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Abstract
Coronal magnetic field extrapolations are necessary to understand the magnetic field mor-
phology of the source region in solar coronal transients. The extrapolation models are
broadly classified into nonforce-free and force-free, depending on whether the model al-
lows for a Lorentz force or not. Presently, these models are employed to carry out state-
of-the-art data-driven and data-constrained magnetohydrodynamics (MHD) simulations to
explore magnetic reconnection (MR)—the underlying cause of the transients. It is then im-
perative to study the influence of different extrapolation models on simulated evolution. For
this purpose, the numerical model EULAG-MHD is employed to carry out simulations with
different initial magnetic and velocity fields obtained through nonforce-free and force-free
extrapolations. The selected active region is NOAA 11977, hosting a C6.6 class eruptive
flare. Both extrapolations are found to be in good agreement with the observed line-of-sight
and transverse magnetic fields. Further, a morphological comparison on the global scale
and particularly for selected topologies, such as a magnetic null point and a hyperbolic flux
tube (HFT), suggests that similar magnetic field line structures are reproducible in both
models, although the extent of agreement between the two varies. Astoundingly, generation
of a three-dimensional null near the HFT is observed in all the simulations, inferring the
evolution to be independent of the particular initial field configuration. Moreover, the mag-
netic field lines (MFLs) undergoing MRs at the null point and HFT evolve similarly, further
confirming the near independence of reconnection details on the chosen initial conditions.
Consequently, both the extrapolation techniques can be suitable for initiating data-driven
and data-constrained simulations.
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1. Introduction

Solar transients such as flares, coronal mass ejections (CMEs) and jets are sudden episodic
energy releases and plasma outbursts. The transients are important both as a fundamental
phenomena and because of their influence on the near-Earth space weather. It is then im-
perative to understand their source-region dynamics. Magnetic reconnection is generally
believed to be one of the underlying mechanisms of the transients (Shibata and Magara,
2011). Several details such as the triggering mechanism, reconnection rate, energetics, and
multiscale behaviors are central to a comprehensive understanding of magnetic reconnec-
tion and, hence, the transients. The MRs occur at local diffusive scales of MHD leading
to breakage and reconfiguration of MFLs, while the released energy is stored in its mag-
netic form on the global scales, where the MFLs are tied to the plasma parcels because
of the flux freezing (Zweibel and Yamada, 2016). The two scales are not independent, but
feed each other, as envisaged in the numerical simulation of Kumar et al. (2016). The MRs
are dissipative processes, converting magnetic energy into heat, which is lost irrecoverably
from the system. Consequently, a parallel can be drawn with the dissipative dynamics of a
system governed by classical mechanics. Conceptually, the analogy infers the global evolu-
tion of MFLs to be relatively insensitive to the initial condition as, presumably, dissipation
erases the memory of a system. The inference can have rather strong implications in the
data-driven or data-constrained numerical simulation of transients where the initial coro-
nal magnetic field is extrapolated from photospheric magnetograms. In particular, it raises
the expectation that two simulations having analogous initial MFL morphologies can yield
similar MRs—a problem imperatively interesting and novel to explore. Toward such ex-
ploration, here, we consider the two most widely used approaches for extrapolation: the
nonlinear force-free field (NLFFF) and the nonforce-free field (NFFF)—their nomenclature
being based on whether the exerted Lorentz force is zero or not.

The overall work flow selects an active region undergoing a flare, extrapolates the mag-
netic field using the two approaches and uses them as input for the MHD simulations. The
simulation results are then compared to draw conclusions. To our understanding, the proof-
of-concept numerical experiment reported in this paper is the first of its kind and merits
attention.

As background, the analytical expression of NLFFF treats both the coronal plasma and
the photosphere to be exactly force free. However, its computational implementation allows
for a residual Lorentz force because of the unavoidable numerical errors. Following Inoue,
Hayashi, and Kusano (2016), this residual force is used as a perturbation to initiate one of
the NLFFF simulations described in the paper. The expectation is an appreciable change
in kinetic energy if the NLFFF solution belongs to one of its unstable branches. Unsta-
ble branches of NLFFF are well studied in the literature. For instance, the Titov–Démoulin
equilibrium (Titov and Démoulin, 1999) becomes unstable when the radius of curvature of
the flux tube is comparable in value with the size of the active region. Additionally, force-
free flux ropes are found to become either torus or kink unstable, when the decay index
n ≈ 1.5 (Kliem and Török, 2006) or the normalized axial wave number k′ > 1 (Kliem et al.,
2010). The corresponding rise of the flux tube can provide a scenario for eruptive flares,
which is different from the one assisted by reconnections. Contrarily, the Lorentz force at
the photosphere is nonzero for the NFFF but generally decays sharply with height and is
∈ [5.8%,0.04%] of its photospheric value for height ∈ [3.2,98.6] Mm, making it approxi-
mately force-free at the corona for the AR under consideration. We rely on these properties,
elaborated later, of the extrapolation models to carry out the simulations described in the
paper. Notably, the MHD model used for comparison is idealized—for instance, the flow
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is incompressible and focuses only on the dynamics of MFLs along with locations of mag-
netic reconnections but does not elucidate on the emissions, preflare activities, and other
complexities observed in an actual flare.

For the NLFFF, we choose the extrapolation model based on the principle of weighted op-
timization method (Wiegelmann, 2004, Wiegelmann, Inhester, and Sakurai, 2006, Wiegel-
mann and Inhester, 2010) because of its wide acceptance in contemporary research. It typ-
ically models the force-free region of the solar atmosphere between the upper photosphere
and the lower corona where β � 1 (Gary, 2001). Such a choice seems appropriate because
NLFFF can account for the free magnetic energy released in the form of electromagnetic
radiations and energetic particles during eruptive events (Wiegelmann and Sakurai, 2021).
Further, previous works on modeling of solar-active regions have shown the capability of
this NLFFF scheme to adequately reproduce coronal loops (Warren et al., 2018), magnetic
flux rope structures (Mitra et al., 2020), and complex magnetic topologies like magnetic
null points and quasiseparatrix layers (Zhao et al., 2014, Joshi, Joshi, and Mitra, 2021). The
second initial condition employs the NFFF extrapolation based on the Minimum Dissipa-
tion Rate principle (MDR: Bhattacharyya and Janaki, 2004, Bhattacharyya et al., 2007, Hu
and Dasgupta, 2008). NFFF gains its importance from an implicit presence of a nonzero
Lorentz force that can drive the plasma dynamics. Earlier works have confirmed its efficacy
in exploring several scenarios of observational interest. Examples include MFL evolution
leading to solar flares and blowout jets (Prasad et al., 2018, Nayak et al., 2019, Nayak,
Bhattacharyya, and Kumar, 2021) along with the development of current sheets around null
points (Kumar and Bhattacharyya, 2016) and quasiseparatrix layers (Kumar et al., 2021).

