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Abstract
Low and Lou (Astrophys. J. 352, 343, 1990) presented a family of nonlinear force-free mag-
netic fields that have established themselves as the gold standard for extrapolating force-free
magnetic fields in solar physics. Building upon this important work, our study introduces
a novel grid-free machine-learning-based method to effectively solve the equilibria pro-
posed by Low and Lou. Through extensive numerical experiments, our results unequivocally
demonstrate the efficient capability of the machine-learning algorithm in deriving numerical
solutions for Low and Lou’s equilibria. Furthermore, we explore the opportunities and chal-
lenges of applying artificial-intelligence technology to real observed solar active regions.

Keywords Nonlinear · Force free · Magnetic fields · Machine learning

1. Introduction

Knowledge of the magnetic-field structure is significant for understanding solar phenomena
on the Sun, for example coronal mass ejections, flares, and filaments. However, it is difficult
to measure the solar magnetic field with high accuracy except in the photosphere. There-
fore, there are several models of magnetic-field extrapolation that are proposed, such as
potential fields (PF) (Schmidt 1964; Altschuler and Newkirk 1969), linear force-free fields
(LFFF) (Nakagawa and Raadu 1972; Chiu and Hilton 1977), and nonlinear force-free fields
(NLFFF) (Sakurai 1989; Neukirch 2005; Wiegelmann and Sakurai 2021).
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The PF model is charaterized by

�φ = 0 in �

∂φ

∂n
= Bz0 on ∂�

, (1)

where B = B (x, y, z) = (
Bx,By,Bz

)
is the field, � is the open space above the solar sur-

face, and ∂� is its boundary. Finally, the magnetic field can be formulated as B = ∇φ.
The solution of Equation 1 is unique. The solution is a good approximation of the large-

scale topology of a solar active region, but it is not suitable for a small-scale topology such
as that discussed by Aulanier, Pariat, and Démoulin (2005).

The force-free field model can be written as

∇ × B = αB in �

∇ · B = 0 in �

B = B0 on ∂�

, (2)

where B0 is the observed magnetic field in the photosphere. When α is a constant, Equation
2 represents the LFFF model, which can be solved analytically using the Green’s function
method or the Fourier method, as discussed by Wiegelmann and Sakurai (2021). In partic-
ular, when α = 0, Equation 2 describes the PF model, which can also be solved using these
analytical methods.

In the LFFF model, α is a global free parameter. As observed by Démoulin et al. (2002)
and Valori et al. (2010), a large α may lead to overestimation, while a small α may lead to
under-estimation. When the assumption of a constant α is relaxed, Equation 2 becomes the
NLFFF model, where α is a spatially dependent scalar function. With a variable α, a closed-
form solution to Equation 2 is no longer feasible. This has prompted the development of
various numerical algorithms to solve Equation 2. These numerical algorithms include the
works by Grad and Rubin (1958), Nakagawa (1974), Mikić and McClymont (1994), Amari
et al. (1997), Wheatland, Sturrock, and Roumeliotis (2000), Yan and Sakurai (2000), Rég-
nier, Amari, and Kersalé (2002), Wiegelmann and Neukirch (2003), Wiegelmann, Inhester,
and Sakurai (2006), and Yan and Li (2006).

However, without ground-truth 3D magnetic fields, the performance, stability, and accu-
racy of these algorithms cannot be objectively evaluated. Fortunately, assuming an axially
symmetric configuration of the magnetic field, i.e. ∂

∂φ
= 0 in the spherical coordinate system

(r, θ,φ), Low and Lou provided a set of separable and semi-analytical solutions to Equation
2:

B = B0

Rn+2

⎡

⎣−dF

dμ
r̂ + nF

(
1 − μ2

) 1
2

θ̂ + ηA
(
1 − μ2

) 1
2

φ̂

⎤

⎦ , (3)

where

A =
{

F 1+ 1
n , n = 1

F |F | 1
n , n� 3

(4)

and F satisfies

(
1 − μ2

) d2F

dμ2
+ n (n + 1)F + C = 0, (5)
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where

C =
{(

1 + 1
n

)
a2F 1+ 2

n , n = 1
(
1 + 1

n

)
a2F

(
F 2
) 1

n , n� 3.
(6)

For a comprehensive and in-depth analysis of the mathematical framework of Low and
Lou’s equilibria, please consult Appendix A for detailed discussions.

In fact, n = 1 and n ≥ 3 can be generalized, as 2
n

is positive and not necessarily an integer
in both Equations 4 and 6. For example, n = 4

3 , i.e. 2
n

= 3
2 is not a positive integer, but n = 2

9 ,
i.e. 2

n
= 9 is a positive integer.

