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Abstract Aerosol particles play an important role in the Earth’s troposphere and in the
climate system: They scatter and absorb solar radiation, facilitate chemical processes, and
serve as condensation nuclei for the formation of clouds. Tropospheric aerosol particles are
emitted from surface sources or form in situ from the gas phase. Formation from the gas
phase requires concentrations of aerosol precursor molecules aggregating to form molecular
clusters able to grow faster than they evaporate. This process is called nucleation. Gas phase
ions can reduce the concentration of aerosol precursor molecules required for nucleation,
as they greatly stabilize molecular clusters with respect to evaporation. Therefore, ions are
a potential source of aerosol particles. Since atmospheric ionization carries the signal of
the decadal solar cycle due to the modulation of the galactic cosmic ray intensity by solar
activity, a possible connection between the solar cycle, galactic cosmic rays, aerosols, and
clouds has been a long-standing focus of interest. In this paper, we provide an overview
of theoretical, modeling, laboratory, and field work on the role and relevance of ions for the
formation of tropospheric aerosol particles, and on subsequent effects on clouds, and discuss
briefly related research needs.
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1 Introduction

The continuous formation of charged particles in the atmosphere has been recognized since
the late nineteenth century. These particles were identified as ions following studies on ra-
dioactivity and electrical conduction in gases (see Aplin et al. 2008). In early laboratory
experiments, Wilson (1897, 1899) reported ion and particle formation in air and other gases
in the presence of ultraviolet radiation and radioactive sources, and was the first to suggest
that ions may be involved in atmospheric particle formation, and to realize the importance
this could have for clouds (Galison 1997). Particle formation from the gas phase requires the
emergence of molecular clusters of a size at which the condensation of further molecules
is more likely than their evaporation, a process referred to as nucleation. Molecular clus-
ters forming around ions are more stable compared to their neutral counterparts; ions can
therefore trigger nucleation in conditions where neutral molecules would not. In the twen-
tieth century, laboratory studies have confirmed Wilson’s initial experiments (e.g. Bricard
et al. 1968; Vohra et al. 1969; Raes and Janssens 1985), but research on atmospheric par-
ticle formation from ions has intensified only in the dawn of the twenty-first century with
the heightened awareness of the relevance of new particle formation from the gas phase,
which can significantly increase concentrations of aerosol particles and cloud condensa-
tion nuclei in the troposphere (Kulmala et al. 2004a), and thereby establishes a connec-
tion between atmospheric chemical composition, aerosols, clouds, and climate. Interest for
the topic was also fueled by the possibility that the solar cycle modulation of atmospheric
ionization through galactic cosmic rays could give rise to a similar modulation in aerosol
and cloud droplet concentrations, and provide a mechanism to explain reported correla-
tions between the decadal solar cycle and tropospheric observables, such as cloud cover
(Svensmark and Friis-Christensen 1997; Marsh and Svensmark 2000; Carslaw et al. 2002;
Harrison and Carslaw 2003).

2 Tropospheric Aerosol

Tropospheric aerosol particles are either emitted from the surface of the Earth, or form
from the gas phase. Transport of aerosol particles from the stratosphere represents only a
minor contribution to tropospheric aerosol. Major surface sources of aerosol particles in-
clude the oceans, which emit sea-salt particles, arid and semi-arid regions, where wind lifts
mineral dust, and volcanoes, which inject particulate sulfate and ash into the atmosphere,
while carbonaceous aerosols are produced by wildfires and by the combustion of fossil
and biomass fuels. The formation of new aerosol particles from the gas phase requires suf-
ficiently high concentrations of gas phase molecules with low saturation vapor pressure:
for example, sulfuric acid which has a very low saturation vapor pressure in atmospheric
conditions has been frequently reported as component of freshly formed aerosol, and ap-
pears to drive new particle formation in clean areas, such as over oceans (Clarke 1992;
Brock et al. 1995). Over continents and, in particular, within the continental boundary
layer, recently nucleated aerosol particles may contain, in addition to sulfate, substan-
tial amounts of ammonia (Smith et al. 2005) or organic compounds (Allan et al. 2006;
Cavalli et al. 2006), which may be involved in their formation process (Coffman and Hegg
1995; Marti et al. 1997a; Ball et al. 1999; O’Dowd et al. 2002; Kulmala et al. 2004b;
Zhang et al. 2004; Burkholder et al. 2007). Freshly nucleated particles measure a few
nanometers in diameter, much less than aerosol particles emitted from surface sources. In
order to participate in atmospherically relevant processes, nucleated particles need to grow



