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Abstract
In this article we study the properties of acoustic waves in the rarefied high-temperature
plasma of the solar corona, assuming that the heating and cooling of the plasma has a
well-defined description. We consider a constant heating function supposing that the heat-
ing processes are generally established. For the radiative-loss function, a number of values
are taken, which have been found using the CHIANTI code. On their basis, an analytical
expression of the function in the form of a cubic interpolation has been worked out. We
analyze the dispersion relation for linear acoustic waves. The heating and cooling function,
introduced along with the classical expression of the thermal conductivity, allows us to ob-
tain some specific results about their properties. In other words, a model of non-adiabatic
acoustic waves with field-aligned thermal conduction, CHIANTI-based radiative cooling
and constant heating function is constructed. Using the available observational data on com-
pression waves, we can set the problem of finding the parameters of the coronal plasma.
The model allows to specify the temperature range at which the thermal instability of waves
is possible and to draw some conclusions about their damping. The coronal temperatures
considered can be divided into intervals from 0.5 to 0.98 MK and from 4.57 to 8.38 MK,
where the radiation function increases, and intervals from 0.98 to 4.57 MK and from 8.38
to 10 MK, where the radiation function decreases. With constant heating, at large wave-
lengths, acoustic waves can be unstable in the decreasing interval from 1.38 to 3.15 MK.
In the increasing intervals, they may have a zero real part of the oscillation frequency and
thus become non-propagating, also subject to a large wavelength. In some cases, the plasma
density has a significant effect on the damping of acoustic oscillations due to heating and
cooling. A change in density within the same order can lead to the fact that the heating and
cooling effects prevail over the effect of thermal conductivity on long-wave perturbations.
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1. Introduction

One of the important topics of solar physics is the study of compression waves, which are
observed everywhere in the lower corona by variations in the intensity of the plasma radia-
tion (Srivastava et al. 2008; De Moortel 2009; Banerjee, Gupta, and Teriaca 2011; Krishna
Prasad, Banerjee, and Gupta 2011; De Moortel and Nakariakov 2012; Banerjee and Krishna
Prasad 2016; Wang 2016; Krishna Prasad and Van Doorsselaere 2021). They are theoreti-
cally described as slow or acoustic waves. The acoustic waves can provide useful informa-
tion about the parameters of the coronal plasma (Wang 2011; De Moortel and Nakariakov
2012) or indicate the sources of its heating (Taroyan and Erdélyi 2009). The mechanisms
of wave energy dissipation and their efficiency are also of interest. The list of works on this
topic is very extensive, so we often refer to review papers.

Except for the solar wind, the energy losses of the coronal plasma are due to thermal
conductivity and radiation (Narain and Ulmschneider 1996). Kumar, Nakariakov, and Moon
(2016), Krishna Prasad, Banerjee, and Van Doorsselaere (2014) and Prasad, Srivastava, and
Wang (2021) examined the heating and cooling effect, thermal conductivity and viscosity
on compression waves in coronal loops. Sometimes thermal conductivity and viscosity are
taken into account (Ofman and Wang 2002, De Moortel and Hood 2003), but more of-
ten thermal conductivity and heating and cooling are considered (Carbonell, Oliver, and
Ballester 2004; Soler, Ballester, and Goossens 2011; Kolotkov, Nakariakov, and Zavershin-
skii 2019; Duckenfield, Kolotkov, and Nakariakov 2021). The aim of this article is to find out
whether heating and cooling can have a noticeable effect on the damping of acoustic waves
in comparison with thermal conductivity and in what situations this is possible. It has been
noted that the radiative loss can have a noticeable effect on the oscillations of coronal loops
(Priest et al. 1998; Aschwanden and Terradas 2008). In the solar corona, radiation affects the
slow waves more strongly than the fast waves (Mikhalyaev, Veselovskii, and Khongorova
2013). Absorption of wave energy due to thermal conductivity leads not only to damping of
the acoustic wave, but also to its dispersion. In practice, this should lead to the appearance
of quasi-periodic oscillations generated as a result of the spreading of the initial localized
perturbation. A misbalance between heating and radiative losses has a similar effect on the
wave (Zavershinskii et al. 2019; Belov, Molevich, and Zavershinskii 2021).

We use the values of the radiative-loss function calculated with the help of the well-
known CHIANTI code (Dere et al. 2009; Dudík et al. 2011; Del Zanna et al. 2021). Using
the cubic spline interpolation method, an approximate analytical expression of this function
is formulated, which is then used in the analysis of a linear acoustic wave. We consider
the heating function to be constant. This is acceptable when the heating processes are of a
stable nature or they give a constant supply of energy on average, so that their spatial and
temporal scales are large compared with the wave scales. The approximation of constant
heating is often used in the study of wave processes, since in specific situations it is not
possible to define the sources and nature of the energy supply (Parker 1953; Weymann 1960;
Priest 2014). The number of possible sources is very large (Narain and Ulmschneider 1996;
Erdélyi and Ballai 2007; Klimchuk 2015). There is evidence to confirm a steady heating
concept (Warren, Winebarger, and Brooks 2010; Tripathi, Klimchuk, and Mason 2011).

Thus, in our case, the function of heating and energy losses is strictly defined. For ther-
mal conductivity, the classical expression is used, which is valid for fully ionized plasma
(Spitzer 1962). We can say that a specific model of the non-adiabatic acoustic waves has
been adopted, which makes it possible to find definite physical conditions for the wave and
compare results with observational data. Due to the physical model specificity we can esti-
mate the parameters of the coronal plasma. The CHIANTI radiative-loss function was used
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to study the damping of slow waves in hot coronal loops (Kolotkov, Nakariakov and Zaver-
shinskii 2019) and in prominences (Ibañez and Ballester 2022). Zavershinskii et al. (2019)
considered the heating and cooling misbalance as a source of quasi-periodic coronal os-
cillations. The proposed new analytical CHIANTI function representation provides a clear
and systematic approach to study the heating and cooling effect on the behavior of acous-
tic waves in the corona at all permissible values of basic physical parameters, density and
temperature. Thus, it is possible to clarify some results concerning the conditions for the
occurrence of acoustic wave instability and damping, to find exactly the conditions when
the heating and cooling effect plays a significant role in the damping along with the thermal
conductivity. In some papers, the object of the study is the heating and cooling function
itself (Kolotkov, Duckenfield, and Nakariakov 2020; Kolotkov, Zavershinskii, and Nakari-
akov 2021).