It is to be observed that F 1+ 2
n is not always equal to F

(
F 2
) 1

n . For example, F

(
1+ 2

n

)

> 0,

but F
(
F 2
) 1

n < 0 when F = −0.1, n = 2
9 . In this article, we take n = 5, 3, 1.5, 1, 0.9, 0.7,

0.5, 0.3, and 0.1, respectively.
Equation 5 is a second-order, nonlinear, ordinary differential equation (ODE). Solving

ODEs is an important topic in mathematics and engineering. In general, most of the existing
research for finding solutions to ODEs falls into two main categories: analytical techniques
and numerical methods. The analytical techniques include, e.g., separation of variables and
the method of integrating factors. The numerical methods include, e.g., Euler’s method and
the Runge–Kutta (RK) method. The numerical method is usually expressed in terms of
the discretization parameters. Artificial-intelligence-based methods are also currently be-
ing used in solving ODEs, such as that discussed by Raissi, Perdikaris, and Karniadakis
(2019), Dufera (2021), and Cuomo et al. (2022).

Several works have extended Low and Lou’s equilibria in the last 30 years, such as Low
and Flyer (2007), Lerche and Low (2014), and Prasad, Mangalam, and Ravindra (2014)
redefined Equations 6, 7, and 9 of Low and Lou (1990) in different ways. To the best of our
knowledge, there is no discussion about the existence and uniqueness of analytical solutions
to Equation 5. The most commonly used numerical method to solve Equation 5 is the RK
fourth-order method (RK4). RK4 provides the approximate value of F (μi) at the discrete
sampling points μis. If μj is not included in the set of μi , we will not be able to directly
determine the value of F

(
μj

)
. In this article, a neural network can compute F

(
μj

)
and

F ′ (μj

)
at any μj in [−1,1] directly.

The remainder of this article is organized as follows: Section 2 provides a RK-based
method for solving for the parameter a in Equation 6. Section 3 develops the correspond-
ing numerical algorithm. The data-driven numerical method for the parameters n and a is
presented in Section 4. The conclusion is given in Section 5.

2. RK-Based Method for the Parameter a in Equation 5

Returning to Equations 3 and 5, there is one parameter a and two unknowns
(
F, dF

dμ

)
with

B0 = 1 and r0 = 1 in Low and Lou’s equilibria. In this section, we study numerical methods
for solving for a.

The basic idea for solving Equation 5 with initial conditions is to rewrite it as a system
of first-order ODEs. Introducing the variables

f1 = F (μ) and f2 = F ′ (μ) ,
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Figure 1 The curves of F (a,1)

with the variable a for
F ′′ (−1) = 0 and F ′′ (−1) = 106,
where the points of intersection
between F (a,1) and the
horizontal axis can determine the
values of a for F (a,1) = 0.

we obtain a system of two first-order ODEs:

{
f ′

1 = f2,

f ′
2 = − n(n+1)f1+D

1−μ2 ,

where

D =
⎧
⎨

⎩

(
1 + 1

n

)
a2f

1+ 2
n

1 , if 2
n

is an integer,
(
1 + 1

n

)
a2f1

(
f 2

1

) 1
n , otherwise,

with initial values at μ = −1

f1 (−1) = 0 and f2 (−1) = 10.

The RK method is an effective method for solving the initial-value problem of Equation
5 with an unknown parameter a if f1(1) = 0.

We divide the interval [a0, amax] into N equal parts, choosing a step h = amax−a0
N

. Then,
ai = a0 + (i − 1)h (1 � i � N). Without loss of generality, we choose a0 = 10−5, amax = 10,
N = 999.

Note that μ = −1 is a singular point of f ′
2 in Equation 5. The value of f ′

2 (−1) depends
on the parameter a, as shown Figure 1, for n = 1, f ′

2 (−1) = 0, and 106.
We take f ′

2 (−1) = 0 in this section. It helps us to find the interval that contains zeros
when we plot F (ai,μ = 1) against a, as shown in Figure 2. Finally, we find F (ai,μ = 1) =
0 by the bisection method, and we find an,ms (1 ≤ m ≤ 3) as presented in Table 1.

3. Machine-Learning-Based Method for F and dF
dμ

Most of the classical numerical methods compute an approximate value for the solution at
discrete sampling points. In this section, we propose a grid-free method based on a neural
network to obtain a numerical solution at any point in [−1,1].
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Table 1 an,m for the mth-order root of F (ai ,μ = 1) for a given n.

m n

5 3 1.5 1 0.9 0.7 0.5 0.3 0.1

1 3.9341 2.8348 0.7846 0.6538 0.0719 0.0589 0.5865 0.4819 0.7162

2 6.0052 4.6243 1.9865 1.5947 0.5760 1.0678 1.4512 1.3332 3.2644

3 7.8851 6.4147 3.4555 2.9597 1.4474 2.2332 2.9533 3.0769 12.4581

Figure 2 F(a,1) with the variable a for different n.