Tropospheric New Particle Formation and the Role of Ions 243

to sizes of tens of nanometers. Depending on the availability of condensable molecules,
this process may proceed on time scales between minutes to days, and result finally in the
formation of cloud condensation nuclei, particles which form cloud droplets. Kulmala et
al. (2004a) found that nucleation from the gas phase may significantly increase concentra-
tions of tropospheric cloud condensation nuclei. The resulting increase in cloud droplet con-
centrations may increase cloud albedo via the first (Twomey 1977) and cloud lifetime via
the second indirect aerosol effect (Albrecht 1989). Pre-existing aerosol particles however
quench the formation of new aerosol from the gas phase as they efficiently remove com-
pounds which may initiate nucleation or contribute to particle growth, as well as the newly
forming particles. The role played by gas phase particle formation in tropospheric processes
therefore depends not only on the availability and distribution of nucleating and condensing
compounds, but also on the presence, growth, transport, and removal of pre-existing parti-
cles. Similarly, the importance of charged nucleation in the troposphere depends not only
on the availability of ions and molecules condensing on them, but also on the efficiency of
competing neutral nucleation pathways.

3 Ionization, Galactic Cosmic Rays, and Clouds

Galactic cosmic rays (GCR) are a major source of ions in the troposphere (Bazilevskaya et
al. 2008): upon entering the Earth atmosphere, primary cosmic ray particles, mostly hydro-
gen and helium nuclei, collide with atmospheric gas molecules and initiate a cascade of nu-
clear and electromagnetic reactions producing secondary cosmic rays. Due to the shape and
orientation of the Earth’s magnetic field, the GCR ionization rate increases from the mag-
netic equator towards the poles; its altitude profile has a peak in the upper troposphere/lower
stratosphere. The GCR intensity and ionization rate are anti-correlated with the decadal so-
lar cycle (Forbush 1954; Neher and Forbush 1958). A second important source of ionization
in the troposphere is the radioactive decay of radon effusing from rocks and soils (Laakso
et al. 2004b, and references therein). This source of ionization is strongest near the surface
and in the boundary layer, and is not known to correlate with the solar cycle.

A mechanism linking galactic cosmic rays, aerosols and clouds was initially outlined by
Dickinson (1975): sulfate aerosol particles forming from ions produced by GCR might grow
to cloud condensation nuclei and eventually become cloud droplets. The variation of GCR
ionization over the solar cycle would thus appear in cloud droplet concentrations and hence
in cloud albedo via the first (Twomey 1977) and cloud lifetime via the second (Albrecht
1989) indirect aerosol effect. The result would be a solar cycle modulation of radiative forc-
ing of the troposphere. A corresponding correlation was first reported by Svensmark and
Friis-Christensen (1997), who found a 3–4% variation of the global cloud cover over a so-
lar cycle based on data of the International Satellite Cloud Climatology Project (ISCCP)
(Rossow and Schiffer 1991) for the years 1983–1992. Kristjánsson and Kristiansen (2000)
pointed out that the correlation may be purely coincidental, as the ISCCP data showed a
divergence of cloud cover and GCR intensity in the years 1991–1994, but concluded that
global cloud fraction is higher by 0.0176 and radiative forcing reduced by 0.29 W m−2 at
solar minimum 1986 compared with solar maximum 1990. Marsh and Svensmark (2000)
confined the correlation to low clouds for the period 1983–1994. They estimated that global
low cloud fraction is higher at solar minimum by 0.02 and radiative forcing reduced by
1.2 W m−2 compared with solar maximum. Kristjánsson et al. (2002, 2004) analyzed the re-
vised ISCCP cloud dataset (Rossow and Schiffer 1999) for the period 1983–2001 and found
a weak correlation between low cloud cover and GCR intensity. Harrison and Stephenson
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(2006) found a small yet statistically significant effect of cosmic rays on daily regional
cloudiness, based on surface radiation measurements. In a recent statistical analysis of the
ISCCP data, Sloan and Wolfendale (2008) found only very limited support for a connection
between the decadal variation in galactic cosmic ray ionization and low cloud cover.