The study carried out in our work appears to be in agreement with the general work of
Field (1965), where, along with the acoustic waves, condensation modes are considered.
Field introduced the minimum number of formal parameters into the dispersion relation,
namely, two, and found the region of instability on the plane of these parameters. This
choice is due to the general representation of the heating and cooling function. Our model
allows us to choose the density ρ0 and the temperature T0 of the equilibrium plasma as the
basic parameters and then follow the behavior of the wave depending on these parameters.

We are planning to prepare a series of papers on the topic of the damping and disper-
sion of acoustic waves. Since we want to propose a certain mathematical model, we present
its theoretical foundations in detail and consider its application to numerous examples of
compression wave observations in the solar corona. Our first paper is devoted to a detailed
description of the CHIANTI radiative-loss function interpolation (Derteev et al. 2023); we
will refer to it as Paper I. This work is a continuation and is referred to as Paper II. We
now focus on the behavior of acoustic waves at different values of plasma density and tem-
perature. We show at what temperatures wave instability is possible and the degree of its
damping at other temperatures. We discuss a form of the heating and cooling function in
Section 2. We give brief explanations of the interpolation in Section 3. We present basic
equations in Section 4. We focus on the phenomena of instability in Section 5 and damping
in Section 6. In this article we discuss the application of the model to standing waves in hot
coronal loops.

2. Heating and Cooling Functions

Here we discuss the description of the coronal plasma heating and cooling processes. In
many papers a suitable expression for the heating and cooling function is discussed, but so
far it has not been defined even for specific cases. We try to clarify the uncertainty that exists
in this matter.

The energy emitted by a rarefied coronal plasma per unit mass and time may be expressed
as (Weymann 1960; Hildner 1974, Somov and Syrovatskij 1980)

Qrad = ρ�(T ), (1)

where �(T ) is the optically thin radiative-loss function. A large number of papers are de-
voted to its study, because of both the importance of the role of radiation in many physical
processes in the solar atmosphere and, to a large extent, the ambiguity of its definition. The
latter, in turn, is explained by the inhomogeneity of the atmosphere and the current uncer-
tainty in the distribution of ions. Currently, the radiative-loss function obtained using the
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CHIANTI code has become very popular (Dere et al. 1997; Landi et al. 1999; Dere et al.
2009; Dudík et al. 2011).

Although the behavior of the radiative-loss function is well known in general, in the
study of wave phenomena, not enough attention is paid to its specific properties. In the case
where the plasma density and temperature vary within small intervals, a local power-law
approximations of the form

�(T ) = χT α, χ,α are constants, (2)

can be used (Rosner, Tucker, and Vaiana 1978; De Moortel and Hood 2004; Carbonell,
Oliver, and Ballester 2004; Krishna Prasad, Banerjee, and Van Doorsselaere 2014; Wang et
al. 2021). In the work of Klimchuk, Patsourakos, and Cargill (2008) a global approximation
is given, which is constructed in this way for seven local ranges:

ρ2�(T )/n2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.09 · 1031T 2, T ≤ 104.97,

8.87 · 1017T , 104.97 ≤ T ≤ 105.67,

1.90 · 1022, 105.67 ≤ T ≤ 106.18,

3.53 · 1013T 3/2, 106.18 ≤ T ≤ 106.55,

3.46 · 1025T 1/3, 106.55 ≤ T ≤ 106.90,

5.49 · 1016T , 106.90 ≤ T ≤ 107.63,

1.96 · 1027T 1/2, 107.63 ≤ T .

(3)

Although such expressions are quite suitable for describing infinitesimal perturbations, a
more precise expression is required when studying small finite perturbations. Moreover,
they do not reflect the detailed behavior of the radiative-loss function. We use the radiative-
loss data obtained using the CHIANTI 10 code (Del Zanna et al. 2021) and calculate a more
accurate expression through cubic spline interpolation, which gives the continuity of the first
and second function derivatives over the entire temperature range under consideration.

Unlike, for example, loss due to thermal conductivity, which disappears in a homoge-
neous equilibrium medium with no temperature gradient, radiative loss occurs. Therefore,
when modeling wave processes, along with radiative loss, sources of plasma heating are
usually considered, introducing the heating and cooling functions

Qhc = Qrad − H, (4)

where H is the heating function, which has the meaning of energy inflow due to various
reasons. It should be expected that in the absence of a wave, there is a balance between the
radiation energy losses and energy inflow from possible heating sources. The large number
of these sources and the uncertainty of their description (De Moortel and Browning 2015;
Klimchuk 2015) make this balance “one of the major puzzles in solar physics” (Kolotkov,
Duckenfield, and Nakariakov 2020). Since the magnetic field plays a major role in upper
atmosphere heating, perhaps it must participate in the heating function for the slow waves
studied (Duckenfield, Kolotkov, and Nakariakov 2021; Kolotkov, Zavershinskii, and Nakari-
akov 2021; Kolotkov, Nakariakov, and Fihosy 2023). We choose H = H(ρ,T ) as an ap-
proximation, because in a low-beta plasma slow magnetoacoustic waves do not effectively
perturb the magnetic field and thus degenerate to acoustic waves.

In an equilibrium state with density ρ0 and temperature T0, the balance between heating
and radiative losses is expressed by the equation

ρ0�(T0) − H(ρ0, T0) = 0. (5)
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Density and temperature perturbations lead to local heating and cooling misbalance. Due to
the uncertainty of the description, the heating function is sometimes assumed to be constant
(Parker 1953; Weymann 1960; Priest 2014), so

H = ρ0�(T0). (6)

Krishna Prasad, Banerjee, and Van Doorsselaere (2014) and Mandal et al. (2016) used a
constant heating function when studying the propagation of slow waves in polar plumes
and active region fan loops. Claes and Keppens (2019) and Hermans and Keppens (2021)
used a similar approach to the study of condensation processes in the solar corona as the
most probable scenario for coronal rain and prominence formation. There is one essential
feature in determining the heating function. Usually the energy balance equation is written in
terms of the pressure or energy density (De Moortel and Hood 2004; Hermans and Keppens
2021); then the heating function is H = ρ2

0�(T0). We use the energy balance in terms of the
temperature.

