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Abstract
Solar active regions serve as the primary energy sources of various solar activities, directly
impacting the terrestrial environment. Therefore precise detection and tracking of active
regions are crucial for space weather monitoring and forecasting. In this study, a total of
4577 HMI and MDI longitudinal magnetograms are selected for building the dataset, in-
cluding the training set, validating set, and ten testing sets. They represent different observa-
tion instruments, different numbers of activity regions, and different time intervals. A new
deep learning method, ReDetGraphTracker, is proposed for detecting and tracking the ac-
tive regions in full-disk magnetograms. The cooperative modules, especially the redetection
module, NSA Kalman filter, and the splitter module, better solve the problems of miss-
ing detection, discontinuous trajectory, drifting tracking bounding box, and ID change. The
evaluation metrics IDF1, MOTA, MOTP, IDs, and FPS for the testing sets with 24-h inter-
val on average are 74.0%, 74.7%, 0.130, 13.6, and 13.6, respectively. With the decreasing
intervals, the metrics become better and better. The experimental results show that ReDet-
GraphTracker has a good performance in detecting and tracking active regions, especially
capturing an active region as early as possible and terminating tracking in near-real time.
It can well deal with the active regions whatever evolve drastically or with weak magnetic
field strengths, in a near-real-time mode.

Keywords Active regions · Multiobject detection · Deep learning · Target tracking

1. Introduction

Solar active regions (ARs) are the regions on the Sun with strong magnetic fields. These re-
gions are where most of solar activities, like solar flares and solar eruption as coronal mass
ejections (CME), come from. Consequences of such solar activities extend to terrestrial
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space environments, manifesting as interference in electromagnetic communication chan-
nels, degradation of electrical power infrastructure, or perturbations in radio signal transmis-
sion. Therefore detection and tracking solar active regions in near-real time is meaningful
for human space exploration and life on Earth (Qahwaji and Colak 2005; Zhang, Wang, and
Liu 2010).

In the past years, the detection and tracking methods for solar active regions mainly used
traditional image processing technologies (Gallagher, Moon, and Wang 2002; LaBonte,
Georgoulis, and Rust 2007; Colak and Qahwaji 2009). The detection method usually de-
pended on thresholds (McAteer et al. 2005; Zhang, Wang, and Liu 2010; Caballero and
Aranda 2014), such as intensity threshold, opening and closing operator threshold, or bound-
ary threshold of region growth. The thresholds generally were set as parameters by experi-
ence or multiple experiments, which are crucial for these methods. Some studies discussed
the parameters in detail and then gave some guidelines for setting parameters (Zharkova
et al. 2005; Zhang, Wang, and Liu 2010; Higgins et al. 2011; Caballero and Aranda 2014).
Especially, the National Oceanic and Atmospheric Administration (NOAA) numbers are
widely approved around the world (Gallagher, Moon, and Wang 2002). The NOAA active
regions are identified manually using three overlays: a Stoneyhurst overlay, a sunspot-area
overlay, and a limb-area correction overlay (Giersch, Kennewell, and Lynch 2018; Mead-
ows 2020). Also widely known, the Space-Weather HMI Active Region Patches (SHARPs:
Turmon et al. 2011; Hoeksema et al. 2014; Bobra et al. 2021) and the Space-Weather MDI
Active Region Patches (SMARPs: Bobra et al. 2021) were produced by similar pipeline de-
scribed in (Turmon, Pap, and Mukhtar 2002; Turmon et al. 2010). They computed a pixel-
scale activity mask by a Bayesian approach first and then grouped it into NOAA AR-scale
regions by a matched filter approach.

Tracking solar active regions mainly predicted the positions at the next frame based on
the differential rotation theorem (Thompson et al. 2003) and then performed target associ-
ation based on Euclidean distance, feature correlation, or overlap score (Turmon, Pap, and
Mukhtar 2002; Turmon et al. 2010; Kempton, Pillai, and Angryk 2014; Bobra et al. 2021).
In 2023 an automatic tracking algorithm (AutoTAB) was proposed for the solar bipolar mag-
netic regions (Sreedevi et al. 2023). They detected solar bipolar magnetic regions based on
threshold and magnetic flux balance conditions and then tracked them, still mainly based
on differential rotation theorem. The HARPs (the Geometry of HMI Active Region Patches)
have two kinds of products, the definitive data and the near-real-time (NRT) data. The defini-
tive data products will be provided after a couple days (generally a half month) from the
observed time until the definitive observables are complete. Since the entire history of the
HARP is known, each definitive HARP encloses the same heliographic area during its en-
tire lifetime while keeping relatively coherent evolution. For quick-look purposes, the NRT
HARPs are provided after several hours of observation. The NRT HARP will be labeled
once it is identified. Its size will change depending on its real status. Also, it may merge,
resulting in termination of one or more NRT HARPs and continuation of the larger merged
object. Note that all the definitive SMARPs products from 1996 to 2010 were provided by
Bobra et al. (2021) and the NRT data do no need to be provided.

In recent years, with the popularization of deep learning, some deep learning detection
and tracking algorithms have also been applied for some targets on the Sun, such as sunspot
identification (Yang et al. 2018; Mourato, Faria, and Ventura 2024), filament detection (Guo
et al. 2022; Zheng et al. 2024), bright point detection (Yang et al. 2019; Xu et al. 2021; Bai
et al. 2023), Hα fibrils tracking (Jiang et al. 2021), and solar flares tracking (Oludehinwa
et al. 2023).

Therefore we propose a new deep learning method, ReDetGraphTracker, as an end-to-
end system, which combines the detection and tracking active regions together. Using the
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Table 1 The information of all samples with different intervals.