4 Field Observations of New Particle Formation and Ions

Evidence for the involvement of ions in the nucleation of tropospheric aerosol particles in-
cludes observations of bursts of intermediate size ions followed by increases in ultrafine
aerosol in the boundary layer (Hõrrak et al. 1998), and direct observation of very large clus-
ter ions in the upper troposphere (Eichkorn et al. 2002). Charged nucleation in the upper
troposphere is also supported by the observations of Lee et al. (2003), who used results
obtained with the laboratory data based model of Lovejoy et al. (2004) to explain the mea-
sured high ultrafine aerosol concentrations. Laakso et al. (2004a) and Laakso et al. (2007a)
observed nucleation events in the boundary layer over the boreal forest and identified events
when charged nucleation was contributing to particle formation by preferential growth of
negatively charged clusters. However, during a large fraction of these events, neutral nucle-
ation dominated particle formation, with a marginal contribution from charged nucleation.
Similarly, Vana et al. (2006) identified negative molecular clusters as preferred condensa-
tion centers in particle formation events observed over the boreal forest. The contribution
of charged nucleation appeared highest for comparatively weak particle formation events,
while during strong particle formation events, the contribution of charged nucleation was
reduced. Eisele et al. (2006) measured size and mobility distributions of charged molecular
clusters and aerosol particles at a continental site, and found that while ions contributed to
the formation of small charged sulfate clusters, charged nucleation did not play a significant
role in aerosol production during these measurements. Laakso et al. (2007b) conducted a
study of boundary layer ion and aerosol profiles over the boreal forest with a hot air balloon.
These measurements showed a distinct asymmetry between the negative and positive aerosol
size distribution, with concentrations of nanometer-sized negative particles exceeding those
of corresponding positive particles throughout the mixed layer. This indicates charged nu-
cleation in which negative ions played a significant role; however, neutral nucleation was
found to contribute to the observed particle nucleation events as well. Calculations using the
method of Kazil and Lovejoy (2007) showed that charged nucleation of sulfuric acid and wa-
ter was not able to explain the observations alone, indicating a compound other than sulfuric
acid stabilizing the negative clusters. Laakso et al. (2007b) proposed that this stabilizing
component is an organic molecule.

The contribution of neutral nucleation to the particle formation events reported in
the above studies may be driven by organic molecules (O’Dowd et al. 2002) or ammo-
nia (Coffman and Hegg 1995), which are supported as nucleation agents by laboratory
studies (Marti et al. 1997a; Ball et al. 1999; Zhang et al. 2004; Kulmala et al. 2006;
Burkholder et al. 2007). On the other hand, several field campaigns at forested sites have
found no indication for organic molecules participating in boundary layer aerosol nucle-
ation: Marti et al. (1997b) and Sellegri et al. (2005) concluded the organic compounds play
a role for condensational growth of aerosol particles, rather than in their nucleation. Simi-
larly, Janson et al. (2001) found that organic molecules were not the nucleating species re-
sponsible for nucleation events in the boundary layer, but sulfuric acid and ammonia, while
subsequent particle growth ought to have been due to condensation of organic compounds.
A role of ammonia in aerosol nucleation is contended as well, as is discussed in the next
section.
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5 Laboratory Measurements

There has been a significant experimental effort aimed at understanding possible at-
mospheric nucleation mechanisms (see e.g. reviews by Laaksonen et al. 1995; Curtius 2006;
O’Dowd and Wagner 2008). Here we focus our discussion on recent experimental work, and
emphasize sulfuric acid-based schemes. Neutral nucleation of sulfuric acid and water has
long been regarded as an important source of new particles in the atmosphere, largely due to
in situ atmospheric H2SO4 production, extremely low H2SO4 vapor pressure in the presence
of water, and optimistic predictions from classical nucleation theory (discussed in Sect. 6).
In a seminal work, Wyslouzil et al. (1991) measured the nucleation rates of H2SO4 and H2O
as function of temperature, relative humidity, and H2SO4 concentration, and found a strong
dependence on these variables. Ball et al. (1999) reported the nucleation rate as a function
of the concentration of sulfuric acid for a range of relative humidities. A major achievement
of this work was the direct measurement of sulfuric acid concentration within the nucle-
ation reactor. Both experiments yielded nucleation rates that were significantly lower than
predictions of classical nucleation theory.

