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Abstract
A multi-layer, deep-learning (DL) architecture consisting of stacked Convolutional Long
Short Term Memory (sConvLSTM1D) layers is proposed to forecast the sunspot number
(SSN) more effectively. The proposed model with optimized hyper-parameters performs ef-
ficiently on four kinds of sunspot data with different frequencies of time that are yearly,
monthly, daily, and 13-month smoothed provided by the World Data Center-Sunspot In-
dex and Long Term Solar Observation (WDC-SILSO), the Royal Observatory of Bel-
gium (SILSO World Data Center). The model was contrasted with other traditional DL
models on different performance metrics, namely root-mean-square error (RMSE), mean-
absolute error (MAE), mean-absolute-percentage error (MAPE), and mean-absolute-scaled
error (MASE). A non-parametric statistical test has also been carried out to confirm the
model’s effectiveness. The prediction of the highest yearly mean of total sunspot number
(SSN) in Solar Cycle 25 (SC25) has also been performed. The proposed sConvLSTM1D
model suggests that the solar cycle exhibits the characteristics of a weak cycle. However,
it is anticipated to be stronger than the preceding Solar Cycle 24 (SC24). The year of peak
sunspot number will be 2024, as per the prediction, with the peak value of yearly mean
sunspot number as 140.84, which is 24.3% higher than the peak value of the yearly mean of
total sunspot number, which was 113.3 in the Solar Cycle 24 in the year 2014.

Keywords Sunspot number · Solar cycle · Prediction · Time series · Deep learning ·
Convolutional · LSTM · Hybrid model · Stack model

1. Introduction

Sunspots are the observable dark areas that emerge on the surface of the Sun due to relatively
lower temperatures in that specific region than the other regions. Since 1610, astronomers
have observed the solar surface with the help of telescopes and recorded the occurrence
and appearance of sunspots (Vokhmyanin, Arlt, and Zolotova, 2020). As per the study of
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Marques, Leal-Júnior, and Kumar (2023), variances caused by sunspot activity in space
are a significant factor in determining the architecture and design of spacecraft. The radi-
ation hazard that is observed in space has a significant source, which is known as cosmic
rays. The flux of these cosmic rays is anti-correlated with the solar cycle (Pesnell, 2008).
Therefore, accurate prediction of sunspot numbers along with their peaks and resulting solar
cycle is quite essential to perform various developments in astronomy. In this study, the per-
formance of some traditional deep-learning (DL) models has been analyzed and compared
with the proposed model with the primary objective of reducing the error in the prediction of
sunspot numbers. As per the study of Benson et al. (2020), sunspot-activity forecasts for the
upcoming solar cycle have been classified as a multi-step univariate time-series technique.
Therefore, the concept of time series has been utilized along with DL technologies to design
a model that can foretell the number of SSNs appearing on the surface of the Sun with less
error.

Chattopadhyay, Jhajharia, and Chattopadhyay (2011) explained that the prediction based
on periodicity present in time-series data of sunspot numbers is known as the numeric
method, while the prediction based on geophysical parameters and methodologies related to
it is known as the precursor method. In most of the studies, the data of the sunspot number
has been taken from the SILSO centre of SIDC, Belgium since it has the data for an ex-
tended period, which is helpful in prediction using deep-learning approaches. Büyükşahin
and Ertekin (2019) proposed a hybrid model of ANN and ARIMA and performed a compar-
ative analysis of their suggested model’s efficacy with the individual model’s performances.
In contrast, Pala and Atici (2019) introduced deep-learning techniques as a solution to this
problem, forecasted the total monthly mean of sunspot numbers using the LSTM method,
and showed that deep-learning models outperform the statistical models. The difference in
the previously stated works is that the former utilized the monthly average of sunspot num-
bers while the latter analyzed the results on the annual data. Apart from this, Büyükşahin
and Ertekin (2019) also used Empirical Mode Decomposition to fragment data into Intrinsic
Mode Functions (IMFs) and then executed their proposed models. Pala and Atici (2019)
utilized two stacking layers of LSTM for their study, while Elgamal (2020) utilized deep
and stacked LSTM to predict SC25.

Compared to the above works, Lee (2020) proposed a novel model with a hybrid of
LSTM and EMD suggesting it as a better alternative for modeling the sunspot time series
because of its cyclic nature. In this study, ensemble EMD has been utilized to obtain the
IMFs. Unlike the above-mentioned strategies, Panigrahi et al. (2021) introduced a combi-
nation of machine-learning algorithms and statistical methods. In this research, SVM has
been utilized alongside ARIMA and Exponential Smoothing with error, trend, and season-
ality combined, known as ETS, where seasonality means repeating patterns over a fixed time
interval. In contrast to this work regarding methodology, Arfianti et al. (2021) utilized deep-
learning techniques namely GRU and LSTM individually for forecasting and summarized
that GRU outperformed LSTM in their experiments. Similarly, Prasad et al. (2022) exper-
imented with stacked LSTM to forecast the Solar Cycle 25 based on 13-month smoothed
observations of sunspot numbers and compared their work with the proposed model of Wang
2021. They concluded that the performance improved significantly.