The photospheric magnetogram at 02:48 UT of AR 11977 on 17th February, 2014 is
selected as the marker to determine the extent of correlation between the observed and the
modeled magnetic fields on the bottom boundary. The selection is motivated by the oc-
currence of a C6.6 class flare that peaked at 03:04 UT. In general, MHD simulations with
NLFFF extrapolation (e.g., Jiang et al., 2013, Kliem et al., 2013, Amari, Canou, and Aly,
2014, Inoue et al., 2014, 2015) and NFFF extrapolation (Prasad et al., 2018, Nayak et al.,
2019, Nayak, Bhattacharyya, and Kumar, 2021) have been successful in explaining the coro-
nal dynamics leading to eruptive events. In the same spirit, active region NOAA 11977 has
been simulated here to understand the details of its evolution and the role played by models
in this context. The results show the simulated dynamics to be nearly independent of the
particular initial state and importantly, spontaneous generations of a three-dimensional null
in all the cases.

The paper is organized as follows. Section 2 discusses the active region and the C6.6
class flare. It also describes the observations relevant to interpret the simulations. In Section
3, we present the quantitative and topological differences between the nonlinear force-free
and nonforce-free extrapolated fields. The numerical MHD model is discussed in Section 4.
The results are presented in Section 5, while Section 6 summarizes the important findings.

2. Active Region and Flare Event

The C6.6 class eruptive flare on 2014 February 17 from active region NOAA 11977 with
heliographic coordinates S13W05 is selected since (a) its location is approximately disk
centered, so that the error in the observed photospheric magnetic field is small and (b) the
photospheric magnetic flux integrated over the active region, changes minimally during the
course of the flare and a line-tied boundary condition can be used to simplify the simulations.
Figure 1(a) shows the Geostationary Operational Environmental Satellite (GOES) soft X-ray



91 Page 4 of 31 S. Agarwal et al.

Figure 1 (a) GOES soft X-ray flux for a one-hour period starting at 02:30 UT in the 1 – 8 Å channel. The
dashed black line marks the rising phase at ∼ 02:45 UT and the dashed-dot line marks the peak time of the
flare. (b) Photospheric flux during a one-hour period starting from 02:30 UT, where the solid line denotes
positive flux and the dashed line denotes negative flux.

flux during the course of the flare in the 1 – 8 Å channel, revealing a gradual rise in inten-
sity around ∼ 02:45 UT, peaking at 03:04 UT. Importantly, Figure 1(b) shows the evolution
of the horizontally averaged positive (solid) and negative (dashed) photospheric magnetic
flux obtained from hmi.M_45 series of Helioseismic Magnetic Imager (SDO/HMI: Schou
et al., 2012, Scherrer et al., 2012) for a duration of ∼ 1 h, starting around 02:30 UT. The
magnetic flux is reasonably constant during the flare, the relative changes for both positive
and negative fluxes being well within 1%.

Figure 2 illustrates the temporal evolution of the flaring event in EUV (131 Å) channel
of Atmospheric Imaging Assembly (AIA: Lemen et al., 2012) onboard Solar Dynamics
Observatory (SDO: Pesnell, Thompson, and Chamberlin, 2012) for a duration of ∼ 35 m,
starting around 02:45 UT. Panels (b), (c), and (f) mark the approximate spatial locations of
brightenings (b1, b2, b3, and b4) identified at different instances during the flare. Importantly,
we recognize a lasso structure, visible in Panel (e), which prominently displays the overall
geometry of the flaring region.

3. The Extrapolated Magnetic Field: NFFF and NLFFF

The coronal field is extrapolated at 02:48:00 UT, using the hmi.sharp_cea_720s (Bobra
et al., 2014) data series from SDO/HMI, where CEA refers to the Cylindrical Equal Area
(Calabretta and Greisen, 2002) projection. The data provides radial (Br ), toroidal (Bt ), and
poloidal (Bp) components of magnetic field, which satisfy the following relations in a Carte-
sian coordinate system (a) Bz = Br , (b) Bx = Bp , and (c) By = −Bt . The dimension of the
SHARP series corresponding to HARP number 3740 for active region NOAA 11977 is
906 × 540 pixels.
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Figure 2 Snapshots from the temporal evolution of active region NOAA 11977 in the Extreme Ultraviolet
(131 Å) channel of SDO/AIA, starting around 02:45 UT. Panels (b), (c), and (f) mark the brightenings b1, b2,
b3, and b4 identified during the course of the flare. Panel (e) highlights the lasso structure that describes the
overall flaring configuration. Panel (g) and Panel (h) correspond to the peak time and termination time of the
flare, respectively.

3.1. NLFFF Extrapolation

The NLFFF equations are given by

(∇ × B) × B = 0, (1)

∇ · B = 0, (2)

which have to be solved together with the photospheric boundary condition

B = Bobs on the bottom boundary. (3)

B is the 3D magnetic field and Bobs the magnetic field vector deduced from measurements
in the photosphere. As an initial test, one has to check if the observed vector magnetogram
is consistent with the assumption of a force-free field, which can be done by computing a
number of dimensionless quantities, which have been introduced in Wiegelmann, Inhester,
and Sakurai (2006), namely the flux balance ε flux, the net force balance εforce, and the net
torque balance εtorque:

εflux =
∫

S
Bz∫

S
|Bz| ,
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BxBz| + | ∫
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For ideal force-free consistent boundary conditions, these criteria should be zero. For εflux,
the field of view has to be chosen accordingly. For measured magnetograms, the dimension-
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Table 1 Summary of the
parameters used in the NLFFF
extrapolation.

