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Abstract. The question of multifractality is of great importance because it allows us to investigate in-

terplanetary hydromagnetic turbulence. The multifractal spectrum has been investigated with Voyager

(magnetic field) data in the outer heliosphere and with Helios (plasma) data in the inner heliosphere.

We use the Grassberger and Procaccia method that allows calculation of the generalized dimensions of

the solar wind attractor in the phase space directly from the cleaned experimental signal. We analyze

time series of plasma parameters of the low-speed streams of the solar wind measured in situ by Helios

in the inner heliosphere. The resulting spectrum of dimensions shows a multifractal structure of the

solar wind attractor. In order to quantify that multifractality, we use a simple analytical model of the

dynamical system. Namely, we consider the generalized self-similar baker’s map with two parameters

describing uniform compression and natural invariant measure on the attractor of the system. The

action of this map exhibits stretching and folding properties leading to sensitive dependence on initial

conditions. The obtained solar wind singularity spectrum is consistent with that for the multifractal

measure on the weighted baker’s map.
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1. Introduction

The question of multifractality is of great importance also for the solar wind
community, because it allows us to investigate the nature of interplanetary
hydromagnetic turbulence (e.g., Marsch and Tu, 1997; Bruno et al., 2001).
Starting from Richardson’s version of turbulence, many authors try to recover
the observed scaling exponents using various models of the turbulence cas-
cade for the dissipation rate. In particular, the multifractal spectrum was in-
vestigated with Voyager (magnetic field) data in the outer heliosphere (e.g.,
Burlaga, 1991, 2001) and with Helios (plasma) data in the inner heliosphere
(e.g., Marsch et al., 1996).

A direct determination of the multifractal spectrum from the data is known to
be a difficult problem. Indication for a chaotic attractor in the slow solar wind has
been given by Macek (1998) and Macek and Redaelli (2000). In particular, Macek
(1998) has calculated the correlation dimension of the reconstructed attractor in the
solar wind and has provided tests for this measure of complexity including statistical
surrogate data tests (Theiler et al., 1992). Further, Macek and Redaelli (2000) have
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shown that the Kolmogorov entropy of the attractor is positive and finite, as it holds
for a chaotic system.

We have extended our previous results on the dimensional time series analysis
(Macek, 1998). Namely, we have applied the technique that allows a realistic calcu-
lation of the generalized dimensions of the solar wind flow directly from the cleaned
experimental signal by using the Grassberger and Procaccia (1983) method. The
resulting spectrum of dimensions shows the multifractal structure of the solar wind
in the inner heliosphere (Macek et al., 2005, 2006). Using a short data sample,
we first demonstrate the influence of noise on these results and show that noise
can efficiently be reduced by a singular-value decomposition filter (Macek, 2002,
2003). Using a longer sample we have shown that the multifractal spectrum of the
solar wind attractor reconstructed in the phase space is consistent with that for the
multifractal measure on the self-similar weighted baker’s map (Macek et al., 2005)
and, in particular, with the weighted Cantor set (Macek et al., 2006).

2. Solar Wind Data

In this paper, we analyze the Helios 2 data using plasma parameters measured
in situ in the inner heliosphere (Schwenn, 1990). The X-velocity (mainly radial)
component of the plasma flow, v, has been investigated by Macek (1998) and
Macek and Redaelli (2000). However, it is known that various disturbances are
superimposed on the overall structure of the solar wind, including mainly Alfvén
waves. Therefore, in this paper we take into account Alfvénic fluctuations of the
flow. Namely, Macek et al. (2005) analyze the radial (X-) component of one of the
Elsässer variables, x = z+, representing Alfvénic fluctuations propagating outward
from the Sun. We have z+ = v + vA for the unperturbed magnetic field Bo pointing
to the Sun and z+ = v − vA for Bo pointing away from the Sun, where vA =
B/(μoρ)1/2 is the Alfvénic velocity calculated from the experimental data: the
radial component of the magnetic field of the plasma B and the mass density ρ

(μo is the permeability of free space). Assuming absence of radial evolution, we
have merged two selected time intervals separated by about 0.5 AU as observed by
the Helios 2 spacecraft in 1977 (i) from 116:00 to 121:21 (day:hour) at distances
0.30–0.34 AU and (ii) from 348:00 to 357:00 at 0.82–0.88 AU from the Sun. These
raw data of v and vA, N = 26,163 points, with sampling time of �t = 40.5 s are
shown in Figure 1a, taken from Macek et al. (2005). The first sample of N = 10,644
points have been investigated by Macek et al. (2006).