Speculations why such a choice is possible could be as follows. There are few points
of view on the phenomena considered here, which are interpreted as compression waves.
One of the alternatives is the assumption that periodically repeating magnetic reconnection
processes take place, leading to plasma heating. The choice of the wave nature of the phe-
nomenon does not mean the rejection of heating, but it means that heating is characterized
by larger spatio-temporal scales. We consider all possible heating processes to be stationary,
on the scales considered.

Multiple heating processes in aggregate may create a quasi-steadily heated environment.
One potential heating scenario is that the energy release is effectively steady and highly
localized at the footpoints of the coronal structures (Lionello et al. 2013). Tripathi, Klim-
chuk, and Mason (2011) compared the Hinode/Extreme-Ultravioleat Imaging Spectrometer
(EIS) observations with a simple model of nanoflare-heated loop strands. They firmly be-
lieve that the heating is structured on a small scale. If so, direct evidence of nanoflares would
be washed out, since the emission from many different strands would be averaged. Hence,
steady intensities, densities, Doppler shifts and non-thermal broadening are consistent with
both steady heating and nanoflare heating. Orange, Chesny, and Oluseyi (2015), using ob-
servations from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly
(AIA), investigated the dynamics of quiet Sun transients that extrude from a common foot-
point shared with heated loop arcades. Quasi-steady interchange reconnection events are
implicated as a source of the visibility of the transient bright radiative signature. Also, using
observations from the SDO/AIA and the time lag method, Viall and Klimchuk (2016) came
to the conclusion that steady emission resulted from steady heating.

The study of wave phenomena can provide information not only on the density and tem-
perature of the plasma, but also on its radiation. It is considered that in this sense, the prob-
lem of seismology can be solved with respect to the heating and cooling function form, for
example, the heating function, if there is no certainty in its determination (Kolotkov, Duck-
enfield, and Nakariakov 2020; Kolotkov, Zavershinskii, and Nakariakov 2021). In our case,
the radiative intensity and energy inflow are determined independently, and we deal with
a given heating and cooling function. In fact, we consider a certain model of heating and
radiative loss of the coronal plasma.

3. Interpolation of the Radiative-Loss Function

When studying wave processes, it is necessary to have an acceptable analytical represen-
tation of the radiative-loss function. To obtain this, we use the cubic spline interpolation
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Figure 1 Interpolation curve of
the radiative-loss function �(T )

(green line) for temperatures
from 0.5 to 10 MK. The red dots
represent the radiative-loss
function values, and the asterisks
indicate the radiative-loss
function critical points. In the
interval (T1, T2), the instability
of acoustic waves is possible.

method. The interpolation procedure is described in detail in Paper I (Derteev et al. 2023).
The temperature range is selected from 0.5 to 14 MK. The interpolation is based on 29 tabu-
lar values of the coronal plasma emission intensity obtained using the CHIANTI 10 code for
a particle density of n = 1015 m−3. It will allow us to obtain a smooth analytical expression
around any point. For each interval between adjacent points, a polynomial called spline is
constructed in such a way that the function and its derivatives are continuous up to the sec-
ond order on the boundary between adjacent intervals. Thus, interpolation by cubic splines
gives us an approximate analytical representation of the function �(T ) with continuous first
and second derivatives. Tabular values are determined for the coefficients of interpolation
polynomials, and the values of the function �(T ) can be found for any temperature from
the considered range.

The result is shown in Figure 1, where tabulated temperature values of the radiative-
loss function are shown as red dots. For comparison, the approximation from Klimchuk,
Patsourakos, and Cargill (2008) is also shown here.

Figure 1 shows the function �(T ) (green line) in a conventional linear scale. In the
interval under consideration, the radiative-loss function has two maxima and one minimum;
they are indicated in Figure 1 by red stars. We present them along with other important
points: max1 (0.982 MK, 2.46 · 1019 W kg−2 m3), min (4.57 MK, 0.428 · 1019 W kg−2 m3),
and max2 (8.38 MK, 0.495 · 1019 W kg−2 m3). All values are given with three significant
figures. At the inflection points marked with blue stars, the derivative of the function �′(T )

(red line) has a local extremum: inf1 (0.771 MK, 2.35 ·1013 W kg−2 m3 K−1), inf2 (2.00 MK,
1.54 · 1013 W kg−2 m3 K−1), and inf3 (5.97 MK, 0.461 · 1013 W kg−2 m3 K−1).

The expression (γ − 1)�′(T ) + �(T )/T is important when analyzing wave damping
and instability (Field 1965; Claes and Keppens 2019; Nakariakov and Kolotkov 2020).
It is shown in Figure 1 with a black line. Under the assumption of a constant heating
function, instability is possible in a region where it takes negative values. This is shown
in Figure 1 in the range T1 < T < T2. Having an expression for the radiative-loss func-
tion, we can accurately determine its boundaries: T1 = 1.83 MK, T2 = 3.15 MK. At
the minimum point Tm = 2.17 MK, the possibility of instability is the highest, that is,
(γ − 1)�′(Tm) + �(Tm)/Tm = −0.392 · 1013 W kg−2 m3 K−1.

Thus, due to the obtained interpolation of the radiative-loss function, we can indicate the
temperature range at which acoustic wave instability can appear.
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4. Basic Equations

We consider the plasma as an ideal gas described by

p = ρ
RT

M
, (7)

where M is the mean molar mass, M = mNA, where m is the average mass of a gas particle.
For a fully ionized plasma of the solar corona, we define m = 0.62mp ≈ 1.037 · 10−27 kg,
so M ≈ 0.62 · 10−3 kg mol−1. The equilibrium medium is defined by the parameters T0, ρ0

or n0, ρ0 = mn0. We consider the value n0 ≈ 1015 m−3 (Reale 2014), which is typical of the
main portion of coronal loops, where compression waves are observed (Ofman and Wang
2002; De Moortel and Hood 2003).