μ1 μ2 μ3 μ4 wf wd ν wlos wtrans

1 1 0.01 0.01 1 1 0.001 1 BT/max(BT)

less quantities are not zero, but have finite values. If the quantities are low (below about
0.1), the boundary conditions are considered sufficiently force-free consistent and can be
used as boundary condition Bobs in Equation 3, as was done for HMI-data in Wiegelmann
et al. (2012). Unfortunately, many photospheric vector-field measurements are not force-free
consistent in the sense that εforce and εtorque are larger than about 0.1. For the data set used in
this work, the corresponding values are εflux ∼ 0.2326, εforce ∼ 0.1590, and εtorque ∼ 0.1690.
Finite forces and torque in the photosphere are naturally caused by the finite plasma beta.
The Lorentz force does not vanish in the photosphere for these cases and is compensated by
other plasma forces. In these cases, the photospheric measurements cannot be used directly
as boundary condition in Equation 3 and a preprocessing procedure, as introduced in Wiegel-
mann, Inhester, and Sakurai (2006) has to be applied to derive force-free consistent boundary
conditions Bobs. We summarize the preprocessing procedure briefly. A 2D-functional

Lp = μ1L1 + μ2L2 + μ3L3 + μ4L4 (4)

is defined, which has the individual terms Li=1,4 as

L1 =
⎡

⎣

(
∑

p

BxBz

)2
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⎤

⎦ , (5)
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L3 =
[
∑

p

(Bx − Bobs
x )2 +

∑

p

(By − Bobs
y )2 +

∑

p

(Bz − Bobs
z )2

]

, (7)

L4 =
[
∑

p

(
(�Bx)

2 + (�By)
2 + (�Bz)

2
)
]

, (8)

and μi are weighting factors for the corresponding terms, as specified in Table 1. The first
and second terms represent the force balance and torque balance conditions (see Aly, 1989
for details). The third term corresponds to the difference between the preprocessed and mea-
sured values in the photosphere, while the last term controls smoothing. The output of the
minimized 2D functional Lp provides a force-free consistent magnetogram and for con-
venience we call this output of the preprocessing again Bobs. For the dataset used in this
work, after preprocessing, εflux ∼ 0.2466, εforce ∼ 0.0005, and εtorque ∼ 0.0015. This prepro-
cessed magnetogram is used as a boundary condition for the 3D NLFFF-modelling. To do
so, we solve Equations 1 – 3 with the help of an optimization principle. The method was
originally proposed in Wheatland, Sturrock, and Roumeliotis (2000) and further developed
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in Wiegelmann (2004) and Wiegelmann and Inhester (2010). Intensive tests of the meth-
ods with application to active-region vector magnetograms from HMI have been done in
Wiegelmann et al. (2012). The optimization principle minimizes a functional defined as

L =
∫

V

wf

|(∇ × B) × B|2
B2

d3x +
∫

V

wd |∇ · B|2d3x +

ν

∫

S

(B − Bobs) · W · (B − Bobs)dS, (9)

where wf and wd are weighting functions toward the lateral and top boundaries of the
computational box (see Wiegelmann, 2004 for details). The first and second terms cor-
respond to the Lorentz force and divergence of the 3D magnetic field. The third term is
evaluated only over the bottom boundary, whereas here Bobs is the magnetic field vec-
tor in the bottom boundary after preprocessing. W is a diagonal matrix whose elements
(wlos, wtrans, and wtrans) are inversely proportional to the local measurement error and ν is
the Lagrange multiplier. With this definition, the bottom boundary is allowed to relax during
the iterative procedure (see Wiegelmann et al. 2012 for details). The values of the parameters
are listed in Table 1.

We compute the NLFFF extrapolations with a bottom boundary grid of 896 × 528 pixels
and the vertical extent is 272 pixels. In physical lengths the size is ∼ 324.8 Mm × 191.4
Mm × 98.6 Mm.

3.2. NFFF Extrapolation

A rationale for NFFF extrapolation can be found in the appendix of Mitra et al. (2018). Here,
we reiterate its salient features for completeness. A dimensional analysis leads to the fol-
lowing approximation for the ratio of the Lorentz force to the rate of change of momentum

|J×B|
∣
∣
∣ρ dv

dt

∣
∣
∣

∼ B2

L

t

ρv
∼ B2

ρv2
∼ B2

ρvth
2

vth
2

v2
∼ 1

β

vth
2

v2
, (10)

with vth and J = ∇ ×B being the thermal velocity and the volume current density. The above
expression can be further simplified to

| J×B |
∣
∣
∣ρ dv

dt

∣
∣
∣

∼ 1

β
, (11)

by recognizing the photospheric flow ∼ 1 km s−1 (Vekstein, 2016; Khlystova and Toriumi,
2017), while the thermal speed turns out to be ∼ 1 km s−1. The ratio of thermal to magnetic
pressure is denoted by β , which is ≈ 1 on the photosphere. Equation 11 then yields

|J × B| ∼
∣
∣
∣ρ

dv

dt

∣
∣
∣, (12)

making it a plausible driver for photospheric motions and an apt candidate to initiate MHD
simulations. The NFFF extrapolation exploits a magnetic field B satisfying an inhomoge-
neous double-curl Beltrami equation (Bhattacharyya et al., 2007)

∇ × (∇ × B) + a∇ × B + bB = ∇ψ, (13)
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having a and b as constants. The solenoidality of B imposes ∇2ψ = 0. Notably, the double-
curl equation represents a self-organized state satisfying the MDR principle, (see Bhat-
tacharyya and Janaki, 2004, and references therein for details).

Toward solving the double-curl equation, an auxiliary field B′ = B − (∇ψ)/b (Hu and
Dasgupta, 2008) satisfying the corresponding homogeneous equation is constructed. The
equation represents a two-fluid steady state (Mahajan and Yoshida, 1998) and has a solution

B′ =
∑

i=1,2

Bi. (14)

The Bi are Chandrasekhar–Kendall eigenfunctions (Chandrasekhar and Kendall, 1957),
obeying force-free equations

∇ × Bi = αiBi , (15)

with constant twists αi , and form a complete orthonormal set when the eigenvalues are real
(Yoshida and Giga, 1990). Straightforwardly,

B =
∑

i=1,2

Bi + B3, (16)

where B3 = (∇ψ)/b is a potential field. Combining Equations (15) and (16),
⎛

⎝
B1

B2

B3

⎞

⎠ = V−1

⎛

⎝
B

∇ × B
∇ × (∇ × B)

⎞

⎠ , (17)

where the matrix V is a Vandermonde matrix having elements αi−1
j for i, j = 1,2,3, and

α3 = 0 (Hu and Dasgupta, 2008).
The double-curl equation being of second order, ideally, two layers of magnetogram data

are required to attempt an extrapolation. However, a workable solution can be achieved by
following the technique documented in Hu and Dasgupta (2008). The technique, in brief,
selects a pair of αi and set B3 = 0. The pair is used to calculate the z-components of B1 and
B2 at the bottom boundary, using the Bz from the magnetogram. Employing a linear force-
free solver and using B1z, B2z along with the pair of αi , the transverse components of B1

and B2 are extrapolated. Subsequently, an optimal pair of αi is obtained by minimizing the
average normalized deviation of the magnetogram transverse field (Bt) from its extrapolated
value (bt = B1t+B2t), quantified as

En =
M∑

i=1

|Bt,i − bt,i |/
M∑

i=1

|Bt,i |, (18)

where M = N2 is the total number of grid points on the transverse plane. The En is further
reduced by using B3 = (∇ψ)/b as a corrector component field for the given pair of α. The
procedure is repeated until the value of En approximately saturates with the number of iter-
ations, making the solution unique. Importantly, the procedure alters the bottom boundary
and a correlation with the original magnetogram is necessary to check for the accuracy.

