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Abstract
This study introduces a novel method for predicting the sunspot number (SN) of Solar Cycles
25 (the current cycle) and 26 using multivariate machine-learning techniques, the Sun’s polar
flux as a precursor parameter, and the fast Fourier transform to conduct a spectral analysis
of the considered time series. Using the 13-month running average of the version 2 of the SN

provided by the World Data Center—SILSO, we are thus able to present predictive results
for the SN until January 2038, giving maximum peak values of 131.4 (in July 2024) and
121.2 (in September 2034) for Solar Cycles 25 and 26, respectively, with a root mean square
error of 10.0. These predicted dates are similar to those estimated for the next two polar flux
polarity reversals (April 2024 and August 2034). Furthermore, the values for the SN maxima
of Solar Cycles 25 and 26 have also been forecasted based on the known correlation between
the absolute value of the difference between the polar fluxes of both hemispheres at an SN

minimum and the maximum SN of the subsequent cycle, obtaining similar values to those
achieved with the previous method: 142.3 ± 34.2 and 126.9 ± 34.2 for Cycles 25 and 26,
respectively. Our results suggest that Cycle 25 will have a maximum amplitude that lies
below the average and Cycle 26 will reach an even lower peak. This suggests that Solar
Cycles 24 (with a peak of 116.4), 25, and 26 would belong to a minimum of the centennial
Gleissberg cycle, as was the case in the final years of the 19th and the early 20th centuries
(Solar Cycles 12, 13, and 14).

Keywords Sunspot number · Solar activity · Time series analysis · Machine learning ·
Fourier transform

1. Introduction

Analyzing solar activity is important since variations in the Sun’s behavior affect both the
Earth and the interplanetary environment (Pulkkinen 2007). Short-term solar activity varia-
tions, known as “space weather”, can be manifested through fluctuations in solar radiation
and the magnetic field (Schwenn 2006). Furthermore, the occurrence of energetic phenom-
ena, such as coronal mass ejections and solar flares (Kahler 1992; Howard 2014; Temmer
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2021), can also trigger severe disturbances in the near-Earth space environment (Ansor,
Hamidi, and Shariff 2019; Syed Zafar et al. 2021). Specifically, inclement space weather
can adversely affect air travel or spaceflight and interfere with radars, satellites, the elec-
tricity grid, and high-frequency communications (Schrijver et al. 2015; Krausmann et al.
2016).

Meanwhile, the “space climate” also involves significant long-term solar activity changes
spanning from decades to millennia (Solanki et al. 2004; Versteegh 2005; Usoskin 2023).
It can be seen that these slower variations display 11-year solar cycles (Muñoz-Jaramillo
and Vaquero 2019; Jayalekshmi, Pant, and Prince 2022; Clette et al. 2023; Usoskin 2023),
which are involved, for example, in the variability of solar irradiance (Solanki and Krivova
2003; Chatzistergos et al. 2020; Kopp 2021) and magnetic flux (Usoskin et al. 2002). These
fluctuations can also influence the atmosphere’s upper layers (causing warming), affect how
many cosmic rays reach the Earth (Usoskin et al. 2021), and cause changes in the mag-
netosphere, which in turn influence the Earth’s geomagnetic activity (Mursula, Zieger, and
Vilppola 2003). The current space climate context presents a scenario where the observed
solar activity level has decreased from high solar activity in the mid-20th century to weak
solar activity in the previous Solar Cycle 24 (Usoskin 2023). In this sense, it is worth men-
tioning that some authors (Feynman and Ruzmaikin 2011; Karak 2023) have proposed that
we are currently at a minimum phase of the centennial solar cycle, as originally determined
by Gleissberg (1939, 1945).

Predicting solar-cycle evolution is particularly relevant as it enables us to forecast how
the Sun’s activity may affect the Earth. As these cycles determine the likelihood of extreme
solar events like flares and coronal mass ejections, a society as dependent on technology as
ours must pay attention to the Sun’s behavior in order to mitigate its impact.

