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Abstract. Distributions with excess numbers of superthermal particles are common in space envi-
ronments. They are well modelled by the isotropic kappa distribution, or, where magnetic effects
are important, the kappa-Maxwellian. This paper presents a review of some studies of electrostatic
and electromagnetic waves in such plasmas, based on the associated generalized plasma dispersion
functions, Zκ and ZκM. In particular, the effects of low values of κ are considered, i.e. strongly
accelerated distribution functions. Recently the full susceptibility tensor for oblique propagation of
electromagnetic waves in a kappa-Maxwellian magnetoplasma has been established and has been
applied to the study of whistler waves.
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1. Introduction

Recent observations have shown that kinetic effects on space plasma waves may be
important. Although in the kinetic theory, it is often assumed that the distribution
function is Maxwellian-based, other distributions are commonly observed, e.g. a
power-law form: 4πv2 f (v)dv ∝ v−αdv for |v| > vth. Such distributions have a
high-energy ‘tail’, i.e. more superthermal particles than a Maxwellian, but may be
Maxwellian-like at low energies.

Vasyliunas (1968) modelled observed distribution functions by a ‘generalized
Lorentzian’ or ‘kappa’ distribution. In its usual form, the normalized isotropic
κ-distribution is written as

fκ (v) = (πκθ2)−3/2 �(κ + 1)

�
(
κ − 1

2

)(
1 + v2

κθ2

)−(κ+1)

(1)

Here the modified thermal speed θ = ( 2κ−3
κ

)
1
2 (T/m)1/2, and hence the distributions

are defined for κ > 1.5. The ‘kappa distribution’ is, in fact, a family of power-law-
like distributions, the real-valued parameter κ allowing one to fit to the actual distri-
bution (Figure 1). It may vary from a Lorentzian-like form (κ � 1.5), representing
a hard, accelerated spectrum, to a Maxwellian (κ → ∞). Below the thermal speed,
f (v) is Maxwellian-like, albeit with a slightly reduced density, whereas above the
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Figure 1. Representation of typical kappa distributions for κ = 1.6, 2, 3, and infinity, showing in-
creasing ‘tail’ for lower κ values.

thermal speed, f (v) approaches a power-law form, with α � 2κ . Kappa distribu-
tions have been found to fit the data from satellite experiments well, with typical
values of 2 < κ < 6. Some examples are as follows: Christon et al. (1988) matched
the plasma sheet distributions with κi = 4.7 and κe = 5.5, and distant magnetotail
data with κe = 5.5; and in the earth’s foreshock, Feldman et al. (1982, 1983) fit-
ted the electrons with 3 < κe < 6, while Lemaire’s group (Pierrard and Lemaire,
1996; Maksimovic et al., 1997) developed a Lorentzian ion exosphere model and
associated solar wind model with κ-distributed coronal electrons, using, typically,
2 < κ < 6. with κe = 4 yielding good agreement with electron distributions ob-
served in the solar wind.

There is currently no accepted theoretical explanation for the common occur-
rence of kappa distributions in space. However, Treumann (2001) and Treumann
et al. (2004) have developed the statistical mechanics of stable, nonlinear (turbu-
lent) states far from equilibrium. This work provides a heuristic explanation for
κ-distributions in collisionless plasmas. Leubner (2004) has invoked ‘Tsallis statis-
tics’ (Tsallis (1988) revived earlier work on non-extensive entropy representations
due to Daroczy (1970)) to describe both high-energy tails and core-halo distribu-
tions, reported, for example, by IMP 6 (Feldman et al., 1973). We also note that
theory predicts that Fermi acceleration at collisionless shocks should yield a spec-
tral index α = 3u1

u1−u2
= 3r

r−1 ≤ 4, where r = u1/u2 is the shock compression ratio,
i.e. κ ≤ 2 (cf. Mace and Hellberg, 1995).