A unique advantage in the NFFF extrapolation is the absence of any upper bound of the
field-line twist, quantified by the field-aligned current

τ ≡ J · B
|B|2 = (α1B1 + α2B2).(B1 + B2 + B3)

(B1 + B2 + B3).(B1 + B2 + B3)
. (19)
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Figure 3 Minimized deviation
(En) vs. number of iterations for
NFFF extrapolation, which
decreases monotonically and
saturates approximately at
∼ 34.5% for 1500 iterations.

Table 2 Averaged fractional flux
error (〈fi 〉) and current weighted
average of the sine of the angle
between the current density and
the magnetic field (σj ) for NFFF
and NLFFF extrapolations.

Model 〈fi 〉 σj sin−1σj

NFFF 1.11 × 10−5 0.9123 65.83◦
NLFFF 2.89 × 10−4 0.1491 8.58◦

Additional to α1 and α2, the twist τ depends on the component fields. To understand the
advantage, note that α1 and α2 for a force-free field are bounded above to ensure a monotonic
decay of magnetic field strength with height from the photosphere (Nakagawa and Raadu,
1972). However, for the NFFF, the dependence of the twist on the component fields paves
a way to accommodate extra twist in field lines even if the α1 and α2 have achieved their
maximal limit.

For the purpose of quantitative and morphological comparison, the NFFF extrapolation is
also carried out on the same computational grid of 896 × 528 × 272 pixels as in the NLFFF
case. The variation of En along with the number of iterations is depicted in Figure 3, doc-
umenting a difference of 34.5% between the extrapolated and the actual transverse compo-
nents.

3.3. Characteristics of NFFF and NLFFF Extrapolations

Following Wheatland, Sturrock, and Roumeliotis (2000), we determine the quality of the
extrapolated fields by evaluating the averaged fractional flux error (Equation 20) and current-
weighted average (Equation 21) of the sine of the angle between the current density and the
magnetic field with their values listed in Table 2

〈fi〉 =
〈
(∇.B)i�Vi

BiAi

〉

, (20)

σj =

∑

i

Jiσi

∑

i

Ji

, σi = |J × B|i
JiBi

, (21)
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Figure 4 Panels (a) and (b) show the variation of horizontally averaged magnetic field (X = B), current
density (X = J ), and Lorentz force (X = L) with height on a log scale for NFFF and NLFFF models. The
normalization is done using the maximum value.

where Ai is the surface area of the small volume �Vi . The order of 〈fi〉 in both NFFF
(∼10−5) and NLFFF (∼10−4) suggests that the extrapolated fields satisfy the divergence-
free condition to an acceptable extent. The inverse of σj values (Table 2) measure the de-
parture from force-free condition, which turns out to be ∼65.83◦ for NFFF and ∼8.58◦
for NLFFF. Further, Panels (a) and (b) in Figure 4 depict the logarithmic variation of hori-
zontally averaged quantities such as magnetic field, current density, and Lorentz force with
height inside the computational volume for NFFF and NLFFF extrapolations in normalized
units. As expected, all the aforementioned variables decrease monotonically with height,
albeit the curves are steeper for the NLFFF extrapolation.

3.4. Quantitative Differences

To explore the deviation of BNFFF from BNLFFF, the angle (θ ) between the two magnetic fields
is evaluated in subvolumes of extension unity in pixels. Figure 5(a) shows that the histogram
plot of θ peaks in the range 25◦ ≤ θ ≤ 30◦, while θ ≤ 40◦ for ∼ 80% of the computational
domain. We further investigated the difference between BNLFFF and BNFFF by computing the
following metric in every subvolume of the computation box:

d =

3∑

i=1

(
Bi

NLFFF − Bi
NFFF

)2

|BNLFFF||BNFFF| , (22)

where Bi
NLFFF(i = x, y, z) denotes the i component of the nonlinear force-free field and

Bi
NFFF(i = x, y, z) denotes the i component of the nonforce-free field. The histogram plot

for the corresponding metric is shown in Figure 5(b). It is seen that dmax ∼ 500 but d ≤ 10
for ∼ 99.9% of the computational volume.

The bottom boundary of the computational box is used to explore the differences between
the observed and extrapolated magnetic fields. It is seen from Figure 5(c) that for the trans-
verse component, the curves are almost overlapping, implying nearly identical distribution
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Figure 5 (a) and (b) Histogram plot for the distribution of angular deviation (θ ) and difference metric (d)
between the extrapolated magnetic fields, BNFFF and BNLFFF, inside the computational domain with bin
size of 5◦ (θ) and one unit (d), respectively. (c) and (d) Distribution of absolute difference between ob-
served and extrapolated transverse (BT) and line-of-sight (BLOS) magnetic fields on the bottom bound-
ary for NFFF (red) and NLFFF (blue). The subpanel in (d) shows the zoomed-in view of distribution for
−20 ≤ (BO

LOS − BM
LOS) ≤ 20, which highlights the central peak in NLFFF when compared to NFFF. Total

refers to the fraction of cells in the computational volume that fall within the range of values defined along
the x-axis.

for both the extrapolation models. However, NFFF (red) shows a relatively higher peak com-
pared to NLFFF (blue), which suggests that a greater fraction of cells satisfy the condition
BO

T − BM
T ≈ 0 in NFFF extrapolation. For the line-of-sight magnetic field BLOS, Figure 5(d)

reveals that the distribution for NLFFF is broad, peaking at ∼ 3% (subpanel in (d)) while for
NFFF, it is narrow, peaking at ∼ 50%, centered at BO

LOS − BM
LOS ≈ 0. This suggests that the

NFFF performs better than NLFFF for the line-of-sight field. The difference in distributions
can also be understood in terms of a scatter plot where we calculate the Pearson correlation
coefficient (R) to quantify the differences, as shown in Figures 6(a)–(d). Evidently, with
RNFFF ={0.9226,0.9995} and RNLFFF ={0.8878,0.9663}, NFFF shows a better correlation
to the observed line-of-sight and transverse components.
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Figure 6 The correlation between extrapolated and observed magnetic fields on the bottom boundary using
scatter plots for (a) Transverse component of NFFF field, (b) Transverse component of NLFFF field, (c)
line-of-sight component of NFFF field, and (d) line-of-sight component of NLFFF field.