With more than 400 years of systematically recorded data available, the sunspot record is
the longest-lived extant dataset of direct solar observations (Clette et al. 2014; Vaquero et al.
2016; Arlt and Vaquero 2022; Clette et al. 2023). The so-called sunspot number (SN) is thus
widely used for describing future solar activity across a variety of scientific fields, including
climate change, solar physics and spaceflight mission planning (Bothmer and Daglis 2007;
Haigh 2007; Muñoz-Jaramillo and Vaquero 2019). This has drawn increasing scholarly and
public attention to predicting solar activity via the SN (Petrovay 2020; Overbye 2021).

Recently, significant research has been performed on this topic, with works offering var-
ious predictions for the maximum peak amplitude of SN in the present solar cycle (Solar
Cycle 25) (Nandy 2021). Various techniques have been used to make these predictions
(Petrovay 2020). One approach uses physical methods to predict SN. In this sense, Guo,
Jiang, and Wang (2021) predicted a maximum SN amplitude of 126 for Solar Cycle 25
(above that of Solar Cycle 24, which peaked at 116.4) based on a solar dynamo model. Sta-
tistical methods have also been used for sunspot prediction. This way, Aparicio, Carrasco,
and Vaquero (2023), utilizing the slope of the inflection point during the cycle’s ascending
part, predicted a maximum SN of 131 ± 32 for Solar Cycle 25. Other researchers have used
nonlinear modeling to make predictions. Employing the Kalman filter to calculate solar cy-
cles under consideration of a nonlinear system of equations that modeled a dynamo system,
Kitiashvili (2020) estimated a maximum SN of 50 ± 15 in 2024 – 2025. Techniques based
on spectral analysis have also been used to predict the SN. Taking the annual sum of time
series (from 1874 to 2013) of sunspot group areas, Javaraiah (2015) employed fast Fourier
transform (FFT), the maximum entropy method, and Morlet wavelet analysis, producing a
maximum SN amplitude prediction for Solar Cycle 25 of 50 ± 10. Several researchers have
drawn on precursor methods to forecast the maximum SN amplitude for Solar Cycle 25.
For instance, considering the previous cycle’s peak and asymmetry as well as geomagnetic
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indices as precursors, Lu et al. (2022) predicted an SN peak value of 145.3 in October 2024.
For their part, Asikainen and Mantere (2022) drew on solar magnetism periodicity in Hale
cycles and the peak geomagnetic aa* index as a precursor to predict an SN maximum of
171 ± 23 in May 2024.

One of the most successful and robust precursor methods for predicting the maximum
SN amplitude is probably the so-called polar precursor method, which considers the polar
magnetic field as a precursor parameter for solar activity (Nandy 2021). The Sun’s polar
magnetic field plays a crucial role in solar activity dynamics and is fundamental to our
understanding of our star’s magnetic behavior (Muñoz-Jaramillo et al. 2012). This field un-
dergoes a cyclical reversal approximately every 11 years, coinciding with the solar cycle.
During this cycle, the fields weaken, reverse polarity, and then strengthen again, a phe-
nomenon that is intricately linked to the generation and evolution of sunspots as well as the
overall solar activity (Tobias 2023). On the other hand, a measure of the strength of the polar
magnetic field over a specific area is the so-called polar flux. Thus, the polar flux quantifies
the total magnetic field passing through an area near the Sun’s poles. In this sense, it is es-
sentially the product of the polar magnetic field and the area over which this field extends.
Therefore, the polar flux is directly dependent on the strength of the polar magnetic field.
Likewise, the polar flux can also be obtained from the so-called polar faculae, as shown in
Muñoz-Jaramillo et al. (2012), since their formation is directly related to the Sun’s magnetic
field. In particular, the polar precursor technique exploits the notion that the amplitude of a
solar cycle is likely proportional to the poloidal field’s amplitude (or that of the polar flux)
near the cycle’s start. However, Kumar et al. (2021) used the polar field (and the proxy)
data four years after the polar field reversal to predict an SN peak for Cycle 25 of 120 ± 25
(in addition to forecast an SN maximum of 126 ± 3 using the usual prediction of the polar
precursor at cycle minimum). Subsequently, Kumar, Biswas, and Karak (2022) predicted a
peak in Cycle 25 of 137 ± 23, exploiting the fact that the polar solar field’s growth rate
correlates highly with the next cycle’s amplitude and growth rate. Similarly, Biswas, Karak,
and Kumar (2023) explored the reliability and robustness of using the polar field rise rate
as a precursor for an early prediction of solar cycle. After that, Javaraiah (2023) predicted
125 ± 7 as the maximum SN amplitude for Solar Cycle 25, using the polar magnetic field
as a precursor and considering the fact that the main and secondary peaks of a solar cycle
maximum (Gnevyshev peaks) correlate. Recently, Upton and Hathaway (2023) predicted an
SN peak for Solar Cycle 25 of 134 ± 8, occurring in the fall of 2024. These authors used
geomagnetic activity levels and the Sun’s polar magnetic field configuration—particularly
the polar fields and axial dipole moment at cycle minimum—as predictors.