The following theorem provides a solid theoretical basis for using multi-layer percep-
trons (MLP) in scientific computing.

Theorem 1 (Universal approximation theorem (Cybenko 1989 and Hornik 1991)) Let K ⊆
R

d be compact, f : K → R be continuous, ρ :R → R be continuous and not a polynomial.
Then, for ∀ε > 0, there exists N ∈ N, ak , bk ∈R, wk ∈R

d with

∥
∥∥
∥∥
f −

N∑

k=1

akρ (〈wk, ·〉 − bk)

∥
∥∥
∥∥

∞
< ε.

Remark 1 The universal approximation theorem also exists when f : K → R
m.

Therefore, we use an MLP architecture with three fully connected operations to solve
Equation 5 as shown in Figure 3. The first fully connected operation has one input channel
corresponding to the inputs μ. The second fully connected operation has N hidden neurons.
The last fully connected operation has two outputs F and dF

dμ
. It can be formulated as

f (μ; θ) = [f1, f2]T = W2Y + b2 = W2 [σ (W1μ + b1)] + b2, (7)

where W1, b1 ∈R
N×1, W2 ∈R

2×N , b2 ∈R
2×1, [·]T is the transpose operator in linear algebra,

Y = [y1, . . . , yN ]T , and σ is the hyperbolic tangent sigmoid (tanh) elementwise operator

tanh (x) = 1 − e−x

1 + e−x
, (8)
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Figure 3 The MLP has an input layer, one hidden layer, and an output layer. A layer consists of small
individual units called neurons. The letter N is used for the number of neurons in the hidden layer. The loss
function contains information from the differential equation and the initial conditions.

where x is an element of the column vector W1μ + b1.
Theorem 1 ensures the existence of a neural-network solution f (μ; θ) that can approx-

imate the solution of Equation 5 arbitrarily closely. Then, we find f (μ; θ) by minimizing
the loss function

L (μ; θ) = λ1L1 (μ; θ) + λ2L2 (μ; θ) + λ3L3 (μ; θ) , (9)

where

L1 (μ; θ) = 1

M

j=M∑

μ=μj ,j=1

((
1 − μ2

) df2

dμ
+ n (n + 1) f1 + E

)2

L2 (μ; θ) = 1

M

M∑

μ=μj ,j=1

(
df1

dμ
− f2

)2

L3 (μ; θ) = (f1 (−1; θ))2 + (f2 (−1; θ) − 10)2,

where M is the sample size and where

E =
⎧
⎨

⎩
a2
(
1 + 1

n

)
f

(
1+ 2

n

)

1 , if 2
n

is a positive integer,

a2
(
1 + 1

n

)
f1

(
f 2

1

) 1
n , otherwise

and where θ ∈ R
(4N+2)×1 is a learnable parameter, which is reshaped by the collecting set

{W1, b1,W2, b2}. Clearly, if Equation 9 does reduce to zero, then Equation 5 holds.
In order to compute df1

dμ
, df2

dμ
, and ∂L

∂θ
we use automatic differentiation (AD) (Baydin

et al. 2018), rather than numerical differentiation or integration (Kincaid and Cheney 2002,
Chapter 7) based on the assigned grid. AD is a set of techniques for evaluating the derivatives
numerically. AD uses symbolic rules for differentiation, however AD evaluates derivatives
at particular numeric values, and it does not construct symbolic expressions for derivatives.
Automatic differentiation is a powerful tool to automate the calculation of derivatives and is
preferable to more traditional methods, especially when differentiating complex algorithms
and mathematical functions (Baydin et al. 2018). In Matlab, a dlgradient command takes
derivatives with respect to the input or to the parameters.
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Table 2 Hyperparameters Setting of the MLP.

n

5 3 1.5 1 0.9 0.7 0.5 0.3 0.1

λ1 1 1 1 1 1 1 1 1 0.005

λ2 1 1 1 1 1 1 1 1 0.005

λ3 1 1 1 1 1 1 1 1 1

N 64 128 50 50 64 64 81 50 81

Nb 50 50 50 100 50 50 50 80 50

η 0.01 0.01 0.005 0.01 0.005 0.005 0.01 0.001 0.001

Table 3 Test performance of the numerical solutions generated by the MLP when n > 1.

n

5 3 1.5 1

MSE(F ) 2.99 × 10−5 5.14 × 10−5 1.22 × 10−6 1.25 × 10−6

MSE( dF
dμ

) 2.70 × 10−3 2.58 × 10−4 2.61 × 10−5 1.39 × 10−5

Table 4 Test performance of the numerical solutions generated by the MLP when n < 1.