Variations of θ and d as a function of distance from the location of a selected null
point, detected using the trilinear method (Haynes and Parnell, 2007), in both the extrap-
olation models are depicted in Figure 7. A similar decrease of the two parameters with
distance occur for other nulls too (not shown here). From this result, we expect the pos-
sibility that regions of maximal difference between the extrapolated fields could be in the
near neighborhood of magnetic nulls, which requires a detailed statistical analysis involving
multiple ARs for confirmation. Since the source of energy release during eruptive events is
the stored free magnetic energy, we note that the extrapolated magnetic field configuration
in the NFFF model has more free magnetic energy compared to the extrapolated NLFFF,
i.e., EF(NFFF) ∼ 1.94 × 1032 erg and EF(NLFFF) ∼ 4.34 × 1031 erg, which implies that
EF(NFFF) ∼ 5×EF(NLFFF). Presumably, the difference is due to a combined effect of the
faster decay of magnetic field with height in the NLFFF and higher average twist in the
NFFF (not shown here).

3.5. Morphological Differences

To explore the morphological differences between nonforce-free and nonlinear force-free
extrapolation models, we first focus on the overall lasso geometry. The magnetic field lines
(MFLs) at large length scales, overlying the lasso geometry are considered to be the indicator
of magnetic field configuration on the global scales, as shown in Figures 8(a) and (b) for the
NFFF and NLFFF models.
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Figure 7 Example of the variation of averaged angular deviation, θ (left) and the averaged difference metric,
d, (right) as a function of distance from the location of the detected magnetic null point in NFFF.

Two sets of high-lying (yellow) and low-lying (red) emerging MFLs, trace the lasso
boundary, while the other end of the magnetic field lines are rooted within the area enclosed
by the boundary. The overall morphology obtained in both models is aptly described by
the description that magnetic field lines emerging from the noose of the lasso are directed
toward the knot and further extend to the handle of the lasso. Following Liu et al. (2016), we
calculate the squashing degree and find that in the near vicinity of b2 and b4, the footpoints
of red and yellow MFLs map the region of high lnQ ∼ 10, thus indicating the possibility
of slipping reconnections at larger length scales. Notably, the squashing degree map for the
NLFFF appears to be smudged compared to the NFFF. Auxiliary analyses (not shown here)
suggest the smudging is due to the preprocessing procedure adopted in the NLFFF model.

To explore the flare dynamics in more detail, we look for the potential sites of recon-
nection at smaller length scales. From preliminary MHD simulations, we found multiple
reconnection events spread over the spatial extent of the lasso. Understandably, categorizing
all the reconnection sites in terms of their importance with respect to the observations is
difficult and out of the scope of the present paper. For example, application of the trilinear
method (Haynes and Parnell, 2007) yields multiple nulls in both extrapolated fields. Con-
sequently, we further narrow down to those topological structures that are cospatial with
the observed brightenings. The structures of interest are a hyperbolic flux tube (HFT) in the
vicinity of b2 characterized by a large squashing degree and a magnetic null point in the
near neighborhood of b3. Magnetic reconnections at these locations are simulated with the
dynamics being initiated from the three different initial conditions.

Using the aforementioned trilinear method, the null point in NFFF extrapolation is found
to be at x = 588, y = 147, and z = 18, while the same null point is detected at x = 579, y
= 153, and z = 13 in NLFFF extrapolation; in pixel units. To illustrate various features of
the null-point geometry, we manually define three positive and a negative polarity as shown
in Figure 9(a) for NFFF and Figure 9(b) for NLFFF models. The polarities are labeled as
P1,P2,P3, and N1 in NFFF, while in NLFFF by the corresponding primed variables. Note
that P′

1 is highlighted in red, the significance of which will be explained shortly. As illus-
trated in Figure 10(a), for the nonforce-free field, the magnetic field lines originating from
P1,P2, and P3 terminate at N1, thus constituting the dome-shaped fan surface (red MFLs)
and the lower spine (S1) of the null, while the white MFLs, originating from P1,P2, and
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Figure 8 Panels (a) and (b): Top side view of the global MFL morphology in NFFF and NLFFF modeling.
Two sets (red and yellow) of magnetic field lines are overlaid on top of the line-of-sight magnetogram along
with the lasso structure identified in the 131 Å channel of SDO/AIA at 02:59:56 UT (Figure 2). The regions of
high gradient in magnetic field line connectivity are shown using the map of the calculated squashing degree
(lnQ) distribution on the bottom boundary, with the coded color table. The red, green, and blue arrows mark
the x-, y-, and z-directions, respectively.
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Figure 9 Panels (a) and (b) Distribution of BLOS over the photospheric boundary in nonforce-free and non-
linear force-free modeling. The images are scaled for |BLOS| ≤ 1000 G in (a) |BLOS| ≤ 1500 G in (b). The
yellow box enclosing polarities P1,P2,P3, and N1 in (a) and the corresponding primed polarities in (b) con-
stitute the null-point topology. The magnetic polarities P4 and N2 within the blue box along with distributed
polarities (P and N) in (a) and the corresponding primed polarities in (b) comprise the HFT geometry. The
additional polarity N3(N′

3) in (a) and (b) will be used to describe the field-line dynamics at HFT during the
simulated evolution. The regions within the yellow and blue boxes are scaled further for enhanced visibility.

P3 and extending into the corona, form the upper spine (S2) of the null. For the nonlinear
force-free field, Figure 10(b) depicts a similar magnetic null-point morphology with identi-
fiable fan surface, upper and lower spines. Despite the apparent similarity of the null-point
topology as obtained in the two models, we note a crucial difference regarding the relevance
of P′

1. It is seen that there is no recognizable magnetic field line connectivity between the
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Figure 10 Panels (a) and (b): Magnetic null-point topology in nonforce-free and nonlinear force-free extrap-
olation models, depicting the dome-shaped fan surface (red), lower spine (red; S1), and upper spine (white;
S2). The subpanels in (a) and (b) highlight the null-point location (yellow). Panels (c) and (d): Hyperbolic
flux tube morphology in NFFF and NLFFF extrapolation models along with lnQ distribution in a plane
perpendicular to the bottom boundary.

polarities P′
1 and N′

1. This particular difference could be due to the preprocessing adopted in
NLFFF modeling, thus effectively destroying the connectivity of P′

1 with respect to N′
1.