Lastly, methods using machine learning (ML) have also been applied to sunspot pre-
diction in past works. For example, Moustafa and Khodairy (2023) employed a hybrid
model comprising Long Short-Term Memory (LSTM) and AutoRegressive Integrated Mov-
ing Average (ARIMA) algorithms to predict Solar Cycle 25’s SN peak, arriving at 137.04
in September 2024. Meanwhile, through a deep learning (DL) approach, Su et al. (2023)
estimated 133.9 in February 2024, while Prasad et al. (2023) predicted 136.9 in April 2023
based on an LSTM model. Finally, Peguero and Carrasco (2023) also employed an LSTM
model to forecast the maximum amplitude of Solar Cycle 25, concluding that it would be a
new minimum of the Gleissberg cycle.

As the previous research outlined above shows, and as highlighted in Nandy’s (2021) re-
view, substantial disparity exists in the prediction results concerning Solar Cycle’s peak SN

value and its timing, even when using the same method. This inconsistency reflects the in-
herent challenges in grasping the finer details of our star’s behavior. To be specific, the men-
tioned 11-year period emerges clearly in the SN series, remaining almost constant through-
out. However, there are changes in the solar dynamo’s behavior within the different cycles,
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producing amplitude variations. Consequently, reliably predicting how the SN will evolve—
not just in the current cycle, but also generally in future cycles—is still a challenge. Hereby,
we should note that the prediction techniques outlined above have certain limitations. For
instance, not all statistical models account for the underpinning physical processes that pro-
duce sunspot cycles, often leading to inaccurate predictions (Nandy 2021). Meanwhile, the
absence of detailed and accurate data on the solar system’s initial conditions and parame-
ters can diminish the effectiveness of physical or precursor models (Upton and Hathaway
2018). Finally, SN prediction models that rely solely on ML approaches are unable to con-
sider the fundamental solar physics driving sunspot generation (Camporeale 2019), limiting
their applicability. Based on the discrepancies and limitations described above, there is an
urgent need to deepen the research in this field by developing techniques that enable highly
accurate solar activity forecasting (Asensio Ramos et al. 2023).

Seeking to overcome the limitations of single estimation models, we here combine sev-
eral methods based on currently available data (up to September 2023) to develop an inno-
vative technique for SN prediction. Specifically, we consider a precursor parameter of solar
activity, namely the polar fluxes of the northern and southern hemispheres (a proxy of the
polar magnetic field), conduct a spectral analysis of the time series under consideration (to
identify periodicities that can be used to lag the series, thereby producing new attributes
that can serve as predictors in our prediction model), and lastly apply multivariate ML al-
gorithms (where the dependent variable is SN and the independent variables are the two
series of the northern and southern polar fluxes, respectively, subjected to spectral analysis).
The purpose of this approach is to create a method that incorporates all the strengths of the
abovementioned techniques, thereby gathering the benefits from three distinct approaches
under a single umbrella. We expect this method to offer substantially better predictions for
solar cycles, thereby improving on the findings of prior work that solely used a univari-
ate ML approach without precursor parameters (Rodríguez, Rodríguez-Rodríguez, and Woo
2022), ultimately offering a deeper understanding of the solar dynamo’s long-term behavior.