Since the magnetic field plays a major role in the dynamics of the coronal plasma, slow
waves are more applicable for the interpretation of compression waves. To simplify the prob-
lem, we consider the approximation of an infinite medium with a homogeneous magnetic
field. For a low-β plasma, the slow waves are essentially sound waves, guided by the mag-
netic field (De Moortel and Hood 2004). We consider the following equations of the gas
dynamics:

∂vx

∂t
+ vx

∂vx

∂x
= − R

M

∂T

∂x
− RT

Mρ

∂ρ

∂x
, (8)

∂ρ

∂t
+ ∂(ρvx)

∂x
= 0. (9)

Let us write the energy balance equation in terms of temperature,

∂T

∂t
+ vx

∂T

∂x
+ (γ − 1)T

∂vx

∂x
= −(γ − 1)

M

R
Q, (10)

considering the density and temperature as the basic parameters of the plasma. The quantity
Q denotes the amount of energy loss per unit time and per unit mass of gas; its dimension
is [Q] = W kg−1. We take into consideration only the thermal conductivity and heating
and cooling effects in the study of non-adiabatic acoustic waves (Equations 1, 4, and 6).
We assume the viscosity and electrical resistance to be insignificant in ordinary coronal
conditions:

Q = Qth + Qhc, (11)

Qth = − 1

ρ

∂

∂x

(

κ(T )
∂T

∂x

)

. (12)

In a fully ionized high-temperature plasma, heat transfer occurs mainly as a result of
electron–electron collisions and subsequent plasma relaxation (Spitzer 1962). In this case,
the thermal conductivity is equal to

κ = 2.28 · 10−11 T 5/2
(
W m−1 K−1

)
. (13)

In recent years, there have been works indicating that thermal conductivity in a hot plasma
may differ from the Spitzer one. In flaring coronal loops, suppression of thermal conductiv-
ity and enhancement of compressive viscosity are possible (Wang et al. 2015, 2018; Wang
and Ofman 2019; Kolotkov 2022).
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It is convenient to determine in advance the scale of the wave parameters based on
the characteristic values of the observed phenomena. Let us choose the scales m(Cs) =
105 m s−1 of an acoustic speed Cs = √

γRT0/M and frequency m(ω) = 0.1 s−1 as the ini-
tial ones. The corresponding value of the oscillation period is P = 20π s ≈ 1 min, which
coincides in order of magnitude with the observed periods of compression waves (Srivastava
et al. 2008; De Moortel 2009; Banerjee, Gupta, and Teriaca 2011; Krishna Prasad, Baner-
jee, and Gupta 2011; Wang 2011). The scale of wave number values is set by the relation
m(ω) = m(Cs)m(k): m(k) = 10−6 m−1. Dimensionless values are denoted by a “tilde”:

ω̃ = m(ω)−1ω, k̃ = m(k)−1k, C̃s = m(Cs)
−1Cs. (14)

Let us consider the wave distributions in the form of functions exp(ik̃x̃ − iω̃t̃ ), where the
spatial and temporal variables are taken on the scales m(x) = 106 m and m(t) = 10 s. We
write the dispersion relation in the form

ω̃3 + iAω̃2 − ω̃C̃2
s k̃

2 + iB = 0, (15)

A = A1k̃
2 + A2, B = 1

γ

(
−A1k̃

2 − A2 + A3

)
C̃2

s k̃
2. (16)

The dimensionless coefficients A1, A2 and A3, included in the imaginary part of the relation,
take a central place in the analysis of the non-adiabatic wave behavior. They are determined
by the following expressions:

A1 = (γ − 1)Mm(k)2

Rρ0m(ω)
κ(T0), (17)

A2 = (γ − 1)M

Rm(ω)
ρ0�

′(T0), (18)

A3 = (γ − 1)M

RT0m(ω)
ρ0�(T0). (19)

It should be noted that the coefficient A1 is determined by the thermal conductivity and
the coefficient A2 is determined by the derivative of the radiative-loss function. In the decay,
the interval of the function A2 takes negative values, which affects the wave stability. The
frequency obtained from the dispersion relation (Equation 15) depends not only on the wave
number, but also on the basic thermodynamic parameters: ω̃ = ω̃(k̃, T0, ρ0). For the non-
adiabaticity coefficients A1 = A2 = A3 = 0, we use the usual non-dissipative acoustic wave
ω̃2 = C̃2

s k̃
2. In the presence of thermal conductivity, the equation has a fourth-order wave

number and can be written approximately as ω̃2 − C̃2
s k̃

2/γ = 0 in the limit k̃ → ∞. The
thermal conduction is supereffective in the dynamics of the acoustic wave for large wave
number (Nakariakov and Kolotkov 2020).

Figure 2 shows the temperature dependence of the non-adiabaticity coefficients for a
given particle density n0 = 1015 m−3. It is not difficult to obtain these values for another
density n0 referring to Equations 17 – 19. At high temperatures, the efficiency of the heat-
ing and cooling misbalance is low in comparison with the thermal conductivity, regardless
of the wave number. This is due to the properties of the heating and cooling function con-
sidered here. Obviously, when the density increases, the coefficient A1 decreases and the
coefficients A2 and A3 increase in magnitude. Let us recall that the radiative-loss function
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Figure 2 Distributions of
dimensionless non-adiabaticity
coefficients in the temperature
range from 1 to 10 MK.

itself was constructed for n0 = 1015 m−3, so the density changes are possible within limited
boundaries. We consider here the limits n0 = (0.5 − 5) · 1015 m−3.

In particular, for n0 = 1015 m−3 and T0 = 1.0 MK, we get A1 = 11.0, A2 = −0.509 ·10−3,
A3 = 12.8 · 10−3. In the case n0 = 1015 m−3 and T0 = 6.3 MK, the first coefficient exceeds
the rest even more: A1 = 1.10 · 103, A2 = 0.115 · 10−3, A3 = 0.386 · 10−3. It may seem that
at the temperature T0 ≈ 10 MK the thermal conductivity effect will be dominant. However,
with A1 increasing, the damping rate due to thermal conductivity tends to zero at non-
zero wave numbers. We will show it further. There is a certain temperature limit where
the thermal conductivity has no effect on wave damping. We stress that the coefficients at
the minimum point of the expression (γ − 1)�′(T ) + �(T )/T , when Tm = 2.17 MK, are

A1 = 76.4, A2 = −7.64 · 10−3, A3 = 3.06 · 10−3. (20)

They are especially significant for estimating the acoustic wave instability. Claes and Kep-
pens (2019) found that the slow and fast waves are unstable in a small temperature range
near 2 MK. We obtain a similar result for acoustic waves: they are unstable near 2.17 MK
in the temperature interval from T1 = 1.83 MK to T2 = 3.15 MK.