The magnetic field lines constituting the hyperbolic flux tube (Titov, Hornig, and Dé-
moulin, 2002) can be categorically separated into four distinct connectivity domains (Pariat,
2020), such that the field lines inside each domain share similar field-line connectivity. To
specify the various domains, we manually define magnetic polarities as P4(P′

4) and N2(N′
2)

along with extended regions of distributed positive and negative regions—P(P′) and N(N′),
as shown in Figure 9(a) for the nonforce-free field and Figure 9(b) for the nonlinear force-
free field. Four different sets of MFLs (green, yellow, blue, and red) comprising the HFT
morphology in NFFF are depicted in Figure 10(c), where each set of MFL is analogous to a
connectivity domain. We further note the presence of quasiseparatrix layers (QSL) present
in the HFT geometry. The green and blue MFLs originating from P4 constitute a QSL whose
footpoints terminate at N2 and N, respectively. Another QSL is defined by the set of red and
yellow MFLs originating from P and terminating at N2 and N. The intersection of the two
identified QSLs results in the formation of HFT. Similarly, for the nonlinear force-free field,
we obtain a similar morphology, as shown in Figure 10(d) but with two subtle differences.
Comparison of Panels (c) and (d) reveals that the counterpart of green MFLs (in NFFF) is
not found in NLFFF, which could be due to the weaker correlation of the nonlinear force-free
field with the observed line-of-sight magnetic field. Further, it is seen that the terminating
footpoints of yellow and blue MFLs are more scattered in NLFFF, extending more towards
the handle of the lasso. The map of calculated squashing degree in the plane perpendicu-
lar to the bottom boundary reveals a characteristic X-shape for the distributed lnQ (∼ 10)
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values in both the models, thus supporting our interpretation of the MFL morphology. We
mark an additional negative polarity—N3(N′

3), whose significance will be explained later in
the context of simulated evolution.

For the chosen magnetic null-point and hyperbolic flux tube morphologies, the effect of
such similarities and differences on the fundamental process of magnetic reconnection is
explored with the simulated evolution, as described in the following sections.

4. Numerical Model

The key to a successful numerical simulation of solar transients is to keep MRs localized at
the plausible sites, while allowing for the condition of flux freezing to hold good elsewhere.
The coronal plasma is idealized to be a thermodynamically inactive, incompressible mag-
netofluid having infinite electrical conductivity. The governing dimensionless MHD equa-
tions are

∂v
∂t

+ (v · ∇)v = −∇p + (∇ × B) × B + 1

RA
F

∇2v, (23)

∂B
∂t

= ∇ × (v × B), (24)

∇ · v = 0, (25)

∇ · B = 0, (26)

where RA
F = (VAL)/ν is an effective fluid Reynolds number with VA as the Alfvén speed

and ν as the kinematic viscosity. Hereafter, RA
F is referred to as the fluid Reynolds num-

ber to keep the terminology uncluttered. The dimensionless equations are obtained by the
normalizations listed below:

B → B
B0

,v → v
Va

,L → L

L0
, t → t

τa

,p → p

ρ0V
2
A

. (27)

In general, B0 and L0 are characteristic values of the system under consideration. The con-
stant mass density is denoted as ρ0. Equations 23 – 26 are solved by the numerical model
EULAG-MHD (Smolarkiewicz and Charbonneau, 2013)—a model based on an earlier hy-
drodynamic model EULAG, mostly used in atmospheric and climate research (Prusa, Smo-
larkiewicz, and Wyszogrodzki, 2008). The magnetic field component Bz is kept fixed at
the bottom boundary while all other boundaries are treated as open. For the velocity, all
boundaries are treated as open. The incompressibility condition (Equation 25) is applied on
the integral form of the momentum equation (Equation 23) to generate an elliptic bound-
ary value problem for the pressure p; cf. Bhattacharyya, Low, and Smolarkiewicz, 2010
and the references therein. Importantly, the pressure adjustments at every time step being
instantaneous, the numerical model does not support acoustic modes of MHD waves that
depend on kinetic pressure variations for propagation. Similarly, an auxiliary potential in
the induction equation (Equation 24) is added and an identical procedure is invoked to keep
B solenoidal (see Smolarkiewicz and Charbonneau, 2013 and Ghizaru, Charbonneau, and
Smolarkiewicz, 2010 for details). In the following, features important to our simulations
are only mentioned, while the details can be found in Smolarkiewicz and Charbonneau
(2013) and references therein. The model is based on the spatiotemporally second-order



91 Page 18 of 31 S. Agarwal et al.

accurate nonoscillatory forward-in-time multidimensional positive-definite advection trans-
port algorithm (MPDATA: Smolarkiewicz, 2006). A characteristic of MPDATA employed
extensively in our simulation is its proven numerical dissipative property, which, intermit-
tently and adaptively, regularizes the underresolved scales by simulating MRs and mimick-
ing the action of explicit subgrid-scale turbulence models (Margolin, Rider, and Grinstein,
2006) as in the Implicit Large Eddy Simulations (ILESs: Grinstein, Margolin, and Rider,
2007). Prior works relying on these ILES-assisted magnetic reconnections (MRs) have suc-
cessfully simulated the source-region dynamics of various solar flares (Kumar et al., 2016,
Prasad et al., 2018, Nayak, Bhattacharyya, and Kumar, 2021). In this paper also, we continue
with the ILES-assisted MRs.

To optimize computational cost, the active-region cutout is remapped on a coarser grid
having 448 × 256 × 192 pixels resolved on a computational grid of x ∈ [−0.875,0.875],
y ∈ [−0.5,0.5], and z ∈ [−0.375,0.375], in a Cartesian coordinate system. The spatial step
sizes are �x = �y = �z ≈ 0.0039 (≈ 723 km), while the time step is �t = 2 × 10−3.
The mass density is set to ρ0 = 1. Further, the fluid Reynolds number is set to 5000,
which is five times smaller than the coronal value of ≈ 25000. The coronal value is cal-
culated using kinematic viscosity, ν = 4 × 109 m2 s−1 (Aschwanden, 2005, p. 791) in the
solar corona. A reduced RA

F can be interpreted as a smaller computed Alfvén speed where
VA|computed ≈ 0.14 × VA|corona. The Alfvén speeds are estimated with 139.2 Mm (the active-
region scale) as the characteristic scale for the computational domain and 100 Mm for the
typical corona. The simulation time is 1000�t , which, with τA ≈ 9.68 × 102 s, approxi-
mately equals an observation time of ≈ 33 minutes. Presumably, a smaller Reynolds num-
ber only slows down the dynamics without altering other characteristics of reconnection and
thus saves computational cost, as realized in a recent work by Jiang et al. (2016).