Laboratory studies of atmospheric gas phase H2SO4 nucleation have advanced to study
the individual elementary clustering reactions in recent years. The goal of these studies is
to measure the thermochemical parameters (enthalpy and entropy change) of the step-wise
cluster formation reactions, and use these data to develop kinetic models that accurately
predict nucleation rates as a function of atmospheric conditions. Such experiments give
valuable new insight into the elementary steps involved in particle formation, but are a sig-
nificant undertaking for even simple binary systems because of the large number of reactions
that need to be evaluated to accurately describe the kinetics of the system. However, accu-
rate thermochemical parameters for even the initial few clustering reactions are extremely
useful, and can strongly constrain nucleation rates. Clustering of the charged sulfuric acid
water system has received considerable experimental attention, because of the expected at-
mospheric relevance of sulfuric acid in new particle formation, and because ions are directly
observable with mass spectrometry. Eisele and Hanson (2000) were the first to observe and
resolve on the molecular scale the nucleation of charged sulfuric acid clusters from precur-
sor ions. Curtius et al. (2001) and Lovejoy and Curtius (2001) measured the thermochemical
parameters for sulfuric acid uptake and Froyd and Lovejoy (2003a, 2003b) the thermochem-
ical parameters for water uptake by small neutral and charged sulfuric acid clusters. These
experimental data constitute a matrix of thermochemical parameters describing charged nu-
cleation of sulfuric acid and water. Similar experiments were conducted by Wilhelm et al.
(2004) and Sorokin et al. (2006). These ion clustering thermochemical studies show that
sulfuric acid has a stronger affinity for the hydrated negative ions than the positive ions, and
hence the positive ions are less likely to grow in typical tropospheric conditions.

Hanson and Lovejoy (2006) measured the thermochemical parameters for the formation
of the neutral hydrated dimer and trimer of sulfuric acid, averaged over the water contents
of the particles. These thermochemical data strongly constrain the atmospheric relevance of
this process, and show that classical nucleation theory overestimates the stability of the small
neutral sulfuric acid/water clusters and the corresponding nucleation rates, consistent with
the results of Wyslouzil et al. (1991) and Ball et al. (1999). While these results indicate that
the neutral nucleation of H2SO4 and H2O is inefficient in the lower troposphere, Hanson
and Lovejoy (2006) show that this mechanism is potentially important in the cold upper
troposphere, where it is likely to overwhelm the corresponding charged process.

Berndt et al. (2005) observed new particle formation in the sulfuric acid-water system at
H2SO4 concentrations exceeding 1010 cm−3, generated by evaporation from a liquid sample,
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similar to concentrations reported by Wyslouzil et al. (1991) and Ball et al. (1999). How-
ever, when the sulfuric acid was generated in the gas phase photochemically, Berndt et al.
(2005) found that much lower H2SO4 concentrations, around 107 cm−3, such as occurring
in the atmosphere, were sufficient to initiate new particle formation. A possible explanation
for the low threshold sulfuric acid concentrations and high particle formation rates when
using photochemically produced sulfuric acid may be organic molecules used by Berndt et
al. (2005) to determine the concentrations of gas phase OH and H2SO4, which may have
contributed to the formation of new particles. In a subsequent study, however, Berndt et al.
(2006) investigated nucleation of H2SO4 and H2O in the absence of organic compounds,
and with H2SO4 forming in the gas phase with or without UV photochemistry. In this study,
particle formation commenced at sulfuric acid concentrations around 107 cm−3, indicating
no significant role of the organic compounds used in the Berndt et al. (2005) work. At the
same time, no significant differences between the experiments with H2SO4 produced in the
gas phase with or without UV photochemistry were found, ruling against a possible contri-
bution of charged nucleation due to UV-produced ions in the experiment. Neutral nucleation
of sulfuric acid and water proceeding at the low concentrations of gas phase sulfuric acid
observed by Berndt et al. (2005) and Berndt et al. (2006) would significantly abate a role of
charged nucleation of these compounds in the troposphere.

While the results of Berndt et al. (2006) indicate that the organic compounds used do
not promote the formation of H2SO4/H2O particles from the gas phase, other organic com-
pounds may trigger or support nucleation of sulfate aerosol: Zhang et al. (2004) have ob-
served enhanced formation of neutral sulfuric acid particles from the gas phase in the pres-
ence of aromatic organic acids in the laboratory. Based on theoretical work, they postulate
that a strong aromatic acid-H2SO4 interaction facilitates nucleation.

The role of ammonia for sufate aerosol formation has not been conclusively established
yet: Kim et al. (1998) investigated particle formation from a NH3/SO2/H2O/air mixture in
the presence of ionizing radiation, and observed enhanced particle concentrations in the
presence of NH3, although the enhancement depended greatly on the SO2, NH3 and H2O
concentrations. Particle formation was also found to proceed faster in the NH3/SO2/H2O/air
mixture, with a lower contribution of charged nucleation compared to the SO2/H2O/air mix-
ture. However, charged nucleation was identified as a main mechanism at an early stage of
particle generation in both mixtures. Ball et al. (1999) have shown a significant enhancement
in the nucleation rate of the neutral NH3/SO2/H2O system relative to the neutral H2SO4/H2O
system, while Anttila et al. (2005), Yu (2006b), and Kurtén et al. (2007) have found that am-
monia may not be an effective nucleation agent. Laboratory measurements of the thermo-
chemical parameters for selected steps of charged H2SO4/NH3/H2O nucleation have been
conducted by Froyd (2002).

