
primarily interested in the jump conditions for ξr and P ′. The underlying motivation was
that, once the jump conditions are known, it suffices to solve the ideal MHD equations.
The dissipative MHD equations can be circumvented since the solutions to the ideal MHD
equations to the left and the right of the dissipative layer can be connected by the use of
the jump conditions. So, unless there is an interest in the solutions in the dissipative layer
itself, there is no need to solve the dissipative MHD equations. So Sakurai et al. (1991a)
focused on the dissipative equations for ξr and P ′ in an attempt to find the jumps in these
quantities across the dissipative layer. They assumed that the ideal conservation law (25)
remains valid in dissipative MHD. Goossens et al. (1995) showed that this is indeed the case
for Alfvén and Erdélyi (1997) for slow resonance. CA being constant implies that the right-
hand sides of the differential equations for ξr and P ′ are constants. Sakurai et al. (1991a)
then obtained solutions for dξr/dτ and dP ′/dτ in terms of integrals of Hankel functions
of order 1/3 of a complex argument. Integration of these expressions combined with the
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required asymptotic expansions enabled them to obtain the jumps in ξr , P ′ and also in ξ‖.
A related approach was used by Hollweg (1987a, 1987b) and Hollweg and Yang (1988) in
a discussion of the viscous dissipative layer for planar geometry. In essence, their approach
was to take P ′ to be constant across the whole inhomogeneous layer at the outset. Although
Hollweg (1987a, 1987b) and Hollweg and Yang (1988) did not assume that there is no jump
of the total pressure perturbation across the dissipative layer, the conjecture that they made
implicitly implies this. This was equivalent to neglecting the inertia in the inhomogeneous
layer and, consequently, in the dissipative layer. Since CA = gBP ′ for planar geometry, they
thus started with the constancy of CA, and then derived an equation equivalent to (44d),
which was solved in terms of Airy functions with imaginary argument.

Goossens et al. (1995) used a more compact and straightforward method for obtaining
the solutions to (44). First they showed that CA is a constant in dissipative MHD for |s| � sA

which proves the conjecture used to derive (25). This proves the assumption by Sakurai et al.
(1991a) and guarantees that the jump conditions found by Sakurai et al. (1991a) are correct.
Then they obtained compact analytical solutions for ξr , P ′, and ξ⊥ in the dissipative and
the overlap regions which allow a very simple mathematical and physical interpretation.
Goossens et al. (1995) started from the following two differential equations of second order:

D2
τ(τ) = 0, D2

τF (τ ) = −1 (46)

and showed that the bounded solutions for (τ) and F(τ) are

(τ) = 0, (47)

and

F(τ) =
∫ ∞

0
exp(iuτ sign(�A) − u3/3) du, (48)

respectively. Equation (47) implies that

dCA(τ)

dτ
= 0,

so that

CA(τ) = const. (49)

The ideal conservation law (25) obtained by Sakurai et al. (1991a) continues to hold in
dissipative MHD. The coupling function CA that determines the degree of coupling between
Alfvén waves and fast magneto-sonic waves is constant across the dissipative layer. Solution
(48) implies that

dξr

dτ
= −i

gB

ρB2|�A|CAF(τ), (50a)

dP ′

dτ
= − 2ifBBϕBz

μ0rAρB2|�A|CAF(τ), (50b)

and

ξ⊥ = CAF(τ)

ρBδA|�A| . (51)
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Integration of (50) gives the solutions in dissipative MHD for ξr and P ′ that remain finite as
|τ | → ∞,

ξr(τ ) = − gBCA

ρB2�A

G(τ) + Cξ , (52a)

P ′(τ ) = − 2fBBϕBzCA

ρB2μ0rA�A

G(τ) + CP , (52b)

where Cξ and CP are constants of integration and

G(τ) =
∫ ∞

0

e−u3/3

u
{exp(iuτ sign(�A)) − 1}du. (53)

It is worth noting that, to our knowledge, the function G(τ) (53) was first introduced by
Boris (1968). Goossens et al. (1995) followed the analysis by Boris (1968).

From the definition of CA (see (9e)), it follows that the constants Cξ and CP cannot be
independently chosen, but are related by CA = gBCP − 2fBBϕBzCξ/μ0rA.

The two functions F(τ) (48) and G(τ) (53) describe the dynamics of the resonant Alfvén
wave in the dissipative layer and in the two overlap regions. They are in a sense universal
as they determine the resonant Alfvén waves in both cylindrical and planar geometries for
both static and stationary equilibrium states. See, e.g., Tirry and Goossens (1996), Tirry
et al. (1998a) and Pintér et al. (2007) for planar equilibrium states; Taroyan and Erdélyi
(2002, 2003a, 2003b) and Erdélyi and Taroyan (2003) for planar steady case; Erdélyi et
al. (1995) and Erdélyi (1997) for cylindrical static and steady equilibrium states; and Tirry
and Goossens (1995) for 2-D equilibrium. Wright and Allan (1995) derived the counterparts
of the universal functions F(τ) and G(τ) for a Cartesian geometry when the energy is
dissipated by finite Pedersen conductivity within ionospheric boundaries.

The real and imaginary parts of the functions F(τ) and G(τ) are plotted in Fig. 1. The
remnants of the ideal delta function and the ideal 1/s function can be clearly recognized in
the real and imaginary parts of F(τ). The same applies for the remnants of the ideal log-
arithmic function and the Heaviside function in respectively the real and imaginary parts
of G(τ). Goossens et al. (1995) show that straightforward Maclaurin expansions give ab-
solute convergent power series for all τ for G(τ) and F(τ). These power series can be used
to obtain solutions for ξr , P ′, and ξ⊥. In particular, for |τ | � 1, they show that, in resis-
tive MHD, all the physical quantities take finite values in the dissipative layer and at the
ideal resonance position where the ideal MHD solutions diverge. It is easy to see from (48)
and (53) that �(F (τ)) and �(G(τ)) are even functions of τ , while �(F (τ)) and �(G(τ))

are odd functions of τ , where � and � indicate the real and imaginary parts of a quantity.
A draw-back of these power series given is that they are not well suited to find out how
the resistive MHD solutions have to be connected to the ideal MHD solutions. The asymp-
totic behaviour of the resistive MHD solutions for τ → ±∞ was determined by Goossens
et al. (1995). In the overlap regions the asymptotic versions of the dissipative solutions and
the ideal solutions (26) represent the same solutions. The asymptotic versions recover the
logarithmic behaviour of �(ξr ) and �(P ′) already found in ideal MHD in (26), but show
that this logarithmic behaviour is only valid away from the ideal resonance position for
large |τ |. Comparison of the asymptotic versions of the dissipative MHD solutions with the
ideal MHD solutions enabled Goossens et al. (1995) to obtain expressions for ξ± and P ′±
in (26). With these expressions the jumps in ξr , P ′ and ξ‖ can be computed. Alternatively,
Appendix B of Goossens et al. (1995) tells us that [G] = iπ . For readers who are more
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Fig. 1 The real and imaginary parts of functions F(τ) and G(τ). We can clearly see that �(F ) and �(G)

are even functions, while �(F ) and �(G) are odd functions

graphically inclined they can observe on Fig. 1 that [G] = iπ is indeed correct. Hence the
jumps in ξr and P ′ are

[ξr ] = −iπ
gBCA

ρB2|�A| , (54a)

[P ′] = −iπ
2fBBϕBzCA

ρB2μ0rA|�A| , (54b)

[ξ‖] = π
2kzfBBϕ

ρBμ0rA|�A|ω2
A

v2
S

v2
A

CA. (54c)

These jumps and the conservation law were first derived by Sakurai et al. (1991a) for the
driven problem and by Tirry and Goossens (1996) for the eigenvalue problem (see Sect. 4
on eigenmodes). The jumps in P ′ and ξ‖ are both proportional to Bϕ . In an equilibrium with
a straight magnetic field lines (Bϕ = 0), both P ′ and ξ‖ are constant across the dissipative
layer. Also when Bϕ = 0, ξr does not jump across the dissipative layer for waves with az-
imuthal wave number m = 0. This is in accordance with the fact that, for a straight field,
axi-symmetric MHD waves with m = 0 are uncoupled and that the torsional Alfvén waves
have ξr = 0. However, in a twisted field ξr does jump for waves with azimuthal wave number
m = 0, and the jump in ξr is proportional to both Bϕ and the longitudinal wave number kz.
An important property of resonant Alfvén wave heating is that the jumps are independent of
η. This implies that the amount of absorbed wave energy and the total amount of resistive
heating in the dissipative layer are also independent of η. For a straight field (Bϕ = 0) the
jumps are

[P ′] = 0, [ξr ] = −iπ sign(ω)
m2/r2

ρ|�A|P
′, [FluxE] = −π |ω|m2

2ρ|�A| |P
′|2, (55)
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where [FluxE] is the jump of the energy flux when crossing the dissipative layer. In a static
equilibrium this jump is always negative, meaning that the dissipative layer is a sink for
the energy of the wave, so that the wave gets damped. In equilibrium models with flow the
dissipative layer can be a source and quasi-modes can become over-stable as shown by, e.g.,
Hollweg et al. (1990), Yang and Hollweg (1991), Erdélyi and Goossens (1996), Ruderman
and Wright (1998), Andries et al. (2000), Andries and Goossens (2001a, 2001b) (see also a
review paper by Taroyan and Ruderman 2010). In an equilibrium with a straight magnetic
field the Eulerian perturbation of total pressure does not undergo a jump when crossing the
dissipative layer. [FluxE] is proportional to |P ′|2 so that large absolute values of P ′ imply
strong absorption. Since P ′ is the function that couples Alfvén waves to fast waves so larger
absolute values of P ′ mean strong coupling.

In addition, for an equilibrium with a straight magnetic field, ξr and FluxE do not jump,
[ξr ] = 0 and [FluxE] = 0 for waves with m = 0. Hence waves with m = 0 are not resonantly
absorbed in an equilibrium with a straight field. This comes as no surprise since torsional
Alfvén waves and sausage fast waves are not coupled in an equilibrium with a straight field.
Here is a good point to go back to the 1980s. The result [P ′] = 0 (55) means that the assump-
tion used by Hollweg and Yang (1988) is correct. The approximate constancy of P ′ was the
key ingredient in the physical discussions of resonance absorption given by Hollweg (1987a,
1987b, 1988), and Hollweg and Yang (1988). Equation (27) puts the approach by Hollweg
and Yang on a rigorous mathematical footing, and extends it to cylindrical geometry.

Goossens et al. (1995) determined the asymptotic behaviour of F(τ) for τ → ±∞ and
used it to obtain the asymptotic expansion for ξ⊥,

ξ⊥ � iCA

τρBδA�A

. (56)

This asymptotic version recovers the 1/τ behaviour of �(ξ⊥), already found in ideal MHD
in (25), but it shows that this behaviour is only valid away from the ideal resonance position
for τ → ±∞. In order to understand fully the relation between the ideal and resistive so-
lution for ξ⊥ it is instructive to determine what has happened to the ideal δ(s) contribution
to ξ⊥. The limit of the resistive solution of ξ⊥ for δA → 0, as a function of s is

lim
δA→0

ξ⊥ = CA

ρB

[
π

|�A|δ(s) + i

�A

P
(

1

s

)]
, (57)

where P denotes the principal Cauchy value. Hence the δ(s) contribution to ξ⊥can be
thought of as arising from �(F (τ)), which is an even function of τ . The amplitude of �(ξ⊥)

at s = 0 is proportional to 1/δA, while �(ξ⊥) becomes small when |s|  δA. The area under
�(ξ⊥(s)) is thus independent of δA, leading to the δ-function as δA → 0.