Interval Training set Testing set Validating set Total

number percentage number percentage number percentage

24 h 13,943 60% 2896 60% 2896 60% 19,306

6 h 4648 20% 965 20% 965 20% 6435

3 h 2324 10% 483 10% 483 10% 3218

12 m 2324 10% 482 10% 482 10% 3218

Total 23,239 – 4826 – 4826 – 32,891

full-disk longitudinal magnetograms, active regions will be detected, tracked, and termi-
nated in time only depending on its features in image and evolution in image series by
deep-learning model. The active regions will keep coherent evolution as far as possible in
near-real-time mode, which do not need to know their entire history. For improving the ac-
curacy of the detection, a redetection module was designed to supplement the base detection
module. These two detection modules respectively focus on active regions with obvious
magnetic characteristics and relatively weak ones. For tracking active regions with high
quality as far as possible, a splitter module was used for reducing the trajectory interruption,
and then a flow graph in the AR association module was used for associating active regions
between successive frames.

This paper is structured as follows. Section 2 introduces the data source. Section 3 details
the proposed detection and tracking deep learning methods. Section 4 shows the configura-
tion and parameters of experiments. Section 5 analyzes and discusses the results. Section 6
briefly summarizes the work.

2. Data Set

This work employs the full-disk 720-second line-of-sight (LoS) magnetic field maps
(hmi.M_720s) from the Helioseismic and Magnetic Imager (HMI: Scherrer et al. 2012) on
the Solar Dynamics Observatory (SDO) and the full disk 96-minute LoS magnetograms
(mdi.fd_M_96m_lev182) from the Michelson Doppler Image (MDI: Turmon, Pap, and
Mukhtar 2002) on the Solar and Heliospheric Observatory (SOHO). The training data are
all from HMI. The MDI data are adopted into the test set for verifying the generalization of
the method. A total of 4577 full-disk solar longitudinal magnetograms from 12 July 2000
to 15 May 2024 are representatively selected. The data of training set are selected from 1
January 2015 to 30 April 2018. The test set data are selected from nonoverlapping time pe-
riods to ensure no overlap with the training set. The time intervals are set for adapting to
different interval tracking requirements. Table 1 lists the information of all data sets with
different intervals. A total of 32,891 samples are labeled, which are divided into training
set, validating set, and testing set in 70: 17: 13. The time intervals are set as 24 hours, 6
hours, 1 hour, and 12 minutes, with their proportions being 60%, 20%, 10%, and 10%, re-
spectively. The video sequences have unfixed frame number; the maximum frame number
only relies on the memory of GPU. These samples are annotated by DarkLabel (darkpgmr
2020), an open-source video-annotation software, which is used to make annotation data
by annotating the location and identity ID of each target across video sequences. Note that
the sequences need video format, such as MPEG, AVI, MP4. Here we converted these sets
of image sequences to AVI format. Finally, the annotation data are converted to a mature
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Table 2 Testing set.

Dataset Data source Time Interval Frame

D1 MDI 2010.07.01 – 2010.07.31 24 h 30

D2 MDI 2000.07.12 – 2000.08.13 24 h 30

D3 HMI 2010.07.01 – 2010.07.31 24 h 30

D4 HMI 2010.11.05 – 2010.12.04 24 h 30

D5 HMI 2024.03.01 – 2024.05.15 24 h 45

D6 HMI 2014.10.01 – 2014.10.31 24 h 30

D6−1 HMI 2014.10.01 – 2014.10.31 6 h 120

D6−2 HMI 2014.10.01 – 2014.10.31 1 h 720

D6−3 HMI 2014.10.01 – 2014.10.31 12 m 1440

D6−4 HMI 2014.10.01 – 2014.10.31 48 h 15

labeling format: Multi-Object Tracking benchmark (Milan et al. 2016). Determining an ac-
tive region is mainly according to SolarMonitor (www.SolarMonitor.org), supplemented by
manual assistance.

The testing set consists of ten sets of image sequences, which respectively represent
different observation instruments, different numbers of activity regions, and different time
intervals. Table 2 lists the information of the testing sets. Both D1 and D3 include fewer
active regions, whereas both D2 and D5 include a larger number of active regions. D1 from
MDI and D3 from HMI are selected with the same time period. D5 is the newest data that
could download today. Considering the tracking requirement in day or less, the interval
of sets from D1 to D5 is set as 24 h. With evolving, the active regions change usually
various after a day. Within a day, the smaller interval of image sequences will make the
tracking easier and more accurate in theory. Therefore we adopted a same image sequence
that corresponds a very active Sun to build three test sets from D6−1 to D6−3 with intervals
as 6 h, 1 h and 12 m, respectively. Additionally, a set with 48 h, D6−4, is also implemented.
Note that the time of images in the sets with intervals as 24 h or 48 h are basically consistent
with that provided by SolarMonitor for comparison.

3. Method

A new deep-learning method was designed for detection and tracking active regions, named
as ReDetGraphTracker, which was built as an end-to-end system. It is mainly composed
of two parts, detection and tracking modules. The whole structure is shown in Figure 1.
The detection module focuses on extracting features, which usually include shape, tex-
ture, and other information related to the active regions. The tracking module implements
data association between active regions in successive frames for continuous tracking of the
same active region. The main tasks are matching the appearance features and motion in-
formation of the active regions, continuous updating the state of active regions and tra-
jectory prediction based on historical movement information for providing accurate data,
and enhancing the understanding of behavior, including position, speed, size, and other de-
tails.

http://www.SolarMonitor.org
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Figure 1 The structure of ReDetGraphTracker method.

3.1. Detection Module

3.1.1. Base Detection Module

The detection module consists of base detection module and redetection module. The base
detection module uses a sequence of magnetograms as input, extracts the features through
a backbone network, and then outputs to the detection branch and the target-ID information
branch, respectively.