Extensive wave studies using κ models were carried out by Summers, Thorne,
and co-workers (Summers and Thorne, 1990, 1991a,b, 1992; Thorne and Summers,
1991; Meng et al., 1992; Xue et al., 1993). These were confined to integer values
of κ only. Extending this work, Mace and Hellberg (1995) obtained a generalized
plasma dispersion function, Zκ , for arbitrary real κ (in general, α, and hence κ , is not
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an integer), expressed in terms of the Gauss hypergeometric function 2 F1, which is
analytically well-understood and easily calculated. Some of the earlier applications
of Zκ have been discussed in a review paper (Hellberg et al., 2000a). The Zκ

function for the isotropic kappa distribution has been applied to (a) Electron plasma
waves (EPW) (Mace and Hellberg, 1995; Mace et al., 1998); (b) Ion-acoustic waves
(IAW) (Mace et al., 1996, 1998); (c) Electron-acoustic waves (EAW) (Mace et al.,
1999; Hellberg et al., 1998, 2000b) (d) Electrostatic fluctuations (Mace et al., 1996,
1998) and (e) Electromagnetic waves in a magnetoplasma, propagating parallel or
perpendicularly to the magnetic field, B0 (Mace, 1996a,b, 1998, 2003, 2004).

Unfortunately, when waves in a magnetized plasma having an isotropic κ

distribution are studied, the required integrals over perpendicular velocity space
prove intractable for oblique propagation, ruling out that approach. Although Mace
(1996a,b) has used a Gordeyev formulation to find a general time-like integral
expression for the relevant dielectric tensor elements, the result is not particularly
transparent.

As there is a preferred direction in space, viz. along the magnetic field, the as-
sumption of an isotropic distribution is also not ideally suited to a magnetized
plasma. One would expect equilibration (isotropization) to occur in the plane
perpendicular to B0, leading to a Maxwellian form, together with an acceler-
ated (power-law) behaviour along the field. We have thus introduced the ‘kappa-
Maxwellian’ distribution, fκM, which is a product of a 1-dimensional kappa dis-
tribution along the field, and a Maxwellian distribution in the perpendicular plane
(Hellberg and Mace, 2002). This distribution is also a better fit to data such as
that of Marsch (1991), which revealed velocity distribution contours that are elon-
gated along a preferred direction. Although solar wind plasmas have been fitted by
double-κ distributions (Pierrard et al.), fκM is a good approximation for wave-study
purposes, leads to tractable expressions, and is an improvement on an isotropic κ

distribution.
Using an equilibrium distribution fκM, we have derived the generalized plasma

dispersion function ZκM appropriate for electrostatic waves, and have used it to
study obliquely propagating IAW (Hellberg and Mace, 2002) and EPW (Mace
and Hellberg, 2003). We have recently found the general susceptibility tensor for
the kappa-Maxwellian plasma, and this enables us to study obliquely propagating
electromagnetic waves. Our first application is to the whistler mode (Cattaert et al.,
2005).

2. Waves in a κ Plasma

2.1. THE GENERALIZED PLASMA DISPERSION FUNCTION Zκ

In the kinetic theory of waves, a pivotal role is played by the plasma dispersion
function, which for a Maxwellian velocity distribution is the well-known Z-function
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of Fried and Conté (1961)

Z (ξ ) = 1

π1/2

∫ ∞

−∞

e−s2
ds

(s − ξ )
; Im(ξ ) > 0. (2)

Substituting the κ distribution (Summers and Thorne, 1990), one obtains the gen-
eralized plasma dispersion function (Mace and Hellberg, 1995),

Zκ (ξ ) = 1

π1/2κ3/2

�(κ + 1)

�
(
κ − 1

2

) ∫ ∞

−∞

ds
(s − ξ ) (1 + s2/κ)κ+1

Im(ξ ) > 0, (3)

which is valid for arbitrary real κ > 1.5. It is seen that the integrand has branch
points at s = ±i

√
κ . A suitable deformation of the Landau contour leads to

Pochhammer’s integral, and hence one obtains

Zκ (ξ ) = i
(
κ + 1

2

) (
κ − 1

2

)
κ3/2(κ + 1)

2 F1

[
1, 2κ + 2; κ + 2;

1

2
(1 − ξ/ i

√
κ)

]
, (4)

i.e. Zκ is proportional to the Gauss hypergeometric function, 2 F1, and can thus
be easily manipulated analytically and calculated, e.g. using standard routines (cf.
Press et al., 1992) or MATHEMATICA.