6 Theory

Classically, the nucleation of neutral particles from the gas phase is described with the
Kelvin–Thomson equation (Thomson 1906), which gives the Gibbs free energy �Gn re-
leased in the uptake of a gas phase molecule by a neutral, spherical liquid droplet:

�Gn = −4

3
πR3 kT

v
lnS + 4πR2σ, (1)

with the droplet radius R, its surface tension σ , and the supersaturation ratio S of the nu-
cleating compound above a flat liquid surface with the composition of the droplet (see e.g.
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Curtius 2006 and references therein). T is the temperature of the system, k the Boltzmann
constant, and v the volume of the nucleating molecules. Note that adding a molecule is en-
dothermic for radii smaller than a critical radius R∗, and exothermic for larger radii. The
critical radius R∗ and the Gibbs energy �G∗

n required to form a critical droplet can be deter-
mined by solving ∂�Gn

∂R

.= 0. The classical nucleation rate in steady state may then be written
(Volmer and Weber 1926) as

J = C exp

(
−�G∗

n

kT

)
. (2)

The factor C accommodates concentrations of condensable molecules and their reaction
coefficients, and has been discussed by Farkas (1927) and Becker and Döring (1935) for a
unary and by Reiss (1950) for a binary system. If the droplet is charged, then the uptake of
a molecule from the gas phase changes the electric field energy of the charged droplet due
to the increase in the volume occupied by a dielectric liquid. Thus for a charge that resides
at the center of the droplet, the Gibbs free energy released by the uptake of a molecule is (in
SI units)

�Gc = �Gn − q2

8π

(
1

ε0
− 1

ε1

)(
1

R
− 1

R + �R

)
. (3)

ε0 and ε1 are the permittivities of the gas and liquid phase, R and R + �R the radii of
the liquid droplet before and after the uptake of the molecule, respectively. Commonly,
ε1 > ε0 > 1 and R + �R > R > 0, hence �Gc < �Gn, meaning that the charged droplet
is more stable than the neutral droplet. Based on this formulation of classical nucleation
theory, Yue and Chan (1979) investigated the formation of aerosols through the nucleation
of a binary mixture of vapors and in the presence of ion sources, and derived analytical
expressions for estimating the composition, radius R∗, and Gibbs energy of formation �G∗

c

of critical droplets formed through the charged nucleation process.
Yu (2005) extended charged classical nucleation theory by accounting for the interaction

between the droplet charge and the dipole moment of the condensing gas phase molecules.
The charge–dipole interaction further reduces the Gibbs free energy for the uptake of gas
phase molecules molecule and increases the stability of the charged droplet. Accounting for
the charge–dipole interaction in the calculation of the entropies and enthalpies for the uptake
of molecules by small charged molecular clusters improves the agreement with observations
(Yu 2005).

However, the concept of a liquid droplet characterized by a bulk solution and a
composition-dependent surface tension breaks down in the context of very small particles
(diameters ∼1 nm and less). Such small particles are better described as molecular clus-
ters: in these, molecules arrange in a different spatial structure compared to molecules in
a bulk liquid, resulting in different thermochemical parameters for the uptake and loss of
gas phase molecules. As a consequence, classical nucleation theory overestimates the sta-
bility of very small particles and nucleation rates; in the case of neutral H2SO4/H2O clusters,
classical steady state nucleation rates are significantly higher than nucleation rates inferred
in laboratory measurements (Wyslouzil et al. 1991; Ball et al. 1999; Hanson and Lovejoy
2006). In addition, the structure of the molecular clusters and of the gas phase molecules
(Nadykto et al. 2004), as well as the shape of their interaction potential (Langevin 1905;
Chesnavich et al. 1980; Nadykto and Yu 2003) affect their collision rate coefficients. Fi-
nally, the assumptions of steady state, and of a negligible role of self-coagulation and coag-
ulation with pre-existing aerosol in the formation of supercritical clusters used in classical
nucleation theory need not be valid in all conditions. For these reasons, more sophisticated
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approaches to aerosol nucleation, which account for the individual cluster–molecule reac-
tions, the structure of the molecules and molecular clusters, and the interaction of subcritical
and supercritical particles, have been developed. These approaches are typically not acces-
sible by analytical methods but require numerical modeling, discussed in the next section.