Some outstanding backbones have been proposed in recent year, such as ResNet (He et al.
2016), YOLO (Redmon et al. 2016), and so on. Considering the balance between speed and
accuracy, we adopted DLA-34 (Yu et al. 2018), an encoder-decoder structure, as the back-
bone for base detection. It firstly uses three blocks to extract feature maps with different
sizes and channels. Each block in a sequence includes a 3 × 3 convolution, a batch normal-
ization layer, a ReLU activation function, and a 3 × 3 convolutional batch normalization
layer. Then both feature maps through block i and block i − 1 are subjected to a module
integrating iterative deep aggregation and hierarchical deep aggregation (HDA and IDA, Yu
et al. 2018). IDA fuses shallow and deep semantic information, and HDA integrates chan-
nel information. Finally, after 3 × 3 convolution with hole rates of 2 and 4, the aggregated
feature maps are transformed to a convolutional attention mechanism module (CBAM: Woo
et al. 2018) to obtain more global information.

The detection branch consists of three prediction heads, namely heatmap head, center
offset head, and box size head. The structures of these three prediction heads are the same,
including a 256 × 3 × 3 convolution and a 2 × 1 × 1 convolution. The heatmap predic-
tion head is to obtain the corresponding heatmap information for predicting accurate target
information. Center offset head is to obtain the target position information for predicting
the center point coordinates of the active regions. The box size head obtains detection box
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information. They are packaged as detection information, after filtering by the nonmaxi-
mum suppression algorithm (Gallagher, Moon, and Wang 2002). The target-ID information
branch obtains target-ID embedding through two convolutions, which is a one-dimensional
vector representing the initial state. It will be used for the ID matching during tracking.

3.1.2. Redetection Module

No matter how excellent the detection module is, it is not possible to completely avoid wrong
or missing detections. The wrong detection still has a chance to be discarded during tracking;
however, the missing detection will cause discontinuous tracking target which is difficult to
solve during tracking. Therefore we designed a redetection module for remedying those
missing detections. The lightweight Resnet-18 (He et al. 2016) was selected as a backbone
and fused by the Path aggregation Feature Pyramid Network (PAFPN: Liu et al. 2018).

The key of the redetection module is the input images, in which all the detections out-
putted from the base detection module have been removed. In detail, those pixels belonging
to the targets detected in the procedure of the base detection module will be set as zero. The
purpose of doing this is to make the images no longer include these detected targets. It is fea-
sible that those undistinguished features could be captured in the redetection module. These
images are sent to Resnet-18 for feature extraction with different scales, and then PAFPN
selects feature maps C4, C3, and C2 from top to bottom for feature fusion. Comparing with
classical FPN (Lin et al. 2017a), PAFPN adds a bottom-up path after the top-down path and
replaces shortcut connections with concatenation. The structure of the prediction heads is
the same as that of the base detection module. The concatenated feature maps are transferred
to three prediction heads and target-ID branch. The prediction results are also packaged as
detection information after filtering by NMS algorithm.

The detection information and target-ID embedding obtained by the base detection mod-
ule and those by the redetection module are integrated, which can remedy the missing de-
tections during the base detection procedure as far as possible. The final detection infor-
mation and final target-ID information are generated, which are called detection_all and
target-ID_all, respectively.

3.2. Tracking Module

The tracking module includes three parts: a noise scale adaptive (NSA) Kalman filter, a
splitter module, and an AR association module.

3.2.1. NSA Kalman Filter

The detection_all and target-ID_all are inputted into the NSA Kalman filter (Du et al. 2021),
which will predict the position information and motion information of each tracked active
region. The position information conveys central point coordinates of an active region, spec-
ifying its exact position in space. The motion information includes target-ID_all, the velocity
information, the trajectory information, and the time stamp. Among them, trajectory infor-
mation is a series of two-dimensional data that describes the change of the position of an
active region.

The NSA Kalman filter is a variant of the Kalman filter (Welch et al. 1995), which is
more suitable for solving the problem of low-quality detection or noise during tracking. The
NSA Kalman filter includes two main stages, prediction and update.
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The prediction stage includes state prediction and covariance prediction. The state pre-
diction predicts the position and movement information of the target x̂−

k according to the
state transition matrix F and the prior state estimate x̂−

k−1. The x̂−
k is calculated as follows:

x̂−
k = F · x̂−

k−1, (1)

where the state transition matrix F =
[

1 �t

0 1

]
is a 2 × 2 matrix, �t is the time interval

between two moments, and x̂−
k−1 represents the state of the target in the previous frame.

The covariance prediction adopts the prior covariance matrix and the process noise co-
variance matrix to predict the estimated covariance matrix P −

k as follows:

P −
k = F · Pk−1 · FT + Q, (2)

where Pk−1 is the covariance matrix in the (k − 1)th frame, which is a symmetric semidef-
inite matrix whose diagonal elements represent the variance of the estimate. This matrix
represents the difference, or error, between the estimated state of the real system and the
true state. The diagonal elements provide a measure of uncertainty for each state estimate,
where smaller diagonal elements indicate that the estimate is more accurate, and vice versa.
The process noise covariance matrix Q describes the uncertainties introduced by external
factors.

To improve the accuracy of the predicting positions of active regions, we revised the prior
state estimate x̂−

k−1 according to the differential rotation theorem (Welch et al. 1995) in the
prediction stage. The differential rotation theorem is described as

ω = A + Bsin2 (φ) + Csin4 (φ) , (3)

where ω is the rotational angular velocity, and φ is the solar latitude. The constants A,
B , and C are approximate values obtained by the least square method as A = 2.894 ±
0.011 μrad s−1, B = −0.428 ± 0.070 μrad s−1, and C = −0.370 ± 0.077 μrad s−1, respec-
tively. Given ω and the time difference between the two frames, the horizontal position of
the active region in the next frame can be estimated approximately.

In the update stage the prediction results will be revised by the detection results in the
current frame. The update stage includes state estimation revision and covariance matrix
revision. The Kalman gain Kk and the measurement residuals yk need to be calculated as
follows:

Kk = P −
k · HT · (H · P −

k · HT + Rk)
−1, (4)

yk = zk − H · x̂−
k , (5)

where P −
k is the estimated covariance matrix, Rk is the noise covariance matrix, zk is a vector

including the position and velocity of the target estimated by differential rotation theorem
at time k, and H is the measurement matrix, which represents the output of the detection
module, containing the position, size, shape, and other information of targets.

