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Abstract On 14 July 1998 TRACE observed transverse oscillations of a coronal loop gen-
erated by an external disturbance most probably caused by a solar flare. These oscillations
were interpreted as standing fast kink waves in a magnetic flux tube. Firstly, in this review
we embark on the discussion of the theory of waves and oscillations in a homogeneous
straight magnetic cylinder with the particular emphasis on fast kink waves. Next, we con-
sider the effects of stratification, loop expansion, loop curvature, non-circular cross-section,
loop shape and magnetic twist.

An important property of observed transverse coronal loop oscillations is their fast damp-
ing. We briefly review the different mechanisms suggested for explaining the rapid damping
phenomenon. After that we concentrate on damping due to resonant absorption. We describe
the latest analytical results obtained with the use of thin transition layer approximation, and
then compare these results with numerical findings obtained for arbitrary density variation
inside the flux tube.

Very often collective oscillations of an array of coronal magnetic loops are observed.
It is natural to start studying this phenomenon from the system of two coronal loops. We
describe very recent analytical and numerical results of studying collective oscillations of
two parallel homogeneous coronal loops.

The implication of the theoretical results for coronal seismology is briefly discussed. We
describe the estimates of magnetic field magnitude obtained from the observed fundamen-
tal frequency of oscillations, and the estimates of the coronal scale height obtained using
the simultaneous observations of the fundamental frequency and the frequency of the first
overtone of kink oscillations.

In the last part of the review we summarise the most outstanding and acute problems in
the theory of the coronal loop transverse oscillations.
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1 Introduction

On 14 July 1998 TRACE observed a spectacular phenomenon in the solar corona. A coronal
magnetic loop started to oscillate in the transverse direction after having been hit by a distur-
bance most probably caused by a solar flare. This observation was reported by Aschwanden
et al. (1999) and Nakariakov et al. (1999), and interpreted as a standing fast kink wave in
a magnetic flux tube. It was also pointed out by Nakariakov et al. (1999) that the oscilla-
tion was strongly damped with the characteristic damping time of a few oscillation periods.
Later, similar observations were reported by, e.g., Schrijver and Brown (2000), Aschwanden
et al. (2002), Schrijver et al. (2002), Aschwanden (2006).

After this first observation the transverse oscillations of coronal loops received ample
attention from theorists. In the first theoretical studies the simplest model of a coronal mag-
netic loop was used. In this model a coronal loop is represented by a straight homogeneous
magnetic cylinder with the magnetic field lines frozen in the dense photospheric plasma at
the foot points. Then more sophisticated models were developed. These models take into
account such effects as the density variation along and across the loop, the loop curvature,
the loop non-circular cross-section, the variation of the loop radius along the loop, and the
twist of the magnetic field lines.

In spite of great progress made in the theoretical study of transverse coronal loop oscil-
lations, there are still many outstanding problems in this area of solar physics. In this review
we describe the state-of-the art in the theory of transverse coronal loop oscillations and dis-
cuss problems that should be solved to make the theory more complete and applicable to the
reality. The paper is organised as follows. In the next section we briefly outline the theory
of waves in straight homogeneous magnetic tubes. In Sect. 3 we describe the method of
studying transverse coronal loop oscillations based on the use of asymptotic expansions. In
Sect. 4 we consider the effect of variation of the density and loop radius along the loop. In
Sect. 5 we study kink oscillations of twisted magnetic loops. In Sect. 6 we briefly discuss the
effect of the loop curvature. In Sect. 7 we consider kink oscillations of loops with the elliptic
cross-sections. In Sect. 8 we study the kink oscillations of a magnetic loop that consists of
a core cylinder surrounded with a cylindrical annulus, the plasma densities being different
in the cylinder and annulus. In Sect. 9 we consider the collective oscillations of two straight
homogeneous parallel coronal loops. In Sect. 10 we describe the damping mechanisms of
kink oscillations. In Sect. 11 the application of the theory of kink oscillations to coronal
seismology is reviewed. Finally, in Sect. 12 we conclude and discuss outstanding problems
in the theory of coronal loop transverse oscillations. In this review we do not consider the
excitation mechanisms of the coronal loop transverse oscillations. These mechanisms are
described in the review by Terradas (2009) in this issue.

2 Eigenmodes of Straight Homogeneous Magnetic Tubes

The eigenmodes of straight homogeneous magnetic tubes have been studied by many au-
thors. One of the most complete investigations of these eigenmodes is given in Edwin and
Roberts (1983) (see also the review papers by Aschwanden 2006; Roberts and Nakariakov
2003; Nakariakov and Verwichte 2005; Erdélyi 2008). In this section we give a very brief
review of the properties of these eigenmodes. The starting point of our analysis is the lin-
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Fig. 1 The background state
consisting of an infinite magnetic
tube

earised system of ideal MHD equations,

ρ = −∇ · (ρ0ξ), (1)

ρ0
∂2ξ

∂t2
= −∇P + 1

μ0
(B0 · ∇)b + 1

μ0
(b · ∇)B0, (2)

b = ∇ × (ξ × B0), (3)

p − C2
Sρ = ξ · (C2

S∇ρ0 − ∇p0). (4)

Here ρ0, p0 and B0 are the background density, plasma pressure and magnetic field. The
background state is assumed to be static, so that all the background quantities are inde-
pendent of time, and the background velocity is zero. The quantities ρ, p and b are the
perturbations of the density, plasma pressure and magnetic field; ξ is the plasma displace-
ment; P = p + B0 · b/μ0 is the perturbation of the total pressure (plasma plus magnetic);
μ0 is the magnetic permeability of empty space and C2

S = γp0/ρ0 is the square of the sound
speed, γ being the ratio of specific heats.

In what follows we consider the background state in the form of an infinite magnetic
tube (see Fig. 1). In this background state all the background quantities are constant inside
and outside the infinite cylinder of radius a, while, in general, they have jumps across the
cylinder boundary. The magnetic field is parallel to the cylinder axis. In what follows we
retain the subscript ‘0’ for the background quantities inside the cylinder, while we use the
subscript ‘e’ to indicate the background quantities in the surrounding plasma. The total
background pressure has to be continuous at the tube boundary,

p0 + B2
0

2μ0
= pe + B2

e

2μ0
. (5)

In our analysis we use cylindrical coordinates r, ϕ, z and introduce the correspond-
ing components of the displacement and magnetic field perturbation, ξ = (ξr , ξϕ, ξz) and
b = (br , bϕ, bz).

In what follows we consider only trapped waves and neglect leaky waves. The theory of
leaky waves can be found in, e.g., Cally (1985, 1986), Goedbloed and Poedts (2004), and
Ruderman and Roberts (2006). The condition that the waves are trapped means that the per-
turbations have to decay far from the cylinder, i.e. when r → ∞. At the cylinder boundary
the normal component of the displacement and the perturbation of the total pressure have to
be continuous,

ξr0 = ξre, P0 = Pe. (6)
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It is straightforward to transform the system of (1)–(4) to the form

∂4P

∂t4
− (C2

S + V 2
A)∇2 ∂2P

∂t2
+ C2

SV
2
A∇2 ∂2P

∂z2
= 0, (7)

∂2ξr

∂t2
− V 2

A

∂2ξr

∂z2
= − 1

ρ0

∂P

∂r
, (8)

∂2ξϕ

∂t2
− V 2

A

∂2ξϕ

∂z2
= − 1

rρ0

∂P

∂ϕ
, (9)

∂2ξz

∂t2
− C2

T

∂2ξz

∂z2
= − C2

T

ρ0V
2
A

∂P

∂z
, (10)

br = B0
∂ξr

∂z
, bϕ = B0

∂ξϕ

∂z
, bz = −B0

r

(
∂(rξr)

∂r
+ ∂ξϕ

∂ϕ

)
, (11)

ρ = −ρ0

(
1

r

∂(rξr)

∂r
+ 1

r

∂ξϕ

∂ϕ
+ ∂ξz

∂z

)
, p = C2

Sρ, (12)

where the squares of the Alfvén and tube speeds are given by

V 2
A = B2

0

μ0ρ0
, C2

T = C2
SV

2
A

C2
S + V 2

A

, (13)

and ∇2 is the Laplacian given in cylindrical coordinates by

∇2 = 1

r

∂

∂r
r

∂

∂r
+ 1

r2

∂2

∂ϕ2
+ ∂2

∂z2
. (14)

Now we Fourier-analyse the perturbations of all quantities and look for solutions in the form
of eigenmodes. This means that we take all dependent variables in (7)–(12) proportional to
exp[i(−ωt + mϕ + kz)], where m is integer. Then the system of (7)–(12) reduces to

d2P

dr2
+ 1

r

dP

dr
−

(
κ2 + m2

r2

)
P = 0, (15)

(ω2 − V 2
Ak2)ξr = 1

ρ0

dP

dr
, (16)

(ω2 − V 2
Ak2)ξϕ = imP

rρ0
, (17)

(ω2 − C2
T k2)ξz = iC2

T kP

ρ0V
2
A

, (18)

br = iB0kξr , bϕ = iB0kξϕ, bz = −B0

r

(
d(rξr)

dr
+ imξϕ

)
, (19)

ρ = −ρ0

(
1

r

d(rξr )

dr
+ im

r
ξϕ + ikξz

)
, p = C2

Sρ, (20)

where

κ2 = (C2
Sk

2 − ω2)(V 2
Ak2 − ω2)

(C2
S + V 2

A)(C2
T k2 − ω2)

. (21)
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When m = 0, there is one special solution to the system of (15)–(20). In this solution,
inside the cylinder, only ξϕ and bϕ are non-zero, while ξr = ξz = br = bz = P = ρ = p = 0;
ξϕ is an arbitrary function of r , and bϕ = iB0kξϕ . The external plasma is not perturbed.
It is straightforward to see that the boundary conditions (6) are satisfied automatically. This
solution describes the torsional Alfvén wave. Recently the observation of this wave was
reported by Jess et al. (2009). It follows from (17) that the phase speed of this wave is equal
to VA0. This is the only solution to (15)–(20) with ω2 = V 2

A0k
2. We can also consider a

similar solution that describes perturbations in the external plasma, while the plasma inside
the cylinder is not perturbed. It describes the torsional Alfvén wave with the phase speed
equal to VAe . This is the only solution to (15)–(20) with ω2 = V 2

Aek
2.