5. Wave Instability

The temporal behavior of waves is determined by the expression

e−iω̃t̃ = eIm ω̃t̃e−iRe ω̃t̃ . (21)

If δ̃ = −Im ω̃ < 0, then acoustic oscillations are stable; δ̃ is a damping rate. If δ̃ > 0, then an
instability occurs, and the relation Im ω̃(k̃, T0, ρ0) = 0 can be considered as the boundary of
the wave stability region in the wave number value space and the medium basic parameters.
Let us write the dispersion relation on the boundary of the stability region:

(Re ω̃)3 + i(Re ω̃)2(A1k̃
2 + A2) − Re ω̃C̃2

s k̃
2 − i

1

γ
A1C̃

2
s k̃

4 (22)

+ i
1

γ
(A3 − A2)C̃

2
s k̃

2 = 0.
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From the real part of the relation for an acoustic wave, we obtain Re ω̃ = C̃s k̃, and we
substitute this into the imaginary part. We get the following condition for the wave number:

(γ − 1)A1k̃
2 + (γ − 1)A2 + A3 = 0. (23)

An instability occurs at

(γ − 1)A1k̃
2 + (γ − 1)A2 + A3 < 0. (24)

This inequality corresponds to the condition of acoustic wave instability found by Field
(1965).

Because A1 ≥ 0, A3 ≥ 0 the occurrence of an instability is possible when

(γ − 1)A2 + A3 ∼ (γ − 1)�′(T0)T0 + �(T0) < 0, (25)

if the wave number does not exceed a critical value (Field 1965)

k̃c =
√

− (γ − 1)A2 + A3

(γ − 1)A1
. (26)

When k̃ > k̃c, the instability is stabilized by the thermal conductivity. If the wavelength of
the perturbations exceeds λF = 2π/kc, then the plasma should become unstable; λF is the
Field length (Antolin 2020; Kolotkov, Zavershinskii, and Nakariakov 2021). By analogy
with the established terminology for entropy waves, in the application to acoustic waves
this variable named the acoustic Field length (Kolotkov, Nakariakov, and Fihosy 2023). The
condition in Equation 25 can be written in the following form:

−�′(T0) >
�(T0)

(γ − 1)T0
. (27)

It is similar in form to the Schwarzschild convective instability criterion due to an overa-
diabatic vertical temperature gradient. In our case, there is an overadiabatic change in the
radiative-loss function with temperature.

The instability occurs in the temperature interval from T1 = 1.83 MK to T2 = 3.15 MK
where (γ − 1)�′(T0) + �(T0)/T0 < 0 (Figure 1). Obviously, the instability is most pro-
nounced at the minimum point T0 = 2.17 MK of the expression (γ − 1)�′(T0)+�(T0)/T0.
In Figure 3 (left) δ = −Imω is shown as the wave number function (black line). It takes neg-
ative values in the range of small wave numbers; here the wave is unstable. In the absence
of thermal conductivity, the wave is unstable at all values of k, and the thermal conductivity
stabilizes it at all k (red line). The instability is not caused by thermal conductivity, but by
heating and cooling misbalance. For n0 = 1015 m−3 the non-adiabaticity coefficients take the
values from Equation 20. Using them, we can find from Equation 26 the critical wave num-
ber kc = 6.3 ·10−9 m−1 and estimate the acoustic Field wavelength λF = 103 Mm. This gives
a large lower limit for the periods of acoustic oscillations Pc = λF/Cs = 4.6 · 103 s. With the
particle density increase, the acoustic Field wavelength and the oscillation period decrease
significantly. We obtained λF = 200 Mm and Pc = 0.9 · 103 s for n0 = 5 · 1015 m−3. The
value λF = 103 Mm is very large for compressional waves in the coronal loops, but it is of
an estimated nature. The same estimated values for the acoustic Field length were obtained
in the work of Kolotkov, Nakariakov, and Fihosy (2023). The occurrence of an instability is
more realistic at higher densities, for example, for the value n0 = 5 · 1015 m−3 and above.
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Figure 3 The coefficient δ = −Imω, the wave number function for temperature T = 2.17 MK (left). The
wave is unstable for 0 < k < kc = 6.3 · 10−9 m−1. It can be seen that the instability is not caused by the ther-
mal conduction, but by heating and cooling misbalance. The relationship between the period of the unstable
wave and its growth time for different density values (right).

Table 1 The shortest time of the
instability increase and the
corresponding oscillation period
at a temperature of T0 = 2.17
MK for a range of density values.

n0,1015 m−3 P , h τ , h

1 2.97 15.4

2 1.49 7.71

3 0.991 5.14

4 0.743 3.85

5 0.594 3.08

For the density n0 = 1015 m−3 the instability growth time is minimal if the period of
the oscillations is about 3 h. Figure 3 (right) shows the relationship between the period
of unstable oscillations and their growth time at temperature T0 = 2.17 MK. We consider
several density values of the surrounding plasma n0; in each case, we can specify the period
with the shortest growth time. The shortest time and the corresponding period are reduced
with increasing density (Table 1). Obviously, the shortest growth time indicates the most
effective growth of the instability. In the case of n0 = 5 · 1015 m−3, the shortest growth time
is τ ≈ 3 h and the period is P ≈ 0.6 h. For each individual curve, the relationship between
the period and the growth time is a power-law for large periods:

τ/P ∼ P, τ ∼ P 2 atP → ∞. (28)

A similar relationship will be discussed in more detail later for damping waves.