One may deduce many relationships from the hypergeometric function form.
For instance, the derivative relationship.

Z ′
κ (ξ ) =−2

(
κ + 1

2

) (
κ − 1

2

)
κ2

{
1 + κ + 1

κ + 1
2

(
κ + 1

κ

)1/2

ξ Zκ+1

[(
κ + 1

κ

)1/2

ξ

]}
,

reduces to the usual expression Z ′(ξ ) = −2{1 + ξ Z (ξ )} for κ → ∞.

2.2. ELECTROSTATIC WAVE STUDIES

The dispersion relation for one-dimensional electrostatic waves in a κ distribution
plasma is

ε(k, ω) = 1 + 2
∑

j

ω2
pj

k2θ2
j

{
2κ j − 1

2κ j
+ ω

kθ j
Zκ j

(
ω

kθ j

)}
= 0. (5)

Using the expression for Z ′
κ (ξ ), this may also be written as

1 −
∑

j

(κ j − 1)2

κ j
(
κ j − 3

2

) ω2
pj

k2θ2
j

Z ′
κ j −1

[(
κ j − 1

κ j

)1/2
ω

kθ j

]
= 0. (6)

Although earlier work on this topic has been reviewed by Hellberg et al. (2000a),
we summarize the main effects of the ‘tail’ particles for completeness.

(i) The dispersion relation shows significant, albeit monotonic, dependence on
κ , the phase velocity increasing with κ . Damping of the high-phase velocity
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EPW is strongly affected by the ‘tail’ particles in a low-κ distribution, but the
κ dependence is, overall, complicated (Mace and Hellberg, 1995):

γ � −π1/2 �(κe + 1)

�
(
κe − 1

2

)ωpe(2κe − 3)κe−1/2(k2λ2
De

)κe−1/2
. (7)

(ii) Chateau and Meyer-Vernet (1991) showed that, in a kappa-distribution plasma,
the additional superthermal particles reduce the Debye length, viz.

λκα ≡
[(

κα − 3
2

κα − 1
2

)
ε0Tα

nαq2
α

] 1
2

. (8)

This was also found by Bryant (1996), and, independently, by Mace et al.
(1996, 1998). As shielding by electrons plays an important role in the IAW,
this affects both dispersion and damping. The wave dynamics are similar to
those of the usual IAW, but the replacement of λDe by λκe leads to a monotonic
dependence of the phase velocity on κ, ωpiλκe ∝ [(κe − 3

2 )/(κe − 1
2 )]1/2. The

effect of low κ on damping/growth (e.g. in the presence of a drift (cf. Meng
et al., 1992)) is not intuitively obvious. A number of parameters have to be
considered to analyse the role of resonant particles, including the wave phase
speed, the drift speed and the two thermal speeds. In addition one needs to fold
into the discussion the excess fast population, and the associated reduction in
other parts of the distribution. There are three ranges of kλDe (Mace et al.,
1998): for kλDe < 1.5 damping shows a monotonic decrease with increasing
κ; for kλDe > 4 the trend is reversed; while intermediate kλDe values provide
the transition.

(iii) Electrostatic fluctuations are enhanced in low-κ plasmas (Mace et al., 1998).
This follows because the plasma parameter g = 1/nλ3

κ , a measure of discrete
particle effects, is considerably increased as the Debye length is decreased
with decreasing κ .

(iv) Electron-acoustic waves (EAW) are normal modes of a two-electron-
temperature plasma, with a frequency � ωpe. Hot electron Landau damping
for kλDh � 1 and cool electron Landau damping for short wavelength modes
leaves waves with intermediate k weakly damped if the temperature ratio,
Th/Tc 
 1. The EAW, EA instability, and EA solitons have been invoked to
describe, for instance, broadband electrostatic noise (BEN) in the magneto-
tail (Tokar and Gary, 1984), electrostatic noise in the polar cusp (Schriver
and Ashour-Abdalla, 1987), BEN and hiss in the cusp/cleft region (Mace and
Hellberg, 1993). Assuming cold ions, cool Maxwellian electrons and hot κ-
electrons, the dispersion relation is