Now we assume that ω2 �= V 2
A0,ek

2. The restriction that we only consider trapped waves,
i.e. waves evanescent in the external plasma, is equivalent to κ2

e > 0. It follows from the
condition ω2 �= V 2

A0,ek
2 that there are no non-trivial solutions to (15)–(20) with P = 0.

Equation (15) is the modified Bessel equation. Its solution vanishing as r → ∞ is given
by Pe = AeKm(κer), where Km is the modified Bessel function of the second kind (Mc-
Donald function), and Ae is an arbitrary constant. The solution of (15), regular at r = 0, is
P0 = A0Im(κ0r), where Im is the modified Bessel function of the first kind, and A0 is an
arbitrary constant.

While κ2
e > 0, κ2

0 can have any sign. A wave mode is called a surface wave when κ2
0 > 0,

and a body wave when κ2
0 < 0 (see, e.g., Roberts 1981). In the latter case κ0 = i|κ0| and

Im(κ0r) = imJm(|κ0|r), where Jm is the Bessel function.
It follows from (16) that

ξr0 = A0κ0I
′
m(κ0r)

ρ0(ω2 − V 2
A0k

2)
, ξre = AeκeK

′
m(κer)

ρe(ω2 − V 2
Aek

2)
,

where the prime indicates the derivative. Substituting the expressions for P0,e and ξ0,e in the
boundary conditions (6) we obtain a system of two linear homogeneous algebraic equations
for A0 and Ae . This system possesses a non-trivial solution only when its determinant is
equal to zero. This condition gives the dispersion equation determining the dependence of
ω on k,

ρ0(V
2
A0k

2 − ω2)κe

K ′
m(κea)

Km(κea)
= ρe(V

2
Aek

2 − ω2)κ0
I ′
m(κ0a)

Im(κ0a)
. (22)

This equation is valid both when κ2
0 > 0 as well as when κ2

0 < 0. However, in the latter case
we have to deal with complex quantities. To avoid this it is better to transform (22) to

ρ0(V
2
A0k

2 − ω2)κe

K ′
m(κea)

Km(κea)
= ρe(V

2
Aek

2 − ω2)|κ0|J
′
m(|κ0|a)

Jm(|κ0|a)
. (23)

The properties of the dispersion equations (22) and (23) depend very much on the relations
between the quantities VA0, CS0, VAe and CSe . Since we are mainly interested in waves in the
corona, we consider the relations typical for the coronal conditions. The corona is strongly
dominated by the magnetic field. The plasma pressure in the corona is much smaller than
the magnetic pressure. Then it follows from (5) that B0 ≈ Be . The plasma density inside
coronal magnetic loops is larger than that in the surrounding plasma. As a result we obtain
that VA0 < VAe . The typical values of the sound and Alfvén speed in the corona are 100 km/s
and 1000 km/s respectively, so that CS0,e � VA0.

A comprehensive study of waves in a magnetic tube under coronal conditions can be
found in Edwin and Roberts (1983). Here we only present the main results of this study. In



204 M.S. Ruderman, R. Erdélyi

Fig. 2 Typical dependences of mode phase speeds on the wavenumber under coronal conditions
(CS0,e � VA0, VA0 < VAe). The slow band is zoomed, and only the first two harmonics of a mode are
shown (lower panel). Black and grey curves correspond to the sausage and kink modes respectively

what follows we concentrate on sausage waves (m = 0) and kink waves (m = 1). The disper-
sion curves showing the dependence of the phase speed of wave modes on the wavenumber
for sausage and kink waves are shown in Fig. 2.

First of all, all waves propagating in a magnetic tube under coronal conditions are body
waves, i.e. κ0 < 0 for all these waves. All wave modes can be divided in two classes: fast
and slow. The phase speeds of fast modes are in the interval (VA0,VAe), while the phase
speeds of slow modes are in the interval (CT 0,CS0).

It is clear from Fig. 2 that all fast sausage modes have a low wavenumber cut-off. Since
the cut-off wavenumber for any fast sausage mode is of the order or larger than a−1, it
follows that only fast sausage waves with the wavelength of the order of or smaller than the
tube radius can propagate in the tube.

Fast kink modes starting from the second one have the same properties as the fast sausage
modes. However the properties of the first kink mode are completely different. It exists for
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any value of k. In the long-wavelength approximation its phase speed is equal to the kink
speed give by

Ck =
(

ρ0V
2
A0 + ρeV

2
Ae

ρ0 + ρe

)1/2

. (24)

To our knowledge this result was first obtained for a tube in a magnetic-free environment by
Ryutov and Ryutova (1976). The approximate expression for the phase velocity of the first
fast kink wave is (see Edwin and Roberts 1983)

ω

k
= Ck

{
1 − ρ0ρe(V

2
Ae − V 2

A0)

2C2
k (ρ0 + ρe)2

λ2k2a2K0(λ|k|a)

}
, (25)

where λ = (1 − C2
k /V 2

Ae)
1/2.

We see that the properties of the first fast kink mode are completely different from those
of the other fast body modes. In particular, since the cut-off wavelengths for the fast body
modes are of the order of or smaller than the tube radius, and the length of a typical coronal
magnetic loop is much larger than its radius, all kink fast modes but the first one can exist in
coronal loops only in the form of very high harmonics with respect to z. On the other hand,
the oscillations of coronal loops corresponding to the first fast kink mode can contain all
harmonics with respect to z, including the fundamental one. To distinguish the first fast kink
mode from the other fast kink modes it was suggested by Ruderman and Roberts (2002) to
call it the global fast kink wave.

Let us now discuss the properties of the slow body waves. Typically the plasma in coronal
loops is hotter than the surrounding plasma, so that CS0 > CSe . Since VA0 	 CS0 in the
corona, the difference between CT 0 and CS0 is very small, so that usually CT 0 > CSe as
well. Then it is straightforward to see that κ2

e > 0 when CT 0 < ω/k < CS0 and the slow body
waves are evanescent in the external plasma. Since the difference between CT 0 and CS0 is
very small, the phase speeds of slow waves only weakly depend on the wavenumber k (see
Fig. 2, lower panel). The slow body waves exist for any value of k. The phase speeds of all
slow body waves tend to CT 0 as ak → 0. For more detailed discussion of properties of the
slow body waves see, e.g., Zhugzhda and Goossens (2001).

The theory of propagating waves in infinite magnetic tubes homogeneous in the longitu-
dinal direction was extended in many ways. In particular Bennett et al. (1999) and Erdélyi
and Fedun (2006, 2007) studied the wave propagation in twisted tubes. Mikhalyaev and
Solov’ev (2005) and Carter and Erdélyi (2007) investigated the waves propagating in an-
nular magnetic cylinders with the straight magnetic field lines. Erdélyi and Carter (2006)
and Carter and Erdélyi (2008) considered the wave propagation in annular magnetic cylin-
ders with the magnetic field lines twisted in the annulus. We do not discuss these theory
extensions here and refer an interested reader to the original papers.

3 Method of Asymptotic Expansions

In this section we give another derivation of the dispersion relation for the global fast kink
waves in the long wavelength approximation. Since this dispersion relation has already been
derived in the previous section, it would not make sense to derive it using another method
if it would be restricted to the case of a straight homogeneous magnetic tube. However
the asymptotic method that we describe in this section allows far going generalisations. In
particular, it can be applied to magnetic tubes with the density and radius varying along
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Fig. 3 The equilibrium state and
the perturbed tube. The dashed
lines show the tube in the
equilibrium, while the solid lines
show the tube perturbed by the
fundamental mode of the global
fast kink wave

the tube, and to the tube with magnetic twist. On the other hand, this method is the most
transparent when it is applied to a straight homogeneous magnetic tube.

The observed transverse oscillations of coronal loops are standing rather than propagat-
ing waves. Of course, in the linear theory of waves in homogeneous magnetic flux tubes
there is not very much difference between the two types of waves. A standing wave is just
a superposition of two propagating waves. However, when a tube is inhomogeneous in the
longitudinal direction, i.e. when the density and/or tube radius varies along the tube, the
description of standing waves is different from that of propagating waves. Having the gen-
eralisation of the theory for inhomogeneous tubes in mind we consider standing waves in
this section. The equilibrium state together with the perturbed tube are shown in Fig. 3. As
in the previous section, the tube radius is a, and the plasma density inside and outside the
tube is ρ0 and ρe , respectively.

Our aim is to apply theoretical results to the observed transverse oscillations of coronal
loops. The phase speed of these oscillations is of the order of the Alfvén speed. The plasma
pressure in the corona is much smaller than the magnetic pressure. As a result, the Alfvén
speed is much larger than the sound speed. This observation enables us to use the cold
plasma approximation in what follows. Then it follows from the equilibrium condition (5)
that Be = B0 = B .