Apart from the studies mentioned above, Hasoon and Al-Hashimi (2022) proposed three
models, namely RNN, DNN, and a hybrid of DNN and LSTM, and concluded that the hy-
brid model has higher detection performance than the individual models. From a comparison
point of view, an elaborate study was carried out by Dang et al. (2022) where methodologies
not associated with deep learning, namely Prophet, Exponential Smoothing, and SARIMA,
were compared with approaches associated with deep learning, namely Transformer, GRU,
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Informer, and LSTM where the Informer model outperformed all other models. Then, an
ensemble of all models was also built based on mean, median, error, regression, and XG-
Boost, and it was deduced that an ensemble of deep-learning algorithms based on XGBoost
is better than all other experimented combinations.

Another study by Ramadevi and Bingi (2022) suggested that a Nonlinear Autoregressive
Network (NAR), a neural network, performs better on 13-month smoothed observations of
sunspot numbers. The NAR neural network is a neural network of feed-forward orientation
with input and output layers along hidden layers. Specific activation functions “purelin”
and “tansig” have been utilized to achieve optimal results. Nghiem et al. (2022) proposed
a model that is a hybrid of CNN and LSTM along with Bayesian optimization and com-
pared its performance with six state-of-the-art models, including four approaches of the
DL methodology that are Informer, GRU, Transformer, and LSTM along with two models
not associated with deep learning namely Prophet and SARIMA, and summarized that the
CNN-Bayes LSTM model performed more effectively than these six models.

Kumar, Sunil, and Yadav (2023) also proposed a hybrid model, combining a statistical
model with a deep-learning model. In their research, the β SARMA and LSTM models were
combined to predict yearly sunspot numbers, and the performance was compared with other
traditional models such as ARIMA, LSTM, and MLP along with an ensemble of ARIMA
and ANN, and the proposed model was found to be good in most of the cases. In most
studies, the monthly mean of total SSN has been utilized. Some of the researchers such as
Chattopadhyay, Jhajharia, and Chattopadhyay (2011), Büyükşahin and Ertekin (2019), Elga-
mal (2020), and Panigrahi et al. (2021) utilized the annual average of total sunspot numbers
as well. A few researchers also performed forecasts over 13-month smoothed observations
of sunspot numbers such as Prasad et al. (2022) and Ramadevi and Bingi (2022).

While comparing the performance measures, it was found that Elgamal (2020) used RM-
SPE and MAPE along with RMSE, while Panigrahi et al. (2021) used MASE and MAE
along with RMSE. Hasoon and Al-Hashimi (2022) used MSE and MAE to measure the
effectiveness of their proposed deep-learning models. Dang et al. (2022) used RMSE and
MAE measures to compare the effectiveness of deep-learning techniques, methodologies
other than deep-learning techniques and their ensemble models. From the above, most re-
searchers have utilized RMSE as a standard metric to measure the effectiveness of the pro-
posed models.

From the study of the previous works, it is clear that the effective prediction of SSNs
is essential, and researchers have made efforts to improve the efficacy of the forecasting
model. DL models perform well in the prediction of SSN, but errors still exist in the pre-
diction of SSN, so there is still scope for improvement for the DL models. In this study,
a novel stacked model based on ConvLSTM1D is proposed to improve the prediction of
SSN, which is validated on different performance measures and datasets. In comparison to
earlier studies where researchers utilized a maximum of two sunspot datasets with two dif-
ferent frequencies of time, we have utilized four kinds of sunspot data with four different
frequencies of time that are daily, yearly, monthly, and 13-month smoothed for better eval-
uation of the proposed prediction model. This study evaluates the proposed model based on
RMSE, MASE, MAE, and MAPE for better comparison. The proposed model is compared
with traditional deep-learning models based on non-parametric statistical tests to validate its
efficacy. In contrast to the earlier studies where researchers utilized a statistical approach,
machine-learning models, vanilla LSTM, GRU, hybrid models, ensemble DL models, or
stacked LSTM model, we have utilized a novel stacked ConvLSTM1D DL model for the
predictions, which resulted in effective predictions over all four variants of the data. Finally,
the proposed model is utilized for a more precise prediction of SC25, along with its peak
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and trough. The rest of the article contains the Methodology in Section 2, Data Analysis
and Experimental Setup in Section 3, Results and Analysis in Section 4, and Conclusions in
Section 5.

2. Methodology

This study includes basic DL approaches, namely LSTM, CNN, GRU, RNN, and BiLSTM,
for the comparison purpose, while the proposed model is a two-layer stacked architecture
of ConvLSTM1D with a repeat-vector layer embedded in between the ConvLSTM1D layers
followed by dropout and fully connected layers.

2.1. Mathematical Background

This section consists of fundamental mathematical aspects of the dataset and different basic
models.

2.1.1. Mathematical Principles Related to the Dataset

The time-series univariate dataset is denoted as “D” consisting of finite data points d1, d2,
d3, and so on, with time as the variable. XData and YData are the lags as training features
and target features, respectively. XData is trifurcated into their corresponding set of Xtrain,
Xvalidation, and Xtest. YData is trifurcated into the set of Ytrain, Yvalidation, and Ytest. Furthermore,
the InputSequence is a combination of both Xtrain and Ytrain for the training of the models,
which is utilized to feed the DL models.