1− ω2
pc

2k2v2
c

Z ′
(

ω√
2kvc

)
− (κ − 1)2

κ
(
κ − 3

2

) ω2
ph

k2θ2
h

Z ′
κ−1

[(
κ − 1

κ

)1/2
ω

kθh

]
= 0. (9)

Mace et al. (1999) found weakly-damped existence domains in the space of
kλDc and nh/ne as a function of temperature ratio, Th/Tc, and compared the
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results with an earlier bi-Maxwellian study (Mace and Hellberg, 1990). Su-
perthermal particles were found to affect both dispersion and damping. The
phase velocity is �ωpcλκh, yielding increased hot electron Landau damping,
and qualitatively, a decrease in κ has similar effects to an increase in tempera-
ture. Hellberg et al. (1998, 2000b) revisited the earlier experiment of Karlstad
et al. (1984) for which neither a bi-Maxwellian nor a Maxwellian-waterbag as-
sumption fitted both dispersion and damping. The experimental data were well
fitted with the cold electrons having κc = 50 (Maxwellian), and hot electrons
with κh = 3.8. This showed that the technique can be used to deduce the value
of κc,h, i.e. it is a useful diagnostic for the shape of the velocity distribution
functions.

2.3. ELECTROMAGNETIC WAVES IN A MAGNETOPLASMA

Early studies of parallel propagating electromagnetic waves in a magnetized κ or bi-
Lorentzian plasma were carried out inter alia by Leubner (1983) and Summers and
Thorne (1990), as well as by, for example, Thorne and Summers (1991), and Xue
et al. (1993). Mace (1996a,b) obtained a general Gordeyev-type integral expression
for the dielectric tensor in a uniform magnetoplasma. This general formalism, al-
though complicated, enables one to recover the dispersion relations for electrostatic
waves, and L and R modes propagating along the magnetic field, in terms of Zκ .
Hence Mace (1998) could model the nearly field-aligned ‘1 Hz’ whistlers observed
in Earth’s electron foreshock.

More recently, Mace (2003, 2004) has carried out both electrostatic and elec-
tromagnetic calculations on electron Bernstein modes propagating perpendicularly
to the magnetic field. The dispersion relation is expressed in terms of 1 F2 and 2 F3.
Great accuracy was required in the numerical solution as poles are in close prox-
imity to roots. He found significant differences in the electrostatic regime between
Maxwellian and kappa distributions.

The Radio Plasma Imager (RPI) aboard the IMAGE satellite is an active experi-
ment that stimulates short-range plasma wave echoes and plasma resonances, which
occur, for instance, at n fce, fpe, and fuh, using the usual notation. In addition, above
fpe, one finds the Qn resonances between cyclotron harmonics. Assuming these to
be due to a zero-speed group of Bernstein waves enables one to determine ne and
|B|, in a technique that is essentially the magnetospheric analogue of the topside
ionospheric sounder (Benson et al., 2003). Using a Maxwellian model to predict
these frequencies, they could identify the Qn resonances in the ionospheric environ-
ment, but found differences between theory and observations in the magnetospheric
environment. Recently, Viñas et al. (2005) applied Mace’s fully electromagnetic κ

formalism to compare with the experimental data. The observed ratio of fpe/ fce was
used and a single value of κe assumed for all resonances, the value being found by
a best fit for the highest and lowest Qn resonances. Intermediate resonances were
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Figure 2. Plots of frequency of Qn resonances, comparing the experimental values with Maxwellian
predictions and those for κ = 2.1 (after Viñas et al., 2005).

then evaluated and very good agreement obtained, correcting the values obtained
earlier via the Maxwellian assumption (Figure 2). Thus it is again seen that the κ

approach can be used as a diagnostic for the velocity distribution by determining
κ .