n

0.9 0.7 0.5 0.3 0.1

MSE(F ) 5.78 × 10−6 8.24 × 10−6 1.91 × 10−7 2.43 × 10−6 6.01 × 10−5

MSE( dF
dμ

) 5.91 × 10−6 2.84 × 10−6 2.22 × 10−6 4.34 × 10−5 2.82 × 10−2

In practice, we use the mini-batch ADAM (Chen et al. 2022) that is a batch of Nb ran-
domly sampled points at every training iteration to minimize L. The M data points are
randomly divided into M

Nb
batches of size Nb. When all M

Nb
batches of data are used for op-

timization once an epoch is completed. The mini-batch ADAM is an optimization algorithm
that can minimize the loss function L.

Select M = 100,000 points from −1 to 1 at random to train the MLP. Set the m = 1,
β1 = 0.9, and β2 = 0.999 for all ns. Set λ1, λ2, λ3, N , Nb, and η, as Table 2, for different n

at the same time. Then, update θ using the mini-batch ADAM algorithm, which is shown as
Algorithm 1.

Finally,

θ∗ = arg min
θ

Loss.

For values of μi = −1 + (i − 1) 2
9999 (1 � i � 10,000), compare the predicted values

(FMLP) of the MLP with the numerical solutions (FRK) of Equation 2 using the classical
RK4.
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Algorithm 1 Mini-batch ADAM Algorithm.
Input: Initialize time step t = 1.

Initialize 1st and 2nd moment variables: m1 = 0, v1 = 0.
Set the exponential decay rates for moment estimates β1, β2.

i: while not converged do
ii: Sample a mini-batch of Nb examples from {μ̃1, μ̃2, . . . , μ̃Nb}

iii: Compute gradient estimate: ∂L̃
∂θ

∣
∣∣
θ=θt

,

where L̃ = λ1L̃1 + λ2L̃2 + λ3L̃3

and where

L̃1 = 1

Nb

Nb∑

μ̃=μ̃j ,j=1

[
(
1 − μ̃2

) df2

dμ
+ n (n + 1) f1 + E

]2

L̃2 = 1

Nb

Nb∑

μ̃=μ̃j ,j=1

(
df1

dμ
− f2

)2

L̃3 = L3

iv: Update biased first moment estimate: mt+1 = β1mt + (1 − β1)
∂L̃
∂θ

∣
∣∣
θ=θt

v: Update biased second moment estimate:

vt+1 = β2vt + (1 − β2)

(
∂L̃
∂θ

∣
∣∣
θ=θt

)2

vi: Correct bias in first moment: m̃t+1 = mt+1
1−βt

1

vii: Correct bias in second moment: ṽt+1 = vt+1
1−βt

2

viii: Update θt+1 = θt − η
m̃t+1√
ṽt+1+ε

ix: update t ← t + 1
x: end while

Output: θt+1

Define the mean square error (MSE):

MSE(F ) = 1

10,000

10,000∑

i=1

[FMLP (μi) − FRK (μi)]
2,

MSE(
dF

dμ
) = 1

10,000

10,000∑

i=1

[
dF

dμ MLP
(μi) − dF

dμ RK
(μi)

]2

,

to measure how close the FMLP (μi) is to the FRK (μi) and the
(

dF
dμ MLP

)
(μi) is to the

(
dF
dμ

)

RK
(μi), respectively. The MSEs are shown in Tables 3 and 4. This shows that the

MLP approach is efficient, compared with the RK4.
Figures 4 and 5 show how close the solutions generated by MLPs are to the RK method.

Therefore, they illustrate that MLP works reasonably well.
We developed a numerical algorithm that can effectively solve a specific class of ODEs,

particularly those derived from ∂
∂φ

= 0. One notable aspect of our algorithm is its remarkable
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Figure 4 F , dF
dμ

generated by MLP and RK methods when n ≥ 1.

adaptability, which facilitates effortless adjustments to a wide range of initial and bound-
ary conditions through simple modifications of the loss function in our proposed artificial-
intelligence (AI) neural-network model. Lerche and Low (2014) generalized the equilibria
proposed by Low and Lou (1990) and made modifications to the initial conditions. In this
scenario, our numerical algorithm remains valid and applicable. To avoid unnecessary repe-
tition, we have included it as Appendix B.

4. Data-Driven Approach for Identifying the Parameters n and a

The objective is to identify the optimum parameters of Low and Lou’s equilibria to match
the observations of an active region at the photosphere. This process concerns an inverse
problem: given a measured magnetic field B at the photosphere, or its value PB under
a measurement operator P , determine a corresponding parameter set {a,n} such that the
neural-network solution f (ri,μi;a,n) can approximate the field B .
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Figure 5 F , dF
dμ

generated by MLP and RK methods when n < 1.
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Figure 6 The magnetogram Bx that is generated by na1 and na2, respectively. Please note that the magne-
tograms are derived from the equilibria by Low and Lou and are dimensionless.