Our focus lies, in particular, on forecasting the remainder of Solar Cycle 25 and Solar
Cycle 26 using that innovative method. The outline of this article is as follows: the data
and methodology used in this work are explained in Section 2. We present the results ob-
tained along with our discussion in Section 3. Section 4 is dedicated to showing the main
conclusions derived from this work.

2. Methodology

2.1. Data Description

The sunspot number data for this work were taken from the values of the SN (version 2) index
available on the website of the World Data Center SILSO (Clette and Lefèvre 2016) belong-
ing to the Royal Observatory of Belgium (ROB) in Brussels: www.sidc.be/silso/datafiles.

To predict the SN via the multivariate ML algorithms of the final proposed model, we
consider two time series corresponding to the northern and southern polar fluxes. These
hemispheric solar flux series, recognized as precursor parameters of solar activity, are used
as the predictors (independent variables) of our dependent variable (SN). The polar flux se-
ries corresponding to both hemispheres were extracted from Muñoz-Jaramillo et al. (2012).1

1dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/KF96B2.

http://www.sidc.be/silso/datafiles
http://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/KF96B2
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2.2. Data Processing

Firstly, it should be noted that data from the above-mentioned site, corresponding to the polar
fluxes, are annual. Therefore, a linear interpolation of the data of these series is carried out
to obtain monthly estimated values (this work attempts a long-term forecast of solar cycle
evolution, in terms of the 13-month smoothed SN values). Next, we estimate a 13-month
centered running average for the time series considered, where all elements of the averages
have the same weight (1), except for the first and last elements, whose weight is 0.5 (as we
have considered a 13-month centered running average, for each series, neither the first six
months nor the last six months have smoothed averages). By adhering to this convention, we
ensure that the results can be easily compared and contrasted across different investigations,
promoting collaboration and knowledge advancement in this area. Moreover, by processing
the data using such an average, along with the avoidance of a model too complex, we avert
potential overfitting in the ML algorithms. Overfitting is possible when a model fits the
training phase data too well and cannot correctly generalized to new data that were not
incorporated during the training (this can be due, among other things, to the presence of
noise in the training data).

In Figure 1 (bottom), the considered times series corresponding to the polar fluxes from
both hemispheres can be observed, after applying the 13-month running average. The 13-

Figure 1 SN times series (top) and considered time series corresponding to the northern and southern polar
fluxes (bottom) after applying the 13-month running average for the same range of dates.
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Table 1 Period and number of records for each considered series (after the 13-month running average has
been applied).

Series Period Number of records

SN July 1749 – May 2023 3287

Northern Polar Flux September 1907 – September 2023 1393

Southern Polar Flux March 1907 – March 2023 1393

month smoothed SN is also shown at the top of Figure 1. Table 1 displays date ranges for each
series, in addition to the number of records of each, after the 13-month running average has
been applied. It is worth mentioning that the original annual data for both polar flux series
are published each year in different months for each hemisphere (September for the Northern
Hemisphere and March for the Southern Hemisphere). This fact implies that although the
same number of records is available for both series (1393), there will be a different number
of predicted values for the polar flux in each hemisphere up to the stipulated common time
horizon (January 2038), as shown below.

2.3. Time Series Fourier Transform Analysis

As mentioned above, Fourier-transform-based spectral analysis permits the extraction of
certain characteristics of a given time series, which enhances predictive ML algorithms’
performance (Koç and Koç 2022). Hence, we apply FFT to all 13-month smoothed data
series (including the dependent variable SN), seeking to identify suitable periodicities with
which these series can be lagged (by a number of positions equal to these periods or mul-
tiples thereof) as frequently as possible for as long as the series have data. This produces
lagged series, which in turn offer new predictors or attributes that can be incorporated into
the input dataset for the predictive ML algorithms. This approach is based on the idea that
for time series containing certain identifiable periods, their behavior at instants lagged by a
time equivalent to those periods—or multiples thereof—can offer useful information for es-
timating these series’ behavior in the future. We conduct this analysis for all series, because
when forecasting SN (target), the multivariate ML algorithm uses as predictors (inputs) not
only the SN series itself, lagged in line with its periodicities, but also the polar flux series
already forecasted until the time horizon for which the SN prediction is to be made. Thus,
in order to previously carry out such polar flux series predictions, a univariate ML forecast
will be performed for each polar flux series, wherein the predictors are, in turn, the series
lagged according to their periodicities. Figure 2 displays the periodograms for the series
considered here, indicating the different peaks that represent the various identified periodic-
ities. Table 2 presents the main periodicities’ values alongside the number of positions they
represent regarding these series’ displacement.