In ideal MHD the dominant dynamics of resonant Alfvén waves resides in the perpendic-
ular component of the displacement ξ⊥. The logarithmic singularity and the jump contribu-
tion to the radial component of the displacement ξr are overruled by the s−1 singularity and
the δ-function contribution to ξ⊥. In resistive MHD all these singularities disappear and all
physical variables take finite values. Goossens et al. (1995) showed that, in the dissipative
layer,

|ξ⊥|
|ξr | ∼ R1/3

m , (58)

where Rm = ωL2/η, is the magnetic Reynolds number. Since Rm is very large, of the order
of 1010 − 1012 in the solar atmosphere, (58) implies that the dominant dynamics continues
to reside in the perpendicular components as was found by Poedts (1989a, 1989b, 1990a).
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These analytical results provide us with the spatial solutions in the dissipative layer where
dissipative MHD is required and in the two overlap regions where ideal MHD is valid. They
enable us to understand the basic physics of resonant Alfvén waves and help us with the
interpretation of the results of large-scale numerical simulations. In addition, the jump con-
ditions and the conservation law provide us with a strong computational tool. They make it
possible to compute the absorption of driven Alfvén waves and the damping rates of eigen-
modes without having to solve the dissipative MHD equations. The solutions to the ideal
MHD equations are connected over the dissipative layer by the use of the jump conditions.
This method was used by Sakurai et al. (1991b) for studying the absorption of acoustic os-
cillations in sunspots. It was generalized to stationary equilibrium states by Goossens et al.
(1992). Goossens and Hollweg (1993) used this scheme to obtain conditions for maximal
and total absorption and to explain the variation of the spatial solutions with frequency. Kep-
pens et al. (1994) used it to study the absorption in fibril models of sunspots. Stenuit et al.
(1995) verified the accuracy of the so-called SGHR method by comparing results obtained
with this method with known results in the literature obtained by integration of the full set of
linearized non-ideal MHD equations. The agreement was remarkably good with the largest
relative difference being smaller than 1.2%. A schematic overview of the various regions
involved in this method is shown in Fig. 1 in Stenuit et al. (1998). Here SGHR stands for
Sakurai, Goossens, Hollweg and Ruderman. They are the four authors who derived the jump
conditions and connection formulae which make it possible to set up a scheme to obtain so-
lutions for resonant MHD waves without having to solve the full system of dissipative MHD
equations.

3.4 Resonant Slow Waves in Resistive MHD

The aim of the present section is to briefly recall how the singular solutions for the resonant
slow waves found in ideal MHD are modified by dissipation. The analysis is similar to
that given for resonant Alfvén waves. Dissipation is important in a dissipative layer with a
thickness that is now measured by the quantity δC given by

δC =
(

ωηω2
C

|�C |ω2
A

)1/3

. (59)

Here also it is assumed that
sC

δC

 1, (60)

so that the interval [−sC, sC] where the simplified versions of the dissipative MHD equa-
tions are valid embraces the dissipative layer and, in addition, contains two overlap regions
to the left and the right of the dissipative layer where ideal MHD is valid. The scaled variable
τ is now defined as

τ = s

δC

, (61)

which is of order 1 in the dissipative layer but, in view of inequality (60), s → ±sA corre-
sponds to τ → ±∞. The outcome of the analysis is that (i)

CS(τ) = const, (62)

so that the ideal conservation law (34) continues to hold in dissipative MHD, and that
(ii) ξ‖(τ ) can be written with the use of the function F(τ), while (iii) ξr (τ ) and P ′(τ )

can be written with the use of the function G(τ).
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The jumps for the resonant slow waves are

[ξr ] = −iπ
μ0ω

4
C

B2|�C |ω2
A

CS, (63a)

[P ′] = −iπ
2ω4

CB2
ϕ

B2rCω2
A|�C |CS, (63b)

[ξ⊥] = π
2kzBϕω

4
C

ρrCω2
AB|�C |(ω2

C − ω2
A)

CS. (63c)

These jumps and the conservation law were first derived by Sakurai et al. (1991a). The
jumps in P ′ and ξ⊥ are both proportional to Bϕ . In an equilibrium with a straight magnetic
field lines (Bϕ = 0), both P ′ and ξ⊥ are constant across the dissipative layer. However, when
Bϕ = 0, there is a non-zero jump in ξr :

[ξr ] = −iπ

ρ|�C |
(

v2
S

v2
S + v2

A

)2

k2
zP

′. (64)

The jump in ξr is independent of the azimuthal wave number m and, for given P ′, propor-
tional to k2

z . Note that [ξr ] attains its maximal value for an incompressible plasma since then
the factor containing v2

S is maximal and equal to 1. Equation (64) implies that axisymmetric
(m = 0) waves are resonantly absorbed at the slow resonance point in an equilibrium with a
straight field. This is in contrast with the corresponding result for Alfvén waves.

4 Resonant MHD Waves in Steady Equilibrium

In this section we review studies on resonant MHD waves in equilibrium states with flows.
Equilibrium bulk motions not only influence the efficiency of resonant coupling of local
magnetic structures (e.g. in flux tubes ubiquitous in the solar atmosphere or flux sheets, a
popular model in solar prominence and arcade studies) and large-scale oscillations driving
magnetic structures (e.g. in the magnetosheath or in magnetotail) and/or alter wave heating,
but may also result in a resonant wave to become unstable. These latter, so-called resonant
flow instabilities (RFI), that are physically distinct from the non-resonant Kelvin-Helmholz
instabilities, can occur for velocity shears significantly below the KH threshold (see Andries
et al. 2000; Andries and Goossens 2001a, 2001b and Taroyan and Ruderman 2010). Reso-
nant MHD waves in steady state may also contribute to the explanation of the well-known
frequency shifts of global solar p/f eigenmode oscillations (see Pintér and Erdélyi 2010).
Aspects of these studies were earlier addressed in less comprehensive review papers by, e.g.,
Erdélyi (2001, 2002, 2006a, 2006b).

A key observation of the highly inhomogeneous solar atmosphere is the presence of
steady flows. Bulk motions are observed along or nearly along the magnetic field lines which
outline the magnetic structures (e.g. Doschek et al. 1976; Brekke et al. 1997; Doyle et al.
1997, 2002; Warren et al. 1997; Bellot Rubio et al. 2003; Chae et al. 2008). The question
arises naturally: would an equilibrium flow influence the efficiency of the resonant coupling
(i.e. absorption rate)?

First we briefly overview the mathematical consequences of a steady state, i.e. what are
the new governing equations and how the connection formulae are modified (Sect. 4.1). In
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Sect. 4.2 we review studies of how background bulk motions influence resonant heating in
coronal structures (i.e. loops, etc.).

4.1 Theoretical Aspects

In this section we consider resonant slow and Alfvén waves in 1D non-uniform magnetic
flux tubes in dissipative MHD with a field-aligned steady bulk motion. Analytical solu-
tions for the Lagrangian displacement and the Eulerian perturbation of the total pressure for
this stationary equilibrium state will be obtained. From these analytical solutions we ob-
tain the fundamental conservation law and the jump conditions for resonant MHD waves in
dissipative steady MHD and point out the main differences between these steady connec-
tion formulae and their static counterparts. The fundamental conservation law and the jump
conditions depend on the equilibrium flow in a more complicated way than just a Doppler
shift. The effects of an equilibrium flow cannot be predicted easily in general terms with the
exception that the polarization of the driven resonant waves remain, i.e. the slow resonant
waves remain polarized mainly parallel to the magnetic field lines, while the polarization
of the driven Alfvén waves is still in magnetic surfaces and perpendicular to the magnetic
field lines. Most importantly, the validity of the ideal conservation law and jump conditions
obtained by Sakurai et al. (1991a) for static equilibria and Goossens et al. (1992) for steady
equilibria in ideal MHD is justified in steady dissipative MHD.

The steady equilibrium state of the flux tube is again idealized as a cylindrically sym-
metric plasma column as outlined in Sect. 2, where the equilibrium flow, v(r), has only ϕ

and z components, i.e. the background steady state is characterized by a field-aligned steady
motion. The radial force balance equation is given by (2).

The equations for the linear perturbations about a steady equilibrium are now the
full (3a)–(3d). In a steady state the Eulerian velocity perturbation v′ and the Lagrangian
displacement ξ are related by (see e.g. Goossens et al. 1992)

v′ = ∂ξ

∂t
+ ∇ × (ξ × v) − ξ∇ · v + v∇ · ξ ≡ ∂ξ

∂t
+ (v · ∇)ξ − (ξ · ∇)v. (65)

For the asymptotic state defined by (1) and (4) the components of the Eulerian velocity
perturbation are related to the components of the Lagrangian displacement as follows:

v′
r = −i�ξr , (66a)

v′
ϕ = −i�ξϕ − rξr

d

dr

(
vϕ

r

)
, (66b)

v′
z = −i�ξz − ξr

dvz

dr
. (66c)

Here we introduced the Doppler-shifted frequency

� = ω − ωf , (67)

where ωf is the flow frequency defined as

ωf = m

r
vϕ + kzvz. (68)
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Remarkably, the ideal (η = 0) MHD equations for linear motions in a steady state, (3),
can be reduced to two linear first-order differential equations that look formally identical to
their counterparts (7a)–(7b) governing the linear motions superimposed on a static equilib-
rium state. However, now the coefficients D, C1, C2, and C3 depend on the equilibrium flow
as well. For a steady equilibrium state

D = ρ(v2
S + v2

A)(�2 − ω2
A)(�2 − ω2

C), (69a)

C1 = Q�2 − 2m(v2
S + v2

A)(�2 − ω2
C)T /r2, (69b)

C2 = �4 − (v2
S + v2

A)(�2 − ω2
C)

(
m2

r2
+ k2

z

)
, (69c)

C3 = D

{
ρ(�2 − ω2

A) + r
d

dr

[
1

μ0

(
Bϕ

r

)2

− ρ
(vϕ

r

)2
]}

+ Q2 − 4(v2
S + v2

A)(�2 − ω2
C)

T 2

r2
, (69d)

T = ρ�vϕ + fBBϕ

μ0
, (69e)

Q = −(�2 − ω2
A)

ρv2
ϕ

r
+ 2�2B2

ϕ

μ0r
+ 2�fBBϕvϕ

μ0r
. (69f)

The governing equations for steady state were first obtained by Bondeson et al. (1987) and
later derived with coefficients D, C1, C2, and C3 in this form by Goossens et al. (1992),
Erdélyi et al. (1995), and Erdélyi (1996).

Since the Alfvén frequency ωA, the cusp frequency ωC , and the Doppler-shifted fre-
quency � = ω−ωf all depend on the radial coordinate r , (7a)–(7b) through the coefficients
D, C1, C2, and C3 defined by (69) have mobile regular singularities at r = rA and r = rC

defined by

�2(rA) = ω2
A(rA), �2(rC) = ω2

C(rC) (70)

for stationary equilibria. These equations determine the Alfvén and slow resonance points,
respectively, in a steady equilibrium.