Figure 7 The contour of Bx that is generated by na1 and na2, respectively. Please note that the contours are
derived from the equilibria by Low and Lou and are dimensionless.

To analyze a force-free field B with the additional condition ∂
∂φ

= 0 imposed in the
spherical coordinate system, we consider the transformation matrix P defined as P =[

0
rn+2

(
1−μ2

) 1
2

n
0

]
, see Equation 19, then one obtains that

PB =
[

0
rn+2

(
1−μ2

) 1
2

n
0

]
[
Br Bθ Bφ

]T = F.

The loss function of the neural network can be designed as

L = λ1L1 + λ2L2,

where

L1 = 1

M

M∑

i=1

(
(
1 − μ2

i

) d2G

dμ2
+ θ2 (θ2 + 1)G + θ3

(
1 + 1

θ2

)
G
(
G2
) 1

θ2

)2
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Figure 8 The normalized differences generated by na1 and na2.

and

L2 = 1

M

M∑

i=1

(
1 − μ2

i

) 1
2
rθ2+2

θ2
((Bθ )i − f (μi; θ1))

2

and

G(μi) = rn+2

n

(
1 − μ2

i

) 1
2 f (μi; θ1) .

In the above equations, λ1 and λ2 are two trade-off parameters: M represents the sample
size, and θ1 is a learnable vector for Bθ . Furthermore, θ2 and θ3 are two learnable parameters
associated with n and a, respectively.

For a simple case, the active region is generated by Low and Lou’s approach with n = 5
and a = 3.9341 (na1 = {n = 5, a = 3.9341}). We use an MLP with five layers to identify the
parameters n and a. The first layer has three inputs corresponding to the r , μ, and Bθ . There
are 64 neurons for each hidden layer. The last layer has three outputs: the estimated values
of the n, a, and Bθ . Set λ1 = λ2 = 1 and M = 65,536. After training the MLP, the outputs n

and a are 4.9042 and 3.9830 (na2 = {n = 4.9042, a = 3.9830}), respectively.
Figure 6 shows the magnetogram Bx that is generated by na1 and na2, respectively. The

magnetic-field intensity in Figure 6 is visualized in the range of −5000 to 5000. Any values
exceeding 5000 are limited to 5000, and any values below −5000 are set to −5000. Figure 7
shows the contours of Bx that are generated by na1 and na2, respectively. They are highly
compatible in visual representation. In Figure 7, the colorbars are displayed in arbitrary
units. It is worth noting that magnetograms can be represented as matrices in Cartesian
coordinates (x, y). Figure 8 illustrates a visual representation of the quantity (Bn2)x−(Bn1)x

max
∣
∣(Bn1)x

∣
∣ .

However, the largest differences occur close to the magnetic nulls in Figure 8 since the
error propagation rapidly increases in Equation 3 when r is too small. The cosine similarity
(Brockmeier et al. 2017) between the magnetograms generated by na1 and na2 is 0.9909.
Cosine similarity is a measure that calculates the cosine value of the angle between two
matrices. It ranges from −1 to 1, with a value closer to 1 indicating a higher degree of
similarity between the two magnetograms.
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Figure 9 Neural-network architecture for the observational data.

If Low and Lou’s equilibria can effectively approximate the solar photospheric observa-
tional data, we can utilize a neural network to determine the parameters and initial values of
the Low and Lou’s equilibria. Therefore, a neural network as shown in Figure 9 is applied
to NOAA active regions (ARs) 11158 and 11302. This process can be written as:

⎡

⎣
Br

Bθ

Bφ

⎤

⎦= W 4σ

(
W 3σ

(
W 2σ

(
W 1

[
r

μ

]
+ b1

)
+ b2

)
+ b3

)
+ b4,

where W 1, W 2, W 3, and W 4 represent the weight matrices for each layer, while σ represents
the activation function. The biases are represented by b1, b2, b3, and b4.

The outputs of the neural network are shown in Figures 10c and d for NOAA ARs
11158 and 11302 from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager
(SDO/HMI), respectively. It can be observed that we cannot obtain effective magnetic fields
referring to Figures 10a and b. With only the data-loss term L2, we can obtain reasonable
outputs as shown in Figures 10e and f for NOAA ARs 11158 and 11302, respectively.