7 Modeling

The most straightforward step beyond classical nucleation theory is the kinetic modeling
of particle formation, i.e. as a process of repeated uptake (and loss) of gas phase mole-
cules, with the reaction of two gas phase molecules forming a dimer as the initial step.
The thermochemical parameters from the liquid drop model can be used to describe the
individual steps, with the same limitations as discussed in the preceding section, except
that here steady-state is not assumed, and self-coagulation of the subcritical particles, and
their coagulation with pre-existing aerosol are accounted for. At the next level, the struc-
ture of the molecular clusters and gas phase molecules involved can be represented im-
plicitly by using thermochemical parameters for the uptake and loss of the molecules from
the gas phase by the clusters obtained from extensions of the liquid drop approach, ab ini-
tio calculations, or from laboratory measurements. The thermochemical parameters and the
corresponding forward and reverse rate coefficients can be calculated based on different
assumptions and treatments of the cluster-molecule interaction potential (Langevin 1905;
Chesnavich et al. 1980; Su and Chesnavich 1982; Nadykto and Yu 2003; Lovejoy et al. 2004;
Yu 2005; Yu 2007). The most widely investigated aerosol nucleation pathway via the clus-
tering of sulfuric acid and water is commonly reduced to a system where only the uptake
of sulfuric acid is resolved in individual steps, and uptake and loss of water is described in
steady state. This treatment is considered valid in tropospheric conditions, where water va-
por concentrations exceed the concentration of sulfuric acid by orders of magnitude, hence
allowing sulfuric acid/water clusters to equilibrate with respect to water uptake and loss
between individual sulfuric acid uptake/loss events.

In an early combined modeling/experimental study, Raes and Janssens (1985, 1986) in-
vestigated neutral and charged nucleation in a mixture of gaseous sulfuric acid and water,
using a model of classical neutral and charged nucleation. They observed an increase in par-
ticle concentration upon exposure of the mixture to γ radiation, indicating the occurrence of
charged nucleation, which could, however, be reproduced only in part in their simulations.
Using the same model, Raes et al. (1986) investigated aerosol formation over oceans, and
concluded that charged nucleation may be the only source of new aerosol particles forming
from the gas phase over the oceans.

Turco et al. (1998) proposed and investigated, using their model of sulfuric acid/water
aerosol, the recombination of oppositely charged molecular clusters as the process maintain-
ing tropospheric background aerosol concentrations: this mechanism could produce super-
critical aerosol particles in conditions which do not support the formation of such particles
by charged (negative or positive) nucleation. Yu and Turco (2000) were able to explain ob-
served ion mobility spectra as well as nucleation events and ultrafine particle concentrations
at different sites with charged aerosol nucleation. In as subsequent study, Yu and Turco
(2001) found that variations in ionization, e.g. from the modulation of GCR intensity by the
solar cycle, are capable of causing a significant variation in aerosol production. Yu (2002)
modeled the response of aerosol production to variations in GCR intensity during a solar
cycle as a function of altitude. The results show a positive correlation of aerosol produc-
tion and GCR intensity in the lower troposphere and a negative correlation in the upper
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troposphere. In the middle troposphere, the aerosol production was insensitive to changes in
the ionization. These findings are consistent with the GCR-cloud correlation of Marsh and
Svensmark (2000), apparent for low tropospheric clouds.

Laakso et al. (2002) developed a model of neutral, negative, and positive H2SO4/H2O
aerosol which accounts, above a certain size, for multiply charged particles. One interest-
ing result of this work is that final particle concentrations are very similar independent of
whether both negative and positive particles (symmetric case) nucleate and grow, or only
negative particles (asymmetric case). In the asymmetric case, however, the size distributions
of positive and negative particles differ during nucleation, a fact which may be exploited
experimentally to identify the nucleation pathway. Kerminen et al. (2007) investigated this
idea in detail and developed an approach for the assessment of the contribution of neutral
and charged nucleation to a particle formation event.