Let us now express the steady counterparts of the parallel, ξ‖, and perpendicular, ξ⊥, com-
ponents of the Lagrangian displacement vector ξ defined by (5). For a steady equilibrium
the component of the Lagrangian displacement parallel and perpendicular to the equilibrium
magnetic field lines in the magnetic surfaces can be expressed in terms of ξr and P ′ as

(�2 − ω2
C)ξ‖ = ifB

ρB

v2
S

v2
S + v2

A

(
P ′ − Qξr

�2

)

− i(�2 − ω2
C)

2�Bϕvϕ + fBv2
ϕ

B�2r
, (71a)

(�2 − ω2
A)ξ⊥ = i

ρB

(
gBP ′ − 2BzT ξr

r

)
. (71b)
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Now, following the mathematical method outlined in Sect. 3.1 for Alfvén waves and by
Erdélyi (1997) for slow waves we can determine the spatial solutions close to the Alfvén
and slow singular point where �2 = ω2

A(rA) and �2 = ω2
C(rC), respectively, are satisfied in

ideal steady MHD.

4.1.1 Alfvén Resonance in Ideal Steady State

The simplified versions of (7a)–(7b) close to the Alfvén resonant point are

s�A

dξr

ds
= gB

ρB2
CA(s), (72a)

s�A

dP ′

ds
= 2fBT

μ0rAρB2
CA(s), (72b)

where the Alfvén coupling function CA(s) takes now the form

CA(s) = gBP ′ − 2BzT ξr

rA

, (73)

and all equilibrium quantities in (72a) and (72b) are evaluated at the Alfvén resonant point
s = 0 (r = rA). Note that now

�A = d

dr
(�2 − ω2

A)

∣∣∣
r=rA

, (74)

i.e., care has to be exercised when evaluating �A as now it also depends on the equilibrium
flow. The spatial solutions for ξr , P ′ and ξ⊥ close to the Alfvén resonant point (i.e. to rA) in
a steady equilibrium take now the form

ξr (s) = gB

ρB2�A

CA ln |s| +
{
ξ−, s < 0,

ξ+, s > 0,
(75a)

P ′(s) = 2BzT

rAρB2�A

CA ln |s| +
{
P ′−, s < 0
P ′+, s > 0,

(75b)

sξ⊥ = i
CA

ρB�A

, (75c)

where the Alfvén coupling function for steady state becomes

CA = gBP ′ − 2BzT ξr

rA

≡ const. (76)

Condition (76) is the fundamental conservation law at the Alfvén resonant point in a steady
equilibrium. Condition (76) was obtained by Goossens et al. (1992) in ideal MHD and its
universal validity is shown to remain in dissipative MHD by Erdélyi et al. (1995). The jumps
in ξr and P ′ are due to dissipative (resistive and/or viscous) effects and will be specified fur-
ther down. These results indicate that ξ⊥ dominates the solutions even in steady state, so the
solutions remain polarized perpendicular to the magnetic field lines. Although the equilib-
rium flow modifies the spatial dependence, it does not affect the polarization properties of
the spatial solutions, i.e. the 1/s singularity and the δ(s) contribution found already for ξ⊥
in static MHD will continue to dominate the ln |s| singularity of ξr and P ′.
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4.1.2 Slow Resonance in Ideal Steady State

Let us know summarize in a concise manner similar to Sect. 4.1.2 the main results for slow
resonant waves in ideal steady MHD. The spatial solutions for ξr and P ′ close to the slow
resonant point (i.e. to rC ) in a stationary equilibrium take the form

ξr(s) = μ0ω
4
C

B2ω2
A�C

CS ln |s| +
{
ξ−, s < 0,

ξ+, s > 0,
(77a)

P ′(s) = μ0QC

B2ω2
A�C

CS ln |s| +
{
P ′−, s < 0,

P ′+, s > 0.
(77b)

The parallel component of the displacement is given by

sξ‖ = ifBv2
S

ρB�Cω2
C(v2

S + v2
A)

CS + isξr

2�Bϕvϕ + fBv2
ϕ

Bω2
CrC

. (78)

Now the coupling function for the steady slow resonance is given by

CS = ω2
CP ′ − QCξr ≡ const (79)

with

QC = 2ωCBϕ

μ0r
(ωCBϕ + fBvϕ) + ρv2

Aω2
Cv2

ϕ

r2v2
S

, (80)

and

�C = d

dr
(�2 − ω2

C)

∣∣∣
r=rC

. (81)

The above solutions given by (77) were obtained by using the radial variable s defined
by (31), and all equilibrium quantities have to be evaluated at the slow resonant point rC .
Condition (79) is the fundamental conservation law at the slow resonance point in ideal
steady MHD. Condition (79) is obtained by Goossens et al. (1992) in ideal MHD and its
universal validity is shown to remain in dissipative MHD by Erdélyi (1997). The jumps in
ξr and P ′ are due to dissipative (resistive) effects and will be specified later. These results
also imply that ξ‖ remains to dominate the solutions in steady state, so the solutions are
polarized parallel to the magnetic field lines even if background flows are present in the
equilibrium. Again, although the steady state changes the actual functional dependence of
the spatial solutions, the equilibrium flow does not affect the polarization properties of these
spatial solutions.

4.1.3 Resonant MHD Waves in Dissipative Inhomogeneous Steady Plasmas

In this section we review how the singular solutions for resonant slow and Alfvén waves
found in ideal static (see Sect. 3.3) and steady (see Sect. 4.1) MHD are modified by taking
into account both the effect of dissipation and background bulk motions. The finite elec-
trical resistivity η (or viscosity if the application requires, see Erdélyi and Goossens 1995)
removes the singularity in the ideal steady equations. The perturbed linear resistive MHD
equations (see (32–39) in Erdélyi et al. 1995, for their rather elaborate form) in steady MHD
reduce by eliminating all but two of the perturbed variables (namely ξr and P ′) to the system
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of (36a) and (36b) but with C1, C2 and C3 defined by (69b)–(69d). The differential operator
Dη in these equations is equal to Dη,A given by

Dη,A = ρ(v2
S + v2

A)(�2 − ω2
C)(�2

η − ω2
A) (82)

for resonant Alfvén waves, and to Dη,C given by

Dη,C = ρ(v2
S + v2

A)(�2
η − ω2

C)(�2 − ω2
A) (83)

for resonant slow waves. The operator �2
η is defined by

�2
η = �

(
� − iη

d2

dr2

)
. (84)

Again, notice some remarkable properties here. The dissipative MHD equations for linear
resonant motions in an equilibrium state with a flow can be reduced to two linear third-order
differential equations that look formally identical (except for the operator Dη,C/A) to their
counterparts (7a)–(7b) governing the resonant waves in static ideal equilibrium, or to (36a)–
(36b) governing resistive resonant MHD waves. The latter feature saves us to go through
the very lengthy mathematics of obtaining dissipative solutions in stationary MHD as we
can simplify the analysis following the methods outlined in Sect. 3.3. First we present the
solutions for resistive slow waves in steady MHD, followed by its counterpart for resistive
Alfvén waves in a magnetized plasma with background steady state.

The governing equation in dissipative (resistive) MHD for the parallel component of the
Lagrangian displacement characterizing slow resonant waves is for a stationary equilibrium:

(�2
η − ω2

C)ξ‖ = ifB

ρB

v2
S

v2
S + v2

A

(
P ′ − QCξr

�2

)
− i(�2 − ω2

C)
2�Bϕvϕ + fBv2

ϕ

B�2r
. (85)

Equation (85) is the resistive counterpart of (71a) and was first obtained by Erdélyi (1997).
The detailed calculation to obtain analytic solutions to the governing equations for ξr , P ′
and ξ‖ are given in §3.2 of Erdélyi (1997). Here we only quote the main results.

The simplified equation for the parallel component of the displacement at cusp reso-
nances for steady dissipative MHD is

(
s�C − iη�

ω2
C

ω2
A

d2

ds2

)
ξ‖ = i

fBv2
SCS

ρB(v2
S + v2

A)�2
− isξr

2�Bϕvϕ + fBv2
ϕ

B�2rC

, (86)

where all the equilibrium quantities are evaluated at the resonant point, s = 0. This is the
resistive generalization of (55) in Goossens et al. (1992). The second term on the right hand
side is proportional to s ln |s| and can be neglected in comparison with the first one. This
governing equation for slow resonant waves in steady state has no singularity at s = 0 in
contrast to its ideal counterpart. The final solution is:

ξr = − μ0ω
2
C

|�C |ω2
AB2CS

G(τ) + Cξ,C, (87a)

P ′ = − μ0QC

|�C |ω2
AB2

CSG(τ) + CP,C, (87b)
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ξ‖ = fBv2
SCS

δC |�C |ρB(v2
S + v2

A)�2
F(τ), (87c)

CS ≡ const, (87d)

where Cξ,C and CP,C are constants of integration and

G(τ) =
∫ ∞

0

e−u3/3

u
{exp(iuτ sign(��C)) − 1}du, (88)

F(τ) =
∫ ∞

0
exp(iuτ sign(��C) − u3/3) du. (89)

The fact that CS ≡ const shows that the ideal conservation law for cusp resonances remains
valid in dissipative steady MHD.

Using the asymptotic expansion of G(τ) for large values of τ the jump conditions for ξr

and P ′ are as follows:

[ξr ] = −iπ
μ0ω

2
CCS

B2ω2
A|�C | sign(�), (90a)

[P ′] = −iπ
μ0QCS

B2ω2
A|�C | sign(�). (90b)

These jump conditions and the conservation law CS = const for slow resonances were first
derived by Goossens et al. (1992) in ideal MHD and confirmed by Erdélyi (1997) to remain
valid in dissipative (resistive) MHD. The effects of an equilibrium shear flow are hidden in
the constants of the conservation law; the equilibrium flow also modifies �C which appears
in the expressions for jumps and for the width of the dissipative layer. Note also, as in the
case of Alfvén resonances, that the jumps are independent of the dissipation coefficient η,
which is another remarkable property of resonant MHD waves and is analogous to the jump
conditions across shock in hydrodynamics where the jumps are also independent of the
micro-physics. This universal character implies that the amount of absorbed wave energy
and the total amount of dissipative (resistive or viscous) heating in the dissipative layer are
also independent of η.

Finally, from the asymptotic behaviour of F(τ) for τ → ±∞ we now easily get the
following asymptotic expansion for ξ‖,

ξ‖ � ifBv2
SCS

τδC |�C |ρB(v2
S + v2

A)�2
. (91)

This asymptotic expansion recovers the 1/τ behaviour of �(ξ‖) far away from the ideal
resonance position, i.e. for τ → ±∞. The equilibrium flow does not change the asymptotic
behaviour. Note that the analysis breaks down at the critical point of flow resonance, i.e.
where ω = ωf .

Last but not least in the summary of the theoretical aspects, let us comment on resonant
Alfvén waves in dissipative steady MHD. From a mathematical perspective the analysis
is similar to the one of slow waves given above. Again, the detailed governing equations
are rather elaborate and can be found in Erdélyi et al. (1995). Since the Alfvén waves are
characterized by ξ⊥, let us focus on the governing equation determining this component of



Resonant MHD Waves in the Solar Atmosphere 317

the Lagrangian displacement vector. The equation for the perpendicular component of the
Lagrangian displacement in the magnetic surface in dissipative steady MHD is

(
�2

η − ω2
A

)
ξ⊥ = i

ρB

(
gBP ′ − 2BzT

r
ξr

)
, (92)

where Dη ≡ Dη,A is given by (82). Equation (92) is the resistive and steady state generaliza-
tion of (36c) and the resistive extension of (71b) or (49) in Goossens et al. (1992). Remark-
ably, (92) is formally similar to (71b), but �2 is now replaced by �2

η that is a second-order
differential operator, and ωA = � is not singularity anymore.