According to Wiegelmann and Sakurai (2021), the necessary conditions for determining
whether the solar photospheric magnetic field is a nonlinear force-free field are:

∫

S

Bz (x, y,0)dx dy = 0,
|Fx |
Fp

� 1,

∣
∣Fy

∣
∣

Fp

� 1,
|Fz|
Fp

� 1,

where

Fx = − 1

4π

∫

S

BxBzdx dy, Fy = − 1

4π

∫

S

ByBzdx dy,

Fz = 1

8π

∫

S

(
B2

x + B2
y − B2

z

)
dx dy, Fp = 1

8π

∫

S

(
B2

x + B2
y + B2

z

)
dx dy.
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Figure 10 The neural-network outputs for NOAA ARs 11158 and 11302.

For practical computations, the acceptable conditions for flux imbalance, as stated by Moon
et al. (2002), are defined as:

∣
∣F+ − F−∣∣

F+ + F− � 0.1,

where F+ and F− represent the upward and downward magnetic fluxes, respectively. Addi-
tionally, the vertical-force condition, as mentioned by Liu et al. (2013), is given by

|Fz|
Fp

< 0.1,

where Fz denotes the vertical force and Fp represents the total magnetic pressure. If
these conditions are satisfied, the magnetic field can be approximated as a force-free field
(∇ × B) × B = 0. The active-region data that we used in our study meets these require-
ments. One possible reason for the code not working is that Low and Lou’s equilibria may
not accurately approximate certain observational data, such as for NOAA AR 11158. To
effectively utilize Low and Lou’s equilibria, it is crucial to regularize the observational data
to approximate the condition ∂

∂φ
= 0. This regularization term is also essential to ensure that
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the modified data closely resembles the original data. As is evident from Figures 10c and d,
including this regularization term is indispensable. However, the specific form of this regu-
larization term has not yet been determined. In our future work, we will continue to explore
and optimize this regularization term.

5. Conclusion

In this article, testing a numerical algorithm for solar magnetic-field extrapolation using Low
and Lou’s equilibria proves to be beneficial. We have presented a machine-learning-based
numerical method that effectively determines the parameter a and the function F in Low
and Lou’s equilibria. By employing the MLP neural network, we successfully implemented
this algorithm. An area of crucial investigation lies in the adaptive selection of MLP’s width
and the parameters λ1, λ2, and λ3 in Equation 9.

Furthermore, we have proposed a machine-learning algorithm to address the inverse
problem of Low and Lou’s equilibria. While it performs well on generated data, it falls
short when applied to observational data. An intriguing avenue for future research involves
optimizing the parameters of the generalized equilibria proposed by Low and Lou to better
align with observations of active regions on the photosphere.

Moreover, a promising direction for the future is to combine solar photospheric obser-
vation data with artificial-intelligence techniques for coronal magnetic-field extrapolation.
This integration holds potential for further advancements in understanding and predicting
solar phenomena.

Appendix A

We focus here on mathematical concepts and derive Equations 3 and 5.
The following two theorems are commonly used in the formulation and analysis of mag-

netic fields.

Theorem 2 (Davis, Snider, and Davis 1979) A vector field B is continuously differentiable
in a simply connected domain D, ∇ ·B = 0 if, and only if, there is a vector field A such that
B = ∇ × A throughout D.

Remark 2 A is not unique, in fact, ∇ · [∇ × (βA)] = 0 for any β ∈ R.

Theorem 3 (Davis, Snider, and Davis 1979) Given any position vector r = xx̂ + yŷ + ẑz,
if x = x (u1, u2, u3), y = y (u1, u2, u3), z = z (u1, u2, u3), let ei = 1

hi

∂r
∂ui

, where hi =
∣∣
∣ ∂r
∂ui

∣∣
∣ (i = 1,2,3). If {e1, e2, e3} are orthogonal curvilinear coordinates in R

3, then for

∀A = Ax x̂ + Ay ŷ + Aẑz = A1e1 + A2e2 + A3e3 we have that

∇ × A = 1

h1h2h3

∣∣
∣∣
∣∣

h1e1 h2e2 h3e3
∂

∂u1

∂
∂u2

∂
∂u3

h1A1 h2A2 h3A3

∣∣
∣∣
∣∣
.

Let u1 = r , u2 = θ , u3 = φ, and x = r sin θ cosφ, y = r sin θ sinφ, z = r cosφ. By the
assumption of Low and Lou

∂

∂u3
= ∂

∂φ
= 0
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and using Theorems 2 and 3, we obtain the axisymmetric magnetic NLFFF B

B = ∇ × A

= 1

r sin θ

(
1

r

∂

∂θ

(
r sin θAφ

)
r̂ − ∂

∂r

(
r sin θAφ

)
θ̂ + sin θ

(
∂

∂r
(rAθ) − ∂Ar

∂θ

)
φ̂

).