The tube length is L. We assume that the magnetic field lines are frozen in the dense pho-
tospheric plasma at the tube ends. This implies that the plasma displacement in the direction
normal to the equilibrium magnetic field is zero at the tube ends, i.e.

ξr = 0, ξϕ = 0 at z = ±L/2. (26)

It follows from the last equation in (11) and (26) that bz = 0 at z = ±L/2. Since, in the
cold plasma approximation, P = Bbz/μ0, we obtain that P satisfies the same boundary
condition,

P = 0 at z = ±L/2. (27)

In our analysis we use (7)–(10). Since CS = CT = 0 in the cold plasma approximation,
it follows from (10) that ξz = 0. Now we look for the solutions describing the eigenmodes
of global fast kink oscillations. In accordance with this we take all variables proportional to
exp[i(−ωt + ϕ)] (i.e. m = 1). Since the equilibrium quantities are independent of z we also
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can Fourier-analyse the equations with respect to z. However, having in mind application
to tubes inhomogeneous in the longitudinal direction, we do not do this and retain the z-
dependence.

Now we recall that the coronal magnetic loops are thin structures with the typical ratio of
the transverse size to the length equal to 0.01÷0.05. This fact enables us to use ε = a/L � 1
as a small parameter in the asymptotic expansions. In order to have the same characteristic
lengths for the spatial variables in the longitudinal and transverse direction we introduce
the scaled or stretching variable ζ = εz. The characteristic spatial scale with respect to this
variable is εL = a, i.e. it is the same as the characteristic spatial scale with respect to r . The
typical value of the oscillation frequency is ω = VA/L = εVA/a. This observation implies
that we need to introduce the scaled frequency � = ε−1ω. After that (7)–(9) reduce to

1

r

∂

∂r

(
r
∂P

∂r

)
− P

r2
+ ε2

(
∂2P

∂ζ 2
+ �2

V 2
A

)
P = 0, (28)

V 2
A

∂2ξr

∂ζ 2
+ �2ξr = 1

ε2ρ

∂P

∂r
, (29)

V 2
A

∂2ξϕ

∂ζ 2
+ �2ξϕ = iP

ε2ρr
. (30)

The system of (28)–(30) contains the small parameter ε2. This implies that we can look for
the solution to this systems in the form of asymptotic expansions with respect to ε2. In what
follows we use only the first order approximation, so that we use the same notation P , ξr

and ξϕ for the first terms of expansions of P , ξr and ξϕ in the power series with respect to ε2.
In the first order approximation (28) reduces to

1

r

∂

∂r

(
r
∂P

∂r

)
− P

r2
= 0. (31)

The solution to this equation regular at r = 0 and vanishing as r → ∞ is straightforward:

P =
{

A0(ζ )r, r < a,

Ae(ζ )r−1, r > a,
(32)

where A0(ζ ) and Ae(ζ ) are arbitrary functions satisfying the boundary condition (27),
A0(±εL/2) = Ae(±εL/2) = 0. Substituting (32) in (29) we obtain two equations, one valid
inside the tube and one outside,

V 2
A0

∂2ξr0

∂ζ 2
+ �2ξr0 = A0

ε2ρ0
, (33)

V 2
Ae

∂2ξre

∂ζ 2
+ �2ξre = − Ae

ε2ρer2
. (34)

It follows from the second boundary condition in (6) that Ae = a2A0. Now we substitute
these results in (34) and use (33) and (34) at the cylinder boundary, i.e. at r = a. Then it
follows from the first boundary condition in (6) that ξr0 = ξre , and we arrive at

V 2
A0

∂2ξr0

∂ζ 2
+ �2ξr0 = A0

ε2ρ0
, V 2

Ae

∂2ξr0

∂ζ 2
+ �2ξr0 = − A0

ε2ρe

. (35)
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Eliminating A0 from these equations and returning to the original variables we obtain

d2ξr0

dz2
+ ω2

C2
k

ξr0 = 0, (36)

where the kink speed Ck is given by (24). The solution to (36) has to satisfy the first boundary
condition in (26). Equation (36) together with this boundary condition constitute the Sturm-
Liouville problem for the function ξr0(z). In accordance with our derivation (36) is only
valid at r = a. However, it follows from (33) that ξr0 is independent of r , so that (36) is
valid for any r ≤ a. It follows from (30) and (32) that ξϕ0 is also independent of r . Hence,
the plasma displacement inside the tube is independent of r .

The solution to (36) is given by

ξr0 = q1 cos(ωz/Ck) + q2 sin(ωz/Ck),

where q1 and q2 are arbitrary constants. Substituting this solution in the first boundary con-
dition in (26) we obtain

ω = Ckkn, kn = π(n + 1)

L
(n = 0,1, . . . ). (37)

Here n = 0 corresponds to the fundamental mode and n > 0 to the nth overtone. In addition
we obtain that q2 = 0 when n is even, so that

ξr0 = q1 cos(knz). (38)

When n is odd we have q1 = 0 and

ξr0 = q2 sin(knz). (39)

Let us now investigate the polarisation of the eigenmodes. Up to now in this section ξr0

and ξϕ0 were Fourier coefficients in the expansions of the radial and azimuthal components
of the plasma displacement in the Fourier series with respect to t and ϕ. Now we use this
notation for the components of the plasmas displacement in the physical space. We drop
the subscript ‘0’ because we will consider only the plasma displacement inside the tube.
Keeping in mind that both ξr and ξϕ are proportional either to cos(knz) or to sin(knz), we
will drop this multiplier in the expressions for these quantities. Then, for the kink oscillation,
we can write ξr = q(t)eiϕ +q∗(t)e−iϕ , where the asterisk indicates the complex conjugate. It
follows from (29) and (30) that ξϕ = iq(t)eiϕ − iq∗(t)e−iϕ . Since we consider an eigenmode,
it follows that q(t) = q+eiωt +q−e−iωt , where ω is given by (37). Substituting this expression
in the expressions for ξr and ξϕ we eventually arrive at

ξr = A+ cos(ωt + ϕ + α+) + A− cos(ωt − ϕ + α−),

ξϕ = −A+ sin(ωt + ϕ + α+) + A− sin(ωt − ϕ + α−),
(40)

where A± and α± are arbitrary constants. Let us introduce the auxiliary Cartesian coordi-
nates x, y, z. Then

ξx = ξr cosϕ − ξϕ sinϕ = A+ cos(ωt + α+) + A− cos(ωt + α−)

= Qx cos(ωt + αx), (41)
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ξy = ξr sinϕ + ξϕ cosϕ = −A+ sin(ωt + α+) + A− sin(ωt + α−)

= Qy cos(ωt + αy). (42)

The quantities Qx , Qy , αx and αy are expressed in terms of A± and α±. We do not give
these expressions because they are not used in what follows. Since A± and α± are arbitrary
constants, Qx , Qy , αx and αy are also arbitrary constants.

Equations (41) and (42) show that the plasma displacement ξ is independent of r and ϕ

inside the tube, i.e. the tube is oscillating like a solid string. Hence, it is enough to consider
the motion of the tube axis only. In general, (41) and (42) describe elliptically polarised
motion, so that each point of the tube axis is moving along an ellipse in the plane perpen-
dicular to the tube axis. If we take two arbitrary points, z = z1 and z = z2 on the tube axis,
then the corresponding ellipses are similar, i.e. they have the same ratio of the axes, and the
axis directions are also the same, and only the magnitude of the large axis varies with z.
What is also important, at a fixed moment of time, the displacements of these two points
are either parallel or antiparallel to each other. In particular, they are strictly parallel in the
fundamental mode.

4 Effects of Stratification and Expansion

The typical height of the apex point of a coronal loop is 100 Mm, which is about twice
larger than the atmospheric scale height in the corona. This means that the plasma density
can vary along the loop by an order of magnitude. Hence, it is important to study the effect
of the density variation on the transverse coronal loop oscillations. This problem was first
addressed by Andries et al. (2005b). These authors expanded the dependent variables in the
generalised Fourier series with respect to the eigenmodes of the Alfvén operator. Substi-
tuting these expansions in the linearised MHD equations they reduced the problem to an
evaluation of the eigenvalues of an infinite matrix. The eigenfrequencies of the stratified
coronal loop are equal to the square roots from the eigenvalues. To solve this problem the
authors truncated the infinite matrix and reduced it to a finite square matrix. The equation
determining the eigenfrequencies is obtained by equating the determinant of this matrix to
zero. Since the elements of the determinant depend nonlinearly on the eigenfrequency, this
approach resulted in a complicated algebraic equation that had to be solved numerically. The
most important result obtained by Andries et al. (2005b) was that the overtone frequencies
of a stratified magnetic loop are, in general, not multiples of the fundamental frequency. In
particular, the first overtone frequency is smaller than the double fundamental frequency.