2.4. ML Algorithm Implementation, Selection, and Application

The different ML models employed in our SN prediction approach are implemented in
Python (scikit-learn library). We select linear regression (LR), random forest (RF), support
vector machines (SVM) and Gaussian processes (GP) as these provide a set of diverse strate-
gies that permit us to perform multivariate analysis on time series data that have cyclical as
well as nonlinear patterns, i.e., the SN and the two polar flux series. Moreover, these algo-
rithms are well known for their capability for modeling sequential data. A more detailed
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Figure 2 Periodograms of the sunspot number (top panel), and the northern (bottom-left panel) and southern
(bottom-right panel) polar fluxes.

Table 2 Main periodicities of the considered time series (obtained from their respective periodograms) and
number of positions to be lagged that these periods represent.

Series Periods (years/cycle) Number of corresponding lag positions

SN 5.70, 8.83, 10.95, 15.21, 54.76, 91.27 68, 106, 131, 182, 657, 1095

Northern Polar Flux 12.88, 19.33, 23.2 154, 232, 278

Southern Polar Flux 12.88, 19.33, 23.2, 58 154, 232, 278, 696

description of these algorithms can be found in Shmueli and Lichtendahl (2016) for LR,
Vapnik (2013) for SVM, Oshiro, Perez, and Baranauskas (2012) for RF, and Seeger (2004)
for GP. The root mean square error (RMSE) estimated in the test phase is used to assess the
goodness of fit of each algorithm. Then, we select the algorithm with the best performance
to predict the polar flux series and SN.

Notably, the series’ predictive time horizon is January 2038. In this sense, the prediction
period for the SN will be from June 2023 to January 2038 (176 records), that of the northern
polar flux will be from October 2023 to January 2038 (172 records), and that of the southern
polar flux will be from April 2023 to January 2038 (178 records). This way, the number of
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Table 3 Initialization parameters for the different ML algorithms employed.

Algorithm Parameters

RF - Bag size (percentage of training set size): 100.

- Thread number: 1.

- Tree number: 100.

- Maximum tree depth: unlimited.

- Number of random features: 0.

- Seed: 1.

LR - Ridge parameter: 10−8.

GP - Gaussian noise level: 1.0.

- Seed: 1.

- Polynomial kernel: size of the cache = 250,007; exponent = 1.0.

SVM - C parameter: 1.0.

- Polynomial kernel: size of cache = 250,007; exponent = 1.0.

- Sequential minimal optimization (SMO) with epsilon for round-off error = 10−12;
epsilon parameter for epsilon insensitive loss function = 0.001; tolerance = 0.001;
seed = 1.

records reserved for the test phase in each case is assumed to be identical to the number of
records to be predicted from known data up until January 2038: 176 for the SN, 172 for the
northern polar flux and 178 for the southern polar flux. We dedicate the remaining data in
each series (not used for the test phase) to training and validation, using a n-split expanding
window cross-validation in the training/validation phase to adjust the hyperparameters. The
number of splits is selected in order to provide a balance between the amount of data used for
training and the robustness of the validation, ensuring that the model is evaluated on different
data segments to improve its generalization. Therefore, n will be different for the SN series
(n = 5) and for the northern and southern polar fluxes (n = 3). The validation window is
assumed to consist of a number of records (v) equal to that in the testing phase and the
training dataset of each split/iteration consists of a number of records of round [i/n ·(T −v)]
(where i is the number of split/iteration—from 1 to n—and T is the total number of records
reserved for training and validation). Table 3 shows the initialization parameters for the
different ML algorithms. It should be noted that the choice of these parameters responds to
the call for a balance between performance, accuracy, and computational complexity.