Using the techniques outlined in Goossens et al. (1995) and Erdélyi et al. (1995) we can
solve the governing equations for ξr , P ′, ξ⊥, and for the coupling function CA in dissipative
(resistive) steady MHD to obtain the following solution:

ξr = − gBCA

ρB2�A

G(τ) + Cξ,A, (93a)

P ′ = − 2BzT CA

ρB2r�A

G(τ) + CP,A, (93b)

ξ⊥ = CAsign(�)

δA|�A|ρB
F(τ), (93c)

CA ≡ const, (93d)

where Cξ,A and CP,A are constants of integration and G(τ) and F(τ) are formally the same
as (88)–(89) but must be evaluated for Alfvén resonance. This result confirms that the ideal
conservation law for Afvén resonance found by Goossens et al. (1992) remains fully valid
in dissipative MHD.

Again, similarly to the case of slow resonance, the asymptotic expansion of G(τ) for
large values of τ the jump conditions for ξr and P ′ can be derived for the steady dissipative
Alfvén resonance yielding:

[ξr ] = −iπ
gBCA

ρB2|�A| sign(�), (94a)

[P ′] = −iπ
2BzT CA

ρB2rA|�A| sign(�). (94b)

These jump conditions and the conservation law CA = const for Alfvén resonances were
first derived by Goossens et al. (1992) in ideal MHD and confirmed by Erdélyi et al. (1995)
to remain valid in dissipative (resistive) MHD. The jumps and the conservation law derived
in the framework of resistive dissipative MHD for steady equilibrium are in their structure
similar to their counterparts obtained for static equilibrium. Again, the effects of an equilib-
rium shear flow are rather hidden in the constants of the conservation law. The equilibrium
flow also modifies �A, a very important point that must be emphasized, which appears in
the expressions for jumps and for the width of the dissipative layer. The jumps remain still
independent of the dissipation coefficient, η, similar to the case of slow resonance. This
seems to be a very robust and universal feature of resonant MHD waves in general.
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Finally, from the asymptotic behaviour of F(τ) for τ → ±∞ one obtains for ξ⊥ in steady
state that

ξ⊥ � iCAsign(�)

τ�BδA|�A| . (95)

This asymptotic behaviour far away from the ideal Alfvén resonance position in stationary
MHD is in agreement with its counterpart in static MHD found by Goossens et al. (1995) as
it confirms the τ−1 behaviour of �(ξ⊥) for τ → ±∞. The equilibrium flow does not change
the asymptotic behaviour. Note that again the analysis breaks down at the critical point of
flow resonance, i.e. where ω = ωf .

4.2 Heating by Resonant Absorption in Steady State

In this section we are concerned with a driven problem in steady state. If the inho-
mogeneous plasma is driven externally at a frequency ω that falls in the band of the
continuous eigenfrequencies of the system modified by the equilibrium flow, the ampli-
tude of the oscillations excited in the system peaks at the resonance point where the
frequency of the local field line matches the Doppler-shifted frequency ω. The reso-
nance, just like in a static equilibrium, causes energy to build up at the resonant mag-
netic surface at the expense of the global motion. Again, in ideal MHD the resonantly
accumulated energy will be infinite at the resonant position(s) (see e.g. Erdélyi 1996;
Erdélyi and Goossens 1996).

In order to compute the absorption of wave energy and the heating of a plasma we have to
include dissipative effects in the stationary MHD equations (Erdélyi et al. 1995). The inclu-
sion of non-ideal effects removes the Doppler-shifted singularity of the governing equations,
and both the energy density and the spatial gradients have large but finite values. In this case
the energy transferred to the resonant magnetic surface can be converted into heat. However,
under certain circumstances as the driving waves that are passing through the resonant layer
in a steady state may carry in fact more energy away from the resonant location than that
of the incident waves, i.e. resonant waves can gain additional energy, their amplitude may
increase as a result of this dynamic resonant interaction even leading to instabilities (see
Erdélyi and Goossens 1996; Tirry et al. 1998b). This effect is called overreflection. Until the
mid-90s resonant absorption of MHD waves was studied for static equilibrium states almost
exclusively, as is outlined in previous Sections. However, observations reveal both upwards
and downwards mass-flows in magnetic flux tubes along their longitudinal axes in the solar
atmosphere. Typical speeds are 5–50 km/s (see e.g. Doyle et al. 1997).

Steady equilibrium flows (velocity fields) change the properties of MHD waves. The
most obvious effect of an equilibrium flow is the Doppler-shift of the Alfvén and slow
continua. For coronal heating by resonant absorption this Doppler-shift is important because
the frequency range where the mechanism operates is changed as shown by Erdélyi (1996)
and Erdélyi and Goossens (1996).

In addition to the Doppler-shift, an equilibrium flow can have more subtle effects on the
absorption of waves which are hidden in the equations. One example of such effects might
be the modification of connection formulae, as we have seen in Sect. 4.1 that are crucial for
determining the absorbed energy (see e.g. Goossens et al. 1992; Erdélyi and Goossens 1995).
Another example is the change of thickness of the dissipative layers (see e.g. Erdélyi 1996;
Erdélyi and Goossens 1996).

Erdélyi (1998) studied the effect of a steady velocity field on the rate of resonant absorp-
tion of Alfvén waves in coronal loops. His numerical results indicate that an equilibrium
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Fig. 2 Absorption coefficient α

as a function of the equilibrium
flow strength parameter f , and
driving frequency ω. For more
details on the coronal loop model
see Erdélyi (1998)

mass flow can significantly influence the absorption of Alfvén waves (see Fig. 2). It is there-
fore important to take into account the presence of an equilibrium flow when determining
the power loss of MHD waves, due to their interaction with coronal loops.

Alfvén waves can carry energy only along the magnetic field lines and slow waves are
able to carry only 1–2% of energy under coronal (i.e. low plasma-β) conditions. However
fast magneto-acoustic waves might also have an important contribution in explaining the
coronal temperatures as it has been shown, e.g., by C̆adez̆ et al. (1997) and Csík et al.
(1998). Fast magneto-acoustic waves are magnetic waves which can propagate carrying en-
ergy across the magnetic field lines. They are compressive and therefore subject to dissipa-
tion by, e.g. viscosity, heat conduction, Landau and transit-time damping, etc.

Linear theory shows that, in the vicinity of the resonant position, the amplitudes of the
variables can be very large even when they are small far away from this position. This obser-
vation implies that linear theory can break down in this region. Ruderman (1997a, 1997b)
developed a nonlinear theory of resonant slow waves in isotropic plasmas which has been
extended to anisotropic plasmas by Ballai (1998a, 1998b). They have derived the nonlinear
governing equations in a strongly anisotropic plasma and have found a generalized form of
the connection formulae (see Ruderman 2000). The effect of a steady (shear) flow on the res-
onant behaviour of nonlinear slow waves was discussed first by Ballai and Erdélyi (1998).
An application to the magnetic canopy was given in Erdélyi and Ballai (1999) where the ap-
proximation of weak nonlinearity and long wavelength was used for the analytical progress.
The qualitative result of these papers is the decrease of absorption caused by nonlinearity
can be overruled by even a small amount field-aligned bulk motion. For the review of the
nonlinear theory of slow resonant waves see Ballai and Ruderman (2010).

Finally, we recall a detailed study of coronal heating by nonlinear resonant FMA waves
carried out by Erdélyi et al. (2001). Again, the coefficient of wave energy resonant absorp-
tion is derived using (i) weak nonlinearity and (ii) long-wavelength approximation. Among
their conclusions we point out that (i) an equilibrium flow in the slow dissipative layer can ei-
ther increase or decrease the coefficient of the wave energy absorption. Thus, a field-aligned
flow has an important effect on the resonant interaction of fast waves and nonlinear slow
resonances and energy transfer, (ii) negative absorption rate (i.e. RFI or over-reflection) has
been found for a wide range of parameters. A more accurate quantitative analysis would re-
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quire observations and diagnostics of large-scale flow fine structures in the low and middle
solar atmosphere.

5 Quasi-Modes

5.1 Motivation

This section focuses on the third objective of this review. This objective is to explain that
any eigenmode of ideal MHD, whether it is a surface Alfvén wave or a body fast magneto-
acoustic wave, that has a frequency with its real part in the Alfvén continuum, is transformed
into a damped quasi-mode. The existence of damped quasi-modes is due to the intrinsic
coupling of MHD waves and with the fact that the Alfvén resonance is a sink for the wave
energy. Damped quasi-modes are not a rarity, whenever an eigenmode has its frequency in
the Alfvén continuum a quasi-mode shows up. The attentive reader might have noticed that,
in our discussion of resonant Alfvén waves in dissipative MHD in Sect. 3.3, the frequency
ω was treated as a real quantity. This means that the analysis presented in Sect. 3.3 applies
to driven waves. The present section is concerned with eigenmodes. The linear spectrum of
MHD waves of a non-uniform static plasma equilibrium consists of discrete (fast and slow
magneto-sonic and Alfvén) eigenmodes and continuum Alfvén and slow eigenmodes.

In Sect. 2 it was explained that there is always coupling between magneto-sonic waves
and Alfvén waves except for a straight field and m = 0. This means that, for an equilib-
rium with a straight magnetic field, the real eigenvalues of discrete fast sausage eigenmodes
can lie in the continuum of the torsional Alfvén continuum eigenmodes, but there is no
coupling and hence no damping. On the other hand, for m 	= 0, the discrete fast eigen-
modes with an eigenfrequency in the Alfvén continuum couple to a local Alfvén continuum
eigenmode. The jump of energy when crossing the dissipative layer [FluxE] (55) is al-
ways negative in a static equilibrium and the dissipative layer is a sink for the energy of
the wave. Hence the wave gets damped and becomes a damped quasi-mode. Quasi-modes
or collective modes showed up in ideal MHD during the construction of the solution of
the initial value problem by using the Laplace transform technique in the complex fre-
quency plane (see e.g. Sedlaček 1971; Grossmann and Tataronis 1973; Goedbloed 1983;
Goedbloed and Poedts 2004). The term quasi-modes or collective modes refers to the fact
that the modes possess complex frequencies even in ideal MHD. Studies of quasi-modes or
collective modes have been motivated by schemes to heat plasmas by means of Alfvén wave
absorption. Grossmann and Tataronis (1973), Hasegawa and Chen (1974), Ionson (1978)
and Wentzel (1979b) proposed to excite the surface Alfvén wave and this wave should then
be absorbed at the spatial Alfvén resonance and its energy dissipated to the plasma. Chen and
Hasegawa (1974a) used a slab geometry and found that absorption rate is strongly enhanced
when the non-uniformity of the equilibrium is sharp and the driving frequency is close to
real part of the frequency of the collective surface mode. Hasegawa and Uberoi (1982) (see
references therein) calculated the damping rate of the damped surface quasi-mode of a slab
model with a linear variation in density. A similar result for a linear variation of the square
of the local Alfvén frequency was obtained by Goedbloed (1983).