It is convenient to introduce Ã = r sin θAφ , bφ = sin θ
(

∂
∂r

(rAθ) − ∂Ar

∂θ

)
, then

B = 1

r sin θ

(
1

r

∂Ã

∂θ
r̂ − ∂Ã

∂r
θ̂ + bφφ̂

)
. (10)

Substituting Equation 10 into B = αB and simplifying, we obtain

1

r

∂bφ

∂θ
= α

1

r

∂

∂θ
Ã, (11)

∂bφ

∂r
= α

∂

∂r
Ã, (12)

−
(

∂

∂r

(
∂Ã

∂r

)
+ 1

r2
sin θ

∂

∂θ

(
1

sin θ

∂Ã

∂θ

))
= αbφ. (13)

Combining Equations 11 and 12 to eliminate α,

∂bφ

∂θ

∂Ã
∂θ

=
∂bφ

∂r

∂Ã
∂r

⇒ 0 = ∂bφ

∂θ

∂Ã

∂r
− ∂bφ

∂r

∂Ã

∂θ
=
∣
∣∣
∣∣

∂bφ

∂r

∂bφ

∂θ
∂Ã
∂r

∂Ã
∂θ

∣
∣∣
∣∣
= J

(
bφ, Ã

)
.

The following theorem provided us with the relationship between bφ and Ã.

Theorem 4 (Tolstykh 2020) If f3, f4 are continuously differentiable functions from
(x, y) → R such that the determinant of the Jacobian vanishes everywhere, then f4 (x, y) =
H (f3 (x, y)) or f3 (x, y) = H (f4 (x, y)), where H is a continuously differentiable function.

Therefore, bφ = bφ

(
Ã
)
, i.e. bφ is an arbitrary function of Ã.

Taking derivatives of bφ with respect to r , we obtain

∂bφ

∂r
= ∂bφ

∂Ã

∂Ã

∂r
= dbφ

dÃ

∂Ã

∂r
. (14)

Combining Equations 14 and 12 to obtain α,

α = dbφ

dÃ
. (15)

Substituting Equation 15 into 13, we obtain

∂2Ã

∂r2
+ sin θ

r2

∂

∂θ

(
1

sin θ

∂ Ã

∂θ

)
+ d

dÃ

(
1

2
b2

φ

)
= 0, (16)

known as the Grad–Shafranov equation.
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Low and Lou found a set of solutions to Equation 16 if

Ã = Ã (r, θ) = F (cos θ) r−n, bφ =
{

aÃ1+ 1
n , n = 1

aÃ
∣
∣Ã
∣
∣

1
n , n > 1

(17)

for odd n, and a real constant a. Equation 16 then reduces to

(
1 − μ2

) d2F

dμ2
+ n(n + 1)F + a2

(
1 + 1

n

)
F 1+ 2

n = 0, n = 1,

(
1 − μ2

) d2F

dμ2
+ n(n + 1)F + a2

(
1 + 1

n

)
F
(
F 2
) 1

n = 0, n > 1,

where μ = cos θ . Thereby, a family of axisymmetric NLFFF can be generated as Equation
3.

Moreover, substituting Equation 17 into Equation 10, we obtain

Br = 1

r sin θ

[
1

r

∂

∂θ

(
F (cos θ)

rn

)]
= 1

rn sin θ

1

r2

∂F

∂ cos θ

∂ cos θ

∂θ
= − 1

rn+2

∂F

∂μ
, (18)

Bθ = 1

r sin θ

[
− ∂

∂r

(
F (cos θ)

rn

)]
= n

rn+2 sin θ
F = n

rn+2

1
(
1 − μ2

) 1
2

F (19)

and

Bφ =

⎧
⎪⎨

⎪⎩

a 1
rn+2

1
(
1−μ2

) 1
2
F 1+ 1

n , n = 1,

a 1
rn+2

1
(
1−μ2

) 1
2
F |F | 1

n , n > 1.
(20)

Finally, combining Equations 18, 19, and 20, we obtain

B = 1

rn+2

⎛

⎝−dF

dμ
r̂ + nF

(
1 − μ2

) 1
2

θ̂ + rn+2Bφφ̂

⎞

⎠ . (21)

Next, we multiply Equation 21 by B0r
n+2
0 using Remark 2, and some constant, and obtain

Equation 3, where η = aB0r
n+2
0 .