The noise covariance R̃k is adaptively calculated for improving the accuracy of the up-
dated state as follows:

R̃k = (1 − ck)Rk, (6)
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Figure 2 The structure of the splitter module.

where Rk is the measurement noise covariance, and ck is the detection confidence score at
state k. The score reflects the level of noise, with higher score being less noisy, resulting in
lower R̃k . A lower R̃k means that the detection has a higher weight in status update stage,
and vice versa.

The state estimation revision mainly measures the updated state estimate x̂k , which is
calculated by mapping the measurement residual into the state estimate using Kalman gain:

x̂k = x̂−
k + Kk · yk. (7)

The covariance matrix revision measures the covariance matrix Pk , which is also modi-
fied by Kalman gain:

Pk = (I − Kk · H) · P −
k . (8)

So far, the position information and motion information of the active regions have been
initially predicted. The motion information will be further revised in the splitter module.
The position information will be used in the AR association module.

3.2.2. Splitter Module

To solve the trajectory interruption problem caused by the deformation and temporary dis-
appearance of active regions, we integrated the splitter module (Wang et al. 2022) for pre-
dicting ID-change position of each active region. The input of the module is a matrix of
dimensions K × T , where K is the number of targets, and T is the temporal length of the
trajectories. Each element in the matrix represents a feature value of a target that incorpo-
rates motion information at that time.

The structure of the splitter module is shown in Figure 2. It stacks 16 temporal dilated
convolution blocks, each block mainly including a dilated convolution and a pointwise con-
volution. The dilated convolution in sequence includes a padding layer, a dilation convo-
lution, a Batchnorm layer, Leaky ReLU activation function (Glorot, Bordes, and Bengio
2011), and a dropout layer. The dilation convolution adopts a dilation rate for expanding the
receptive field by inserting interval zero values into the convolution kernel. For example, the
label k3d2 means the temporal dilation convolution with kernel size 3 and dilation rate 2.
The pointwise convolution is similar, which uses a 1 × 1 convolution for reducing the chan-
nels to decrease the calculation and the parameters. To capture temporal patterns, a skip
connection in each intermediate block is added, except the first and last blocks. The skip
connection directly connects the features of an active region in the current block with that in
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the previous block. After 16 blocks, the features of an active region have captured long-term
temporal information. Following a 1×1 convolution, a one-dimensional vector ẑ reflects the
difference between active regions in the contiguous frames. They are performed by Sigmoid
and ReLu activation functions for obtaining the ID-change position mask m̂t and standard
deviation σ , respectively. The ID-change position mask mt is defined as follows:

mt =
{

1 if sigm
(
ẑ
)
> T,

0 otherwise.
(9)

The ID-change position value in the frame t is set to 1 if the sigm
(
ẑ
)

value is larger than
the threshold T , indicating an occurrence of ID-change. Here T is set to 0.7 after experi-
ments. The ID-change position mask will guide the forward and backward association of
the tracking target in the next association module. The standard deviation is a time and
trajectory-related value used to adjust the smoothness of the loss function. The larger the
standard deviation, the higher the probability of ID-change at that location.

The target-ID embeddings in consecutive frames usually change gradually rather than
change abruptly, even in the ID-change positions. Therefore soft labels are adopted, which
are continuous and smooth representation of labels that provide more uncertainty. The loss
function is designed as the difference between the predicted ID-change position mask and
the real ID-change position mask by an adaptive Gaussian smoothing strategy. The smooth-
ness of the soft label is controlled by the standard deviation σ , which is adaptively ad-
justed according to the duration of the ID-change. A larger σ value will make the soft label
smoother, and vice versa. The loss function is as follows:

Ls =
∑

t

(
m̂t − min

(∑
τ

m∗
τ exp

(
− (τ − t)2

σ 2

)
,1

))
, (10)

where t and τ represent the frame index of the predicted soft label and the ground truth
label, respectively, and m̂t and m∗

τ represent the ID-change position values of predicted soft
labels and ground truth labels at frame index t and τ , respectively.

3.2.3. AR Association Module

The AR association module is designed to associate active regions between consecutive
frames by a flow graph. As shown in Figure 1, the detection_all coming from detection
module, the position information coming from NSA Kalman filter, and ID-change position
mask coming from the splitter module are concatenated as input.

The detailed structure is shown in Figure 3. The input is feature extracted by the
Resnet-18 network firstly. The extracted features are being nodes to build the flow graph, in
which each edge connecting two nodes represents the matching probability of these nodes
in the consecutive frames. The target initial state set S includes all targets consisting of the
target-ID and motion information in all frames. The Euclidean distance and IOU value be-
tween any two targets in the consecutive frames are calculated according to the information
saved in S. The initial flow graph is constructed as each node in the first frame is added an
edge to the node in the second frame with the shortest Euclidean distance and IOU value
greater than 0.5. This process repeats from the second frame until the last frame. Meanwhile,
G is completed as a set of all edges corresponding the flow graph. Then the flow graph is
fed into a multilayer perceptron (MLP) to calculate the connection probability of each edge
according to the features of corresponding nodes. Each node only reserves two edges with
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Figure 3 The structure of AR association module.

the greatest probability of the previous connection and next connection. The set G updates
simultaneously.

Using this module, the multitarget tracking problem is transformed into the minimum-
cost network flow problem. The connection probability is inferenced by the negative log
likelihood function, which corresponds a constrained integer linear programming problem.
The optimal association results could be obtained, resulting in the target tracking.

In this module, MLP is used to calculate the cost of edges in the flow graph by learning
the parameters and ID-change position mask using a cost function. The minimum cost flow
problem is transformed into a constrained integer linear programming as follows:

La = −∑
i yi · log(pi), (11)

where yi represents the ground truth in frame i, and pi is the predicted value of the module
output.