2.1.2. Mathematical Principles Related to LSTM

LSTM was initially proposed by Hochreiter and Schmidhuber (1997) in the field of neuro-
computing. LSTM is a DL model specifically linked with RNN, which can address the
vanishing or exploding gradient issue. LSTM can divulge the temporal dynamic behavior
associated with the time series (Bai et al., 2019). The memory cell has three gates: forget,
input, and output gate. Of these three gates, the forget gate is crucial since it is the decision-
making gate that decides whether information from the preceding time step needs to be
carried forward or forgotten. The other two gates are the input and output gate, which reg-
ulate the input’s activation flow in the memory unit’s direction and the information stream
from the memory unit to the output. The LSTM architecture is depicted in Figure 1. LSTM
models are designed to work with sequential data consisting of one-dimensional vectors
over time and can forecast the future sequence (Zhang et al., 2019):

it = σ(Wi · [ht−1, xt ] + bi), (1)

ft = σ(Wf · [ht−1, xt ] + bf), (2)

ot = σ(Wo · [ht−1, xt ] + bo). (3)

Equation 1, Equation 2, and Equation 3 represent the equations for input, forget, and
output gate, respectively, where xt denotes the input at the current time step t and Wf, Wo,
and Wi are the weight matrices for forget, output, and input gates. Apart from these, bf,
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Figure 1 Schematic architecture of LSTM cell.

Figure 2 Schematic architecture
of Convolutional LSTM cell.

bo, and bi are the bias terms for the respective gates. σ and tanh represent sigmoid and
hyperbolic tangent activation functions, respectively:

ct = ftct−1 + itgt , (4)

gt = tanh(Wg[ht−1, xt ] + bg), (5)

ht = ot tanh(ct ). (6)

Equation 4, Equation 5, and Equation 6 represent the equations for memory cell, candidate
memory, and hidden state, respectively, where ht−1 and ct−1 denote hidden state and memory
state at the previous time step (t − 1).

2.1.3. Mathematical Principles Related to ConvLSTM1D

The ConvLSTM1D arrangement is an adaptation of LSTM. Changes are made to the archi-
tecture of LSTM to produce the ConvLSTM1D, which is presented in Figure 2. Based on the
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equations of LSTM, the main equations for ConvLSTM1D are expressed in the following
manner:

it = σ(Conv1D(Wi,X ) + Conv1D(Ui,H) + bi). (7)

Equation 7 represents the input gate and Wi and bi , the learnable parameters indicating the
weight and bias associated with the input gate applied to input tensor X at the current time
step, whereas Ui represents the weight matrix associated with the input gate applied to the
hidden state H from the preceding time step.

ft = σ(Conv1D(Wf,X ) + Conv1D(Uf,H) + bf). (8)

Equation 8 represents the forget gate where σ represents the sigmoid activation function
operating over the learnable parameters Wf, bf, and Uf associated with the forget gate.

ot = σ(Conv1D(Wo,X ) + Conv1D(Uo,H) + bo). (9)

Similarly, Equation 9 represents the output state ot as a sigmoid function with learnable
parameters Wo, bo, and Uo associated with the output state.

˜C = tanh(Conv1D(Wc,X ) + Conv1D(Uc,H) + bc). (10)

Equation 10 represents the candidate cell state, which is the information that can be poten-
tially added to the cell state in the current time step where the learnable parameters Wc, bc,
and Uc are associated with the candidate state. In this equation, tanh, represents the hyper-
bolic tangent activation function, which squashes the value between −1 and +1.

C = ftC + it˜C, (11)

H = ot tanh(C). (12)

Equations 11 and 12 represent the revised state of the cell stated denoted as C and the hidden
state H, respectively.

The proposed model in this study utilizes the ConvLSTM1D layer similar to the models
mentioned in the study of Shi et al. (2015), Cantillo-Luna et al. (2023), and Shi et al. (2022)
but it is different from their models as it is using two layers of ConvLSTM1D stacked over
each other with a layer of RepeatVector embedded between them. Apart from these, the
ConvLSTM1D layer utilized in our study uses a “swish” activation function with 32 units in
the first layer and 16 units in the second layer. A dropout layer has been attached at the end,
followed by a dense layer.

2.2. Proposed Model Framework

The proposed model takes the sequential input at the first layer. Then, there is a ConvL-
STM1D layer with 32 units, a “swish” activation function and a kernel size equal to 12
followed by a RepeatVector layer with repetition factor two, which is placed after flattening
the output tensor obtained from the previous ConvLSTM1D layer. After the RepeatVector
layer, another ConvLSTM1D layer is placed with 16 units, a “swish” activation function,
and a kernel size equal to 12. The “swish” activation function has been utilized for the
design of the model since it has been observed that for DL models a “swish” activation
function outperforms “relu” and other similar activation functions (Ramachandran, Zoph,
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Figure 3 Schematic Diagram of the Proposed Model.

and Le, 2017; Szandała, 2021). The output tensor received from this layer is again flat-
tened and passed through a dropout layer with a 10% dropout rate, and ultimately, a fully
connected layer is positioned at the final stage. The model is used with a RMSProp opti-
mizer because, based on empirical evidence, RMSProp has demonstrated effectiveness and
practicality as an optimization technique for DNN (Goodfellow, Bengio, and Courville,
2016). The illustration of the proposed model is presented in Figure 3. The proposed
model framework depicts the flow of the experiment. The steps of the model framework
are explained in Algorithm 1, and the corresponding steps are illustrated in Figure 4. In-
put data are taken as univariate data concerning time. As a part of data pre-processing,
missing-value imputation is performed. Then, data standardization is performed with the
help of Equation 13 where μ represents the average and σ the standard deviation of the
dataset

dnew = (di − μ)/σ, ∀ di ∈ D. (13)

After this, time-series data are generated using the given dataset and a fixed value of
lookback is obtained after trial and error for an optimized value of the lag. Then, the dataset
is bifurcated into training and test sets, along with further partitioning of the training dataset
into training and validation sets.