In Macek et al. (2005) slow trends were subtracted from the original data v(ti )
and vA(ti ), where i = 1, . . . , N . The data with the initial several-percent noise level
were (eightfold) smoothed (replacing each data point with the average of itself
and its two nearest neighbors). Next, the data have been filtered using a method of
singular-value decomposition analysis described by Albano et al. (1988). As argued
by Macek (1998) we use five principal eigenvalues. The detrended and filtered data
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TABLE I

Characteristics of the solar wind filtered data, z+.

Skewness (κ3) 0.59

Kurtosis (κ4) 0.37

Dominant frequency 2.5 × 10−5 Hz

Autocorrelation time (ta) 7.05 × 103 s

Capacity dimension (D0) 3.87 ± 0.10

Information dimension (D1) 3.26 ± 0.08

Correlation dimension (D2) 3.35 ± 0.06

Figure 1. (a) The raw data of the radial flow velocity with Alfvénic velocity, v and vA, observed by

the Helios 2 spacecraft in 1977 from 116:00 to 121:21 (day:hour) at a distance of 0.3 AU and from

348:00 to 357:00 at a distance of 0.9 AU from the Sun. (b) The Elsässer variable z+ = v ± vA for Bo

pointing to/away from the Sun for the detrended and filtered data using singular-value decomposition

with the five largest eigenvalues.

for the radial component of the Elsässer variable x = z+ are shown in Figure 1b
also taken from Macek et al. (2005).

Table I summarizes selected calculated characteristics of the detrended data
cleaned by using the singular-value decomposition filter (see, Macek et al., 2005).
The probability distributions are clearly non-Gaussian. We have a large skewness of
∼0.59 (as compared with its normal standard deviation 0.02) and a large kurtosis
of 0.37, the latter was small for the analysis with no magnetic field (cf. Macek,
1998). We choose a time delay τ = 174 �t , equal to the autocorrelation time ta
where the autocorrelation function decreases to 1/e (cf. Macek, 2003, Figure 1b).
This makes certain that x(t) and x(t + τ ) are at least linearly time independent
(e.g., Ott, 1993).



332 W. M. MACEK

3. Generalized Dimensions

The generalized dimensions of attractors are important characteristics of complex
dynamical systems (e.g., Grassberger, 1983; Hentschel and Procaccia, 1983). Since
these dimensions are related to frequencies with which typical orbits in the phase
space visit different regions of the attractors, they provide information about dy-
namics of the systems (Ott, 1993). More precisely, one may distinguish a probability
measure from its geometrical support, which may or may not have fractal geome-
try. Then, if the measure has different fractal dimensions on different parts of the
support, the measure is multifractal (Mandelbrot, 1989).

Using our time series of equally spaced, detrended, and cleaned data, we con-
struct many vectors X(ti ) = [x(ti ), x(ti + τ ), . . . , x(ti + (m − 1)τ ) ] in the em-
bedding phase space of dimension m, where i = 1, . . . , n with n = N − (m − 1)τ .
Then, in this space we construct a large number M(r ) of hyperspheres of radius r
which cover the presumed attractor. If p j is the probability measure that a point
from a time series falls in a typical j th hypersphere, using the q-order function
Iq(r ) = ∑

(p j )
q, j = 1, . . . , M , the q-order generalized dimension Dq is given,

e. g., by Ott (1993)

τ (q) ≡ (q − 1)Dq = lim
r→0

ln Iq(r )

ln r
, (1)

where q is a continuous index, −∞ < q < ∞. We see from Equation (1) that the
larger q is, the more strongly the higher-probability spheres (visited more frequently
by a trajectory) weighted in the sum for Iq(r ). Only if q = 0, all the hyperspheres
are counted equally, I0 = M , and we recover the box-counting dimension, D0 =
limr→0 [ln M(r )/ ln(1/r )]. The limit q → 1 provides the information dimension,
D1 = limr→0 [

∑
(p j ln p j )/ ln r ].