The method used by Andries et al. (2005b) is applicable to stratified magnetic loops with
arbitrary ratio of the radius and length. However, as we have already pointed out, for typical
coronal loops, this ratio is very small and can be used as a small parameter. Dymova and
Ruderman (2005) used this fact to develop the asymptotic theory of oscillations of stratified
magnetic loops. Their analysis is almost a complete repetition of the analysis presented in
the previous section for homogeneous magnetic tubes. As a result, they obtain the same
equation (36), however with Ck depending on z. The quantity Ck is still given by (24). It
depends on z because ρ0 and ρe are functions of z. The numerical solution of the eigenvalue
problem for (36) with Ck = Ck(z) is trivial. In some cases this eigenvalue problem can
even be solved analytically. One such example is given by Dymova and Ruderman (2006a)
where the equation derived by Dymova and Ruderman (2005) was applied to studying the
kink oscillations of stratified coronal loops. In this example the density inside the loop is
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given by

ρi(z) = ρa

[1 − (1 − σ)(2z/L)2]2
, (43)

where L is the loop length, ρa the density at the apex point, ρf the density at the foot points,
and σ = √

ρa/ρf . The density outside the loop is given by ρe(z) = χρi(z), where χ < 1 is a
constant. In that case the solution of (36) with Ck(z) given by (24) can be found analytically,
and the eigenfrequencies of the loop oscillations are given by

(ωe
0n)

2 = 2πB2a2
√
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2
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}
, n = 1,2, . . . , (44)

for even modes (i.e., the fundamental mode, the second overtone, etc.), and by

(ωo
0n)

2 = 2πB2a2
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}
, n = 1,2, . . . , (45)

for odd modes (i.e., the first, third, and so on overtones). In (44) and (45) B is the equilibrium
magnetic field and M is the total mass of plasma inside the loop given by

M = πa2Lρa

2

(
1

σ
+ 1

2
√

1 − σ
ln

1 + √
1 − σ

1 − √
1 − σ

)
. (46)

When σ → 1, which corresponds to the limit of a non-stratified loop, we obtain from
(44) and (45) the familiar expressions for the eigenfrequencies, ωe

0n = πCk(2n − 1)/L and
ωo

0n = 2πCkn/L.
Dymova and Ruderman (2006a) also carried out the calculations of eigenfrequencies for

the same dependence of the density on z as that used by Andries et al. (2005b) and compared
their results with those obtained by Andries et al. (2005b). The difference in the eigenmode
frequencies calculated by the two methods was less than 1% for a/L � 0.05, so that the
accuracy of the asymptotic theory is very good.

Another example of analytical solution of the eigenvalue problem for (36) is given by
Verth et al. (2007) who considered a piecewise-constant density profile.

Observations show that the loop radius does not vary very much along the loop. Still
the ratio of the loop radius at the apex point to that at the foot points can be up to 2 (e.g.
Klimchuk 2000; Verth and Erdélyi 2008). This corresponds to the increase in the loop cross-
section area up to four times and, in accordance with the magnetic flux conservation, to the
same decrease in the magnetic field magnitude. The increase in the loop mass due to its
expansion and the decrease in the magnetic field magnitude can substantially affect the
eigenfrequencies of the loop oscillations, so that this effect deserves attention. Transverse
oscillations of stratified coronal loops with the variable cross-section were studied by Verth
and Erdélyi (2008) and Ruderman et al. (2008). Once again only long loops were considered
and the asymptotic theory of transverse oscillations of such loops was developed. While it
was assumed by Verth and Erdélyi (2008) that the expansion factor (the ratio of the loop radii
at the apex and foot points) is close to unity, Ruderman et al. (2008) studied oscillations



Transverse Oscillations of Coronal Loops 211

of loops with arbitrary expansion factor. The analysis by Ruderman et al. (2008) is much
more involved than that in the previous section of this paper. The reason is as follows. The
boundary of an expanding loop is determined by r = f (z) in cylindrical coordinates. It is
inconvenient to solve the MHD equations in a region with the boundary of this form. To
avoid this problem it was noticed that the equilibrium magnetic flux function ψ is constant
at the loop boundary. This function was used as a new independent variable instead of r . In
the new variables the loop boundary is determined by ψ = ψ0 = const. However, the MHD
equations in coordinates ψ , ϕ, z are more complicated than in coordinates r , ϕ, z.

The main result obtained by Ruderman et al. (2008) is the following. The squares of
eigenfrequencies of transverse oscillations of stratified magnetic loops with the variable
cross-sections are the eigenvalues of the Sturm-Liouville problem

d2η

dz2
+ ω2

C2
k

η = 0, η = 0 at z = ±L/2, (47)

where η = ξr0/a and a = a(z) is the (variable) loop radius. Formally (47) is the same as the
equation for stratified loops with constant cross-section. The fact that it is written for η =
ξr0/a(z) affects only the shape of eigenfunctions, but does not affect the eigenfrequencies.
However the properties of eigenfrequencies of loops with the variable cross-section still
can differ very much from those of loops with the constant cross-section. The reason is
that, for loops with the variable cross-section, in the expression (24) for Ck not only the
densities ρi and ρe but also the equilibrium magnetic field B is a function of z. In accordance
with the magnetic flux conservation B = const/a2(z). In loops with the constant cross-
section Ck increases monotonically with the height in the atmosphere. The most important
consequence of this behaviour is that the ratio of frequencies of the first overtone and the
fundamental mode is less than 2. The behaviour of Ck in loops with the variable cross-
section can be much more complex. As a result the ratio of frequencies of the first overtone
and the fundamental mode can be larger or equal to 2. For example, it is exactly equal to 2
when a4(ρi + ρe) = const because in this case Ck = const. The implication of this result on
coronal seismology will be discussed in Sect. 11.

A more detailed discussion of transverse oscillations of coronal loops with the density
varying along the loop is given by Andries et al. (2009).

5 Kink Oscillations of Twisted Tubes

If we assume that the equilibrium magnetic field in a magnetic configuration with a straight
magnetic tube (even with the variable cross-section) is potential (i.e. there is no electrical
current), then we immediately obtain that it is untwisted, i.e. the azimuthal component of the
equilibrium magnetic field is zero. However at present there is no observational evidence that
the coronal loops are current-free. Moreover, it seems that the observed very low expansion
factors of coronal loops (close to unity) give the evidence in favour of presence of some
currents in the coronal loops.

Further, granular shear motion, differential rotation or meridional circulation in the pho-
tosphere can introduce a twist to the flux tubes from pores to sunspots. Erupting promi-
nences or CMEs, with their footpoints anchored in the dense sub-photosphere, often appear
to have twisted field lines. It is natural and practical to extend the investigations of MHD
wave modes to twisted magnetic flux tubes. These arguments make studying oscillations of
twisted coronal loops topical.
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Fig. 4 The equilibrium
configuration with a twisted
magnetic tube. When the tube is
thin and the Shafranov-Kruskal
stability criterion is satisfied,
Biz = Bez + O(a2/L2) in the
cold plasma approximation.
Figure taken from Erdélyi and
Fedun (2007)

Twisted tubes have been studied before but mainly in terms of stability. In accordance
with the Shafranov-Kruskal stability criterion a twisted magnetic tube can be stable only
if the twist is not very strong. In particular, for a long tube, it follows from this criterion
that the tube can be stable only if the ratio of the azimuthal component of the equilibrium
magnetic field, Bϕ , to the magnetic field magnitude is of the order of or smaller than a/L,
|Bϕ |/B � a/L.

As we have already mentioned in Sect. 1, propagating kink waves in straight twisted
unstratified magnetic tubes were studied by Bennett et al. (1999), Erdélyi and Carter (2006),
Erdélyi and Fedun (2006, 2007) and Carter and Erdélyi (2008). A sketch of the equilibrium
state with a twisted magnetic tube is shown in Fig. 4. In the cold plasma approximation the
magnetic field has to satisfy the equilibrium condition inside the tube,

dB2
i

dr
+ 2B2

iϕ

r
= 0, (48)

where B2
i = B2

iϕ +B2
iz, and the conditions of magnetic pressure balance at the tube boundary

given by (5) with p0 = pe = 0.
There is no difference in studying propagating and standing waves in untwisted magnetic

tubes. A standing wave is obtained by the superposition of two waves with the same frequen-
cies and wavenumbers propagating in the opposite directions. The presence of twist brakes
the symmetry of wave propagation with respect to the change of the propagation direction.
Hence, in general, a standing wave in a twisted tube cannot be obtained in the same simple
way as in an untwisted tube. It can be shown that a standing wave is now a superposition of
two propagating waves with the same frequencies but with different wave numbers. Hence,
in principle, studying standing waves in a straight twisted unstratified magnetic tube still
can be reduced to studying propagating waves. However, it is more convenient to study the
standing waves directly.

The situation becomes even more complicated when a magnetic tube is stratified. In this
case only the direct study of standing waves is convenient. The standing kink oscillations
of straight twisted stratified magnetic tubes with the constant cross-section were studied by
Ruderman (2007). Once again the investigation was restricted to thin tubes, a � L. When
the tube is thin it follows from (5) and (48) that Biz = Be + O(a2/L2). The asymptotic
analysis similar to one described in Sect. 3 was carried out. This analysis has shown that,
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under the assumption |Bϕ |/B � a/L, the kink oscillations are described by the same Sturm-
Liouville problem as those in a non-twisted tube. Hence, a weak twist can only result in
corrections to the eigenvalues and eigenfrequencies that are smaller than or of the order
of (a/L)2. Such corrections are negligible in applications to the coronal magnetic loops.

6 The Effect of Curvature

In all models that we discussed up to now magnetic tubes were assumed to be straight.
However, real coronal magnetic loops are curved. What is the effect of this curvature on
the kink oscillations? This problem was first addressed by Van Doorsselaere et al. (2004b).
These authors considered a model of a coronal loop that has the shape of a half-torus. They
neglected the density stratification. Using the toroidal coordinates they solved this prob-
lem analytically in the thin tube approximation. The main results obtained in this study can
be summarised as follows. The kink modes of a straight tube with a circular cross-section
are degenerate in a sense that they can be polarised in any direction. In contrast, the kink
eigenmodes of a curved tube can be polarised either in the plane of the tube (vertical oscil-
lations), on in the direction perpendicular to the plane of the tube (horizontal oscillations).
The frequencies of the two kink modes polarised in the mutually orthogonal directions are
different. However the difference between these two frequencies is of the order of (a/L)2,
i.e. it is very small for coronal magnetic loops. Recently we were informed by the authors
that they found an error in their analysis, and now they are preparing a corrected version of
their paper. However, to our knowledge, this error does not affect the main conclusion made
by Van Doorsselaere et al. (2004b).