The proposed framework has been utilized for analyzing the effectiveness of the proposed
sConvLSTM1D model with the optimized hyper-parameters. Hyper-parameter optimization
for the proposed sConvLSTM1D model has been carried out using trial and error. The de-
tailed layout of the proposed framework is presented in Figure 4.

2.3. Model-Performance Measures

This study utilizes five performance metrics: RMSE, MAE, MAPE, R2, and MASE. The
selection of performance measures is based on a literature survey. The most frequently
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Algorithm 1 The Proposed sConvLSTM1D Model Framework.
1: Input the SSN data: [d1, d2, d3...] = D

2: Perform missing-value imputation: ∀ di in D, where di is −1 Perform data standard-
ization on the dataset D Perform time-series data generation with a lag value of 11 to
obtain XData and YData

3: Divide the dataset XData into training dataset Xtrain, validation dataset Xvalidation, and test
dataset Xtest in the ratio of 81:9:10

4: Divide the dataset YData into training dataset Ytrain, validation dataset Yvalidation, and test
dataset Ytest in the ratio of 81:9:10

5: Patience = 20
6: Epochs = 250
7: For training the model, InputSequence ← [Xtrain, Ytrain], and follow sub-algorithm at

Step 10
8: Training Algorithm

1: while EarlyStopping do
2: InputLayer ← InputSequence

3: ConvLST M1DLayer ← Output(InputLayer)

4: RepeatV ectorLayer ← Output(ConvLST M1DLayer)

5: ConvLST M1DLayer ← Output(RepeatV ectorLayer)

6: DropoutLayer ← Output(ConvLST M1DLayer)

7: DenseLayer ← Output(DropoutLayer)

8: Calculate the V alidationLoss and T rainingLoss

9: Check for Early Stopping Criteria
10: end while

9: if V alidationLoss ∼ T rainingLoss ∼ Low & Constant then
10: Predict ŷ for the Xtest

11: else
12: Optimize Hyper-parameter for the proposed model
13: Goto Step 7
14: end if
15: Calculate performance of the proposed sConvLSTM1D model based on different

performance metrics

used performance metric has been taken for better comparison and evaluation of the perfor-
mance and effectiveness of the proposed model. These performance metrics have been com-
pared for the traditional models, state-of-the-art models, and the proposed sConvLSTM1D
model.

These measures depict the deviation of the predicted result from the actual values from
different aspects. Before utilizing these performance metrics, the concept of residual-error
is of utmost importance, which is the difference between y and ŷ, where y is the ac-
tual value of SSN and ŷ is the predicted value of SSN in the context of these experi-
ments. The equations related to the RMSE are represented in Equation 14, where m is the
number of samples along with yj and ŷj are the j th actual and predicted values, respec-
tively,

RMSE =
√

√

√

√

1

m

m
∑

j=1

(

yj − ŷj

)2
. (14)
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Figure 4 Proposed sConvLSTM1D model working framework for sunspot-number time-series prediction.

Equation 15 refers to the formula of Mean Absolute error, which is the simplest measure for
performance evaluation. In this equation, “D” represents the complete dataset,

MAE =
D

∑

j=1

| (yj − ŷj

) |. (15)

Equation 16 defines the mean absolute scaled error, where ei signifies residual error, also
known as forecast error, n is the seasonal period, and T corresponds to the number of data
points contained within the time-series data and the summation part in the denominator is
the mean absolute error,

MASE = mean

(

|ei |
1

T −n

∑T

t=n+1 |Yt − Yt_n|

)

. (16)
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Table 1 Descriptions of four variants of sunspot data (SILSO World Data Center).

Name Time Span Frequency Total
Features

Feature for
Analysis

Total
Samples

Daily Total SSN 01 Jan 1818 –
31 Jan 2023

Daily 8 Daily SSN 74,906

Monthly Mean Total
SSN

Jan 1749 –
Jan 2023

Monthly 7 Monthly Mean
Total SSN

3289

13-month Smoothed
Monthly Total SSN

Jan 1749 –
Jan 2023

Monthly 7 Monthly
Smoothed Total
SSN

3289

Yearly Mean Total SSN 1700 – 2022 Yearly 5 Yearly Mean SSN 323

Table 2 Statistical data description of four variants of sunspot data.

Name of Data Standard
Deviation

Average Min 25% 50% 75% Max Trend Seasonality

Daily Total SSN 77.2 78.6 −1 15 58 123 528 4015 365

Monthly Mean Total
SSN

67.7 81.6 0 24 67.2 122.4 398.2 132 12

13-month Smoothed
Monthly Total SSN

63.2 81.2 −1 25 71.3 118.8 285 132 12

Yearly Mean Total SSN 61.9 78.4 0 24.5 65.3 115 269.3 11 1

MAPE is a data-independent performance measure used to calculate the fractional error.
The related formula is presented in Equation 17, where ε is a small positive arbitrary num-
ber chosen to prevent undefined outcomes in cases where yj equals zero and other symbols
have their meanings as mentioned above,

MAPE = 1

m

m−1
∑

j=1

∣

∣ŷj − yj

∣

∣

max(ε, yj )
. (17)

3. Data Analysis and Experimental Setup

3.1. Data

Data have been obtained from the SIDC, Royal Observatory, Belgium (SILSO World Data
Center) website in four variants described in Table 1. The “Total Features” characteristic
corresponds to the total number of features present in the raw data, which includes other
related descriptions along with actual observations of sunspot numbers such as fractional
year, standard deviation, definitive indicator, number of observations utilized to compute
the value, etc., whereas “Feature for Analysis” represents the actual number of SSN utilized
for the processing. Further, statistical descriptions of all four variants of the sunspot data are
explained in Table 2.