The studies in the 1970s and the early 1980s on plasma heating by resonant absorption of
Alfvén waves was mainly concerned with the surface Alfvén wave often in planar geometry.
In the 1980s and 1990s it was shown, first in fusion plasma physics (see e.g. Appert et al.
1981; Balet et al. 1982) and, subsequently, in solar physics (see e.g. Poedts et al. 1989a,
1989b, 1990a, 1990b, 1990c; Steinolfson and Davila 1993) that a similar phenomenon takes
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place in an equilibrium with an arbitrary non-uniformity and for frequencies not necessar-
ily associated with the Alfvén surface wave but also with fast body waves. In the fusion
plasma physics the surface Alfvén wave introduced by Grossmann and Tataronis (1973) and
Hasegawa and Chen (1974) was also referred to as the first (lowest frequency) radial eigen-
mode of the fast magneto-acoustic wave (see e.g. Balet et al. 1982). Balet et al. (1982) iden-
tified quasi-modes in an original way. They imposed an initial displacement on the plasma
column and then let it oscillate freely. Fourier analysis of the displacement at different radii
leads to a peak in the Fourier amplitude at the same frequency at the different radii. Hence,
Balet et al. (1982) identified this global motion as a collective mode of the plasma response.
Poedts and Kerner (1991) studied the quasi-mode for a plasma-vacuum-wall system and
used a numerical eigenvalue code to show that the ideal quasi-mode corresponds to a nor-
mal mode of resistive MHD of which the damping becomes independent of resistivity for
sufficiently small resistivity. Ofman et al. (1995) studied resonant absorption for a Cartesian
planar slab of low beta plasma. They identified the frequencies of the quasi-modes as the
frequencies of maximal absorption and determined the dependence of the quasi-mode fre-
quencies on the wave numbers. Wright and Rickard (1995) computed the time-dependent
behaviour of a Cartesian nonuniform MHD cavity driven by a random boundary motion
which has a broadband frequency spectrum. These authors identified two criteria for ef-
ficient excitation of the Alfvén resonance: first, the fast or global eigenfrequencies of the
cavity must lie in the spectrum of the driving motions and second, the fast or global eigen-
frequencies of the cavity must lie in the Alfvén continuum. Wright and Rickard (1995)
showed that there are indeed fast eigenmodes which have the real part of their frequencies
in the Alfvén continuum. They did not compute complex frequencies of the eigenmodes.
They showed by time dependent computations in resistive MHD that efficient absorption
occurs at the frequencies of the global fast waves.

5.2 Quasi-Modes in Ideal and Eigenmodes in Resistive MHD

To explain the notion of quasi-modes we consider a simple example. The equilibrium mag-
netic field is in the z-direction of Cartesian coordinate system x, y, z. The plasma density
and the magnetic field magnitude are ρ− and B− for x < 0, and ρ+ and B+ for x > 0. As-
sume that the plasma is incompressible. Then the surface wave can propagate on the surface
of magnetic interface situated at x = 0, and the phase speed of this wave is given by

ω2
surf

k2
= v2

surf ≡ ρ−v2
A− + ρ+v2

A+
ρ− + ρ+

, v2
A± = B±

μ0ρ±
, (96)

where ω and k are the frequency and wave number of the surface wave, and we assume that
the wave propagates in the z-direction. The surface wave is an eigenmode of ideal MHD,
and its frequency given by equation (96) is an eigenfrequency.

Let us now change the equilibrium and add a transition layer defined by |x| < a, where
the density and magnetic field vary continuously from ρ− to ρ+ and from B− to B+ re-
spectively in such a way that vA(x) is a monotonic function. We obtain the equilibrium
configuration which is often called “finite-thickness magnetic interface.” If ak � 1, then the
existence of the transitional layer does not affect very much ω, at least its real part. Let us,
for the sake of definiteness, assume that vA− < vA+, so that vA(x) is a monotonically grow-
ing function. Then it is easy to see that vA− < vsurf < vA+. This result implies that there is a
point xA ∈ (−a, a) where ω = vA(xA)k ≡ ωA(xA), i.e. there is Alfvén resonant position in
(−a, a). Actually, the restriction to incompressible motions means that the Alfvén and slow
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resonance coincides as pointed out by Goossens et al. (1992) and Ruderman (2009), so it
would be more appropriate to call xA the mixed resonant position. However, traditionally it
bears the name Alfvén resonant position. As we have already seen, the solution at the Alfvén
resonance has a non-integrable singularity, so that now there is no eigenmode in the form of
the surface wave with its frequency equal to ω.

However the frequency ωsurf = kvsurf still plays an important role in the description of
waves on a finite-thickness magnetic interface, at least when ak � 1. This frequency ap-
pears when we calculate the asymptotic state of the oscillation of an arbitrarily perturbed
interface for large time. To do this we first solve the initial value problem using the Laplace
transform. Initially the Laplace transform is defined only in the upper part of the complex
ω-plane. It turns out that the Laplace-transformed solution has logarithmic branch-points
at ±ωA− = ±kvA−, ±ωA+ = ±kvA+, and ±ωA(x) = ±kvA(x). To obtain a single-valued
branch of the Laplace-transformed solution we make cuts in the ω-plane, and then construct
the Riemann surface of the Laplace-transformed solution that consists of infinite number of
sheets attached to each other at the branch cuts. This procedure is described in a seminal pa-
per by Sedlaček (1971). Note that Sedlaček (1971) considered the electrostatic oscillations
of a cold inhomogeneous plasma. However, mathematically, this problem is the same as that
describing propagation of surface waves on a thick interface.

The Bromwich integration contour used to calculate the inverse Laplace transform is a
straight line above the real axis and parallel to this axis on the principal Riemann sheet.
To calculate the asymptotic behaviour of the solution for large time we have to close this
contour. This closure goes to non-principal Riemann sheets through the cuts. The asymp-
totic solution for large time consists of two terms. The first term describes oscillations of
individual magnetic field lines with local Alfvén frequencies. It decays as t−1 due to phase
mixing. The second term arises from two simple poles of the Laplace-transformed solu-
tion at ω = ωr + iωi and ω = −ωr + iωi situated on non-principal Riemann sheets. It de-
scribes collective oscillation of the plasma with the frequency ωr in the form of a surface
wave. These oscillations damp with the decrement γd = −ωi . When ka � 1, ωr ≈ kvsurf and
γd/ωr ∼ ka, so that the collective oscillation is only weakly damped. This second term in
the asymptotic solution is called quasi-mode. Since the quasi-mode decays as exp(−γdt), it
cannot be an eigenmode of the ideal MHD because all such eigenmodes have either real or
purely imaginary frequencies (e.g. Goedbloed and Poedts 2004).

Since the first term in the asymptotic solution decays as t−1 while the second term de-
cays exponentially, for very large time the first term always dominates over the second one.
However, when ka � 1, the second term dominates over the first one for large but “not very
large” time (we do not discuss here the exact meaning of this restriction). We say that, in
this case, the second term gives the so-called intermediate asymptotic. Hence, for ka � 1,
the intermediate asymptote is the surface wave with its properties very similar to those of a
surface wave on a true interface.

If we add dissipation then a quasi-mode is converted in a normal mode of dissipative
MHD. The characteristic property of this normal mode is that its decrement tends to the
decrement of the corresponding quasi-mode of ideal MHD when dissipative coefficients
tend to zero. The dissipative solution tends to the ideal solution uniformly with respect
to the spatial variable on any fixed interval not containing the resonant position when the
dissipative coefficients tend to zero.

Eigenmodes of dissipative MHD were first studied for one of the simplest magnetic
plasma configuration, which is a finite-thickness magnetic interface. Mok and Einaudi
(1985) and Einaudi and Mok (1985) studied the resistive eigenmodes of a finite-thickness
magnetic interface in an incompressible plasma under the conditions that ka � 1 and
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a2k � δA � a (δA is the thickness of the dissipative layer in the driven problem defined
by (41), where we have to substitute ωr for ω). Note that the second condition, in particular,
implies that δA  a(γd/ωr), where γd = −ωi ∼ akωr is the decrement of the quasi-mode
and the corresponding dissipative eigenmode. It was found that the plasma motion in the
dissipative layer is the same as in the driven problem. In particular, the plasma displacement
in the direction perpendicular to the interface is described by the G function, and that in the
equilibrium magnetic field direction by the F function.

Ruderman et al. (1995) studied the same problem as Mok and Einaudi (1985), but they
relaxed the assumption a2k � δA � a and allowed δA to be arbitrarily small. As a result
they found that, when δA � a2k, the character of the motion in the dissipative layer is quite
different from that in the case δA  a2k. In the general case, the plasma displacement in
the direction perpendicular to the interface is described by the G� function, and that in the
equilibrium magnetic field direction by the F� function, where

F�(τ) =
∫ ∞

0
exp(iuτ sign(�A) − u3/3 + �u)du, (97)

G�(τ) =
∫ ∞

0

e−u3/3

u
{exp(iuτ sign(�A) + �u) − 1}du, (98)

and the parameter � is given by

� = 2ωAγd

δA|�A| ∼ γd/ωr

δA/a
, (99)

i.e. � is of the order of the ratio of two small quantities. It is easy to see that F�(τ) = F(τ)

and G�(τ) = G(τ) when � = 0. Moreover, qualitatively F�(τ) and G�(τ) are quite similar
to F(τ) and G(τ) respectively when � � 1. However, when �  1 the behaviour of F�(τ)

and G�(τ) is qualitatively different from that of F(τ) and G(τ). The graphs of the real and
imaginary parts of F�(τ) and G�(τ) are shown in Fig. 3 for � = 5. It follows from (97)
and (98), and also can be seen in Fig. 3, that �(F�) and �(G�) are even functions, while
�(F�) and �(G�) are odd functions.

An important property of function G�(τ) is that

lim
τ→±∞G� = ±1

2
πi. (100)

so that [G�(τ)] = πi. We can see in Fig. 3 that, for large �, F�(τ) and G�(τ) have the
form of wave packets. This is confirmed by the asymptotic analysis. In particular, using the
steepest descent method, we can obtain that, for large �,

F�(τ) ∼ π
4
√

�2 + τ 2

(√
1

2

(
4
√

�2 + τ 2 + ϒ+
)

− i

√
1

2

(
4
√

�2 + τ 2 − ϒ+
))

× exp

(
2

3
[(�ϒ+ − τϒ−) + i(τϒ+ − �ϒ−)]

)
, (101)

where

ϒ+ =
√√

�2 + τ 2 + �

2
, ϒ− =

√√
�2 + τ 2 − �

2
. (102)
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Fig. 3 The real and imaginary parts of functions F�(τ) and G�(τ). We can see that �(F�) and �(G�) are
even functions, while �(F�) and �(G�) are odd functions

We can define the thickness of the dissipative layer as the distance where |F�(τ)| =
e−1|F�(0)|. Using (101) it is easy to obtain that, for large �, this distance is approximately
equal to τd = �

√
3. Then, in the dimensional variables, the thickness of the dissipative layer

is of the order of

τdδA ∼ �δA = a(γd/ωr). (103)

We see that, for large �, the thickness of dissipative layer is independent of the Reynolds
number and determined by the decrement.

It is also interesting to determine the characteristic scale of variation of perturbations in
the dissipative layer. We can define this scale as the distance from τ = 0 to the first zero
of �(F�). Simple calculations show that this distance is of the order of 1/

√
�. Hence, the

dimensional characteristic scale of variation of perturbations in the dissipative layer is of the
order of

δA√
�

∼
√

η

γd
∼ a(ak)−1R−1/2

m , (104)

where Rm = a/ηωr , and we have used the estimates �A ∼ ω2
r /a and γd ∼ akωr . Hence,

while the thickness of the dissipative layer becomes independent of Rm when Rm  1, the
characteristic scale of the plasma parameters variation in the dissipative layer is decreasing
as R

−1/2
m .