Terradas et al. (2006) studied the same problem numerically taking the density stratifi-
cation into account. They obtain the results similar to those obtained by Van Doorsselaere
et al. (2004b). More detailed discussion of the curvature effect can be found in the review
paper by Van Doorsselaere et al. (2009) in this issue.

It is worth noting that the majority of the observed transverse oscillations of coronal
magnetic loops are horizontally polarised. However Wang and Solanki (2004) reported the
observations by TRACE of the vertically polarised oscillations of coronal loops (see also
Wang et al. 2008).

7 Kink Oscillations of Coronal Loops with Non-Circular Cross-Section

It was assumed in the majority of theoretical studies that coronal loops have circular cross-
sections. However, at present there is no observational evidence that this is correct. Measur-
ing the parameters of the loop cross-section demands observations with a very high resolu-
tion not available at present. For correct interpretation of observational data we need robust
models that do not change very much when assumptions used to develop these models are
relaxed. From this point of view it is very important to investigate how much the theoret-
ical results concerning the kink coronal loop oscillations depend on the assumption that
the loop cross-section is circular. The first insight in this problem was made by Ruderman
(2003) who studied the kink oscillations of a homogeneous magnetic tube with an elliptic
cross-section. It was shown that, in the cold plasma approximation, there are two fast kink
modes polarised along the small and large axis of the elliptic cross-section. In the thin tube
approximation the frequencies of these modes are given by

ω2
k1 = ρV 2

Ak2(a + b)

bρi + aρe

, ω2
k2 = ρV 2

Ak2(a + b)

aρi + bρe

. (49)
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Fig. 5 Sketch showing the equilibrium (bold solid and dashed lines) and perturbed states (thin dashed lines)
of a magnetic flux tube with plasma density ρi embedded in plasma with density ρe . The left hand sketch
shows the kink perturbation polarised along the large axis of the elliptic cross-section, and the right one
shows the kink perturbation polarised along the small axis. The plane in which the kink modes are polarised
is shown. Figure taken from Erdélyi and Morton (2009)

Here a and b are the large and small half-axes of the elliptic cross-section, k = π/L and L

is the loop length. The frequencies ωk1 and ωk2 correspond to oscillations polarised along
the small and large axes. Note that ωk2 < ωk1. When a = b, ωk1 = ωk2 = ωk . The two fun-
damental kink modes of a tube with the elliptic cross-section are shown in Fig. 5.

Recently the eigenmodes of a homogeneous magnetic tube with the elliptic cross-section
were studied in a plasma with the finite pressure by Erdélyi and Morton (2009). Since the
account of finite pressure is mainly important for sausage modes and practically does not
affect the fast kink modes we do not discuss in detail the results of this study here, and only
reproduce their figure showing the dispersion curves of different modes for the values of
parameters relevant for the solar corona. In Fig. 6 the dispersion curves marked as “kinkm

(1st branch)” and “kinkM (1st branch)” correspond to the fast global kink modes polarised
along the small and large axes of the elliptic cross-section respectively. In the limit ak → 0
their frequencies are equal to ωk1 and ωk2. Note that the slow modes do not exist in the cold
plasma approximation.

8 Kink Oscillations in Annular Magnetic Cylinders

Sub-resolution flux tube structure is still a matter of speculations. It is anticipated that the
recently launched Hinode/SOT may advance the research on the internal structure of solar
magnetic flux tubes. As a specific example, let as recall an interesting earlier observation
by Robbrecht et al. (2001): combined data of 13 May 1998 from both the EIT instrument
on SOHO and from TRACE show the simultaneous observation of two slow magnetosonic
waves propagating along a perceived coronal loop with speeds of 95 and 110 km/s. This
observation was interpreted by the authors as temperature differences within the observed
loop hinting at a substructure of perhaps either concentric shells of different temperatures or
of thin strands within the same loop at different temperatures. There is no conclusive proof
disputing these possible flux tube structures nor preference given towards one in particular.

In this section we consider the wave propagation in a core magnetic cylinder surrounded
by a concentric shell. Such a magnetic plasma configuration can be called an annular mag-
netic cylinder. The geometry of the model is shown in Fig. 7. The magnetic field is in the
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Fig. 6 The dispersion curves for
waves propagating in a tube with
the elliptic cross-section. The
dispersion curves marked as
“kinkm (1st branch)” and “kinkM
(1st branch)” correspond to the
fast global kink modes polarised
along the small and large axes of
the elliptic cross-section
respectively. The lower part of
the figure shows the magnified
dispersion curves for slow
modes. Note that these modes do
not exist in the cold plasma
approximation. Figure taken
from Erdélyi and Morton (2009)

Fig. 7 The equilibrium
configuration of a magnetic
cylinder consisting of a core,
annulus and external regions, all
with straight magnetic field.
Figure taken from Carter and
Erdélyi (2007)

direction of the cylinder axis and its magnitude is Bi in the core cylinder, B0 in the annulus,
and Be in the external plasma. The plasma densities in these three regions are ρi , ρ0 and ρe

respectively, and we assume that ρi, ρ0 > ρe .
At present only the propagating waves in annular magnetic cylinders were studied. But,

since in magnetic plasma configurations with straight magnetic field lines a standing wave is
a superposition of two propagating waves with the same frequencies and opposite wavenum-
bers, it is straightforward to apply the results of this study to kink oscillations of annular
magnetic cylinders. The propagating waves in annular magnetic cylinders were studied by
Carter and Erdélyi (2007) in the approximation of incompressible plasma, while Mikhalyaev
and Solov’ev (2005) took the plasma compressibility into account. Since the cold plasma ap-
proximation is quite suitable for the description of the fast kink oscillations of coronal loops,
in what follows we use the results obtained by Mikhalyaev and Solov’ev (2005).

One of the consequences of the cold plasma approximation is that the magnetic field
magnitude is the same in the core cylinder, the annulus and the external plasma, so that
Bi = B0 = Be = B . Mikhalyaev and Solov’ev (2005) derived the dispersion equation for
the fast kink modes in the thin tube approximation. In the cold plasma approximation this
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Fig. 8 The kink modes of the
annular cylinder oscillation. The
left panel corresponds to the
mode where the core cylinder
and the annulus oscillate in
phase. The right panel
corresponds to the mode where
the core cylinder and the annulus
oscillate in antiphase. The arrows
show the plasma displacement

dispersion equation reduces to

[
R2(ρ0 + ρi)(ρ0 + ρe) − a2(ρ0 − ρi)(ρ0 − ρe)

]
ω4

− 2

μ0
R2B2k2(2ρ0 + ρi + ρe)ω

2 + 4

μ2
0

R2B4k4 = 0, (50)

where k is the wavenumber in the longitudinal direction. For the fundamental mode k =
π/L, where L is the length of the annular cylinder. The solutions to the dispersion equation
(50) are

ω2
± = V 2

Aik
2R

[
(1 + 2χ0 + χe)R ±

√
(1 − χe)2(R2 − a2) + (1 − 2χ0 + χe)2a2

]
× [

(1 + χ0)(χ0 + χe)R
2 + (1 − χ0)(χ0 − χe)a

2
]−1

, (51)

where

V 2
Ai = B2

μ0ρi

, χ0 = ρ0

ρi

, χe = ρe

ρi

.

It is not difficult to show that the assumption χe > 1, χe > χi guaranties that ω± < VAek

when a < R, which implies that both wave modes, one with the oscillation frequency ω−
and the other with the oscillation frequency ω+, are non-leaky. In the wave mode with the
oscillation frequency ω+ the core cylinder and the annulus always oscillate in phase. We
will call this mode the phase mode in what follows. The displacement of the core cylinder
and the annulus in this wave mode are schematically shown on the left panel of Fig. 8. When
χ0 < 1 the wave mode with the oscillation frequency ω− is also the phase mode. However
when χ0 > 1 the core cylinder and the annulus oscillate in antiphase in this mode. We will
call such a mode the antiphase mode in what follows. The displacement of the core cylinder
and the annulus in this wave mode are schematically shown on the right panel of Fig. 8. Note
that ω− > VAik when χ0 < 1, while ω− < VAik when χ0 > 1. Hence the change of identity
of the mode with the oscillation frequency ω− from phase to antiphase takes place when its
frequency changes from super-Alfvénic to sub-Alfvénic in the core cylinder.

We can prove the following inequalities:

k min(VAi,VA0) < ω− < k max(VAi,VA0), (52)
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ω+ > k max(VAi,VA0) when χ0 < χc, (53)

kVA0 < ω+ < kVAi when χ0 > χc, (54)

where V 2
A0 = V 2

Ai/χ0 and

χc = R2(2 − χe) − a2χe

R2 − a2
. (55)

Note that χc > 1. The inequality (52) implies that the wave mode with the frequency ω− is
a body wave in the core cylinder and a surface wave in the annulus when VAi < VA0, while
it is a surface wave in the core cylinder and a body wave in the annulus when VAi > VA0.
Such a wave mode is called mixed. The inequality (53) implies that the wave mode with the
frequency ω+ is a body wave both in the core cylinder and annulus when χ0 < χc . Finally,
the inequality (54) implies that this wave mode is a surface wave in the core cylinder and a
body wave in the annulus, i.e. it is a mixed wave, when χ0 > χc .