The additive-seasonal decomposition for all four dataset variants is depicted in Figure 5,
where the original data are split into the three components: trend, seasonality, and noise. Al-
though the decomposition has been performed on the complete dataset for all four variants,
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Figure 5 Additive decomposition of sunspot data with different frequencies.

the seasonal decomposition depicted in Figure 5 is for a slice of data for a specific dura-
tion for visualization. From Figure 5, it can be deduced that the data follow the cyclic trend
with seasonality within each cycle and some associated noise, except for the yearly data,
which lack seasonality and noise. A study by Chattopadhyay, Jhajharia, and Chattopadhyay
(2011) propounds that the SSN data are stationary concerning time owing to the sinusoidal
decaying nature of ACF.

3.2. Experimental Setup

This section presents the analysis of experiments performed utilizing five basic deep-
learning models and the proposed model.

3.2.1. Data Pre-processing

Data pre-processing has been performed over each variant of the dataset to obtain cleaned
data for time-series analysis. During the data-pre-processing phase, the feature correspond-
ing to the sunspot data from each variant of the dataset is obtained separately and missing
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Table 3 Hyper-parameter description of deep-learning models.

Models Layers Units Filter Activation Function Kernel Dropout Optimizer

RNN 1 16 – relu – 0.25 adam

CNN 1 – 16 relu 1 0.25 adam

LSTM 1 16 – relu – 0.25 adam

BiLSTM 1 8 – relu – 0.25 adam

GRU 1 16 – relu – 0.25 adam

Proposed Model 2 32, 16 – swish 12, 12 0.1 rmsprop

values are replaced with the average of previous and next observations. Then, data standard-
ization is performed using z-score normalization. Time-series data have been created out
of univariate data using a lag of 11 as it was found on the experimental basis that the data
with a lag of 11 performs better than lags of 1, 6, 22, 66, and 132 using trial and error. It
was also suggested by Chattopadhyay, Jhajharia, and Chattopadhyay (2011) in their study
that the highest autocorrelation coefficient occurs at lags of 11, which was supported by our
experimental results. Then, the dataset is trifurcated into training, validation, and a test set
in the ratio of 81%, 9%, and 10%, respectively.

3.2.2. Hyper-parameter Setting of Traditional and Proposed Model

The proposed model has been contrasted with five DL models, namely RNN, CNN, GRU,
LSTM, and BiLSTM, with their hyper-parameters described in Table 3 for evaluating the
efficiency of the proposed model over basic DL models. The batch size is fixed at 66,
and the “adam” optimizer has been utilized for all basic models. Patience is set to 20,
and each model is trained for 250 epochs with early stopping criteria enabled based on
validation loss, min_delta equal to 0, and loss being calculated over “mean squared er-
ror”.

The software and hardware specifications utilized for carrying out all the experiments
related to this study are as follows:

• Software Specification: All the analyses conducted in the study were performed on
a Windows 11 Home Operating System in the Python programming language version
3.10.9, which is highly performing and open source. The environment has been created
using jupyter version 3.5.3. Tensorflow has been utilized with version 2.11.0 for develop-
ing the models and performing the experiments.

• Hardware Specification: All experiments reported here used a PC with i3-1115G4 pro-
cessor (11th Gen Intel� Core™), 3.00 GHz CPU, and 8 GB of RAM.

4. Results and Analysis

The observations made while executing DL and the proposed models are presented here.
First, the training of the different models was verified using the graphs of the training loss
of the models concerning the number of epochs. The evaluation of the efficacy of different
DL models on the monthly mean of total SSN was analyzed using the box plot presented
in Figure 6, where each box contains 24 iterated results of specific performance metrics
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Figure 6 Performance measures of traditional and proposed DL models over the monthly mean of total SSN.

obtained from 24 independent iterations. The graph shows that the mean value of measures
obtained for the proposed sConvLSTM1D model is better than others for all four measures
utilized for evaluation.

The performances of GRU and BiLSTM are comparatively less efficient with a mean of
RMSE of 19.75 and 19.71, respectively, as depicted in Figure 6b. The performance of DL
models concerning the proposed model is depicted in Figure 7 for 13-month smoothed SSN
data, which validates that the proposed model outperforms the traditional approaches with
the second most efficient performance observed using CNN. The proposed model’s mean of
RMSE reached 5.69, as illustrated in Figure 7b.

The plot of actual vs. predicted for different models on monthly mean SSN is de-
picted in Figure 8, illustrating the pattern-capturing capacity of all the models. The scat-
ter plot depicts the relation between actual and predicted values along with the trend
line, which is almost at a 45◦ angle with the value of R2, showing that the proposed
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Figure 7 Performance measures of traditional and proposed deep-learning models over the 13-month
smoothed SSN.

model has a better R2-value, which is nearer to unity. The spread of the data points along
the linear trend line is less for the proposed model, characterizing its unbiased predic-
tion nature. The scatter plot of actual vs. predicted for monthly average of SSN is de-
picted in Figure 9. The predicted values concerning the actual values are depicted in Fig-
ure 10, which shows almost coinciding lines representing efficient predictions for all mod-
els.