3. Waves in a Kappa-Maxwellian Magnetoplasma

3.1. THE GENERALIZED PLASMA DISPERSION FUNCTION ZκM

We have seen that the isotropic assumption is not ideal for a magnetized plasma,
because there is a preferred direction in space, viz. along B0. Hence Hellberg and
Mace (2002) introduced the kappa-Maxwellian distribution function

fκM(v||, v⊥) = 1

π3/2 θ2
⊥ θ||

�(κ + 1)

κ3/2�
(
κ − 1

2

)(
1 + v2

||
κθ2

||

)−κ

exp

{
−

(
v⊥
θ⊥

)2}
,

with θ2
⊥ = 2T⊥/m being the square of the perpendicular thermal speed, and θ2

|| =
(2−3/κ)(T||/m) that of the effective parallel thermal speed. After the perpendicular
velocity integrals have been carried out, the generalized plasma dispersion function
for fκM is found as

ZκM(ξ ) = 1

π1/2

1

κ3/2

�(κ + 1)

�
(
κ − 1

2

) ∫ ∞

−∞

ds
(s − ξ )(1 + s2/κ)κ

; Im(ξ ) > 0.
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We note that for the 1-dimensional κ distribution the power in the denominator is
κ , as opposed to κ + 1 for the isotropic distribution. It follows that

ZκM(ξ ) = i

(
κ − 1

2

)
κ3/2 2 F1

[
1, 2κ; κ + 1;

1

2

(
1 − ξ

i
√

κ

)]
. (10)

The general relationship between ZκM and Zκ is complicated – it is not merely a
matter of replacing κ by κ − 1 in Zκ . As the velocity-space integral to obtain ZκM

is governed by the parallel component, ZκM applies to a 1-D kappa distribution
with arbitrary normalized g(v2

⊥). For application to magnetized plasmas, a 2-D
Maxwellian form for g is preferred, both on physical grounds and for reasons of
tractability. Using well-known properties of the hypergeometric function, one can
derive many relations – special arguments, derivatives, small and large argument
expansions, etc. For instance, the complicated derivative relationship

Z ′
κM(ξ ) = −2

(
κ − 1

2

κ

){
1 + ξ

(
κ + 1

κ

)1/2

Z(κ+1, M)

[(
κ + 1

κ

)1/2

ξ

]}
(11)

reduces, as κ → ∞, to the usual relationship for Z ′, viz.

Z ′(ξ ) = −2[1 + ξ Z (ξ )]. (12)

3.2. ELECTROSTATIC WAVES

Obliquely propagating electrostatic waves in a magnetized plasma satisfy

1 + 2
∑

α

ω2
pa

k2θ2
||α

∞∑
n=−∞

Wn(bα)
θ2
||α

θ2
⊥α

Cn = 0, (13)

where

Cn = nωc

k||θ||
ZκM(ζn) − θ2

⊥
2θ2

||
Z ′

κM(ζn), (14)

Wn(b) = exp(−b)In(b), bα = (k2
⊥θ2

⊥α)/2ω2
cα, ζn,α = (ω − nωcα)/k||θ||α, ωcα =

qα B0/mα, and k2 = k2
⊥ + k2

||. No significant simplification is achieved by relating
Z ′

κM to ZκM. We have studied ion-acoustic and ion-cyclotron-like waves propa-
gating obliquely to B0 (Hellberg and Mace, 2002). Coupling between these two
fundamental modes leads to two hybrid modes, viz. the lower frequency acoustic
mode, and the ion-cyclotron-sound wave.

In the acoustic regime, the phase speed varies monotonically with κ because of
the change in parallel Debye length. The maximum frequency is, however, not at
ωpi, but close to 
i cos θ , because of cyclotron resonance effects (
i ≡ ωci is the
ion cyclotron frequency). The expression for the Landau damping dependence on
κ is more complicated than in the isotropic κ , magnetic field-free case.
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Figure 3. Frequency and damping of the ion-cyclotron-sound mode propagating at 30◦ to the field,
showing the effect of cyclotron damping and of κ value. Here ωpe/|ωce| = 0.5; the continuous curve
is for κ = 10 (effectively a Maxwellian), and successive κ values are 8.5 (· · · ·), 3.5 (- - -), 2.5 (– · – ·
– · –) and 1.7 (– · · · –). The bold curve in the upper figure is an analytical approximation for κ = 3.5
(after Hellberg and Mace, 2002).