5. Simulated Dynamics

Three distinct simulations (hereafter referred as S1, S2, and S3) are performed starting from
different choices of the initial configuration. Because of the large coverage of the magne-
togram, we chose to perform simulations with reduced resolution on a computational grid of
dimensions 448×256×192. All the simulations are initiated by utilizing the vector magne-
togram observed at 02:48:00 UT. The reduction in resolution is checked to have no effects
on the identified topological structures. Simulation S1 takes NFFF as the input magnetic
field with nonzero Lorentz force in the computational volume, initialized from a motionless
state or with zero external flow. Initially, the Lorentz force pushes the plasma to generate
dynamics. In simulation S2, the NLFFF is driven only by the residual force due to numer-
ical deviation from its analytical value of exactly zero. For the simulation S3, we further
impose a perturbative flow to S2, derived from the 100th timestep of S1. For brevity, here-
after the three initial conditions are referred to as S1 ≡ {BNFFF,0}, S2 ≡ {BNLFFF,0}, and
S3 ≡ {BNLFFF,vpert}. With these simulations, we explore the underlying magnetic reconnec-
tion at the magnetic null point and at the hyperbolic flux tube (HFT). Importantly, in all the
simulations we find magnetic null-point generation and annihilation (the null is named as
a transient null or TN) in the near neighborhood of the HFT. Using the trilinear method of
null-point detection, we confirm the presence of this magnetic null point (TN) and obtain
the null-point coordinates (pixel units), as shown in Table 3. The next section details the
simulation results.
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Table 3 Coordinates of the
transient magnetic null point as
detected in S1, S2, and S3 by the
trilinear method of null-point
detection.

S1 S2 S3

x 247. 259. 259.

y 144. 155. 157.

z 1. 4. 6.

Figure 11 Panels (a), (b), (c), and (d) depict the time evolution of magnetic energy, free magnetic energy,
kinetic energy, and total energy (magnetic + kinetic) sum for simulations S1 (solid line, S2 (dotted line), and
S3 (dashed line), respectively. The x- and y-axis represent time (minutes) and energy (ergs) in physical units.
The dashed blue lines correspond to instances of a change in slope of the kinetic energy profile for S1.

5.1. Global Energetics

The global-scale dynamics is investigated by exploring the evolution of volume-integrated
magnetic, free magnetic, kinetic, and total (magnetic + kinetic) energies; depicted in Panels
(a), (b), (c), and (d) of Figure 11. The solid, dotted, and dashed lines correspond to simu-
lations S1, S2, and S3. Panels (a) and (b) establish a similar behavior of magnetic and free
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magnetic energies in all the three simulations—exhibiting a continuous decrease with time
and plots being parallel to each other; albeit starting from different initial values. Noticeably,
the plots for simulations S2 and S3 overlap, being almost indistinguishable. The free energies
at the initial states are 2.65 × 1032 ergs in S1 and 8.8 × 1031 ergs in S2 and S3. The changes
in free energies over the simulation, covering the flare duration, are of the order 4.46 × 1031

in S1 and 3.33 × 1031 ergs in the other two—presumably consistent with the range of up-
per C-class to M-class flares (Rempel, Cheung, and Chintzoglou, 2021). Interestingly, the
decreases in total magnetic energy (Panel (a)) in all three simulations are approximately
equal. For S1 the decrease is 5.76%, while it is 5.58% in S2 and S3, agreeing with the idea
put forward in the Introduction. Moreover, the residual magnetic energy after relaxation is
still much higher than the potential energy (∼ 5.09 × 1032 ergs), hence the active region,
in principle, can still produce additional flares, as envisioned in Mitra et al. (2018). Con-
trary to the free magnetic energy, the variation of kinetic energy with time shows a different
behavior for S1 when compared to S2 or S3. For the simulation initiated with NFFF, the
Lorentz force is not balanced entirely over the simulation period and the kinetic energy ex-
hibits an increasing profile throughout the simulation time. Furthermore, we note a change
in the slope of the kinetic energy plot for S1 at two distinct points (marked by dashed blue
lines)—first at ∼ 4 min. (≡ 02:52:00 UT) and then at ∼ 12 min (≡ 03:00:00 UT), which
agrees approximately with instances of the observed brightenings, illustrated in Panels (b)
and (c) of Figure 2. For simulations S2 and S3, initiated with the NLFFF, the system relaxes
to an approximate steady state (in kinetic energy), as is evident from Panel (c). During the
initial phase, the kinetic energy in S3 is higher than S2, which is due to the perturbative flow.
The sums of magnetic energy and the kinetic energy in all the three simulations behave
similarly and decreases monotonously with time, as shown in Panel (d).

5.2. Magnetic Null Point

We focus on the changes in various magnetic field line connectivities because of reconnec-
tion, during the simulated evolution of null-point topology. The left column in Figure 12
depicts the evolution of various MFLs constituting the fan surface (red) and spine structures
(white) for S1. Among the selected field lines, the first instance of magnetic reconnection
at the null-point location occurs at t = 270 (∼8m54s ≡02:56:54 UT), as shown in Panel
(b), where one of the red MFL constituting the lower spine (S1) changes its connectivity
from the photospheric boundary to that of an open field line. Furthermore, during this time
window, the fan plane is seen to exhibit slipping reconnection (see the corresponding ani-
mations), which traces the brightening b3, thus correlating well with the observed temporal
sequence of b3 (Panels (c) and (d) in Figure 2). The aforementioned, null point and slipping
reconnections, continue until about t = 500 (∼16m30s ≡03:04:30 UT), where the lower
spine (S1) is missing, suggesting that all the red MFLs forming the lower spine have recon-
nected at the null point. Coincidentally, the corresponding time agrees precisely with the
peak time of the flare≡03:04:08 UT. Toward the end of simulation S1, small circular mo-
tions along the footpoints of red and white MFLs (see animations) constituting the fan plane
relax the overall magnetic field configuration in the local neighborhood of the null point.
Panel (d) in Figure 12 depicts the final state of simulated null-point topology at t = 1000
(∼33m ≡03:21:00 UT), characterized by open magnetic field lines emerging from P1, P2,
and P3.