The representation of the predicted values corresponding to actual values for the test data
slice of 13-month smoothed sunspot data is in Figure 11, which shows that the data points
are highly aligned with the linear-trend line with a high value of R2 illustrating less error
for this variant of data among all four variants of the data. For this variant of SSN data, the
value of R2 is the highest for the proposed model among all six models. From Figure 12, it
can be observed that despite the similar performance of the CNN model with the proposed
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Figure 8 Actual vs. predicted values of monthly mean of total SSN.

model, the standard deviation of the proposed model is small, illustrating the consistency of
the model, and the proposed model is more effective from other traditional models as per
three performance metrics except for the CNN model. It is more suitable than the other tra-
ditional models based on RMSE, as depicted in Figure 12b. The better performance of CNN
is due to the more significant number of samples available for training while performing
analysis over daily SSN data. However, Wibawa et al. (2022) already observed that CNN is
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Figure 9 Actual vs. predicted values of monthly mean of total SSN.

more suitable for time-series predictions. Scatter plots with the corresponding value of R2

are illustrated in Figure 13 for the best predictions of each model out of 24 iterations, which
shows that the proposed model has better R2; that is 0.9377, while the CNN model has
R2-value equal to 0.9277, which is similar but lower than the proposed model. The GRU
model has the worst performance due to being most scattered along the linear-trend line,
representing high variance. Figure 14 depicts the trend capturing capacity of all models for
daily SSN. The comparative view of all models based on the fourth variant of SSN data with
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Figure 10 Actual vs. predicted values of 13-month smoothed SSN.

yearly frequency over the four different performance metrics is depicted in Figure 15 where
it can be observed that despite the smaller number of available samples for SSN data at
yearly frequency, the proposed model is performing far better than all other traditional mod-
els. The mean of RMSE reached 14.55, as depicted in Figure 15b. The summarized version
of the comparative performance measures over all four variants of SSN data is represented
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Figure 11 Actual vs. predicted values of 13-month smoothed SSN.

in Table 4. Apart from this, the error measures obtained in the literature have also been in-
cluded in Table 5 for a comparative analysis of the efficiency of different models from the
literature and the proposed model. Figure 16 and Fig 17 represent the actual vs. predicted
line and scatter plots of all models respectively. The dotted line in Figure 18 is the forecast
plot of SC25 utilizing the proposed model. The Figure 19 to Figure 26 presents the training
and validation loss of all the models on all four variants of the SSN data.
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Figure 12 Performance measures of traditional and proposed deep-learning models over the daily SSN.

4.1. Non-parametric Statistical Test

Average ranks have been obtained by implementing the Friedman test over all four variants
of data over every evaluation parameter. The Friedman test has been carried out in Table 4
with the ranking of different datasets over different performance measures as all are indepen-
dent. The final results of the Friedman test, along with Holm’s adjustment and unadjusted
p-value, can be seen in Table 6 (Demšar, 2006).

From Table 6, it is deduced that the proposed sConvLSTM1D model has the best rank-
ing with 1.1875. The unadjusted p-value obtained for CNN is insufficient to disprove the
null hypothesis. Hence, Holm’s is utilized to adjust the p-value. After applying Holm’s, the
value reached 0.05, sufficient to disprove the null hypothesis, proving the proposed model’s
effectiveness over the traditional models. The Friedman statistic exhibits a distribution that
conforms to a χ2-distribution with five degrees of freedom, which is 61.1. The p-values,
depicted in Table 6, are derived by employing post-facto methods on the outcomes of the
Friedman procedure.
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Figure 13 Actual vs. predicted values of daily SSN.

Based on the Friedman ranking of the proposed model (sConvLSTM1D) concerning other
traditional deep-learning models depicted in Table 6 and comparative analysis of perfor-
mance measures with state-of-the-art models illustrated in Table 5, it can be deduced that
the sConvLSTM1D model has more accurate predictions.
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Figure 14 Actual vs. predicted values of daily SSN.
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Figure 15 Performance measures of traditional and proposed DL models over the yearly mean of total SSN.

4.2. Predition of Solar Cycle 25

As per the study of Pesnell and Schatten (2018), the anticipated peak of SC25 is 2025.2
±1.5 year, while Pala and Atici (2019) predicted that the SC25 will reach its peak in 2023.2
±1.1 year with a maximum of 167.3. A forecast of SC25 has also been made by Upton
and Hathaway (2018) using the Advective Flux Transport model, noting the resemblance
of the pattern of the SC25 with that of the SC24 and establishing it as the smallest cycle
in the previous century. We partially agree with the statement as it is also a weak solar
cycle, but in our study, it has been observed that SC25 will be slightly stronger than SC24.
As per our iterated one-step-ahead forecast from the static model over the yearly mean of
total SSN, it has been observed that the peak value of SSN in SC25 will be 140.8 in 2024,
whereas the span of the present cycle will be up to the year 2030 with a minimum value
of 16.1. Considering the minimum value of the yearly average of total SSN, which was
3.6 observed in 2019, this cycle will also be 11 years. Similarly, dynamo-based forecasting
carried out by Labonville, Charbonneau, and Lemerle (2019) suggests that SC25 would be
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Table 4 Performance comparison of different models over different performance measures (Bold value rep-
resents the best performance in the respective section for each error measure).