6. Wave Damping

6.1. General Estimate of the Damping

The thermal conduction dominates in the acoustic wave behavior at large wave numbers.
With the temperature increase, the coefficient A1 increases, which determines the thermal
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conduction effect, and the coefficients A2 and A3 are associated with the decrease in heating
and cooling effect (Figure 2). However, this does not mean absolute dominance of the ther-
mal conduction in the wave damping. Indeed, on the one hand, it seems from an asymptotic
behavior of the oscillation frequency when k̃ → ∞,

ω̃ ≈ ṽ∞k̃ − iδ̃∞, ṽ∞ = C̃s/
√

γ , δ̃∞ = (γ − 1)C̃2
s / (2γA1) , (29)

that a limit value of the damping rate due to the thermal conduction does not depend on k̃

and decreases with increasing thermal conductivity. On the other hand, in the absence of
thermal conductivity, the limit values of the phase velocity and the damping rate are equal
to

ṽ∞ = C̃s, δ̃hc
∞ = ((γ − 1)A2 + A3)/2γ. (30)

Here we again see the term (γ − 1)A2 + A3, which is responsible for the appearance of the
instability of acoustic oscillations. Its positive values characterize the damping rate due to
heating and cooling. In Section 4, we noted that the thermal conduction is supereffective for
large wave numbers in the sense that the phase speed is isothermal. What can be said about
the damping rate? From Equations 29 and 30 we get the ratio

� = δ̃hc∞
δ̃th∞

= ((γ − 1)A2 + A3)A1

(γ − 1)C̃2
s

. (31)

Coefficients of non-adiabaticity are A1 = 11.0, A2 = −0.509 · 10−3, A3 = 12.8 · 10−3 for
n0 = 1015 m−3, T0 = 1 MK, and A1 = 3.48 · 103, A2 = −0.112 · 10−3, A3 = 0.248 · 10−3 for
n0 = 1015 m−3, T0 = 10 MK. We get � = 0.093 and � = 0.051 for T0 = 1 MK and T0 = 10
MK, respectively. The limit value of the damping rate due to thermal conduction is equal
to δ̃th∞ = 0.040 for T0 = 1 MK and δ̃th∞ = 0.0013 for T0 = 10 MK. Indeed, it significantly
decreases for high temperatures up to 10 MK, but otherwise the damping rate due to radia-
tion loss and the constant heating function decreases even more strongly. We conclude that
at high temperatures within 10 MK, the thermal conduction has a dominant effect on wave
damping for large wave numbers. The situation may change at much higher temperatures.

Typical acoustic wave damping is shown in Figure 4 (left column). At k ≈ 0.5 ·10−6 m−1,
the phase speed and damping rate are close to the asymptotic values ṽth∞ = 1.16 and
δ̃th∞ = 0.04 for k̃ → ∞. The thermal conduction plays the main role in wave damping, but
heating and cooling misbalance is noticeable at small wave numbers. Let us find a solution
of Equation 15 in the limit k̃ → 0. If A2 < 0, we get

ω̃ = ṽ0k̃ − iδ̃0, ṽ0 ≈
√

A2 − A3

γA2
C̃s, δ̃0 ≈ (γ − 1)A2 + A3

2γA2
2

C̃2
s k̃

2, k̃ → 0. (32)

At (γ − 1)A2 + A3 < 0, the wave is unstable; then Equation 28 follows from Equation 32.
For selected T0 = 1 MK and n0 = 1015 m−3, the limit phase speed is equal to ṽ0 = 5.96.

We found the numeric values of wave parameters mentioned above using the coefficients
A1 = 11.0, A2 = −0.509 · 10−3 and A3 = 12.8 · 10−3. According to Equations 19 – 21, the
non-adiabaticity coefficients depend significantly on the plasma density. For T0 = 1 MK and
n0 = 5 · 1015 m−3, they are A1 = 2.20, A2 = −2.55 · 10−3 and A3 = 6.40 · 10−2. In Figure 5
(left) we show the corresponding phase speed and damping rate. It seems that the heating
and cooling misbalance is effective at k < 0.2 · 10−6 m−1, corresponding to wavelengths of
more than 36 Mm and oscillation periods of more than 5 min.
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Figure 4 Dispersion curves and a damping rate for T0 = 1 MK (left column) and T0 = 0.5 MK (right col-
umn), n0 = 1015 m−3.

Comparing with Figure 4 (left column), one can see that the range of wave numbers
where the heating and cooling misbalance becomes effective has significantly expanded.
For example, at k = 0.2 · 10−6 m−1 damping rate values are equal due to both heating and
cooling and thermal conduction if n0 = 5 ·1015 m−3. In the case n0 = 1015 m−3, the damping
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Figure 5 Damping rate in the case T0 = 1 MK, n0 = 5 · 1015 m−3 (left). Discriminant Q of equation (15)
for T0 = 0.5 MK, n0 = 1015 m−3 and n0 = 5 · 1015 m−3 (right).

rate due to thermal conduction is an order of magnitude higher than that due to the heating
and cooling misbalance. We can state that the observed fast damping of compression waves
(De Moortel and Hood 2004) can be caused by heating and cooling along with thermal
conduction assuming a slightly higher plasma density.

The solution shown in Equation 32 is available if A2 < 0, i.e. in a temperature
range where �(T ) decreases, �′(T ) < 0. For the CHIANTI function, we consider that
0.982 MK < T0 < 4.57 MK and 8.38 MK < T0 < 14.1 MK. In the remaining ranges �(T )

increases and A2 > 0. Here the behavior of the wave is different.

6.2. Non-Propagating Waves

The propagation properties of acoustic waves depend on the discriminant Q of Equation 15
(Zavershinskii et al. 2021):

Q = p3/27 − q2/4, (33)

p = a2/3 − b, q = 2a3/27 − ab/3 + c, (34)

a = A1k̃
2 + A2, b = C̃2

s k̃
2, c =

(
A1k̃

2 + A2 − A3

)
C̃2

s k̃
2/γ. (35)

For all parameters, Q takes real values. An acoustic wave is propagating if Q < 0 and non-
propagating if Q > 0. For a given temperature and density, we consider Q as a function of
the wave number. The separating wave number k0 is determined from the equation Q(k0) =
0. In Figure 5 (right), it is shown for T0 = 0.5 MK, n0 = 1015 m−3 and n0 = 5 · 1015 m−3.