To optimize the parameters iteratively through training, a multitask loss is adopted. The
loss function of the whole model is defined as

Ltotal = 1
2

(
1

ew1 (Lheat + Lbox) + 1
ew2 (Ls + La) + w1 + w2

)
, (12)

where w1 and w2 are the parameters that balance the detection module and tracking module.
Here w1 and w2 were set as 0.5. The loss function of detection module is defined as the sum
of Lheat and Lbox; Lheat represents the heatmap loss defined as pixelwise logistic regression
with focal loss (Lin et al. 2017b), and Lbox represents the box offset and size loss, which is
defined as the sum of two l1 losses; Ls and La are the loss function of splitter module and
AR association module defined by formulae 10 and 11, respectively.

Summarily, most active regions are detected from solar images in sequences through base
detection module first, and then a few undistinguished active regions that are missed in the
base detection module are captured in the re-detection module. The above detected active
regions are integrated and then transferred to tracking step. These detected active regions
are predicted by their position information and motion information by NSA Kalman filter
firstly, and then ID-change position of each active region is predicted by the splitter module
for solving the trajectory interruption problem. Finally, these amended active regions are
associated between successive frames by a flow graph in the AR association module. So far,
the task of detecting and tracking active regions in solar magnetogram sequences is finished.
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4. Experiments

4.1. Training and Testing

This deep-learning method, ReDetGraphTracker, as an end-to-end system, which integrates
all the modules detailed in Section 3 as a pipe-line. The method was deployed on a personal
computer, equipped with one Nvidia GeForce 2080 GPU. The main environment includes
Ubuntu 16.04, CUDA 10.2, PyTorch 1.7.0, Python 3.7, and opencv-python 4.0.0.21.

Training it only needs to set the path of training set. To achieve optimal tracking perfor-
mance, the optimizer was selected as Adam. The batch size was set to 8. The model was
trained over 200 epochs with a learning rate of 1e−4, which takes about 46 hours until the
loss value converges stably. By the way, the redetection network incorporates an auxiliary
training module (ATB) to expedite model convergence. During training, the features pro-
duced by the backbone are concurrently fed into both the detection module and ATB. Since
ATB has a larger parameter space, it is easier to learn the initial state distinction of positive
and negative sample partition and label matching. Using ATB to guide the tag matching
makes the detection branch converge faster.

After training the method, the method was tested on all testing sets by setting their cor-
responding testing paths. It took about one second to process an image on average, meeting
near-real-time requirements. The results will be detailed in the next section. The code is
publicly available at github.com/Caesarisis/ReDetGraphTracker.

So far, once this trained method is deployed, any image series consisting of sequential
magnetograms are set as inference set, and the end-to-end system can detect and track the
active regions in near-real-time mode. It will output the sequential magnetograms labeled
with tracking bounding boxes and a text file including the track-ID and the coordinates of
bounding boxes.

4.2. Metrics

The performance evaluation uses typical multiobject tracking metrics (Bernardin and
Stiefelhagen 2008), including multiobject tracking accuracy (MOTA), multiobject tracking
precision (MOTP), and identity switching (IDs). MOTA represents the overall performance
of the model in multitarget tracking, defined as

MOTA = 1 − FN + FP + IDs

GT
, (13)

where FN is the number of positive samples predicted by the model to be in the negative
class, and FP is false positive and represents the number of classes that are incorrectly
labeled as positive among the negative samples. IDs is the total number of ID switches, or
the number of target mismatches. GT is the number of Ground Truth.

MOTP represents the average overlap between all tracked targets defined as

MOTP =
∑

t,i dt,i∑
t ct

, (14)

where ct represents the total matching degree between the ground truth and the detection
output at frame index t , and dt,i represents the overlap of the bounding box i between the
target and the ground truth at frame index t .

http://github.com/Caesarisis/ReDetGraphTracker
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Table 3 Tracking metrics.

Dataset IDF1↑ MOTA↑ MOTP↓ IDs↓ FPS↑

D1 75.4% 75.3% 0.128 16 13.6

D2 73.2% 74.1% 0.130 14 14.0

D3 76.5% 77.4% 0.124 16 13.8

D4 73.1% 74.1% 0.132 11 13.2

D5 73.4% 73.8% 0.129 13 13.3

D6 72.1% 73.2% 0.137 12 13.4

D6−1 82.5% 87.3% 0.120 11 13.2

D6−2 86.5% 88.3% 0.113 8 13.1

D6−3 88.3% 91.2% 0.102 3 13.3

D6−4 60.4% 57.3% 0.234 58 13.5

IDF1 is a performance evaluation of object associations. It is based on the number of
false positive identities (IDFP), false negative identities (IDFN), and true positive identities
(IDTP). IDF1 defined as

IDF1 = 2IDTP

2IDTP + IDFP + IDFN
. (15)

This metric is an identity-based evaluation, which allows for a more comprehensive as-
sessment of tracking performance because it takes into account any potential changes in
object appearance or motion over time. For example, an object that is tracked correctly in
one frame but not in the next frame will be identified as an error in the identity-based eval-
uation, which will not be captured in a frame-by-frame comparison.

5. Results

5.1. Metrics and Instances

Table 3 lists the testing metrics of the ten testing sets. All the metrics of the testing sets with
interval less than 24 h (D6−1∼D6−3) are much better than those of the testing sets with 24-h
interval (D1∼D6) as expected, whereas the testing set with 48-h interval (D6−4) does not
work so well. We think the method is feasible for the image sequence within 24 hours. The
averaged metrics IDF1, MOTA, MOTP, IDs, and FPS for six testing sets with 24-h interval
are 74.3%, 75.0%, 0.130, 14.5, and 13.7, respectively. The metrics of HMI and MDI data are
similar. This means that the method has a good generalization and will well process the solar
image sequences coming from the other telescopes. The metrics get worse with the number
of active regions increasing, e.g., D6. The complexity of targets will increase the difficulty
of detection and tracking. With the intervals decreasing, the model has an excellent perform,
e.g., for D6−3 with 12-min interval, MOTA is up to 91.2%, and IDs is only 3. The feature of
active region keeps without much change because it evolves slowly in a short time. So we
believe that the key to get good results is the interval of image sequences, and the second is
the complexity of solar activities.