Models MAE RMSE MASE MAPE R2

Daily Total
Sunspot Number

LSTM 9.94 (±0.42) 12.70 (±0.31) 0.54 (±0.02) 2.04 (±0.28) 0.931 (±0.003)

GRU 10.04 (±0.63) 12.78 (±0.53) 0.54 (±0.03) 2.12 (±0.55) 0.930 (±0.005)

CNN 9.07 (±0.39) 12.51 (±0.14) 0.49 (±0.02) 1.13 (±0.36) 0.933 (±0.002)

RNN 10.20 (±0.48) 12.96 (±0.38) 0.55 (±0.03) 2.21 (±0.46) 0.929 (±0.004)

BiLSTM 10.33 (±0.46) 12.96 (±0.37) 0.55 (±0.02) 2.40 (±0.26) 0.928 (±0.004)

Proposed Model
(sConvLSTM1D)

9.65 (±0.25) 12.47 (±0.16) 0.52 (±0.01) 2.02 (±0.22) 0.934 (±0.002)

Monthly Mean
Total Sunspot
Number

LSTM 14.10 (±0.59) 19.58 (±0.34) 0.71 (±0.03) 5.28 (±1.12) 0.878 (±0.004)

GRU 14.43 (±0.85) 19.75 (±0.50) 0.73 (±0.04) 5.82 (±1.13) 0.876 (±0.006)

CNN 13.30 (±0.15) 19.09 (±0.07) 0.68 (±0.008) (3.89 ±0.57) 0.884 (±0.0008)

RNN 14.10 (±0.53) 19.50 (±0.38) 0.72 (±0.03) 5.26 (±0.83) 0.879 (±0.004)

BiLSTM 14.40 (±0.86) 19.71 (±0.52) 0.73 (±0.04) 5.90 (±1.33) 0.876 (±0.007)

Proposed Model
(sConvLSTM1D)

13.15 (±0.18) 18.99 (±0.12) 0.67 (±0.01) 3.89 (±0.54) 0.885 (±0.001)

13-month
smoothed Total
Sunspot Number

LSTM 4.51 (±0.63) 8.08 (±0.83) 1.54 (±0.21) 1.01 (±0.23) 0.976 (±0.005)

GRU 4.25 (±0.94) 7.14 (±0.97) 1.45 (±0.32) 0.82 (±0.20) 0.982 (±0.005)

CNN 3.38 (±0.40) 6.94 (±0.26) 1.15 ( ±0.14) 0.70 (±0.08) 0.983 (±0.001)

RNN 4.28 (±0.99) 7.43 (±1.20) 1.46 (±0.34) 0.87 (±0.20) 0.978 (±0.007)

BiLSTM 5.14 ±(1.05) 8.17 ±(0.90) 1.75 (±0.36) 1.02 (±0.17) 0.976 (±0.005)

Proposed Model
(sConvLSTM1D)

2.00 (±0.31) 5.69 (±0.30) 0.68 (±0.11) 0.49 (±0.089) 0.988 (±0.001)

Yearly Mean
Total Sunspot
Number

LSTM 18.68 (±7.24) 22.07 (±7.51) 0.63 (±0.24) 1.24 (±0.54) 0.796 (±0.18)

GRU 16.82 (±1.42) 19.91 (±1.36) 0.57 (±0.05) 1.05 (±0.13) 0.850 (±0.02)

CNN 15.82 (±0.42) 19.73 (±0.44) 0.53 (±0.01) 1.16 (±0.04) 0.853 (±0.007)

RNN 16.84 (±2.06) 20.24 (±2.24) 0.57 (±0.07) 1.08 (±0.21) 0.844 (±0.04)

BiLSTM 17.62 (±2.06) 21.52 (±2.26) 0.60 (±0.07) 1.19 (±0.17) 0.824 (±0.04)

Proposed Model
(sConvLSTM1D)

14.55 (±0.78) 18.51 (±0.94) 0.49 (±0.03) 0.76 (±0.03) 0.87 (±0.01)

weaker than the preceding cycle with a short duration and a peak in the first half of 2025.
Similar to our prediction, Li et al. (2018) also forecast that SC25 will be of higher intensity
than SC24 in terms of amplitude and reach its peak in October 2024 with an anticipated
value of 168.5 ±16.3. SC25 has also been predicted by Kakad, Kakad, and Ramesh (2017)
based on Shannon Entropy estimates, suggesting a 63 ±11.3 peak for the smoothed SSN.
Utilizing an optimized LSTM model, Zhu et al. (2023) predicted that SC25 will reach its
peak in January 2025 with a maximum value of 213, while Han and Yin (2019) predicted
that the maximum value of sunspots will reach approximately 228.8 ±40.5 at 2023.9 ±1.6
year. Another study on the prediction of SC25 by Zhu, Zhu, and He (2022) anticipates the
peak of SSN in July 2025 ±two months with a SSN peak amplitude 143.6 ±8.7 using
LSTM with F10.7. According to the study of Okoh et al. (2018) using hybrid regression and
a neural-network method for the SC25, the peak of SSN will be 122.1 ±18.2 in January
2025 ±six months. Another prediction comes from Du (2022) based on the rising rate of
the solar cycle, which means the growth rate of solar activity in the early phase of the solar
cycle. Du (2022) predicted that the SC25 will peak with an SSN value of 135.5 ±33.2 in
December 2024. A summary version of the comparative analysis of the peak of SSN for
SC25 is presented in Table 7.
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Table 5 Comparative analysis of different state-of-the-art models with the proposed model (Bold value rep-
resents the best performance in the respective section for each error measure).