3. Results and Discussion

3.1. Multivariate Prediction Model Construction

To begin with, we perform a univariate prediction of the two polar flux time series until
January 2038. We hereby assume the series themselves as the predictors of each, lagged by
the number of positions equal to their periodicities, as outlined previously. Thus, each pre-
diction is an ultimately autoregressive/multivariate problem (although we only consider the
time series data). To this end, we draw on the four abovementioned ML algorithms, i.e., RF,
LR, GP and SVM. Table 4 presents the RMSE values for each algorithm in the test phase
of the respective prediction models constructed for the two polar flux series (for each series,
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Table 4 RMSE values (in units of 1021 Mx) for four algorithms considered for the test phases of each
prediction model for both polar flux series.

Series Number of records
for the Test Phase

RF LR GP SVM

Northern Polar Flux 172 4.52 5.33 6.35 5.64

Southern Polar Flux 178 3.95 3.55 4.24 2.98

Figure 3 Observed data compared with predicted data for the northern polar flux univariate prediction
model’s testing phase (172 records) using the RF algorithm.

the lowest RMSE value from among the four algorithms is highlighted in bold). Further-
more, the above-mentioned number of records considered for the test phase in each case is
also provided (which is different for each hemisphere, since the number of records for the
test phase has been assumed to be the same as the number of values to be predicted in each
series until January 2038, and as discussed above at the end of section ‘Data processing’,
the latter number differs for each hemisphere). It clearly emerges that for the northern polar
flux series, the RF technique makes the best prediction based on RMSE, while the southern
polar flux series is most reliably predicted by SVM.

It should be noted that although the data type of the two series is the same, factors related
to the specific behavior of each series, as well as to the particular characteristics of the ML
model considered, may cause the lower RMSE to be obtained with a different algorithm
in each case. In this sense, RF models perform better when trying to capture particularly
nonlinear and complex interactions in the data, as well as more abrupt fluctuations in the
series (Breiman 2001), as is the case with the northern polar flux series (see cycles between
1950 and 1970). Nevertheless, SVM models are more effective in series where the behavior
of the data is more stable and less subject to strong fluctuations (Cristianini and Shawe-
Taylor 2000), as is the case for the southern polar flux series.

Figures 3 and 4 show a comparison between predicted and observed values for the test
phases of both the northern polar flux (172 records, from June 2009 to September 2023,
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Figure 4 Observed data compared with predicted data for the southern polar flux univariate prediction
model’s testing phase (178 records) using the SVM algorithm.

Figure 5 Prediction curves for the two considered polar flux series until January 2038.

using the RF algorithm) and the southern polar flux (178 records, from June 2008 to March
2023, using the SVM algorithm), respectively.

As can be seen in Figures 3 and 4, the prediction for the test phases of both the northern
and southern polar flux series is consistent with the observed data, as indicated by the RMSE
values obtained for both cases: 9.7 · 1020 Mx and 8.3 · 1020 Mx, respectively.

Therefore, Figure 5 presents the prediction curves (until January 2038) for the two polar
flux series, each obtained with the algorithm that produced the lowest RMSE value. Ob-
served data are blue for the Northern Hemisphere and red for the Southern Hemisphere.
Predictions are light blue for the Northern Hemisphere and pink for the Southern Hemi-
sphere.
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Table 5 RSME values obtained
in the test phase by the four
algorithms considered to build
the multivariate model to predict
the SN series.

Algorithm RMSE

RF 10.04

LR 16.48

GP 15.44

SVM 11.13

Figure 6 Observed data compared with predicted data for the SN multivariate prediction model’s testing
phase (176 records) using the RF algorithm.

Lastly, we construct the multivariate model for predicting the SN (until January 2038)
using the four considered algorithms (RF, LR, GP and SVM). As predictors, we assume
both the SN series itself, lagged by various numbers of positions according to periodicity
(Table 2), and the two polar flux precursor series, as predicted until January 2038. Table 5
presents the RMSE values obtained during the testing phase (176 records) for the four algo-
rithms. As shown in Table 5, the lowest RMSE for the test phase (10.04) is produced by the
RF algorithm; hence, we consider this algorithm for the multivariate prediction of SN.