The modeling approaches discussed so far employed thermochemical parameters for the
formation of neutral and charged molecular clusters that were derived from classical nucle-
ation theory. Lovejoy et al. (2004) developed a detailed aerosol model of neutral and negative
H2SO4/H2O aerosol particles. Small neutral and negative H2SO4/H2O clusters are resolved
individually, and larger particles with geometric bins. Laboratory thermochemical parame-
ters measured by Curtius et al. (2001) and Froyd and Lovejoy (2003b) for the small negative
H2SO4/H2O clusters were used. Thermochemical parameters for small neutral H2SO4/H2O
clusters were obtained from the liquid drop model, adjusted to reproduce the laboratory
measurements of Ball et al. (1999). Positive particles were represented summarily by a pos-
itive molecular cluster of a given mass. The thermodynamic data for large aerosol particles
were derived from H2SO4 and H2O vapor pressures over bulk solutions, and from the liquid
drop model. Thermodynamic data for intermediate size particles were obtained by smoothly
interpolating the data for the small and large particles. The model predicts that charged nu-
cleation of H2SO4 and H2O proceeds efficiently in the middle and upper troposphere, and
explained nucleation events observed in the remote middle troposphere with the charged
H2SO4/H2O mechanism, but not generally nucleation events observed in the boundary layer
(Lovejoy et al. 2004). The model also correctly reproduced measurements of subcritical
charged H2SO4/H2O clusters and the simultaneous absence of their growth to larger sizes in
the boundary layer at a continental site (Eisele et al. 2006), confirming that charged nucle-
ation of these compounds was not responsible for the observed particle formation events.

Kazil and Lovejoy (2004) applied the Lovejoy et al. (2004) model to the conditions stud-
ied by Yu (2002) and investigated the response of aerosol formation to changes in the ion-
ization rate, such as resulting from the modulation of the GCR intensity by the decadal solar
cycle. They obtained a positive correlation of aerosol formation and ionization throughout
the troposphere in the adopted conditions. Still, depending on conditions, either a negative
or a positive correlation of the nucleation and ionization rates was shown to be possible,
which was explained as follows: an increase in the ionization rate enhances nucleation when
growth of subcritical charged clusters exceeds their loss by recombination, and reduces nu-
cleation in the opposite case.

Yu (2007) developed a detailed model of positive, negative, and neutral H2SO4/H2O
aerosol particles, forming by neutral and charged nucleation of sulfuric acid and water, and
growing by uptake of these compounds as well as by condensation of organic molecules.
The role of the charge for the composition of small H2SO4/H2O clusters is accounted for in
detail. The model resolves the small H2SO4/H2O clusters individually, and larger particles
with geometric bins. The thermochemical parameters for the uptake/loss of sulfuric acid
are implemented via the evaporation rate coefficients: For the neutral H2SO4/H2O clusters,
H2SO4 evaporation rate coefficients are calculated after Yu (2006a); for the positive and
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negative clusters, the effect of the charge and of the charge-dipole interaction (Yu 2005) on
the evaporation rate coefficients are accounted for. The model predicts that charged nucle-
ation can lead to significant new particle formation in the lower atmosphere due to charged
nucleation of sulfuric acid and water, supporting a more general role of ions in aerosol nucle-
ation in the boundary layer than indicated by the simulations of Lovejoy et al. (2004). This
vigorous particle formation can be possibly traced to the size-resolved treatment of posi-
tive clusters in the model, which could extend negative cluster lifetimes, or to the adopted
thermochemical parameters.

Kazil et al. (2006) operated the Lovejoy et al. (2004) model on long term average ambient
conditions and composition data in the troposphere over the oceans, obtained from reanaly-
sis and chemical transport model runs. These simulations predict negligible charged and
neutral nucleation of H2SO4 and H2O in the tropical lower troposphere, even in the absence
of pre-existing aerosol. At mid-latitudes, charged nucleation would proceed efficiently, pro-
vided that pre-existing aerosol particles are depleted e.g. by precipitation, and exceed neutral
nucleation. The simulations also show very efficient charged nucleation in the tropical upper
troposphere up to the highest considered model level. At higher altitudes, however, neutral
nucleation is likely to dominate (Hanson and Lovejoy 2006). Using correlations between
aerosol concentrations and cloud properties derived from satellite observations, Kazil et al.
(2006) estimated that the difference in daily mean shortwave radiative forcing between solar
maximum and minimum due to the response of cloud cover and albedo to the difference in
charged aerosol nucleation in the lower troposphere falls short of the difference of absorbed
solar irradiance between solar maximum and minimum of 0.24 W m−2 due to the concurrent
variation in solar radiative output. This upper limit estimate is much smaller than the dif-
ference in radiative forcing of 1.2 W m−2 between solar maximum and minimum given by
Marsh and Svensmark (2000) due to the variation of low cloud cover based on ISCCP data
(Rossow and Schiffer 1999) for the period 1983–1994, but close to the value of Kristjánsson
and Kristiansen (2000), who found, based on the same cloud data, that radiative forcing was
reduced by 0.29 W m−2 at solar minimum 1986 compared with solar maximum 1990.