The analysis by Ruderman et al. (1995) was extended by Tirry and Goossens (1996) to
cylindrical geometry. Their analysis can be also considered as an extension of the analysis
of resonant Alfvén waves by Sakurai et al. (1991a) and Goossens et al. (1995) for the eigen-
mode problem. Tirry and Goossens (1996) also simplified the analysis by Ruderman et al.
(1995). While Ruderman et al. (1995) used the method of multiple scales and introduced
“slow” times, Tirry and Goossens (1996) simply took into account the imaginary part of ω

when writing the approximate expression for ω2 − ω2
A in the vicinity of the resonant posi-



Resonant MHD Waves in the Solar Atmosphere 325

tion. In what follows we briefly outline the method used by Tirry and Goossens (1996), and
present the results that they obtained.

Let us write the frequency of a dissipative eigenmode in the form

ω = ωr + iωi, (105)

ωr and ωi being real quantities. Strictly speaking damping (in a static equilibrium) should
be weak meaning that |ωi | � |ωr |. Then the modification of Sect. 3.2 is straightforward.
In (38) and (40) the differential operator D2

η,s defined in (39) should be replaced with

D2
η,s = 2iωAωi + s�A − iωrη

d2

ds2
. (106)

In (44) the differential operator D2
τ defined in (45) should be replaced with

D2
�,τ = d2

dτ 2
+ i sign(�A) τ − �, (107)

where � is defined by (99). The solution to the modified version of (44) were obtained by
Tirry and Goossens (1996) with the use of a Fourier transform technique. It reads

CA(τ) = const, (108a)

ξr (τ ) = − gBCA

ρB2�A

G�(τ) + Cξ , (108b)

P ′(τ ) = −2fBBϕBzCA

ρB2μ0r�A

G�(τ) + CP , (108c)

ξ⊥(τ ) = CA

δA|�A|ρB
F�(τ), (108d)

where the function F�(τ) and G�(τ) are defined by (97) and (98), and Cξ and CP are
constants that have to be determined from the matching with the ideal solution in the overlap
regions.

As we have already seen the jump of function G�(τ) is the same as that of function
G(τ) (see (100)). This implies that the jump conditions (54) for driven waves continue to
hold for eigenmodes. In retrospect this is an important observation since the jump conditions
obtained for driven Alfvén waves were used for computing eigenmodes by e.g. Goossens et
al. (1992) and Goossens and Hollweg (1993). The resonant interaction, damping or ampli-
fication, is translated in a complex frequency. In a static equilibrium the jump in energy is
always negative, meaning that the dissipative layer is a sink for the energy of the wave so
that the wave gets damped. In equilibrium models with flow the quasi-modes can become
over-stable as shown by, e.g., Hollweg et al. (1990), Ruderman and Wright (1998), Andries
et al. (2000), and Andries and Goossens (2001a, 2001b).

To the best of our knowledge damped global eigenmodes that are coupled to resonant
Alfvén waves in a non-uniform equilibrium state can be computed by three methods. The
first method was introduced by Balet et al. (1982). It uses Fourier analysis at different po-
sitions of the free oscillation that is excited by imposing an initial displacement for deter-
mining the frequency and damping rate of the quasi-mode. The second method is to use
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a numerical code that integrates the resistive MHD equations in the whole volume of the
equilibrium state to determine a selected mode or part of the resistive spectrum of the sys-
tem. The third method was used by, e.g., Mok and Einaudi (1985), Ruderman et al. (1995)
and Tirry and Goossens (1996). It circumvents the numerical integration of the non-ideal
MHD equations and only requires numerical integration (or closed analytical solutions) of
the linear ideal MHD equations. The method relies on the fact that dissipation is important
only in a narrow layer around the resonant point where the real part of the frequency of
dissipative eigenmode equals the local Alfvén frequency. The jump conditions are used to
connect the solutions to the ideal MHD equations to the left and right of the dissipative layer.
This method is the eigenvalue counterpart of the SGHR method for driven resonant Alfvén
waves. It was used for computing eigenmodes of various non-uniform plasma configurations
by e.g. Tirry et al. (1998a, 1998b), Stenuit et al. (1998, 1999), Andries et al. (2000), Andries
and Goossens (2001a), and Van Doorsselaere et al. (2004).

A drastic variant of the method that strongly simplifies solving the non-ideal MHD equa-
tions uses the so-called thin boundary (TB) approximation. In this lazy version it is assumed
that the non-uniform layer is so thin that we can neglect the total pressure variation across
this layer. Then the system of linear ideal MHD equations is reduced to only one equation for
the plasma displacement in the direction perpendicular to the non-uniform layer. This equa-
tion can be easily solved analytically. The TB approximation has gained popularity in the
context of damped transverse oscillations of solar coronal loops as it allows to obtain simple
analytical expressions for the damping rate. It was used by e.g. Hollweg and Yang (1988),
Goossens et al. (1992, 2002a, 2009), Goossens and Hollweg (1993), Ruderman and Roberts
(2002), Ruderman (2003) and Dymova and Ruderman (2006a). A discussion of the TB ap-
proximation can be found in Goossens (2008) and Goossens et al. (2009). In this respect
it is instructive to refer to Van Doorsselaere et al. (2004) and Terradas et al. (2006a) who
computed damped eigenmodes of 1-D cylindrical models of coronal loops with a numerical
eigenvalue code. Comparison of results obtained by using the TB approximation with those
obtained by the numerical eigenvalue code shows that the thin boundary approximation is
surprisingly accurate far beyond its theoretical domain of applicability.

Let us recall that, for an equilibrium with a straight magnetic field, discrete fast sausage
eigenmodes can have real eigenvalues that lie in the continuum of the torsional Alfvén con-
tinuum eigenmodes, but there is no coupling and hence no damping. On the other hand, for
m 	= 0 the discrete fast eigenmodes with an eigenfrequency in the Alfvén continuum couple
to a local Alfvén continuum eigenmode. Tirry and Goossens (1996) gave a nice illustration
of this transformation of undamped sausage fast magneto-sonic eigenmodes with frequen-
cies in the Alfvén continuum into kink fast magneto-sonic eigenmodes damped by resonant
absorption. These authors considered a pressureless cylindrical plasma equilibrium with a
constant straight magnetic field Bz and a density profile that varies with distance r to the
axis of the cylinder as ρ(r) = ρ(0)[1 + 0.9 exp(−(r/R)4)]. This density profile was also
used by Ofman et al. (1995) and Wright and Rickard (1995) albeit in Cartesian coordinates.
Tirry and Goossens (1996) computed the first three sausage (m = 0) fast magneto-sonic
eigenmodes of this equilibrium model for 31 equidistant values of kzR from 0 to 3. For each
kz the corresponding Alfvén continuum was computed. For kzR ≥ 1 the fundamental fast
sausage mode has its frequency in the Alfvén continuum. This happens for the first over-
tone for kzR ≥ 2 and for the second overtone for kzR ≥ 3. Hence there are many sausage
modes with frequencies in the Alfvén continuum. In order to see what happens with these
modes when going from a sausage mode m = 0 to a kink mode m = 1 Tirry and Goossens
(1996) carried out a numerical experiment in which they varied the value of m in a contin-
uous manner from 0 to 1. The outcome of this mathematical exercise is that the frequency
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becomes complex with a non-zero negative imaginary part and a real part that undergoes a
shift. The excursion of the frequency in the complex plane has been computed for different
values of the magnetic Reynolds number Rm = 107,108,109,1010. The result is a numerical
confirmation of the damping rate being independent of dissipation for sufficiently small dis-
sipation as could have been predicted on the basis of the expression for [FluxE]. The same
conclusion was reached by Poedts and Kerner (1991) in a study of the kink mode in a fusion
related setup. Quasi-modes are the natural oscillation modes of a system. They combine
properties of a localized resonant Alfvén wave and of a global fast eigenmode. They are
damped due to resonant coupling and the damping is independent of dissipation for small
dissipation.

Let us recall that the use of the jump conditions in combination with the TB approxi-
mation has gained popularity in the context of damped transverse oscillations of loops. It
allows to obtain simple analytical expressions for the damping rate that can be used for the
interpretation of observational data and for seismological investigation. In addition it turns
out that this method is surprisingly accurate far beyond its theoretical domain of applicabil-
ity. Let us as an example consider the damping of kink MHD waves in a pressureless plasma
with a straight magnetic field (see e.g. Goossens et al. 2009). For a uniform plasma with
constant but different densities ρi inside and ρe outside the loop, we can follow the analysis
by Spruit (1982) and Edwin and Roberts (1983). Edwin and Roberts (1983) gave a general
formulation of the dispersion equation for MHD waves on a straight homogeneous magnetic
cylinder which can be written as follows:

F�

J ′
m(x0)Km(y0)

Jm(x0)K ′
m(y0)

= 1 (109)

with the quantity F� given by

F� = ki

ke

ρe(ω
2 − ω2

Ae)

ρi(ω2 − ω2
Ai)

, (110)

where x0 = kiR, y0 = keR, and

k2
i = (ω2 − k2v2

Si)(ω
2 − ω2

Ai)

(v2
Si + v2

Ai)(ω
2 − ω2

Ci)
, k2

e = (k2v2
Si − ω2)(ω2

Ai − ω2)

(v2
Si + v2

Ai)(ω
2
Ci − ω2)

. (111)

Jm and Km are the Bessel function and modified Bessel function of the second kind. In (109)
m = 0 corresponds to the sausage mode, m = 1 to kink mode, and m > 1 to fluting modes.
The dispersion equation (109) is written for body waves (k2

i > 0). To obtain the disper-
sion equation for surface waves we have to substitute Im(|x0|) and I ′

m(|x0|) for Jm(x0) and
J ′

m(x0).
The dispersion relation (109) can be solved numerically. However, it is instructive and

also accurate to consider the so-called thin tube (TT) approximation. The Bessel functions
Jm(x) and Km(y) in (109) are replaced with their first order asymptotic expansions. The
dispersion relation (109) is reduced to

1 + F�

ke

ki

= 0. (112)

In the cold plasma approximation the expressions (111) for k2
i and k2

e reduce to

k2
i = ω2 − ω2

Ai

v2
Ai

, k2
e = ω2

Ae − ω2

v2
Ae

. (113)
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Then the solution to (112) is

ω2 = ρiω
2
Ai + ρeω

2
Ae

ρi + ρe

= ω2
k , (114)

and for the radial wave numbers ki and ke we obtain

k2
i = k2

e = k2
z

ρi − ρe

ρi + ρe

. (115)

The right hand side of (114) is almost invariably called the square of the kink frequency and
denoted as ω2

k . In the thin tube approximation the frequency is independent of the azimuthal
wave number m ≥ 1 as already noted by Goossens et al. (1992). Hence all flute modes with
m ≥ 2 have the same frequency as the kink mode with m = 1. The radial wave numbers ki

and ke depend in a simple way on the density contrast.
Let us now replace the discontinuous variation of density from its internal value ρi to ρe

by a continuous variation in a non-uniform layer [R − l/2,R + l/2]. A fully non-uniform
equilibrium state corresponds to l = 2R. The continuous variation of ωA has the important
effect that the kink MHD wave, which has its frequency in the Alfvén continuum, interacts
with local Alfvén continuum waves and gets damped. This resonant damping is translated
in a complex frequency. In the TB approximation we need to add an additional term to
the dispersion relation which takes into account the jump in the radial component across
the resonant layer where the real part of the kink eigenmode is equal to the local Alfvén
frequency ω = ωA(rA), with rA being the resonant position. In the thin boundary approxi-
mation rA = R when the Alfvén speed profile is symmetric with respect to r = R. The jump
in ξr is given by (55). The modified version of the ideal dispersion relation (109) is