Writing Iq(r ) = ∑
p j (p j )

q−1 as a weighted average 〈(p j )
q−1〉, one can as-

sociate bulk with the generalized average probability per hypersphere μ =
q−1
√〈(p j )q−1〉, and identify Dq as a scaling of bulk with size, μ ∝ r Dq . Since the data

cannot constrain well the capacity dimension D0, we look for higher-order dimen-
sions, which quantify the multifractality of the probability measure on the attractor.
For example, the limit q → 1 leads to a geometrical average, and the information
dimension is D1 ≈ 〈ln p j 〉/ ln r . For q = 2, the generalized average is the ordinary
arithmetic average, with the standard correlation dimension D2 ≈ ln〈p j 〉/ ln r , and
for q = 3 it is a root-mean-square average. In practice, the probability for a j th
hypersphere of radius r is the ratio of the number of distances from a chosen vector
X(t j ) that are less than r to the total number of distances between that vector and
other vectors

p j � 1

n − 2nc − 1

n∑
i=nc+1

θ (r − |X(ti ) − X(t j ) |) (2)
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Figure 2. The slopes Dq,m (r ) = d[ln Cq,m (r )]/d(ln r )/(q − 1) of the generalized correlation sum

Cq,m (r ) vs. ln r (normalized) obtained for detrended and filtered data are shown for various embedding

dimensions m for (a) q = 2 and (b) q = −2.

with θ (x) being the unit step function, and nc is the Theiler’s (1986) correction
(nc = 4 is chosen). Finally, for a given m, Iq(r ) is taken to be equal to the generalized
q-point correlation sum (Grassberger and Procaccia, 1983)

Cq,m(r ) = 1

nref

nref∑
j=1

(p j )
q−1, (3)

where nref is the number of reference vectors (nref = 5,000 is taken). For large
dimensions m and small distances r in the scaling region it can be argued that
Cq,m(r ) ∝ r τ (q), where τ (q) is an approximation of the ideal limit r → 0 in
Equation (1) for a given q (Grassberger and Procaccia, 1983).

4. Dimensions and Multifractality

We first calculate the natural logarithm of the generalized correlation sum Cq,m(r )
of Equation (3) versus ln r (normalized) for various q and embedding dimensions:
m = 4 (dotted curve), m = 5 (diamonds), m = 6 (triangles), m = 7 (squares), m =
8 (crosses), m = 9 (pluses), and m = 10 (stars) (cf. Macek, 2002, Figure 2). We
have verified that for q > 0 the slopes Dq,m(r ) = d[ln Cq,m(r )]/d(ln r )/(q − 1) in
the scaling region of ln r do not change substantially with the number of points
used, providing that the dimension of the attractor is well below 2 log10 N ≈ 9, for
N =26,163 (Eckmann and Ruelle, 1992). The results obtained using the moving
average filter and singular-value decomposition linear filter for standard q = 2, as
taken from Macek et al. (2005, Figure 2), and in addition q = −2 are presented
in Figure 2a and b, correspondingly, while those obtained for somewhat shorter
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Figure 3. (a) The generalized dimensions Dq in Equation (1) as a function of q. The correlation

dimension is D2 = 3.4 ± 0.1 (see Table I). The values of Dq + 3 are calculated analytically for the

weighted baker’s map with p = 0.12 and s = 0.47 (dashed-dotted line). (b) The singularity spectrum

f (α) as a function of α. The values of f (α) projected onto one axis for the weighted baker’s map

with the same parameters (dashed-dotted line).

samples (N = 4,514) have been discussed by Macek (1998) and by Macek and
Redaelli (2000), using the nonlinear Schreiber filters.

Usually in all these cases for q > 0 we have clear plateaus over a decade; the
slopes of Cq,m(r ) saturate for m > 5 and the average slope for 6 ≤ m ≤ 10 is
taken as τ = (q − 1)Dq . In particular, for the standard (q = 2) correlation sum
we have obtained an average of D2 = 3.35 ± 0.06. The obtained measures of the
attractor have been subjected to the surrogate data test (Theiler et al., 1992). As has
been demonstrated by Macek (1998), if the original data are indeed deterministic,
analysis of these surrogate data will provide values that are statistically distinct
from those derived for the original data. The results of this test are consistent with
the attractor of low dimensions.

Next, the generalized dimensions Dq in Equation (1) as a function of q with the
statistical errors of the average slopes (obtained using weighted least-squares fitting)
over the scaling range are shown in Figure 3a (cf. Macek et al., 2005, Figure 3). In
addition, here in Figure 3b we show the singularity spectrum f (α), which follows
from Equation (1) by using Legendre transformation (e.g., Ott, 1993): α(q) = τ ′(q),
and f (α) = qα−τ . It is well known that for q < 0 the spheres (or cubes) visited less
frequently by a trajectory of the system are more important, and we have some basic
statistical problems, as seen in Figure 2b. Nevertheless, in spite of large statistical
errors in Figure 3b, especially for q < 0, the multifractal character of the measure
can still be discerned. Therefore, one can say that the spectrum of dimensions still
exhibits the multifractal structure of the slow solar wind in the inner heliosphere.