Figure 4 shows a tracking segment of four consecutive frames in D5. The label at the
top of each active region is labeled automatically by this method, whereas the label at the



Solar Active Regions Detection and Tracking Based on Deep Learning Page 13 of 22 121

Figure 4 The tracking results of ReDetGraphTracker for four consecutive frames from 1 March 2024 to 4
March 2024. The label at the top of each active region is labeled automatically by this method, whereas the
label at the bottom is artificial marked according to NOAA for comparison.

bottom is artificial marked according to NOAA for comparison. Most active regions by two
methods are the same, especially those active regions with obvious characteristics. The main
differences come from those active regions appearing at the edge of Sun, or the weak ac-
tive regions. For instance, AR17 is detected and tracked on 1 March 2024 at once, while
it appears at the solar limb. The corresponding NOAA13599 is labeled on 2 March 2024,
which is later one day. AR20 is detected and tracked on 4 March 2024, and the correspond-
ing NOAA13603 will be labeled until 6 March 2024. The ReDetGraphTracker can detect
and track the active region in near-real-time once the active region shows visible magnetic
fields.

Figures 5 (a) and (b) show the complete tracking results of the NOAA11087 in the D2

(MDI) and D3 (HMI), respectively. The bounding boxes obtained by ReDetGraphTracker
are drawn with green solid line, labeled as AR5 of MDI data and AR6 of HMI data, respec-
tively. The results coming from SMARPs and SHARPs are drawn with yellow dashed line
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Figure 5 Panels (a) and (b) show the complete tracking results of NOAA11087 in the D1 (MDI) and D3
(HMI), respectively. A total of 16 frames are displayed. The bounding boxes obtained by the ReDetGraph-
Tracker are drawn with green solid line, labeled as AR5 of MDI data and AR6 of HMI data, respectively. The
results coming from SMARPs and SHARPs are drawn with yellow dashed line with number 86 in Panel (a)
and with number 13592 in Panel (b), respectively. Also, the label at the bottom is artificial marked according
to NOAA.

with number 86 in Panel (a) and with number 13592 in Panel (b), respectively. Also, the
label at the bottom is artificial marked according to NOAA. By the way, there is no NRT
SHARPs in this period of time. The bounding boxes of SMARPs and SHARPs enclose the
same heliographic area. We can see that the ReDetGraphTracker obtains relatively stable
bounding boxes in a near-real-time mode, whatever the MDI data or HMI data. The active
region is labeled from 8 July by SMARPs, SHARPs, and ReDetGraphTracker, whereas it is
labeled from 10 July by NOAA. The ReDetGraphTracker method captures it in a near-real-
time, tracks it with suitable bounding box continuously, and finally terminates it in time.

Figures 6 (a) and (b) show the total line-of-sight unsigned magnetic flux and the pixel
area mapping to a heliographic Cylindrical Equal-Area coordinate system over time for
NOAA11087 as calculated from LoS magnetic field maps. Since only the bounding box of
active regions achieved (without mask) by the ReDetGraphTracker, the magnetically active
pixels in each bounding box in HMI data are approximately determined with absolute LoS
field greater than 100 G (Hoeksema et al. 2014). After reviewing the relevant literature,
the magnetically active pixels in each bounding box in MDI data are approximately deter-
mined with absolute LoS field greater than 56 G (Bobra et al. 2021). The corresponding data
from SMARPs and SHARPs are plotted for comparison. The ReDetGraphTracker method
achieved consistent total unsigned magnetic flux results with both SHARP data on HMI and
SMARP data on MDI.

In short, the ReDetGraphTracker method has a good performance in tracking active re-
gions in solar full-disk LoS magnetograms, especially obtaining a relatively accurate life-
time from its appearance to disappearance. The active regions whatever evolve drastically or
with weak magnetic field strengths will be detected and tracked effectively in near-real-time
mode.
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Figure 6 Panels (a) and (b) show the total line-of-sight unsigned magnetic flux and the pixel area mapping
to a heliographic Cylindrical Equal-Area coordinate system over time for NOAA11087 as calculated from
LoS magnetic field maps. The magnetically active pixels in each bounding box are approximately determined
with absolute LoS field greater than 100 G (Hoeksema et al. 2014). The corresponding data from SMARPs
and SHARPs are plotted for comparison (the data also can be seen in (Bobra et al. 2021, Figure 2)). The data
of ReDetGraphTracker are very consistent with those of SMARPs and SHARPs.

Table 4 The metrics of ablation experiments on D4.

Models IDF1↑ MOTA↑ MOTP↓ IDs↓ FPS↑

BM 52.7% 53.4% 0.195 48 25.2

BM+M1 55.4% 58.9% 0.167 45 21.8

BM+M2 63.3% 60.4% 0.159 36 23.2

BM+M1+M2 66.1% 65.3% 0.149 34 20.6

BM+M2+M3 69.4% 67.4% 0.144 16 16.2

BM+M1+M2+M3 72.1% 73.2% 0.137 12 13.4

5.2. Ablation Experiments

The basic tracking model (BM) is taken as performing detection and tracking task basically,
which is an integration of base detection module and AR association module in this work.
Based on it, the other modules were combined gradually to test their necessity and feasi-
bility, such as redetection module representing as M1, NSA Kalman filter as M2, and the
splitter module as M3. Since M3 requires data from M2, M3 needs to be tested integrated
with M2 in this ablation experiments.

This ablation experiment was verified on the D4 data set. The metrics are shown in Ta-
ble 4. The base model (BM) starts with 58.2% IDF1, 53.4% MOTA, 0.195 MOTP, 48 IDs,
and 25.2 FPS, respectively.