Figure 6 presents a comparison between the observed values and our predictions for the
testing phase (red line) (from October 2008 to May 2023) based on RF.

The curves are in good agreement in terms of the cyclic behavior of the series and, in
particular, throughout the entire Solar Cycle 24. The model hereby offers a good fit regarding
the SN values and the maxima’s occurrence dates. For Solar Cycle 24, the observed and
predicted maxima are 116.4 and 118.3 ± 10.0, respectively, both of which occurred in April
2014.

Figure 7 compares the modeled and observed data in a training phase time slot based on
RF (only since 1970—as it is merely a sample to illustrate the goodness of fit of the model
in the training phase—and up to September 2008, where the data reserved for the test phase
begins). There is excellent agreement, as shown by the RMSE for this phase of 2.02.
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Figure 7 Example comparison between observed data and modeled data for a training phase time slot of the
SN multivariate prediction model (since 1970 and up to September 2008) using RF.

3.2. Predicting Activity for Solar Cycles 25 and 26

Figure 8 provides the final multivariate prediction (grey line, top panel) of the SN series until
January 2038 (176 records), alongside the previously made predictions for the two selected
polar flux series (light blue and pink lines, bottom panel).

The model predicts a maximum SN of 131.4 ± 10.0 (in July 2024) for Solar Cycle 25 and
121.2 ± 10.0 (in September 2034) for Solar Cycle 26. The SN values obtained in both solar
cycles are significantly below the average of the maximum amplitudes considering Solar
Cycles 1 – 24, which is ∼ 180. In this sense, we note that the observations made during Solar
Cycle 25 so far hints that this cycle will be below average within the lowest 25th percentile
(Carrasco and Vaquero 2023; Ridley 2023). Furthermore, although there have been some
predictions regarding the maximum amplitude of Cycle 25 that forecasted that this cycle
will be a strong cycle (Han and Yin 2019; McIntosh et al. 2020; McIntosh, Leamon, and
Egeland 2023), our prediction for Cycle 25 is in agreement with most of the predictions
covered in Nandy (2021). Meanwhile, the predicted maximum of Solar Cycle 26 is slightly
lower than that of the preceding Solar Cycle 25 and is similar to the maximum amplitude
observed in Solar Cycle 24 (116.4). This would imply that Solar Cycles 24, 25, and 26
belong to a minimum in the centennial Gleissberg cycle. As an example, this was the case
for Cycles 12, 13, and 14 in the final years of the 19th century and near the beginning of the
20th century. Notably, the average maximum amplitude for Solar Cycles 12 – 14 was 126.0,
whereas based on our results it would be 123.0 for Solar Cycles 24 – 26. Moreover, our
findings point to the same direction as those obtained by Feynman and Ruzmaikin (2012,
2014) and Karak (2023), who contended that Solar Cycles 23 and 24 could belong to a
minimum of the Gleissberg cycle. In addition, the predicted dates for the two SN maxima
for Solar Cycle 25 and 26 (July 2024 and September 2034, respectively) are similar to those
obtained for the two polar flux polarity reversals for Solar Cycles 25 and 26 (April 2024 and
August 2034, respectively). In this regard, it is worth mentioning that our prediction for the
next polar flux reversal for Cycle 25 (April 2024) would be in agreement with the latest data
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Figure 8 Final multivariate prediction of the SN series (grey line, top panel) until January 2038, as well as
the previously made predictions of the selected two polar flux series (light blue and pink lines, bottom panel).

provided by the Wilcox Solar Observatory (WSO), since signs of such a polar flux reversal
have already been observed.