Let us consider one example relevant for the corona. If we take R = 2a, χ0 = 0.5 and
χe = 0.1, then ω+/ω− ≈ 0.677. We see that the two frequencies can be substantially differ-
ent.

9 Collective Kink Oscillations of Two Parallel Coronal Loops

Very often it is observed that not a single loop, but a whole array of loops oscillates after
being perturbed by, e.g., a solar flare. Moreover, it has been suggested by, e.g., Aschwanden
et al. (2000) that the loops as we see them actually consist of a multitude of individual loop
strands. These considerations put on the agenda studying collective oscillations of an array
of coronal loops. A natural first step in this study is the investigation of collective oscilla-
tions of a system of two coronal loops. Recently such an investigation has been carried out
numerically by Luna et al. (2008). These authors considered oscillations of two identical
homogeneous parallel magnetic tubes with fixed ends. They studied both the eigenmodes of
oscillations of this system, and solved the initial value problem. Their main results concern-
ing the eigenmodes can be summarised as follows. There are four fundamental eigenmodes
of the system oscillation with respect to the longitudinal direction. In two of these four
modes the tubes oscillate in the direction connecting the tube axes, which is denoted as the
x-direction, and in two other modes in the perpendicular direction, which is denoted as the
y-direction. In each of the two pairs of modes the tubes can oscillate either in the same di-
rection, and in this case they are called symmetric, or in the opposite directions, in which
case they are called antisymmetric. Luna et al. (2008) used the notation Sx , Ax , Sy and Ay

for these modes, where S and A stand for symmetric and antisymmetric respectively, and
the subscripts ‘x’ and ‘y’ indicate the mode polarisation (i.e. the direction of the tube dis-
placement). If we denote the oscillation frequencies of the these four fundamental modes as
ωSx , ωAx , ωSy and ωAy respectively, then they satisfy the following ordering,

ωSx < ωAy < ωSy < ωAx. (56)

When the separation between the tubes increases, all four frequencies tend to the common
kink frequency of the two tubes.

Van Doorsselaere et al. (2008) studied this problem analytically in the thin tube approxi-
mation. In this paper the oscillations of two parallel loops with arbitrary radii and densities
inside them have been considered. The equilibrium configuration is shown in Fig. 9. The
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Fig. 9 The equilibrium with two
parallel homogeneous magnetic
tubes. Figure taken from Van
Doorsselaere et al. (2008)

coronal loops are modelled by straight homogeneous magnetic tubes. The length of the tube
is L. The tube radii are RL and RR , and the plasma densities inside the tubes are ρL and ρR .
The density of the plasma outside the tubes is ρe , and it is assumed that ρL,R > ρe . The dis-
tance between the tube axes is d > RL + RR . The magnetic field is parallel to the tube axes.
Since the cold plasma approximation is used, its magnitude, B , is the same everywhere.

It was assumed that the transversal size of the system is much smaller than the tube
length. This condition can be written as d/L = ε � 1. Then the solution was found in the
first order approximation with respect to ε. For the analytical solution of the problem the bi-
cylindrical coordinate system was used. When the tubes are identical, the obtained analytical
results are quite similar to the numerical results obtained by Luna et al. (2008). Once again
the four modes, Sx , Ax , Sy and Ay , were identified. However, there is one difference between
the analytical and numerical results. It was obtained in the analytical investigation that

ω− = ωSx = ωAy < ωSy = ωAx = ω+, (57)

where

ω2
± = ρeV

2
Aek

2

(ρL + ρe)(ρR + ρe) − (ρL − ρe)(ρR − ρe)E2

× {
ρL + ρR + 2ρe ±

√
(ρL − ρR)2 + 4(ρL − ρe)(ρR − ρe)E2

}
. (58)

In this expression the quantity 0 < E < 1 is defined by the geometrical parameters of the
equilibrium state. We do not give the expression for E because otherwise we would have to
present too many details of the mathematical analysis of the problem. This expression can
be found in Van Doorsselaere et al. (2008).

Hence, not four but only two eigenfrequencies have been found in the analytical study.
We attribute this difference between the analytical and numerical results to the fact that
the eigenfrequencies were calculated analytically only in the first order approximation with
respect to ε. Our conjecture is that the frequencies ωSx and ωAy will split in the next order
approximation, and so will ωSy and ωAx .

When the tubes are not identical the properties of the two tube system are more compli-
cated. In this case, depending on the geometrical and physical parameters of the system, it
can have either standard or anomalous behaviour. The systems with the standard behaviour
have the same eigenmodes as the system of two identical tubes. However the systems with
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anomalous behaviour have two eigenmodes of the Ax -type, and two of Sy -type, while they
do not have the Sx - and Ay -type modes at all. We denote the four eigenmodes in this case
as Axs , Axf , Sys and Syf . Their frequencies satisfy

ω− = ωAxs = ωSys < ωSyf = ωAxf = ω+. (59)

The distinctive property of the anomalous systems is that the Alfvén frequency in one of the
two tubes is larger than ω−. In the standard systems the Alfvén frequencies in both tubes are
smaller than ω−.

We can notice the analogy between the two parallel loop system and the annulus cylinder
considered in the previous section. In the annulus cylinder the mode with the lower fre-
quency becomes an antiphase mode when the mode frequency is smaller than the Alfvén
frequency in the core cylinder. In the two tube system Sx mode becomes Axs mode, and
Ay mode becomes Sys mode when the smaller mode frequency is smaller than the Alfvén
frequency in one of the two tubes.

Finally, we should mention recent papers by Luna et al. (2009) and Ofman (2005, 2009).
Luna et al. (2009) studied the collective oscillations of two parallel non-identical magnetic
tubes using the scattering theory. The authors considered thin tubes. They obtained the re-
sults that are in an excellent agreement with Van Doorsselaere et al. (2008). Then they ex-
tended the analysis to a multi-tube system. For the details of their analysis we refer readers
to this original paper.

Ofman (2005) investigated the collective oscillations of four straight parallel identical
loops, while Ofman (2009) considered the same system of four loops but with the loops
braided. One of the most interesting results obtained in the latter study is that braiding re-
duces the oscillation period. Other interesting results are related to the damping of oscilla-
tions. They will be discussed in the next section.

10 Damping of Kink Oscillations of Coronal Loops

The observed kink oscillations are strongly damped. First this was reported by Aschwanden
et al. (1999) and Nakariakov et al. (1999). After that the strong damping of coronal loop
oscillations was confirmed by many observers (e.g. Aschwanden et al. 2002; Schrijver et
al. 2002; Ofman and Aschwanden 2002). The typical damping time of oscillations is a few
oscillation periods. A few different mechanisms of damping were suggested (e.g. Roberts
2000). Among them are the footpoint and side wave energy leakage, the phase mixing and
the resonant absorption. Recently Morton and Erdélyi (2009) suggested that the observed
rapid decrease in the oscillation amplitude can be caused by the loop cooling.

Simple estimates show that the damping due to the side wave energy leakage can cause
the damping of coronal loop kink oscillations with the characteristic time at least by two
orders of magnitude larger than the observed damping time (e.g. Ruderman 2005). The sit-
uation with the footpoint leakage is not so clear. We do not know any accurate investigation
of this damping mechanism.

To our knowledge, the possibility of damping of transverse coronal loop oscillations due
to phase mixing was first discussed by Roberts (2000) using a purely phenomenological
approach. No mathematical model of damping involving phase mixing was suggested. Later
Ofman (2005) suggested the following model. The viscous and magnetic Reynolds numbers
that appear in studying the damping of transverse coronal loop oscillations are of the order
of 1012÷1014. However these values were obtained when the loop length was used as the
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characteristic spatial scale. If we take the radius of the loop cross-section as the characteristic
spatial scale, then the Reynolds numbers are reduced by about two orders of magnitude, but
they are still very large. Ofman suggested that the viscosity is enhanced by turbulence by
three or even four orders of magnitude. In addition, he suggested that coronal loops are not
monolithic, but consist of large number of very thin threads, so that the viscous Reynolds
number calculated using turbulent viscosity and the radius of a thread cross-section as the
characteristic spatial scale is of the order of 103÷104. We can easily estimate that, to have
such small values of the Reynolds number, we need the radius of the thread cross-section of
the order of 10 km. Then Ofman (2005, 2009) studied numerically the damping of transverse
oscillations of four parallel straight and braided magnetic tubes with the Reynolds number
equal to 104. He used not viscous but magnetic Reynolds number, however this should not
affect the damping rate, at least qualitatively.

The main results concerning the damping time obtained by Ofman (2005, 2009) are the
following. The damping time is an increasing function of the Reynolds number. The braiding
decreases the damping time, which is related to the fact that it brings the tubes closer to each
other thus effectively decreasing the characteristic spatial scale. Such a behaviour is typical
for phase mixing. On the other hand, it is not typical for damping due to resonant absorption
where the damping time is independent of the Reynolds number. On the basis of these results
Ofman concluded that the damping in the model that he suggested is due to phase mixing.

Not casting any doubt on the viability of the model suggested by Ofman, we are not sure
that phase mixing is a correct name for the damping mechanism operating in this model.
To clarify this point let us recall how phase mixing operates. The spatial scale of an inho-
mogeneous background is large. At the initial moment of time a perturbation in the form
of an Alfvén wave is launched. The spatial scale of this perturbation is also large. However
then phase mixing creates small spatial scales thus strongly enhancing the damping rate. In
the model suggested by Ofman small spatial scales are present from the very beginning, so
that there is no need to create small spatial scales during the evolution of perturbation. From
our point of view the wave damping in Ofman’s model is normal viscous/resistive wave
damping in a plasma with small Reynolds number, and it is not related to phase mixing at
all.