Dispersion curves and the damping rate for T0 = 0.5 MK are given in Figure 4 (right
column). The first thing to pay attention to is the lack of oscillations for k < k0 = 3.2 ·
10−9 m−1 if n0 = 1015 m−3. The wave is non-propagating in this case, and the frequency
is purely imaginary, ω = −iδ, δ > 0. In this case, we obtain a more critical value of the
wave number separating region for the non-propagating one. The corresponding damping
rate value is δ0 = 6 · 10−4 s−1, i.e. the damping time is τ0 = 1/δ0 = 1670 s. For n0 = 5 ·
1015 m−3 we get k0 = 0.016 · 10−6 m−1, λ0 = 400 Mm, δ0 = 3 · 10−3 s−1 and τ0 = 330 s.
With the increase of density, the wave parameters change greatly and the non-propagating
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Table 2 Parameters of compressive waves in hot coronal loops (Wang, Innes, and Qiu 2007).

Loop L (Mm) T (MK) ne (109 cm−3) v (km s−1) P (min) τ (min)

1 134 6.6 ± 0.1 5.2 ± 0.1 21 12.9 ± 0.2 18.1 ± 3.1

2 275 6.5 ± 0.3 4.3 ± 0.5 36 18.3 ± 0.7 19.9 ± 4.2

3 92 7.0 ± 0.3 14.1 ± 0.8 14 8.1 ± 0.1 19.8 ± 5.0

4 74 6.4 ± 0.9 10.4 ± 2.0 17 8.5 ± 0.2 7.4 ± 1.7

5 98 6.3 ± 0.9 11.1 ± 2.3 8 9.3 ± 0.3 19.1 ± 9.2

6 82 6.3 ± 0.5 7.8 ± 0.9 30 8.1 ± 0.3 7.2 ± 1.8

7 135 5.9 ± 0.3 5.6 ± 0.5 61 13.3 ± 0.7 8.1 ± 2.3

wave becomes real. The oscillations occur in the absence of heating and cooling; therefore,
a non-propagating wave is caused by heating and cooling misbalance. Zavershinskii et al.
(2021) got a similar result. They used a more general expression for the heating and cooling
function and set conditions for non-propagating waves in terms of characteristic misbalance
times. Our specific heating and cooling function allows to express these conditions in terms
of wave parameters and the basic physical plasma parameters.

6.3. Waves in Hot Coronal Loops

It remains to consider the temperature range from 4.57 to 8.38 MK, where compression
waves are observed in hot coronal loops. The radiative-loss function increases in this range.
Similarly to the region from 0.5 to 0.982 MK with derivative �′(T ) > 0, non-propagating
waves may appear here. For T0 = 6.31 MK and n0 = 5 · 1015 m−3, they can exist if k0 <

4.2 · 10−11 m−1 or λ0 > 1.5 · 105 Mm. The critical wavelength value λ0 is one order of
magnitude larger if n0 = 5 · 1015 m−3. It is safe to assume that there are no non-propagating
waves in hot coronal loops.

There are Solar Ultraviolet Measurements of Emitted Radiation (SUMER) observations
of a fast damping of longitudinal waves in hot coronal loops which are consistent with stand-
ing slow waves in their fundamental mode (Wang 2007; Wang 2011). The average values
of oscillation parameters are: oscillation period, 17.6 ± 5.4 min; damping time, 14.6 ± 7.0
min; amplitude, 98±75 km s−1. Data related to longitudinal oscillations of seven individual
coronal loops are presented in the article of Wang, Innes, and Qiu (2007); these data are
shown in Table 2. It should be noted that at the temperatures presented here, the speed of
sound is Cs = 365 − 395 km s−1. With the exception of loop 7, the speeds do not exceed
10% of the sound speed; therefore, with some accuracy, a linear approach is applicable to
the oscillations under consideration.

On the basis of data about the loop sizes, temperature and particle density, we calculated
the oscillation period and damping time using the current model. The calculation results
are shown in Table 3. In general, they can be considered close to the observational data,
taking into account the large empirical error in finding the damping time. There is more
similarity in the values of the periods. The similarity is greater for shorter loops, and the
discrepancy between the empirical and theoretical results for loops 2 and 3, which have
the largest geometric dimensions, is striking. The discrepancy can also be explained by the
non-linearity of the oscillations, since in most cases they cannot be considered as small.

Table 3 presents the results of calculations separately for each of the two non-adiabatic
effects: thermal conductivity, and heating and cooling. In all cases, the damping time is
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Table 3 Period and damping time of compressive oscillations in hot coronal loops obtained from our model
in the linear approximation. th, effect of the thermal conductivity; hc, effect of the heating and cooling
misbalance; th,hc, effect of both mechanisms.

Loop Pth (min) τth (min) Phc (min) τhc (min) Pth,hc (min) τth,hc (min)

1 13.7 15.0 11.7 240 13.8 14.5

2 26.0 32.2 24.2 290 26.2 29.3

3 8.4 10.3 7.8 109 8.4 9.4

4 7.6 8.2 6.5 120 7.6 7.9

5 9.5 11.2 8.7 113 9.6 10.4

6 8.7 9.9 7.3 160 8.7 9.6

7 14.1 15.3 12.4 216 14.2 14.6

Figure 6 The relationship
between the period and the
damping time of acoustic waves
in a hot coronal plasma, T0 = 6.3
MK. Red circles show the
damping oscillations presented in
Table 2.

long due to the possible single effect of heating and cooling misbalance. At high temper-
atures, its role turns out to be insignificant for the considered wavelengths. For very large
wavelengths, i.e. near zero on the wave number axis, there is a non-propagating wave, i.e.
theoretically, one can find situations where heating and cooling misbalance can exist even at
high temperatures. This result is derived under the assumption of a constant heating function.
For non-constant heating functions, heating and cooling misbalance may have a significant
impact on acoustic wave damping (Kolotkov, Nakariakov, and Zavershinskii 2019; Ducken-
field, Kolotkov, and Nakariakov 2021). It is also necessary to recall the effect of suppression
of thermal conductivity in flaring loops (Wang et al. 2015, 2018; Wang and Ofman 2019).