Data Reference Approach RMSE MAE MASE

Daily Total
Sunspot Number

Peguero and Carrasco (2023) LSTM 40.1 − –

This article Proposed Model
(sConvLSTM1D)

12.47 9.65 0.52

Monthly Mean
Total Sunspot
Number

Pala and Atici (2019) LSTM 6 part 35.9 − –

Panigrahi et al. (2021) PHM-MAX-ARIMA-
ETS-SVM

22.72 16.55 0.905

Hasoon and Al-Hashimi (2022) DNN-LSTM 20.33 13.75 –

Lee (2020) EMD+LSTM 60 > x > 30 − –

Nghiem et al. (2022) CNN-LSTM 26.10 18.74 –

Dang et al. (2022) DL+XgBoost 25.70 19.82 –

This article Proposed Model
(sConvLSTM1D)

18.99 13.15 0.67

Yearly Mean
Total Sunspot
Number

Panigrahi et al. (2021) PHM-MAX-ARIMA-
ETS-SVM

25.46 18.991 0.607

Elgamal (2020) Deep LSTM 23.47 − –

Kumar, Sunil, and Yadav (2023) βSARMA + LSTM – − 0.5367

This article Proposed Model
(sConvLSTM1D)

18.51 14.55 0.49

Table 6 Average Friedman rankings of the algorithms.

Algorithm Ranking z = (R0 − Ri)/SE p Holm

LSTM 4.50 5.01 0.000001 0.013

GRU 3.88 4.06 0.000048 0.025

CNN 1.94 1.13 0.256839 0.050

RNN 3.94 4.16 0.000032 0.017

BiLSTM 5.56 6.61 0 0.010

Proposed Convolutional LSTM Model 1.19 – – –

5. Conclusions

In this work, an attempt is made to improve the prediction of SC25 by reducing the er-
ror while testing the model using a novel stacked model made up of ConvLSTM1D layers
with an embedded layer of a “repeat vector” within it, followed by dropout and a fully con-
nected layer. The model’s effectiveness is validated on the four variants of the SSN data
obtained from the SILSO, Royal Observatory, Belgium, with the four different frequencies
of sampling of the SSN on the solar surface and different statistical characteristics. Friedman
ranking has been carried out as a non-parametric statistical test to assess the effectiveness of
the proposed sConvLSTM1D model with five traditional models namely LSTM, GRU, CNN,
RNN, and BiLSTM, which resulted in the rejection of the null hypothesis for all other mod-
els suggesting the better performance of the proposed model. This ensures that the proposed
model composed of stacked ConvLSTM1D layers provides more accurate predictions than
the traditional deep-learning models. After validating the efficacy of the model, the forecast
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Figure 16 Actual vs. predicted values of yearly mean of total SSN.

for the ongoing SC25 has been carried out with the prediction of the peak value of SSN to
be reached as 140.8 and 2024 as the year in which the peak is achieved. Apart from this
comparative analysis of the peak and timing for SC25, a literature search has been carried
out to find the differences and resemblances in the predictions. Observing the forecast, it is
also deduced that SC25 is a weak cycle based on the temporal duration and amplitude, and
it will last up to 2030. The future scope for improving the SSN prediction model includes
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Figure 17 Actual vs. predicted values of yearly mean total SSN.

improvement to overcome the problem of residuals present in it. Furthermore, the forecast-
ing model can also be adjusted with different orientations and numbers of layers for better
performance and to reduce the error. The decomposition of the dataset can also be utilized
for separate training and prediction of different components of the dataset.
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Table 7 Comparison of peak of SSN for SC25 and its corresponding time.

Reference Time Period Peak SSN

Kakad, Kakad, and Ramesh (2017) – 63 ±11.3

Singh and Bhargawa (2017) June 2024 102.8 ±24.6

Pesnell and Schatten (2018) 2025.2 ±1.5 –

Okoh et al. (2018) January 2025 ±0.5 year 122.1 ±18.2

Li et al. (2018) October 2024 168.5 ±16.3

Pala and Atici (2019) 2023.2 ±1.1 167.3

Covas, Peixinho, and Fernandes (2019) 2022 – 2023 57 ±17

Labonville, Charbonneau, and Lemerle (2019) 2025 –

Han and Yin (2019) 2023 228.8 ±40.5

McIntosh et al. (2020) – 229 ±76

Gonçalves, Echer, and Frigo (2020) 2024 117

Lee (2020) December 2024 100

Du (2020) 2024.1 ±0.8 year –

Wang, Li, and Guo (2021) 2023 114.3

Zhu, Zhu, and He (2022) July 2025 ±2 months 143.6 ±8.7

Du (2022) December 2024 135.5 ±33.2

Prasad et al. (2022) August 2023 ±2 months 171 ±3.4

Zhu et al. (2023) January 2025 213

This article 2024 140.844

Appendix: Loss Plots of Different Models for Different Datasets

Figure 18 Forecast of SC25
based on the proposed stacked
ConvLSTM1D model over yearly
mean of sunspot number.
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Figure 19 Training loss of all models on the yearly mean of SSN.

Figure 20 Validation loss of all models on the yearly mean of SSN.
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Figure 21 Training loss of all models on the monthly mean of total SSN.

Figure 22 Validation loss of all models on the monthly mean of total SSN.
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Figure 23 Training loss of all models on the 13-month smooth of total SSN.

Figure 24 Validation loss of all models on the 13-month smooth of total SSN.
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Figure 25 Training loss of all models on the daily SSN.

Figure 26 Validation loss of all models on the daily SSN.
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