F�

J ′
m(x0)Km(y0)

Jm(x0)K ′
m(y0)

− iG�

Km(y0)

K ′
m(y0)

= 1,

where F� is given by (110) and G� is defined as

G� = π
m2/r2

A

ρ|�A|
ρe(ω

2 − ω2
Ae)

ke

. (116)

G� contains the effect of the resonance. When we combine the thin tube (TT) approximation
with the thin boundary (TB) approximation, we can simplify the dispersion relation to

1 + F�

ke

ki

− iG�

keR

m
= 0. (117)

The zero order solution to (117), i.e. the solution when the effect of the resonance is not taken
into account is of course (114). In order to take the effect of the resonance into account we
use a complex frequency ω defined by (105) and approximate ω2 with ω2

k − 2iωkγd (recall
that γd = −ωi ). The solution for the decrement γd is

γd

ωk

= π/2

ω2
k

m

R

ρ2
i ρ

2
e

(ρi + ρe)3

(ω2
Ai − ω2

Ae)
2

ρ(rA)|�A(rA)| . (118)

Equation (118) agrees with equation (77) of Goossens et al. (1992) when that equation is
corrected for a typo as the factor (ω2

Ai −ω2
Ae) should be squared. This is surprising since that

result was obtained by Goossens et al. (1992) for surface waves in incompressible plasmas.
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In the same section of that paper it was noted that there is no distinction between compress-
ible and incompressible plasmas for surface kink and fluting waves in thin tubes.

Equation (118) shows that the decrement depends linearly on m. Since we are mainly
interested in m = 1 we shall specialize to that value in the remainder of this subsection. If
the variation of ω2

A is solely due to the variation of density ρ as is the case here since we
have considered a constant vertical magnetic field, (118) can be rewritten as

γd

ωk

= π

8

m

R

(ρi − ρe)
2

ρi + ρe

1

| dρ

dr
|rA

. (119)

For a linear profile of density ∣∣∣∣dρdr

∣∣∣∣
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l
,
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ρi − ρe

. (120)

In (120) τD is the damping time and T the period. Note that the expression for γd/ωk given
by (120) agrees with (79b) of Goossens et al. (1992).

For a sinusoidal profile of density

∣∣∣∣dρdr
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= π
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,
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ρi + ρe

ρi − ρe

. (121)

Here the results agree with those obtained by Ruderman and Roberts (2002). The works by
Ruderman and Roberts (2002) and of Goossens et al. (1992) are general and not restricted to
a specific profile of density. Ruderman and Roberts (2002) illustrated their work by taking
a sinusoidal profile for density. Goossens et al. (1992) gave results for a linear profile of
density and a linear profile of Alfvén velocity. These results on the damping rates of kink
oscillations in coronal loops illustrate the remarkable versatility of the jump conditions in
combination with the TB approximation and the TT approximation. The accuracy of the
scheme is illustrated in a recent analytical seismological study by Goossens et al. (2008)
which complemented a fully numerical seismology investigation by Arregui et al. (2007a).
This might be a good place to recall that Goossens et al. (1992) obtained a general expression
for the damping rate of MHD wave modes in the presence of an equilibrium flow, see their
equation (76). This expression has been used in a recent study on the damping of kink
MHD waves in the presence of a equilibrium flow by Vasheghani Farahani et al. (2009) and
Terradas et al. (2010a).

The role of quasi-modes for magnetic solar and space plasmas has been discussed in the
first Sect. 5.1. Beautiful examples of mode coupling and quasi-modes can be found in the
work on foot point driving by e.g. De Groof and Goossens (2000, 2002), Goossens and De
Groof (2001) and De Groof et al. (2002). The quasi-modes and resonant damping are robust
phenomena as shown by Terradas et al. (2008) for complicated plasma structures. Quasi-
modes and resonant damping have become very popular in the context of transverse MHD
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waves in coronal loops (see e.g. Ruderman and Roberts 2002; Goossens et al. 2002a, 2008,
2009; Goossens 2008).

The theory on quasi-modes reviewed in this section is general in the sense that the only
condition imposed is that the discrete eigenmode must have a frequency with its real part in
the Alfvén continuum. The discrete eigenmode can be a surface Alfvén eigenmode or a fast
body eigenmode. The surface Alfvén wave is important for at least two reasons. The first is
historical. It is the easiest case where an eigenmode with its frequency in the Alfvén contin-
uum can be identified. In ideal MHD the square of the frequency of the surface Alfvén wave
is the weighted mean of the squares of the Alfvén frequencies of the two adjacent uniform
plasmas. When the true discontinuity in the local Alfvén frequency is replaced with a contin-
uous variation, the frequency of the surface Alfvén eigenmode must be in the Alfvén contin-
uum and the Alfvén resonance cannot be avoided. From this viewpoint it is understandable
that the first schemes to heat plasmas by means of Alfvén wave absorption proposed to excite
the surface Alfvén wave (see e.g. Grossmann and Tataronis 1973; Hasegawa and Chen 1974;
Ionson 1978; Wentzel 1979b). The second reason is that kink waves in a 1-dimensional
cylindrical plasma have become popular as a first approximation for explaining the ob-
served transverse oscillations of coronal loops. In particular the fundamental radial mode
is important in that respect. The frequency of this fundamental radial mode is in the part of
the spectrum where the wave is propagating in the interior of the flux tube and evanescent
in the exterior (see e.g. Edwin and Roberts 1983; Goossens et al. 2009). Hence form that
point of view the wave could be called a body wave. However, inspection of the eigenfunc-
tions (see e.g. Wentzel 1979a; Goossens et al. 2009 (Figs. 1–2)) reveals that the fundamental
radial mode is a surface Alfvén wave both in the uniform and non-uniform case. This phe-
nomenon is also known in the fusion plasma physics literature (see e.g. Appert et al. 1984;
Cramer 2001) where it is related to the presence of the Alfvén resonance. Note that the
properties of the non-axisymmetric MHD waves deduced by Spruit (1982) for uniform thin
flux tubes were recovered and extended by Goossens et al. (2009). These properties lead
Spruit to call the non-axisymmetric MHD waves in thin flux tubes transversal. For m = 1
the non-axisymmetric MHD wave is the kink transversal MHD wave.

5.3 Initial Value Problem

In this subsection we consider the initial value problem. We divide our discussion in two
parts. In the first part we consider the transition to the steady state of oscillation when a
resonant wave starts to be driven with a constant frequency at the initial moment of time. In
the second part we consider the resonant damping of a wave that was excited by the initial
forcing. We will see that these two problems are quite different.

5.3.1 Transition to the Steady State of Oscillation

We consider the transition to the steady state of periodic oscillation when a resonant MHD
wave started to be driven by an external periodic driver at the initial moment of time. To
our knowledge this problem was first addressed by Kappraff and Tataronis (1977). These
authors considered the excitation of resonant MHD waves in a plasma slab bounded by
two vacuum regions. The waves are excited by the electrical current in a coil situated in the
vacuum regions. The only dissipative process that they took into account was resistivity. The
wave started to be driven by the external current at the initial moment of time. Kappraff and
Tataronis (1977) solved the initial value problem and showed that initially the perturbation
amplitude near the resonant position grows, but then it saturates and the system attains the
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steady state of driven oscillation. The characteristic time of transition to the steady state of
oscillation is proportional to R

1/3
m , and the amplitude of the steady state oscillation in the

resonant layer is also proportional to R
1/3
m .

Ruderman and Wright (2000) studied the transition to the steady state of driven oscil-
lation of a magnetic cavity. The equilibrium configuration that they used was as follows.
In Cartesian coordinates x, y, z the magnetic field is in the z-direction and has a constant
magnitude. The plasma is confined between two boundaries at z = 0 and z = L, and the
magnetic field lines are frozen in the dense plasma beyond these boundaries. The plasma
density continuously varies in the x-direction in such a way that it is constant in x < 0 and
x > a, while it monotonically decreases in the interval [0, a]. As a result the Alfvén speed,
vA(x), is constant in x < 0 and x > a, while it monotonically increases in the interval [0, a].
The transitional layer is assumed to be thin, a � L. The plasma is driven by a harmonic mo-
tion at z = 0 polarized in the x-direction. The driver amplitude varies harmonically in the
y-direction with the characteristic scale of variation much larger than a, i.e. its amplitude is
proportional to sin(kyy) with aky � 1.

Ruderman and Wright (2000) studied the plasma motion in the cavity using the lin-
earized MHD equations for a cold plasma. They took resistivity into account, but assumed
that the magnetic Reynolds number is large, Rm  1. The cavity possesses a resistive eigen-
mode (quasi-mode in the ideal plasma approximation). The real parts of the frequency of
the fundamental eigenmode and the overtones are approximately equal to the surface wave
frequency on the magnetic interface that we obtain in the limit a → 0. They are given by
(Ruderman 1991)

ω2
gn = 1

2

{
(v2

A1 + v2
A2)κ

2
n − [(v2

A1 − v2
A2)

2κ4
n + 4v2
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A2k

4
y]1/2

}
. (122)

For a general discussion of surface waves on magnetic interfaces see, e.g., Roberts (1981).
In (122) n = 1 corresponds to the fundamental mode in the z-direction, and n = 2,3, . . . to
the overtones. The quantities vA1 and vA2 are the values of vA in x < 0 and x > a respec-
tively, and κn is given by

κ2
n = k2

y + n2k2
z ,

where kz = π/L. It is straightforward to show that vA1nkz < ωgn < vA2nkz. This inequality
implies that there is an infinite series of resonant positions xgn, n = 1,2, . . . , defined by
vA(xgn)nkz = ωgn. The first resonant position corresponds to the fundamental mode in the z-
direction, and the others to the overtones. The resonances cause damping of the fundamental
mode and overtones with the decrements γn of the order of (a/L)ωgn. Hence, the damping
is weak when the transitional layer is thin, γn/ωgn � 1.

Ruderman and Wright (2000) assumed that the driving frequency � is within the fun-
damental continuum, vA1kz < � < vA2kz. This implies that there is one additional resonant
position xA defined by vA(xA)kz = �.

It is important to distinct between the resonant and non-resonant driving. We call the
driving non-resonant when |� − ωg1|  γ1. When t → ∞ the cavity attains the steady
state of oscillation with the frequency �. The oscillation amplitude is of the order of the
driver amplitude. The cavity as a whole oscillates in the x-direction. This global motion is
described by the equation of the damped oscillator, so that it attains the steady of oscillation
after a time of the order of γ −1

1 . The local motions are the motions in the vicinity of the
resonant positions. They are mainly polarized in the y-direction. They attain the steady state
of oscillations after the time ttr given by

ttr = max
(
γ −1

1 ,R1/3
m �−1

)
. (123)
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The oscillation amplitude in the dissipative layer embracing xA is of the order of R
1/3
m times

the driver amplitude. The oscillation amplitude in the dissipative layer embracing xq1 is of
the same order when a/L � R

−1/3
m (so that γ1/� � R

−1/3
m ), but it is only of the order of L/a

times the driver amplitude when a/L  R
−1/3
m (so that γ1/�  R

−1/3
m ).