On the other hand, there is a well-known relationship between the absolute value of the
difference between the polar fluxes of both hemispheres at a minimum of the SN and the
maximum of the SN of the subsequent cycle (Upton and Hathaway 2023). In this sense,
it is worth mentioning that the polar field at the SN cycle minima exclusively impacts the
magnitude of the subsequent SN cycle (Karak and Nandy 2012; Nandy 2021). Figure 9
shows the SN peak values of Solar Cycles 15 to 24 as a function of the absolute value of the
difference between the polar fluxes of both hemispheres at the minimum SN preceding each
cycle.

The values in Figure 9 can be fitted by a linear regression line with the equation y = 3 ·
10−21x + 87.933 (with a correlation coefficient r = 0.7 and a p-value = 0.025), being x the
absolute value of the difference between polar fluxes of both hemispheres at the minimum
SN preceding each cycle and y the maximum amplitudes of the SN cycles. Therefore, if we
apply such an equation to predict the SN maxima for Solar Cycles 25 and 26, we obtain
maximum amplitudes of 142.3 for Solar Cycle 25 (with an absolute value of the difference
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Figure 9 SN peak values of Cycles 15 to 24 as a function of the absolute value of the difference between
polar fluxes of both hemispheres at the minimum SN preceding each cycle.

between the polar fluxes at the preceding SN minimum of 1.81 · 1022 Mx, which is already
known from observed data) and 126.9 for Solar Cycle 26 (with an absolute value of the
difference between polar fluxes at the preceding SN minimum of 1.29 · 1022 Mx, which, in
this case, is obtained from the univariate predictions previously carried out for both polar
fluxes). Taking into account that the RMSE obtained when calculating the regression line is
34.22, the SN peak values estimated using this method for Solar Cycles 25 and 26 closely
align (within the margin of error) with those predicted with the multivariate ML prediction
(131.4 ± 10.0 and 121.2 ± 10.0, respectively). Therefore, it is noteworthy to point out that
we obtain similar predictions for the SN maximum amplitudes of Solar Cycles 25 and 26
using two different approaches.

4. Conclusions

This work has proposed a novel and innovative technique for solar cycle prediction, specif-
ically the SN, employing multivariate ML techniques, considering both hemispheres’ polar
fluxes as precursor parameters, and subjecting the considered time series to spectral analysis
via FFT.

The RF algorithm yielded the lowest RMSE in the testing phase (10.0) and was therefore
used in the final multivariate ML prediction of SN. We thus present our predictive results
for the SN of Solar Cycles 25 and 26, namely maxima of 131.4 (in July 2024) and 121.2 (in
September 2034), respectively. Our results suggest that Cycle 25 will have a below-average
maximum, while Cycle 26 will have a lower maximum than the preceding cycle. This could
indicate that we are at present in the minimum of a centennial Gleissberg cycle.

The predicted dates for SN maxima in Solar Cycles 25 and 26 (July 2024 and September
2034, respectively) are similar to those obtained for the next two polar flux polarity reversals
for Solar Cycles 25 and 26 (April 2024 and August 2034, respectively).

Moreover, the SN peak values for Cycles 25 and 26 have also been estimated using the
equation of the linear regression resulting from the known relationship between the absolute
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value of the difference between the polar fluxes of both hemispheres at an SN minimum and
the SN maximum of the subsequent cycle, resulting in values of 142.3 ± 34.2 and 126.9 ±
34.2, respectively. Hence, it is noteworthy that, using two different approaches, we produce
similar predictions for the SN maximum amplitudes of Solar Cycles 25 and 26.

Finally, we would like to draw an analogy between the evolution of weather prediction
and solar cycle prediction. Over the last century, theoretical meteorologists have focused
their efforts on weather prediction using the physical equations of meteorological mod-
els, achieving truly astonishing results (Fleming 2016). However, recently, exceptional ad-
vances have been made in weather prediction using machine learning techniques, driven by
observed or quasi-observed data (Lam et al. 2023). Similarly, solar physicists have made
notable strides in recent decades in the theoretical modeling of the solar dynamo based on
magnetohydrodynamic equations for predicting the solar cycle (Choudhuri 2015). Neverthe-
less, we firmly believe that the time has definitively come for machine learning techniques
to predict the solar cycle, driven by observed or quasi-observed data. This approach proves
to be a crucial milestone, and this work is a compelling example of it.
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