At a given density and temperature, from the dispersion relation, a relationship between
the damping time and the oscillation period can be established. A similar relationship for
the growth time is shown in Figure 4 (right) for unstable waves and in Figure 6 for the
damping time. For each pair n0 and T0 there is a certain damping time curve τ(P ). For
comparison, the parameters of damped oscillations in hot coronal loops presented in Table 2
are shown (red circles). In analogy, the scaling of the damping time with the oscillation
period of a slow mode for various temperatures was studied (Nakariakov et al. 2019). We
take a number of density values for T0 = 6.3 MK. This point lies in the temperature interval
where acoustic waves are non-propagating. Equation 32 is not valid here. The damping
rate curve in Figure 4 (right column) shows that τ increases infinitely with increasing P .
According to Equation 29, τ has a non-zero constant limit at P → 0.
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It follows from Figure 6 that damping time curves τ(P ) fill a certain area on a plane
(P, τ ). This turns out to be because in addition to temperature, the plasma has another
parameter, namely, density. In our model, the density n0 and temperature T0 are input pa-
rameters, and the period P and damping time τ are output parameters. Because of various
values of n0 and T0, a function τ (P,n0, T0) gives a set of points in some areas. A functional
dependency can be established for some subsets. A distribution of an entire set of points is
generally statistical in nature.

The next step in the study may be the consideration of non-linear oscillations, for which
a numerical experiment is usually carried out. In this article, we considered longitudinal
standing oscillations in hot coronal loops as a practical application of the model. As is well
known, there are observations of compressive waves, including traveling waves, in other
coronal structures.

7. Discussion

For a number of values of the radiative-loss function found using CHIANTI 10 code, we
built its approximate analytical representation in the form of cubic splines. The CHIANTI
radiative-loss function �(T ) was used in the study of slow waves in the solar corona
(Kolotkov, Nakariakov, and Zavershinskii 2019; Kolotkov, Duckenfield, and Nakariakov
2020; Duckenfield, Kolotkov and Nakariakov 2021; Kolotkov, Zavershinskii and Nakari-
akov 2021). We present an explicit and sufficiently accurate method to calculate values
of �(T ) and its derivative for any T . In combination with the generally accepted thermal
conductivity (Spitzer 1962), it gives us a specific model of acoustic oscillations for the de-
scription of coronal compression waves. The choice of a constant heating function leads to
a model limitation, but it is common not only due to ignorance of the heating mechanisms
in specific situations. The concept of nanoflares makes it possible to imagine that the foot-
points of coronal loops are continuously heated due to the energy inflow from the dense
atmosphere layers (Warren, Winebarger, and Brooks 2010; Viall and Klimchuk 2016). It
should be noted that we used the energy inflow per time unit per mass unit of the plasma; of-
ten a volume unit is considered instead (De Moortel and Hood 2004; Hermans and Keppens
2021). The model obtained in this way can be used to diagnose the coronal plasma because
it allows to directly find specific values of the main physical coronal plasma parameters,
namely, density and temperature. The current model can be further refined and developed
by introducing a non-constant heating function. We plan to devote a series of articles to this
problem; in this article we have tried to evaluate the role of both non-adiabatic effects, i.e.
thermal conductivity and heating and cooling, in the behavior of acoustic waves.

The dispersion relation analysis shows that over a significant range of wave number val-
ues, thermal conductivity plays a decisive role in the damping of acoustic waves. The mis-
balance between heating and cooling can compete with thermal conductivity only at wave-
lengths of more than 30 Mm for a temperature of 1 MK and 300 Mm for a temperature of
6.3 MK. This is consistent with typical wavelengths of observed compression waves in warm
and hot coronal loops: 20 – 100 Mm (De Moortel and Hood 2004; De Moortel 2009) and a
few hundred Mm (Ofman and Wang 2002; Wang, Innes, and Qiu 2007; Wang 2011), respec-
tively. We can state that a slightly higher plasma density can lead to fast damping of acoustic
waves due to heating and cooling misbalance. This means that the observed fast damping of
compression waves (De Moortel and Hood 2004) can be explained by heating and cooling
effects along with the thermal conduction. The described model of non-adiabatic acoustic
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waves is applied to standing waves in hot coronal loops. The performed theoretical calcu-
lations are in good agreement with the observational data presented in the work of Wang,
Innes, and Qiu (2007).

It is known from a general theory (Field 1965) that acoustic waves can be unstable at the
temperature value at which the radiative-loss function decreases. Claes and Keppens (2019)
found that the slow and fast waves in the corona are unstable in a small range at approxi-
mately 2 MK. We obtained a similar result for acoustic waves, which are most likely to be
unstable close to 2.2 MK. The period and growth time are around 1 h and decrease with in-
creasing plasma density. The acoustic Field length changes from 1000 Mm to 200 Mm when
the plasma density varies from 10−12 kg m−3 to 5 · 10−12 kg m−3. The instability of coronal
loops can be real at a sufficiently high density. The whole theoretical range of the instability
of acoustic waves extends from T1 = 1.8 to T2 = 3.2 MK. The waves described here belong
to the ranges 0.98 MK < T < 4.6 MK and T > 8.4 MK, where �′(T ) < 0. They are damp-
ing and unstable propagating waves. In ranges where �′(T ) > 0 there are damping prop-
agating and non-propagating waves. Zavershinskii et al. (2021) found conditions of non-
propagating waves in terms of characteristic misbalance times. We determined these con-
ditions in terms of physical parameters, namely, density and temperature. Non-propagating
waves may appear in the ranges of 0.5 MK < T < 0.98 MK and 4.6 MK < T < 8.4 MK. Ad-
ditionally, the density determines corresponding wavelength ranges. We got λ > 1900 Mm
at n = 1015 m−3 and λ > 400 Mm at n = 5 ·1015 m−3 for the same temperature T = 0.5 MK.
We got a real non-propagating wave at higher densities. The fast damping of compression
waves in warm and hot coronal loops can be explained by acoustic oscillations in a dense
plasma. Unstable and non-propagating acoustic waves can really exist under the assumption
of a sufficiently high plasma density. That means that the heating and cooling effect is sig-
nificant at high densities. Therefore, linking the wave properties with physical parameters of
the plasma, we formed a basis for plasma diagnostics with the help of coronal seismology by
non-adiabatic acoustic waves, where the heating and cooling misbalance plays a significant
role.
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