The transition from resonant absorption to normal viscous damping when the Reynolds
number decreases was studied by Ruderman and Goossens (1996). The results of this study
cannot be directly applied to damping of transverse coronal loop oscillations because Ruder-
man and Goossens (1996) considered damping of surface Alfvén waves propagating along a
thin transitional layer between two homogeneous plasmas (the so-called “thick interface”).
However, qualitatively, the damping of transverse coronal loop oscillations is the same as
damping of surface Alfvén waves, so that the results obtained by Ruderman and Goossens
(1996) can shad some light on the model suggested by Ofman (2005). These results can
be briefly summarised as follows. The damping rate of a surface wave is controlled by the
dimensionless number Rg = �� 2Re, where � is the relative variation of the square of
Alfvén speed across the inhomogeneous transitional layer, � is the ratio of the transitional
layer thickness to the wavelength, and Re is the viscous Reynolds number calculated using
the wavelength as the characteristic spatial scale. When Rg � 1, the damping rate is the
same as that of a surface Alfvén wave propagating on a true discontinuity. On the other
hand, the damping is due to resonant absorption with the damping rate independent of Re

when Rg 	 1. The transition between the two regimes of damping occurs at Rg ∼ 1.
Although, as we have already mentioned, the problem studied by Ruderman and

Goossens (1996) is quite different from the problem of damping of transverse coronal loops
oscillations, we still can try to apply their results to the latter problem. In this case the wave-
length is of the order of the loop length L, and we can take � ≈ 1. Let us denote the radius
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Fig. 10 A sketch of the
equilibrium state, showing a
magnetic flux tube with plasma
density ρi embedded in a plasma
with density ρe . The equilibrium
magnetic field everywhere has
strength B . The equilibrium
density varies in the annulus
region a − � < r < a from ρi

to ρe . The dashed lines show the
perturbed magnetic tube in its
kink mode of oscillation. Figure
taken from Ruderman and
Roberts (2002)

of the thread cross-section as rth. Then Rg ≈ (rth/L)2Re, and the transition from normal
viscous damping to resonant absorption occurs at rth ≈ Re−1/2L. Assuming that the viscos-
ity is enhanced by turbulence by four orders of magnitude, i.e. Re = 108 ÷ 1010, and taking
L = 100 Mm, we obtain rth ≈ 10 ÷ 100 km, which is in good agreement with the previ-
ously obtained estimate. This gives an additional support to our statement that the damping
operating in Ofman’s model is normal viscous damping not related to phase mixing.

The decrease of the amplitude of transverse coronal loop oscillations due to the loop
cooling recently found by Morton and Erdélyi (2009) is a very interesting damping mecha-
nism, which definitely deserves serious attention. However it is a very new result that needs
further investigation, so that we do not discuss it in this review.

At present the damping mechanism that has the most solid theoretical background is
resonant absorption. It was suggested long ago by Hollweg and Yang (1988) that (that time
hypothetical) kink oscillations of coronal magnetic loops can strongly damp due to resonant
absorption.

After the kink oscillations of coronal magnetic loops were observed and the strong damp-
ing of these oscillations was reported, Ruderman and Roberts (2002) revived this old idea
by Hollweg and Yang. As a model of a coronal magnetic loop they considered a cylindrical
magnetic tube with the density homogeneous in the longitudinal direction but varying in a
thin annulus at the tube boundary. This model is shown in Fig. 10. The background magnetic
field has the constant magnitude and parallel to the z-axis of cylindrical coordinates r, ϕ, z. It
is assumed that the thickness of the annulus, �, is much smaller than the tube radius, � � a,
and that the background density is given by

ρ(r) =
⎧⎨
⎩

ρi, r < a − �,
ρi

2 [1 + χ − (1 − χ) sin π(2r+�−2a)

2�
], a − � < r < a,

ρe, r > a.

(60)

Here χ = ρe/ρi . Ruderman and Roberts solved the initial value problem for the linearised
MHD equations in the cold plasma approximation. They found that the kink oscillation of
the magnetic tube emerges from almost arbitrary perturbation in a few oscillation periods.
Then it starts to damp due to resonant absorption of the wave energy in the vicinity of the
resonant position inside the annulus. The resonant position is determined by the condition
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Table 1 The estimates of �/a

for a collection of transverse
coronal loop oscillations using
the data provided by Ofman and
Aschwanden (2002). Taken from
Goossens et al. (2002)

No. L [Mm] a [Mm] R/L P [s] tdec [s] �/R

1 168 3.60 0.021 261 840 0.16

2 72 3.35 0.047 265 300 0.44

3 174 4.15 0.024 316 500 0.31

4 204 3.95 0.019 277 400 0.34

5 162 3.65 0.023 272 849 0.16

6 390 8.40 0.022 522 1200 0.22

7 258 3.50 0.014 435 600 0.36

8 168 3.15 0.019 143 200 0.35

9 406 4.60 0.011 423 800 0.26

10 192 3.45 0.018 185 200 0.46

11 146 7.90 0.054 396 400 0.49

that, at this position, the frequency of the kink oscillation matches the local Alfvén fre-
quency. In the thin tube thin boundary layer (TTTB) approximation they obtained that the
ratio of the damping time to the oscillation period is given by

tdec

P
= 2a

π�

1 + χ

1 − χ
, (61)

where T = 2π/ωk . This expression can be obtained as a particular case of a more general
expression for the damping time given by Goossens et al. (1992). Substituting in (61) T =
256 s and tdec = 870 s reported by Nakariakov et al. (1999), Ruderman and Roberts found
�/a ≈ 0.23. Goossens et al. (2002) applied a similar analysis to estimate �/a for a collection
of loop oscillations using the data provided by Ofman and Aschwanden (2002). The results
that they obtained are given in Table 1.

In their paper Goossens et al. used the notation slightly different from that used by Rud-
erman and Roberts (2002). They denoted the loop radius as R, and the annulus containing
the inhomogeneous plasma was defined by the inequality R − �/2 < r < R + �/2, so that
a = R + �/2. In addition they used the linear density profile, so that the equilibrium density
in their model was given by

ρ(r) =
⎧⎨
⎩

ρi, r < R − �/2,
ρi

2 [1 + χ + 2
�
(R − r)(1 − χ)], R − �/2 < r < R + �/2,

ρe, r > R + �/2.

(62)

For this density profile the ratio of the damping time and period is given by

tdec

P
= 4R

π2�

1 + χ

1 − χ
. (63)

If we use the sinusoidal density profile (60), then we obtain the values of �/R approximately
1.57 times larger than those given in Table 1.

We can see that, at least for some events, the ratio �/R is not small at all. This observa-
tion inspired Van Doorsselaere et al. (2004a) to study the damping of kink oscillations of
magnetic flux tubes numerically. The results of their numerical study are shown in Fig. 11
adopted from Van Doorsselaere et al. (2004a). This figure displays the results of the numer-
ical calculations for a very thin tube, R/L ≈ 0.006. However they remain practically the
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Fig. 11 The dependence of the
normalised ratio of period to the
damping time on �/R. The
straight line shows the analytical
result given by (63). The crosses
on the straight line show the
numerically calculated
dependence using the thin
boundary layer approximation.
The detached crosses show the
numerically calculated
dependence without using the
thin boundary layer
approximation. In this figure
R/L = 0.02/π ≈ 0.006 and
χ = 1/3. Figure taken from Van
Doorsselaere et al. (2004a)

same for a much thicker tube with R/L ≈ 0.06. We can see that even for the largest value
of �/R from Table 1, which is �/R = 0.49, the difference between the values of tdec/P ob-
tained numerically and analytically in the TTTB approximation is less than 13%. Hence,
we conclude that the analytic TTTB theory gives quite a reasonable approximation for the
damping time.

Later the damping of kink oscillations of straight longitudinally stratified magnetic tubes
due to resonant absorption was studied numerically by Andries et al. (2005b) in the TTTB
approximation, and by Arregui et al. (2005, 2006) for the arbitrary thickness of the layer
where the density varies in the radial direction. It was found that, qualitatively, the damping
due to resonant absorption is the same in longitudinally stratified tubes and tubes homoge-
neous in the longitudinal direction. One interesting result found by Andries et al. (2005b)
was that the longitudinal stratification practically does not affect the ratio tdec/P . Dymova
and Ruderman (2006a) studied the damping of kink oscillations of straight longitudinally
stratified magnetic tubes analytically with the use of the TTTB approximation. They rigor-
ously proved that, if ρ(r, z) = ρi(z)f (r), where f (r) = 1 for r < a −�, f (r) = χ for r > a,
and f (r) monotonically decreases for a − � < r < a, then the ratio tdec/P is exactly the
same as in the longitudinally homogeneous tube (i.e. in the tube with ρi = const).

Terradas et al. (2006) studied numerically the resonant damping of kink oscillations of
longitudinally stratified curved coronal loops and found that the curvature practically does
not affect the damping. Recently Terradas et al. (2008) investigated the resonant damping
of kink oscillations of longitudinally homogeneous coronal loops, however with the den-
sity dependent on r and ϕ. They found that resonant absorption still provides an efficient
damping of kink oscillations.

The main conclusion that can be made on the basis of the numerous studies of resonant
damping of kink oscillations is that resonant absorption is a very robust damping mecha-
nism. The damping time due to resonant absorption is only weakly dependent on particular
properties of the background state. A detailed review on resonant damping of coronal loop
oscillations is given by Goossens et al. (2006).