In the case of the resonant driving, defined by the condition |� − ωg1| � γ1, the transi-
tional times for the global and local motions are the same. However now the amplitude of
the global motion is much larger than in the case of non-resonant driving. It is now of the
order of L/a times the driver amplitude. The amplitudes of local motions in the resonant
layers embracing xA and xg1 are of the order of (L/a)R

1/3
m . Note that these two layers over-

lap when a/L � R
−1/3
m . The main results of this analysis are summarized in the table taken

from Ruderman and Wright (2000).

Non-resonant driving Quasi-resonant driving

γ � �R−1/3 γ  �R−1/3 γ � �R−1/3 γ  �R−1/3

Global or
coherent
motion

Amplitude ∼ f0 ∼ f0 ∼ Lf0/a ∼ Lf0/a

Transitional
time to the
steady state

∼ γ −1 ∼ γ −1 ∼ γ −1 ∼ γ −1

Dissipative
layer
embracing
xA

Amplitude
of v

∼ f0R
1/3 ∼ f0R

1/3 ∼ f0(L/a)R1/3 ∼ f0(L/a)R1/3

Transitional
time to the
steady state

∼ γ −1 ∼ �−1R1/3 ∼ γ −1 ∼ �−1R1/3

Dissipative
layer
embracing
xgn

Amplitude
of v

∼ f0R
1/3 ∼ Lf0/a ∼ f0R

1/3

(n > 1)

∼ Lf0/a

(n > 1)

Transitional
time to the
steady state

∼ γ −1 ∼ �−1R1/3 ∼ γ −1 ∼ �−1R1/3

In this table f0 is the driver amplitude, γ = γn, R = Rm and v is the velocity component in
the y-direction.

It follows from this table that, in the case where γ  �R−1/3, ttr ∼ R
1/3
m no matter if the

driving is resonant or non-resonant. However it was obtained in the numerical simulations by
Poedts and Kerner (1992) and Ofman et al. (1994) that ttr ∼ Rα

m with α ≈ 0.22. At present
it is not clear what causes this discrepancy between the analytical theory and numerical
modelling. One possible conjecture is that both Poedts and Kerner (1992) and Ofman et al.
(1994) took not large enough values of Rm to obtained the asymptotic formula for ttr in the
case of resonant driving. However we should note that Poedts and Kerner (1992) took Rm

in the interval from 106 to 108, which gives R
1/3
m = 100–464. These values of R

1/3
m look

sufficiently large to produce the asymptotic scaling for ttr.

5.3.2 Impulsive Excitation

The problem of impulsive excitation of eigenmodes in dissipative MHD and quasi-mode in
ideal MHD has been studied by many authors (e.g. Ionson 1978; Rae and Roberts 1982;
Lee and Roberts 1986; Hollweg 1987a, 1988; Steinolfson and Davila 1993). At present
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this problem has a very important application to solar physics because it is related to the
description of damped transverse oscillations of coronal loops. Motivated by observations of
these oscillations Ruderman and Roberts (2002) solved the initial value problem describing
the excitation and subsequent damping of kink oscillations of arbitrarily perturbed coronal
loop. In what follows we briefly describe their analysis and the main results.

Ruderman and Roberts (2002) have used the cold plasma approximation relevant for
the solar corona. The equilibrium state is as follows. In cylindrical coordinates r , ϕ, z the
magnetic field is in the z-direction and has constant magnitude. The plasma density is equal
to ρe in r > a and ρi in r < a − �, where ρe and ρi are constants. The density monotonically
decreases from ρi to ρe in the annulus a − � < r < a. The plasma is confined between the
planes z = 0 and z = L, and the magnetic field lines are frozen in the dense plasma beyond
these planes.

The system is arbitrarily perturbed in the initial moment of time. The evolution of the
perturbed system is described by the system of linearized viscous MHD equations. Viscosity
is assumed to be weak, so it is only taken into account in the dissipative layer embracing the
resonant position. Since the compressional viscosity does not remove the Alfvén singularity
and practically does not affect the motion in the Alfvén dissipative layer (e.g. Ofman et al.
1994; Erdélyi and Goossens 1995), only shear viscosity is taken into account.

Ruderman and Roberts (2002) have used the thin tube thin boundary (TTTB) layer ap-
proximation and assumed that a � L and � � a. The second assumption enabled them
to neglect the magnetic pressure variation in the annulus. The solution of the initial value
problem was obtained with the use of the Laplace transform. It is represented by the integral
along the Bromwich contour from the solution to the Laplace-transformed equations. This
solution is a multi-valued function of ω. To obtain a single-valued branch we need to make
cuts in the complex ω-plane. Here we use the opportunity to correct one error made by Rud-
erman and Roberts (2002). They claimed that the solution to the Laplace-transformed equa-
tions has four logarithmic branch-points at ω = ±ωAi and ω = ±ωAe , where ωAi = kzvAi ,
ωAe = kzvAe, vAi and vAe are the values of the Alfvén velocity in r < a − � and r > a re-
spectively, and kz = π/L. However thorough examination shows that there are logarithmic
branch points only at ω = ±ωAe , while ω = ±ωAi are regular points. Correspondingly the
branch cuts in Fig. 3 in Ruderman and Roberts (2002) have to start not from ω = ±ωAi but
from ω = ±ωAe . Fortunately this error did not affect the results obtained in the paper.

To study the asymptotic behaviour of the solution to the initial value problem we have
to close the Bromwich integration contour. Then the asymptotic behaviour is determined
by the simple poles of the Laplace transform at ω = ωd and ω = −ω∗

d , where the asterisk
indicates the complex conjugate quantity, and ωd = ωk − iγd with ωk and γd being given
by (114) and (119) respectively. These simple poles correspond to the viscous eigenmode of
the magnetic tube configuration considered here. The main result of the analysis is that the
oscillation with the frequency ωk emerges after the time ttr satisfying ttrωk  1. Since the
oscillation period is 2π/ωk , this condition is satisfied for ttr of the order of just a couple of
oscillation periods. After the harmonic oscillations emerged from an arbitrary initial pertur-
bation, it starts to decay with the decrement γd. It is very important that γd is independent
of dissipation coefficients and is completely defined by the ratio �/a and the density vari-
ation in the annulus. Thus, if we accept that the damping of coronal loop kink oscillations
is caused by resonant absorption, then, contrary to the statement made by Nakariakov et al.
(1999), the observations of damped transverse oscillations of coronal magnetic loops cannot
be used to determine the dissipative coefficients in the corona.

When γd � R
−1/3
e ωk , where Re is the Reynolds number calculated using the shear vis-

cosity, the motion in the dissipative layer embracing the resonant position at r = rA, where
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rA is determined by vA(rA) = ωk , is quasi-stationary. The thickness of the dissipative layer
is of the order of δA given by (41), and the maximum amplitude of this motion is of the
order of AR

1/3
e , where A is the amplitude of the global eigenmode. However, in the solar

corona γd  R
−1/3
e ωk . In that case the thickness of the dissipative layer is of the order of

�2/a, and the maximum amplitude of motion in the dissipative layer is of the order of aA/�.
The characteristic time of damping of the local motion is of the order of R

1/3
e ω−1

k .
When γd  R

−1/3
e ωk , the damping of the global coherent motion is not related with the

energy dissipation. Rather it is the energy conversion from the global motion to the local
incoherent motion in the vicinity of the resonant position at rA. Although traditionally this
process is considered as the energy transfer from the global mode to the local Alfvénic
oscillations, in fact this is simply the evolution of one wave mode. This evolution occurs in
such a way that, initially, the energy is distributed over the whole volume of the oscillating
magnetic tube. But then, when the time progresses, the energy concentrates more and more
near rA. The energy dissipation occurs only when the local motion damps.

For a typical damped transverse oscillation of a coronal magnetic loop the oscillation
period is about a few minutes, and the damping time is about 10 min. The typical value of
the Reynolds number in the solar corona is Re ∼ 1012. Hence, the typical time of energy
dissipation is of the order of 100 hours. We should emphasize that this estimate obtained
using the classical formula for the viscosity coefficients given by Braginskii (1965). Quite
possible that, due to the presence of large shear velocities, the motion near rA becomes
unstable. This instability can lead to turbulence of the motion that can strongly increase
the viscosity coefficients and, consequently, reduce the energy dissipation time. However
this possible reduction in the energy dissipation time does not affect at all the theoretically
predicted damping time of the coronal loop kink oscillations due to resonant absorption.

6 Summary

This paper has tried to give an overview of our knowledge of resonant MHD waves in the
solar atmosphere. Our understanding of MHD waves in the Sun’s atmosphere has evolved
from a mainly theoretical approach in the 1960s and 1970s with limited observational sup-
port, however due to improvements in instrumentation now they are an observationally well
documented phenomenon. Observations of MHD waves are becoming increasingly more
accurate as advancements in technology make it possible to collect more detailed data with
higher spatial and temporal resolution. It is now clear that MHD waves are ubiquitous in the
solar atmosphere. The plasma of the solar atmosphere is characterized by structuring and
non-uniformity and it is this non-uniformity that produces resonant MHD waves.

The emphasis of the present paper has been on the mathematical analysis and basic prop-
erties of resonant MHD waves. The main results of the mathematical analysis are: (i) MHD
waves in non-uniform plasmas have mixed properties and behave differently in different
parts of the plasma according to the local plasma conditions. An MHD wave that behaves
predominantly as a fast wave can be transformed into a wave that is predominantly an
Alfvén wave during its journey in a spatially varying plasma background; (ii) Resonant
MHD waves are a natural phenomenon in non-uniform plasmas. They are difficult to avoid
in non-uniform plasmas. (iii) Damping of resonant MHD waves is an efficient damping
mechanism.

Resonant MHD waves are here to stay and have still undiscovered fascinating behaviour
in store for us. As already said in the previous paragraph our emphasis has been on mathe-
matical analysis and we have not been able, partly because of matters of space, to explore all
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possible relations of the present theory to observations. The observations that we have linked
to resonant MHD waves in the present paper have been limited to transverse standing MHD
waves in coronal loops. Resonant MHD waves can explain the observed strong damping and
the theory of resonantly damped transverse MHD waves allows us to do seismology in the
time domain using observed and computed values of the period and damping time. This is
definitely a success story of resonant MHD waves and we are happy about that. However,
standing transverse MHD waves in coronal loops are rare phenomena as they are caused
a nearby flare or other larger scale energetic events like coronal mass ejections (CMEs).
A far larger reservoir of possibilities has been opened recently. Observations by e.g. Tom-
czyk et al. (2007) and Tomczyk and McIntosh (2009) have shown that propagating MHD
waves are everywhere in the corona. Verth et al. (2010) have used theoretical results by Ter-
radas et al. (2010b) to show that the observed damping of these propagating coronal MHD
waves can be explained by resonant damping. Hence resonant MHD waves are important
both in their standing and propagating version. This widens the role of resonant waves in
the solar atmosphere considerably. In addition resonant MHD waves are very robust. They
do not require a fully ionized plasma. Soler et al. (2009b) have shown that resonant MHD
waves survive in partially ionized plasmas and this finding opens an avenue of applications
on standing and propagating MHD waves, e.g., in chromospheric and prominence plasmas.
Such damping of MHD waves in chromospheric spicules has now been observed by He et
al. (2009a, 2009b). In short, resonant MHD waves will continue to help us understand the
fascinating physics of MHD waves observed in the solar atmosphere.
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