Most recently, Yu et al. (2008) conducted a global study of charged nucleation of H2SO4

and H2O in a chemical transport model, using nucleation rates calculated with the model of
Yu (2007). The resulting nucleation rates compare favorably with a comprehensive dataset of
new aerosol formation events, showing agreement in the spatial distribution and strength in
aerosol nucleation: At mid-latitudes, in the northern hemisphere, and in particular over con-
tinents, lower tropospheric nucleation rates are significantly stronger compared with tropi-
cal latitudes, the southern hemisphere, and oceans, respectively. Charged nucleation is also
shown to proceed very efficiently in the tropical upper troposphere. A comparison of the
simulated nucleation rates with primary particle emissions rates positions charged nucle-
ation as a significant source of aerosol on a global scale, possibly explaining many observed
new particle formation events.

8 Summary and Outlook

Groundbreaking studies have cleared some of the fog blurring our understanding of particle
formation from the gas phase in the atmosphere and the role of ions therein: Laboratory
studies have identified neutral and charged nucleation of sulfuric acid and water as efficient
processes for new particle formation from the gas phase in favorable conditions, placed
corresponding model simulations on a dependable footing, and helped understanding the
relative importance of these processes in the atmosphere. Neutral nucleation of sulfuric acid
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and water appears more efficient than charged nucleation of these compounds in the cold up-
per troposphere, although charged nucleation has been found to proceed in this atmospheric
region as well. In the middle and lower troposphere, neutral nucleation of sulfuric acid
and water is likely to be negligible. Field observations indicate that while both neutral and
charged nucleation proceed in these regions, in the continental boundary layer, where most
field studies have been performed, neutral nucleation is more frequent and efficient, and
involves chemical compounds beyond sulfuric acid and water. On the other hand, charged
nucleation of sulfuric acid and water has been found to explain the observed nucleation
events in modeling studies, depending on the implementation of the nucleation process and
the thermochemical data used. However, models agree that variations in ionization such as
occurring in the course of the decadal solar cycle have a considerable effect on the charged
nucleation rate, although no uncontested effect on concentrations of cloud condensation
nuclei or on clouds themselves has been found. Possible explanations are that charged nu-
cleation may also arise from ionization due to decay of radon, which does not vary with
the solar cycle, and has to compete with neutral nucleation mechanisms and surface aerosol
emissions.

In order to quantify the contribution of ions to atmospheric aerosol nucleation and iden-
tify the conditions in which charged nucleation matters as well as their spatial distribution,
both charged and neutral nucleation processes need to be understood. Conflicting research
results complicate the task: The species involved in neutral nucleation in addition to sulfuric
acid are thought to be organic molecules and ammonia, but theoretical, field, and laboratory
studies have come to contrasting findings on the role of these compounds. An additional
complication arises from the possibility that these compounds may be involved in charged
nucleation as well. The questions surrounding the relevance of ions for atmospheric nu-
cleation are therefore far from settled, and numerous research challenges await their solu-
tion: Methods for the determination of the composition of small clusters observed in the
atmosphere need to be improved and corresponding field studies conducted to identify the
compounds involved in aerosol nucleation. Laboratory and ab initio studies on the structure
and thermochemical parameters for the formation of small neutral and charged molecular
clusters, in particular those containing sulfuric acid, ammonia, and water, as well as organic
molecules, are needed to understand the relative contributions of neutral and charged nu-
cleation to new particle formation, and to improve the representation of aerosol nucleation
in atmospheric models. Such representations will have to be able to simultaneously accom-
modate different nucleation pathways. They must be computationally efficient on the one
hand, but reproduce results obtained with a detailed model with sufficient precision on the
other. At the same time, the sensitivity of processes in atmospheric models to aerosol nucle-
ation needs to be investigated: Aerosol nucleation competes against aerosol emissions from
the surface, and changes in the nucleation rate need not to translate into similar changes
in aerosol and cloud condensation nuclei concentrations, or cloud properties. However, a
limited sensitivity of atmospheric models to nucleation rates changes needs not necessarily
imply an insensitivity of the actual atmosphere to aerosol nucleation or to changes thereof.
These steps will bring us closer to understanding aerosol nucleation in the atmosphere and
the contribution of ions, as well as the possible links between solar variability and the tro-
posphere.
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