11 Application to Coronal Seismology

Although the transverse coronal loop oscillation is an interesting phenomenon on its own,
its main importance is related to its application to coronal seismology. The idea of coronal
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seismology was first put forward by Uchida (1970) and Roberts et al. (1984). This idea
is similar to the idea of any seismology: to obtain information about a medium from the
observations of the wave propagation in this medium. In the case of coronal seismology we
would like to obtain information about the parameters of the coronal plasma and magnetic
field from the observations of the MHD wave propagation in the solar corona. Recently it
was suggested to consider coronal seismology as a part of magneto-seismology, which is
the seismology based on observation of the propagation of MHD waves (Verth et al. 2007;
Erdélyi 2008).

The observations of transverse coronal loop oscillations were first used for coronal seis-
mology by Nakariakov and Ofman (2001). They used the event observed by TRACE on 14th
July 1998 to estimate the magnetic field magnitude in a loop. In what follows we will briefly
reproduce their analysis. On 14th July 1998 TRACE observed a transverse oscillation of a
coronal loop with the length L ≈ 130 Mm. The oscillation period was T ≈ 256 s. The ion
number density of the plasma in the loop was estimated to be ni ≈ 1.6 × 109 cm−3. The au-
thors arbitrarily took ρi/ρe = 10, however this quantity only weakly affects the obtained re-
sults. For example, reducing this ratio to 3 changes the estimate of the magnetic field magni-
tude by less than 9%. Taking into account the uncertainty in the measurement of L, T and ni

this change is completely insignificant. The kink speed is given by Ck = 2L/T ≈ 1015 km/s.
Then the Alfvén speed in the loop is equal to VAi = (1+ρe/ρi)

1/2(Ck/
√

2) ≈ 752 km/s, and
we obtain the estimate for the magnetic field magnitude

B = VAi

√
μ0mini ≈ 13 × 10−4 T = 13 (±9) G.

The error bar ±9 is related with the uncertainty in the measurement of L, T and ni . Hence,
the final conclusion made by Nakariakov and Ofman (2001) was that the field magnitude
should be between 4 and 22 Gauss. This estimate is in a good agreement with the estimates
obtained by using other methods.

The second application of the observations of the transverse coronal loop oscillations
to coronal seismology is related to the estimate of atmospheric scale height in the corona.
Verwichte et al. (2004) reported two cases of observations of the transverse coronal loop
oscillations where, in addition to the fundamental harmonic, the first overtone was also ob-
served. A very important property of these observations was that the ratio of the frequencies
of the first overtone and the fundamental harmonic was less than 2. It was equal to 1.81 and
1.64 respectively (note that later Van Doorsselaere et al. (2007) used the improved technique
to correct these values to 1.82 and 1.58). Andries et al. (2005a) suggested that this deviation
of the frequency ratio from 2 is caused by the variation of the plasma density along the loop.
Then they used this idea to obtain estimates for the coronal scale height. In their analysis
they assumed that the corona is isothermal, and a coronal loop has the half-circle shape and
situated in the vertical plane. In that case the radius of the half-circle, r0, is related to the
loop length L by r0 = L/π . If we introduce the coordinate along the loop, z, 0 ≤ z ≤ L,
and the height of a point in the loop in the solar atmosphere, h, then these two quantities are
related by

h = L

π
sin

πz

L
.

In the isothermal atmosphere the plasma density in the loop is given by

ρi(z) = ρf e−h/H = ρf exp

(
− L

πH
sin

πz

L

)
,
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where H is the atmospheric scale height and ρf is the density at the loop foot points. It was
also assumed that the plasma temperature inside and outside the loop is the same, so that
ρi(z)/ρe(z) = const. Then it was arbitrarily taken ρi(z)/ρe(z) = 10 (however once again the
results are not very sensitive to this parameter). After that the frequencies of the fundamental
harmonic and the first overtone were calculated, and their ratio was found as a function of H .
It turns out that this is a monotonically increasing function. The inverse function gives H

as a function of the ratio of frequencies of the first overtone and the fundamental harmonic.
Using this technique Andries et al. (2005a) obtained that the atmospheric scale height was
equal to 68 Mm in the first event, and 36 Mm in the second event.

Dymova and Ruderman (2006b) studied the effect of the loop shape on the estimate of
the atmospheric scale height. They considered coronal loops with the shape of an arc of a
circle of radius r0 immersed in an isothermal atmosphere. The loop shape is characterised
by the parameter λ = δ/r0, where δ is the distance from the circle centre to the solar surface.
This distance is considered as positive when the circle centre is below the solar surface and
as negative when it is above. Then Dymova and Ruderman (2006b) fixed the height of the
loop apex point, ha , and obtained the estimates of H/ha for λ varying from −0.9, which
corresponds to an almost circular loop, to 0.9, which corresponds to an almost straight loop.
They applied their analysis to the two cases of simultaneous observations of the fundamental
mode and first overtone reported by Verwichte et al. (2004). As a result they obtained H

varying from 79 to 59 Mm in the first case, and from 42 to 33 Mm in the second case. Recall
that for loops with a half-circle shape Andries et al. (2005a) obtained the estimates for the
atmospheric scale height equal to 68 Mm and 36 Mm respectively. We see that the loop
shape is sufficiently important for the estimate of the atmospheric scale height.

Recently Ruderman et al. (2008) studied the effect of the loop expansion on the estimate
of the atmospheric scale height. They showed that this estimate is a monotonically decreas-
ing function of the loop expansion factor �, which is the ratio of the loop radius at the loop
apex and the loop foot points. One illuminating example that they gave is the following.
Van Doorsselaere et al. (2007) reported the third case of the simultaneous observation of the
fundamental harmonic and the first overtone made by TRACE in 1998. Using the technique
developed by Andries et al. (2005a) and assuming that the radius of the loop cross-section
does not vary along the loop they obtained the estimate for the atmospheric scale height 109
Mm. It is about twice larger than the scale height calculated on the basis of the measurement
of the temperature. Van Doorsselaere et al. (2007) interpreted their result as the evidence
that the observed loop was not in the equilibrium. Not claiming that this interpretation is
wrong Ruderman et al. (2008) suggested another possible interpretation. If we assume that
the loop expansion factor is � = 1.5, then we obtain the estimate H ≈ 50 Mm, which is in
a complete agreement with the estimate of H calculated on the basis of the measurement of
the temperature for the loop in equilibrium.

A more detailed discussion of the use of simultaneous observations of the fundamental
harmonic and overtones of the kink oscillations of coronal loops for coronal seismology is
given by Andries et al. (2009).

12 Discussion and Conclusions

We see that a very serious progress in the theory of the transverse coronal loop oscillations
was made in the decade that passed after the first observation of this oscillations made by
TRACE in 1998. The new more sophisticated models of this phenomenon incorporating



226 M.S. Ruderman, R. Erdélyi

such effects as the density and cross-section radius variation along the loop, the loop curva-
ture, the loop non-circular cross-section, and the magnetic twist were developed. The reso-
nant absorption was identified as the most probable mechanism of the oscillation damping.
The theoretical basis for the application of observations of coronal loop transverse oscilla-
tions to coronal seismology was created.

The method of asymptotic expansions was proved to be a powerful tool for studying
the transverse coronal loop oscillations. Its applicability is based on the fact that the ob-
served coronal loops are thin structures. The results obtained with the use of this method
are practically the same as those obtained with the use of sophisticated numerical studies.
A substantial progress was made in studying the resonant damping of the transverse oscilla-
tion with the aid of the TTTB (thin tube thin boundary layer) approximation. However the
accuracy of the thin boundary layer approximation, in general, is much lower than that of
the thin tube approximation, so that parallel numerical study of damping is desirable.

In spite of all achievements of the theory of transverse coronal loop oscillations it is still
very far from its completion. There is a large number of outstanding problems that are a real
challenge to theorists. In what follows we try to present a list of these unsolved problems.
The reader should keep in mind that this list is very far from being complete.

An important problem in application to coronal seismology is the robustness of models
that we use. Up to now in the majority of models describing the transverse oscillations of
coronal loops it is assumed that the loop cross-section is circular. However, at present there
are no observational evidences supporting this assumption. Hence, it is very important to
find out how much the eigenfrequencies and eigenmodes of the fast kink oscillations of
magnetic tubes depend on the shape of the cross-section. The first step in this direction was
made by Ruderman (2003) and Erdélyi and Morton (2009) who studied the oscillations of
tubes with the elliptic cross-section. But it is desirable to study the fast kink oscillations of
tubes with arbitrary cross-sections.

At present only oscillations of plane loops, i.e. loops with axes that are planar curves
were studied. However there is an observational evidence that at least some of loops are not
plane and their axes are three-dimensional curves with the non-zero torsion. The effect of
torsion on the fast kink oscillations of magnetic tubes should be investigated.

The effect of loop cooling on fast kink oscillations of coronal loops deserves serious
attention. The first step in studying this problem has been made by Morton and Erdélyi
(2009) who used the simplest possible model of a cooling loop. Studying this effect using
more realistic models for the description of non-stationary background states of cooling
loops is on the agenda.

In accordance with the observations very often the displacement of the loop axis is of
the order of or even larger than the radius of the loop cross-section. In that case the linear
description of fast kink oscillations is not valid anymore and nonlinear effects should be
taken into account. The development of the nonlinear theory of fast kink oscillations of
coronal loops is, from our point of view, the most challenging problem for theorists studying
the transverse oscillations of coronal loops.
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