This completes the derivation of Equations 3 and 5 in detail.
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Table 5 The values of λ in Lerche and Low (2014) and our numerical algorithm for the even functions.

m n = 0.5 n = 1 n = 4

Lerche and Low’s ours Lerche and Low’s ours Lerche and Low’s ours

1 2.47 2.4702 0.0 3.7290 × 10−10 12.24 12.2523

2 28.69 28.6935 17.9 17.8673 44.45 44.4538

3 79.7 79.6805 52.5 52.4641 −− 86.8627

Table 6 The values of λ in Lerche and Low (2014) and our numerical algorithm for the odd functions.

m n = 0.5 n = 1 n = 4

Lerche and Low’s ours Lerche and Low’s ours Lerche and Low’s ours

1 271 270.9715 34.3 34.2966 68.5 68.5917

2 15,700 15,714.5875 603.0 602.9976 186.75 186.9304

Appendix B

By conveniently adjusting the corresponding loss-function term in our model, we can tailor
our approach to effectively solve various types of numerical ODE problems. With this in
mind, we are actively engaged in the pursuit of solutions of the type of those of Lerche and
Low (2014), i.e.

(1 − μ2)
d2An

dμ2
+ n (n + 1)An + λAn

(
A2

n

) 1
n = 0, (22)

where λ = n+1
n

a2.
The boundary condition for Equation 22 is

An (−1) = 0, An (1) = 0 (23)

and the initial condition for Equation 22 is

{
An (0) = 1, A′

n (0) = 0; if An (μ) is an even function,

An (0) = 0, A′
n (0) = 1; if An (μ) is an odd function.

(24)

Regarding the aforementioned problem, the loss function in Equation 9 of the AI model
that we proposed is modified as follows:

L (μ; θ) = λ1L1 (μ; θ) + λ2L2 (μ; θ) + λ3L3 (μ; θ) , (25)
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Table 7 The MSEs of An and A′
n generated by the AI solver we proposed and the RK solver of Lerche and

Low (2014) when An is an even function.

m n = 0.5 n = 1 n = 4

MSE(A0.5) MSE(A′
0.5) MSE(A1) MSE(A′

1) MSE(A4) MSE(A′
4)

1 8.2481 × 10−8 2.1942 × 10−6 1.0643 × 10−6 4.3965 × 10−6 2.8218 × 10−6 2.0501 × 10−4

2 2.5027 × 10−6 7.9311 × 10−5 1.0328 × 10−7 1.4201 × 10−5 5.1145 × 10−6 1.6322 × 10−3

3 1.1788 × 10−6 4.7149 × 10−5 3.1746 × 10−6 1.7302 × 10−4 6.5704 × 10−7 1.9401 × 10−3

Table 8 The MSEs of An and A′
n generated by the AI solver we proposed and the RK solver of Lerche and

Low (2014) when An is an odd function.

m n = 0.5 n = 1 n = 4

MSE(A0.5) MSE(A′
0.5) MSE(A1) MSE(A′

1) MSE(A4) MSE(A′
4)

1 2.2043 × 10−7 7.2184 × 10−6 2.8732 × 10−7 1.5746 × 10−5 2.1892 × 10−7 5.0450 × 10−5

2 2.4288 × 10−7 1.0826 × 10−5 2.2260 × 10−7 2.0346 × 10−5 8.7093 × 10−7 1.3188 × 10−4

where

L1 (μ; θ) = 1

M

j=M∑

μ=μj ,j=1

(
(
1 − μ2

) df2

dμ
+ n (n + 1) f1 + λf1

(
f 2

1

) 1
n

)2

,

L2 (μ; θ) = 1

M

M∑

μ=μj ,j=1

(
df1

dμ
− f2

)2

,

L3 (μ; θ) =
{

(f1 (0; θ) − 1)2 + (f2 (0; θ))2,

(f1 (0; θ))2 + (f2 (0; θ) − 1)2,

if f1 is an even function,

if f1 is an odd function.

We have obtained the values for λ, which are listed in Tables 5 and 6. It is important to
note that these corresponding values are extracted from the captions of Figures 2, 3, and
4 in Lerche and Low (2014). It can be observed that they are very close but still exhibit
subtle differences, which can be attributed to factors such as grid partitioning or machine
precision.

For the values of μi (−1 ≤ μi ≤ 1), we compare the numerical values of the AI solver
we proposed with the numerical solutions (ALL) to Equation 22 in Lerche and Low (2014).
The MSEs are listed in Tables 7 and 8. Figures 11, 12, and 13 show how close the solutions
generated by the AI solver are to the RK solver of Lerche and Low (2014). They illustrate
that the AI solver works reasonably well.
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Figure 11 The values of An and A′
n obtained by the AI solver that we proposed and the RK solver of Lerche

and Low (2014), respectively, when n = 0.5.
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Figure 12 The values of An and A′
n obtained by the AI solver that we proposed and the RK solver of Lerche

and Low (2014), respectively, when n = 1.
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Figure 13 The values of An and A′
n obtained by the AI solver that we proposed and the RK solver of Lerche

and Low (2014), respectively, when n = 4.
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