After adding M1 to the base model, most metrics improve, except FPS. IDF1 and MOTA
increase by 2.7% and 5.5%, respectively. The MOTP decreased by 0.028. Both the dif-
ferences of IDs and IDF1 indicate that the M1 module has improved on the maintenance
continuous trajectory. Additionally, this module increases precision while simultaneously
reducing computational complexity, which make FPS only reduce 3.4.

Only adding M2 to the base model, most metrics further improve, especially IDF1. Ex-
amples of BM+M1 and BM+M2 are shown in Figures 7 (a) and (b), respectively. We can
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Figure 7 The comparison of ablation experiments. The basic tracking model (BM) is an integration of base
detection module and AR association module. The redetection module is represented as M1, NSA Kalman
filter as M2, and the splitter module as M3. Panel (a) is the result of BM+M1, (b) is the result of BM+M2, (c)
is the result of BM+M1+M2, (d) is the result of BM+M2+M3, and (e) is the result of BM+M1+M2+M3
or the final model, ReDetGraphTracker.

see that more active regions are detected in Figure 7 (a), owing to the redetection module,
e.g., AR8 (NOAA12181) in the first column and AR17 (NOAA12181) in the second col-
umn. The more reliable track-IDs are kept, e.g., AR6 (NOAA12178) in the second and third
columns.

With M1, M2, and M3 combining to the BM using different combinations, both IDF1 and
MOTA increase gradually, whereas the MOTP decreases gradually. The continuous decrease
in IDs indicates that these modules help track-ID changes reduced. The metrics of different
combinations show that all these modules are independent and useful. The less FPS drop
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Table 5 The metrics of ReDetGraphTracker and other two methods on D4.

Models IDF1↑ MOTA↑ MOTP↓ IDs↓ FPS↑

DeepSort 56.3% 61.2% 0.225 65 38.3

CenterTrack 67.4% 66.3% 0.209 49 22.8

SolarTracking 68.8% 68.1% 0.189 31 20.5

ReDetGraphTracker (ours) 72.1% 73.2% 0.137 12 13.4

of BM+M2 indicates that the M2 is a lightweight module. Even at the final integration, the
FPS drops only a half.

The result of BM+M1+M2 is shown in Figure 7 (c). In the subregions from 1 October
2014 to 6 October 2014, BM+M1+M2 can well detect the active regions. Compared with
NOAA, there is no misdetection. Only adding M1 and M2 cannot solve the problem of
active region ID change well. For example, NOAA12178 had four ID changes during six-
day period, and NOAA12179 and 12181 also had an ID change on 6 October 2014.

The detection and tracking result of BM+M2+M3 is shown in Figure 7 (d). The problem
of ID change is well solved. However, NOAA12181 is not detected until 5 October 2014 by
BM+M2+M3.

The result of BM+M1+M2+M3 is shown in Figure 7 (e). We can see that there is no
missing detection and no problem of ID change in the final model, ReDetGraphTracker.

In short, the redetection module M1 plays a significant role in improving the detection
results. The NSA Kalman filter M2 plays a key role in the continuity of the trajectory and the
stability of the tracking bounding box. M1 and M2 are relatively independent. The splitter
module M3 has good effect on solving the problem of ID change, which is dependent on M2.

5.3. Comparison

We also compared ReDetGraphTracker with other typical methods, including two general
tracking methods DeepSORT (Wojke, Bewley, and Paulus 2017) and CenterTrack (Zhou,
Koltun, and Krähenbühl 2020), one tracking method for solar events (SolarTracking; Kemp-
ton, Pillai, and Angryk 2014), NRT SHARPs, and SHARPs. DeepSORT uses Kalman fil-
tering to predict the location of the bounding box and the Hungarian algorithm to match
the current detection with the largest IOU value. CenterTrack calculates the distance matrix
between the center point of targets in the consecutive frames and then selects the target with
the smallest Euclidean distance for matching. SolarTracking predicts the location based on
the differential rotation theorem and then performs target association based on Euclidean
distance. For comparison, the detection modules of all these three methods were assembled
as the base detection module in ReDetGraphTracker method. The hyperparameter settings
for training them were consistent with ReDetGraphTracker method. All the methods were
tested by D4. Table 5 lists the evaluation metrics of DeepSORT, CenterTrack, SolarTracking,
and ReDetGraphTracker. The metrics show that ReDetGraphTracker obtains good tracking
effects, especially in IDs. Due to combined multiple modules, the tracking speed is slow.

Figure 8 shows an example corresponding to NOAA13627 from 1 April 2024 to 14
April 2024 for comparing these tracking methods. Panel (a) is the tracking result of the
DeepSORT. Panel (b) is of the CenterTrack. Panel (c) is of the SolarTracking. Panel (d) is
of our ReDetGraphTracker, and the results of the NRT SHARPs and SHARPs.

NOAA13627 is labeled by NOAA from 3 to 14 April. Using DeepSORT, it is tracked
from 3 to 11 April. The unsatisfactory thing is that it occurs five ID changes on 4, 6, 7,
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Figure 8 An example corresponding to NOAA13627 from 1 April 2024 to 14 April 2024 for comparing
these tracking methods. There are a total of 14 frames. The label at the top of each active region is labeled
automatically by the corresponding method, whereas the label at the bottom is artificially marked according to
NOAA for comparison. Panel (a) is the tracking result of the DeepSORT (Wojke, Bewley, and Paulus 2017).
Panel (b) is of the CenterTrack (Zhou, Koltun, and Krähenbühl 2020). Panel (c) is of the SolarTracking
(Kempton, Pillai, and Angryk 2014). Panel (d) is of the ReDetGraphTracker (AR25, with red solid box), and
the results of the NRT SHARPs (9874, with blue dashed box) and SHARPs (11030, with yellow dashed box).
The red arrows point to the regions labeled with NOAA but not tracked by the corresponding method.