In order to quantify that multifractality, we use a simple two-dimensional an-
alytical model of the dynamical system. Namely, we consider the generalized
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self-similar baker’s map acting on the unit square with two parameters p and s
describing natural invariant measure and uniform compression on the attractor of
the system, correspondingly (e.g., Ott, 1993):

xn+1 =
{

sxn

(1 − s) + sxn

for yn < p

for yn ≥ p

yn+1 =

⎧⎪⎨⎪⎩
yn

p
yn − p

1 − p

for yn < p

for yn ≥ p

(4)

where the probability of visiting one region of the square is p (≤1/2), and for
the remaining region is 1 − p. Another parameter s (≤1/2) describes both the
uniform stretching and folding in the phase space, i.e., s is a folding and dissipation
parameter. For the generalized dimensions of the attractor projected onto one axis,
for any q in Equation (1), one obtains analytically (e.g., Ott, 1993)

τ (q) ≡ (q − 1)Dq = ln[pq + (1 − p)q]

ln s
. (5)

The multifractal singularity spectrum f (α) is also obtained analytically from Equa-
tion (5) by Legendre transformation. In the absence of dissipation (s = 1/2) one
recovers the formula for the multifractal cascade p-model for fully developed tur-
bulence (Meneveau and Sreenivasan, 1987), which obviously corresponds to the
generalized weighted Cantor set (Hentschel and Procaccia, 1983; Macek, 2002,
Figure 3; Macek et al., 2006, Figure 4). In particular, the usual middle one-third
Cantor set without any multifractality is recovered with p = 1/2 and s = 1/3.

The difference of the maximum and minimum dimensions, associated with the
least-dense and most-dense points on the attractor, correspondingly, is D−∞ −
D+∞ = ln(1/p −1)/ln(1/s) and in the limit p → 0 this difference rises to infinity.
Hence, for a given s the parameter p can be regarded as a degree of multifractality.
For illustration the results for Dq and f (α), fitted to the experimental values of Dq

with p = 0.12 and s = 0.47 in Equation (5) (see, Macek et al., 2005, Figure 3) are
also shown here by dashed-dotted lines in Figure 3a and b, correspondingly. We
see that the multifractal spectrum of the solar wind is roughly consistent with that
for the multifractal measure on the self-similar weighted baker’s map.

Naturally, the value of the parameter p (within some factor) is related to the usual
models, which starting from Richardson’s version of turbulence, try to recover the
observed scaling exponents, which is based on the p-model of turbulence (e.g.,
Meneveau and Sreenivasan, 1987). The value of p = 0.12 obtained here is roughly
consistent with the fitted value in the literature both for laboratory and the solar wind
turbulence, which is in the range 0.13 ≤ p ≤ 0.3 (e.g., Burlaga, 1991; Carbone,
1993; Carbone and Bruno, 1996; Marsch et al., 1996). One should only bear in mind
that here we take probability measure directly on the solar wind attractor, which
quantifies multifractal nonuniformity of visiting various parts of the attractor in
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the phase space, while the usual p-model is related to the solar wind turbulence
cascade for the dissipation rate, which resides in the physical space.

5. Conclusions

We have shown that the multifractal spectrum of the solar wind attractor is consis-
tent with that for the multifractal measure on the self-similar weighted baker’s map.
This map exhibits stretching and folding properties leading to sensitive dependence
on initial conditions. The values of the parameters fitted demonstrate small dissi-
pation of the complex solar wind plasma and show that some parts of the attractor
in the phase space are visited at least one order of magnitudes more frequently than
other parts (cf. Macek, 1998, Figure 5). The obtained characteristics of the attractor
are significantly different from those of the surrogate data. Thus, these results show
multifractal structure of the solar wind in the inner heliosphere. Hence, we suggest
that there exists an inertial manifold for the solar wind, in which the system has
multifractal structure, and where noise is certainly not dominant. The multifrac-
tal structures, convected by the wind, might probably be related to the complex
topology shown by the magnetic field at the source regions of the solar wind.
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