For the upper branch, the ion-cyclotron sound mode found for ω > 
i , the
phase speed decreases monotonically for decreasing κ . This mode is also subject
to marked cyclotron damping – enhanced damping for k values corresponding to
ω � n
i (Figure 3).

Mace and Hellberg (2003) have shown that the behaviour of generalized Lang-
muir modes is broadly similar to their Maxwellian equivalents. Oblique propagation
leads to mixing of pure parallel Langmuir characteristics with Bernstein-like char-
acteristics, giving rise to interesting variations in the frequency, ωr (k), for nonzero
propagation angle ψ = arctan(k⊥/k||). But these waves are usually strongly Landau
damped for kρe > 1 where Bernstein-like characteristics are more prevalent. Nev-
ertheless, the introduction of a source of free energy could see these wavenumbers
destabilized. The most significant result on electron plasma waves is that the Landau
damping rate of both upper and lower frequency modes is strongly dependent on the
choice of κ . This obviously has implications for the interpretation of wave obser-
vations with ω ∼ ωpe near Earth’s foreshock in conjunction with a preponderance
of superthermal electrons. Interpretations based on a bi-Maxwellian plasma model
might lead to incorrect conclusions.

As is the case for the unmagnetized Langmuir wave in an isotropic κ-plasma,
the dependence of γ on κ is complicated, especially for intermediate wavenumbers,
0.1 < kρe < 0.5. The high phase velocity of these waves for small k yields strong
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coupling with tail electrons and hence enhanced damping for small values of κ . Thus
a highly accelerated electron velocity distribution (small κ) favours observation of
shorter wavelength generalized Langmuir waves. At the other end of the κ scale, the
bi-Maxwellian distribution (κ → ∞) favours observation of the long wavelength
waves where electromagnetic effects can appreciably alter the picture obtained from
a purely electrostatic model.

Recently Podesta (2005) has rederived ZκM, and used it to study spatial Landau
damping of EPW.

3.3. ELECTROMAGNETIC WAVES

From the Maxwellian form of the perpendicular part of fκM, it follows that the
perpendicular velocity integrals required to study oblique propagation are now
easily obtained (Stix, 1992; Swanson, 2003). On the other hand, the integral over
parallel velocity leads to the elements of the susceptibility tensor χi j being found
in terms of ZκM and its derivative, and hence in terms of 2 F1. Specifically, the
elements can be written in terms of the function Cn defined above (Cattaert et al.,
2005).

We can now study dispersion and damping/growth of a wide range of obliquely
propagating electromagnetic waves in a magnetized space plasma, varying a number
of different parameters. Special cases, such as obliquely-propagating electrostatic

Figure 4. Frequency and damping of the whistler-like mode, propagating at 45◦, showing κ depen-
dence. Scales are normalized to |ωce| and |ωce|/θ||; (ωpe/ωce)2 = 0.5, θ|| = 0.1c, θ⊥ = θ||.
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waves, and the field-free case, can be recovered. Interestingly, even for strictly
parallel propagation, use of fκM leads to a result different from that found for the
isotropic fκ . That is, the perpendicular velocity distribution also plays a role in
parallel propagation characteristics. The full dispersion relations have been derived
for oblique and parallel propagating waves in the whistler frequency range (with
ω 
 
i ). Figure 4 shows a preliminary result (for 45◦ propagation). The effect of
the ‘tail’ particles is evident. Interestingly, the variation with κ for long wavelength
waves is reversed in the case of parallel propagation.

4. Conclusion

Many space and astrophysical plasmas have power-law velocity distributions. The
κ-distribution lends itself to modelling such plasmas, and the generalized plasma
dispersion function Zκ is useful for an isotropic κ distribution. Magnetized plas-
mas are better described by the kappa-Maxwellian distribution, fκM, which leads
to ZκM. In both cases, the hypergeometric functions can be easily manipulated and
evaluated. Both dispersion functions are useful for various waves in space plasmas.
The function ZκM is needed for waves propagating obliquely to B0. The mathemati-
cal apparatus is now available to get away from the ubiquitous sums of Maxwellian
and usual Z-function approach to kinetic wave and microinstability studies in space
physics and astrophysics. As measurements provide improved accuracy, these tools
can lead to a better understanding of wave data.
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