9, and 10 April with a large error bounding box (see Panel (a)). Using CenterTrack, it is
terminated tracking on 12 April. Additionally, it occurs four ID changes on 4, 7, 9, and 11
April (see Panel (b)). Using SolarTrack, it is tracked from 2 to 13 April. Three ID changes
occur on 3, 6, and 9 April (see Panel (c)). Compared with DeepSORT and CenterTrack,
SolarTrack obtains relatively good bounding boxes.
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Figure 9 This shows an example including very active regions from 14 April 2024 to 25 April 2024. There
are a total of 14 frames. The results of the ReDetGraphTracker are drawn with solid box, and of the SHARPS
with yellow dashed box. The NOAA numbers are labeled at the region in light-blue.

Panel (d) shows the results of the ReDetGraphTracker (AR25, with red solid box), the
results of the NRT SHARPs (9874, with blue dashed box), and SHARPs (11030, with yel-
low dashed box). All of them are labeled from 1 April, whereas it is labeled from 3 April
by NOAA. Since the NRT SHARPs is processed within several hours after observation, its
heliographic size may change during its life, e.g., on 4 April. Compared with NRT SHARPs,
the bounding box of a definitive HARP encloses the same heliographic area during its entire
lifetime when its whole history has been known. The ReDetGraphTracker obtains relatively
stable bounding boxes in a near-real-time mode. At last, tracking terminated on 12 April by
NRT SHARPs, whereas it terminated on 14 April by NOAA, SHARPs, and ReDetGraph-
Tracker.

Figure 9 shows an example including very active regions from 14 April 2024 to 25 April
2024. The results of the ReDetGraphTracker are drawn with solid box, and of the SHARPs
with yellow dashed box. The NOAA numbers are labeled at the region in light-blue. We
can see that it is a very active region, which includes six NOAA active regions. Since the
definitive SHARPs processing module groups and tailors the identified regions according
to their complete life history, all of these active regions are grouped as a patch (9927). In a
near-real-time mode, the ReDetGraphTracker processes every active region in each image
frame one by one. There are three active regions detected and tracked (AR35, AR36, and
AR37), which keep stable bounding boxes and track-ID. This means that if the active regions
are far from others, then the ReDetGraphTracker can obtain the results similar to those of
NOAA; e.g., see Figure 4. Otherwise, a region may contain multiple NOAA ARs.

In short, ReDetGraphTracker integrates base detection network, redetection network,
NSA Kalman filter, the splitter module, and a flow graph in the AR association module.
It performs well in detecting and tracking active regions, at a cost of speed. Importantly, it
will obtain relative stable detection and tracking of active regions in a near-real-time mode.

6. Conclusions

The solar active region is the region with strong magnetic fields, which is the main energy
source of solar activities. Violent solar activities lead to severe space weather, such as flares
and coronal mass ejections (CME), which have adverse effects on the Earth, e.g., electro-
magnetic telecommunication, electric power system, radio transmissions, etc.

A total of 4577 HMI and MDI magnetograms from 12 July 2000 to 15 May 2024 are
selected for building the data set. Both the training and validating sets come from HMI, and
the testing set comes from HMI and MDI. The time intervals were set as 12 minutes, 1 hour,
6 hours, 24 hours, and 48 hours. The testing set consists of ten sets of image sequences,
which represent different observation instruments, different numbers of activity regions, and
different time intervals.
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This study presents a new deep learning method, ReDetGraphTracker, for detecting and
tracking the active regions in full-disk longitudinal magnetograms. Firstly, most obvious ac-
tive regions are detected through base detection network; secondly, those undistinguished
active regions that are missed through the base detection network are captured in the rede-
tection network; thirdly, these detected active regions are predicted their position and motion
information by NSA Kalman filter combining with differential rotation theory; fourthly, ID-
change position of each active region is predicted by the splitter module for reducing the
trajectory interruption; and finally, these amended active regions are associated between
successive frames by a flow graph in the AR association module.

The model was trained 46 hours for 200 epochs until the value of loss converged stably
on a personal computer with one Nvidia GeForce 2080 GPU. After training, ten testing sets
were fed into the model to test. The evaluation metrics IDF1, MOTA, MOTP, IDs, and FPS
for the testing sets with 24-h interval on average are 74.0%, 74.7%, 0.130, 13.6, and 13.6,
respectively. With the decreasing intervals, the metrics improve gradually. For the testing
set with an interval of 12 minutes, it achieves the best evaluation, where IDF1, MOTA,
MOTP, IDs and FPS are 88.3%, 91.2%, 0.102, 3, and 13.3, respectively. The method is not
feasible for the image sequence with time interval beyond 24 hours. Additionally, it has
good generalization.

We analyzed the instances obtained by ReDetGraphTracker in detail and compared with
the other typical tracking methods, DeepSORT, CenterTrack, SolarTracking, SMARPs,
SHARPs, and NRT SHARPs. Additionally, each module of ReDetGraphTracker was val-
idated by ablation experiments. All the above results show that ReDetGraphTracker has a
good performance in detecting and tracking active regions in full-disk LoS magnetograms.
The main reason comes from these cooperative modules, especially the redetection module,
NSA Kalman filter, and the splitter module. The redetection module plays a significant role
in improving the detections, especially those active regions with weak features. The NSA
Kalman filter, combined with differential rotation theory, plays a key role in the continu-
ity of the trajectory and the stability of the tracking bounding box. The splitter module has
good effect on solving the problem of ID change. Benefiting from these modules, the Re-
DetGraphTracker can capture an active region as early as possible and terminate tracking
in near-real time. Additionally, the active regions, regardless of whether they evolve dras-
tically or have weak magnetic field strengths, will be detected and tracked well. The last
advantage of this method is near-real time. It detects and tracks the active regions for an im-
age sequence in time, which do not need to know the whole history of active regions. In the
future the method can try to accept an image one by one to achieve stronger near-real-time
tracking.
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