Simulations utilizing the nonlinear force-free field as input magnetic field, S2 and S3

are analyzed and selective instances from the field-line evolution in null-point topology
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Figure 12 Snapshots from the simulated evolution of magnetic field lines in null-point topology for S1 (left
column), S2 (middle column), and S3 (right column). The second row depicts the first instance of magnetic
reconnection at the null-point location, while the third row corresponds to the loss of the lower spine. The
cospatiality of the observed brightening b3 and the null-point topology can be seen from the overlaid line-of-
sight magnetogram from SDO/HMI at 02:48 UT along with an image of the flaring region from SDO/AIA in
the 131 Å channel at 02:59:56 UT on the bottom boundary (animations available).

are presented in the middle (S2) and right (S3) columns of Figure 12. The first instance
of magnetic reconnection at the null-point location is seen at t = 180 (Figure 12(f)) in S2,
while in S3, the same occurs at t = 150 (Figure 12(j)), presumably due to the presence of
finite perturbative flow. Counterintuitively, the reconnection in S2 occurs earlier than in S1,
which may be accredited to the fact that the null-point topology in the two extrapolation
models are similar and not identical. As more and more magnetic field lines reconnect at
the null point, the lower spine is lost at t = 530 (Figure 12(g)) in S2, while the same occurs
at t = 510 (Figure 12(k)) in S3. Interestingly, the lower spine is seen to disappear in all the
simulations, nearly around the same time instance. In close correspondence with simulation
S1, the final state in S2 and S3, at t = 1000 is also identified by open magnetic field lines
emerging from P′

2 and P′
3, as shown in Panels (h) and (l), respectively. For all the simulations,

various changes in the magnetic field line connectivity due to reconnection at the null-point
topology, are summarized in Table 4.
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Table 4 Summary of the
footpoint mapping, before and
after reconnection, corresponding
to the magnetic null-point
topology for simulations S1, S2,
and S3.

Before reconnection After reconnection

S1 P1, P2, P3 → N1 P1, P2, P3 → open

S2 P′
2, P′

3 → N′
1 P′

2, P′
3 → open

S3 P′
2, P′

3 → N′
1 P′

2, P′
3 → open

5.3. Hyperbolic Flux Tube

The magnetic field line dynamics at the location of hyperbolic flux tube (HFT) is complex,
exhibiting multiple reconnection events for each set of MFL. To simplify the analysis, rather
than considering the overall dynamics at the HFT, we focus on each MFL set separately. Fur-
ther, due to the absence of green field lines in the nonlinear force-free field extrapolation,
we consider only yellow, red, and blue MFLs for comparison across the three simulations.
Additionally, due to frequent changes associated with the field-line connectivity during re-
connection, we limit ourselves to the peak time of the flare, which corresponds to t = 500
in the simulated evolution. The relation between simulated time and peak time of the flare
is estimated by calculating the time in seconds corresponding to one unit time step in the
numerical simulations (∼19.8 s).

During the simulated evolution, the reconnection assisted changes, in the field-line dy-
namics of yellow MFLs, are depicted in Figure 13 for S1 (left), S2 (middle), and S3 (right)
columns. Panels (a), (d), and (g) show the initial geometrical configuration, characterized
by field-line mapping between the polarity pairs (P,N) for S1 and (P′,N′) for the other two
simulations. The MHD evolution of plasma leads to magnetic reconnection and we break
the entire sequence of changes in connectivity into three distinct parts. First, we find that
a few of the selected field lines change their mapping from N to N3 in S1, as shown by
Panel (b) at t = 310 and from N′ to N′

3 in S2 and S3, as shown by Panels (e) and (h) at
t = 230 and t = 180, respectively (Table 5). Interestingly, reconnection in S2 occurs ear-
lier than in S1, similar to what we found in the null-point topology also. Secondly, we note
connectivity changes in the reverse order, i.e., from N3 to N for S1 and from N′

3 to N′ for
simulations S2 and S3, as depicted by Panel (c), (f), and (i) at t = 500. Consequently, the
aforementioned changes can be summarized to follow N(N′) →N3(N′

3) →N(N′) (Table 5)
for all the initial conditions. Thirdly, certain field lines, rooted in the N(N′) polarities exhibit
slipping reconnection in all the three simulations (see animations), which leads to a small
shift in the footpoints across regions (pink patches at the bottom boundary) of high squash-
ing degree (lnQ ∼ 10). The slipping motions partially map the brightenings b2 and b4, thus
contributing toward the observed transient activity.

Next, we explore the dynamics of the red colored MFL set illustrated in Figure 14. The
MFLs follow a sequence of complex changes owing to a combined effect of reconnection
and fluid advection. The initial morphological arrangements for the three initial fields are
shown in Panels (a), (d), and (g) of the same figure. The morphologies are characterized by
field-line connectivity between the polarity pairs (P,N2) for S1 and (P′,N′

2) for the other
two initial fields. As reconnection ensues, we note changes in footpoint mapping for a few
field lines from N2 to N in S1, as shown in Panel (b) at t = 10 and from N′

2 to N′ in S2 and
S3, as depicted in Panels (e) and (h) at t = 50 and t = 40, respectively (Table 5). Following
this, we find small changes, facilitated by advection, thus causing some minor but identifi-
able shift in footpoint connectivity from N2(N′

2) toward N3(N′
3), across all the simulations

(see the corresponding animations). The advection is distinguished from slipping reconnec-
tion based on the continuity of field-line movement over the photospheric boundary and the
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Figure 13 Snapshots from the simulated evolution of yellow magnetic field lines in the hyperbolic flux tube
(HFT) morphology for S1 (left column), S2 (middle column), and S3 (right column). The first row depicts the
initial field-line configuration, the second row shows the change in footpoint mapping from N(N′) →N3(N′

3),
while the third row corresponds to the change N3(N′

3) →N(N′). To analyze the associated slipping recon-
nection, the distribution of lnQ is shown on the bottom boundary with the same color coding as in Figure 8.
The cospatiality of observed brightening b2 with the HFT can be seen from the overlaid line-of-sight magne-
togram from SDO/HMI at 02:48 UT along with an image of AR11977 from SDO/AIA in the 131 Å channel
at 02:59:56 UT on the bottom boundary (animations available).

low value of the squashing degree in that region. Subsequently, another occurrence of re-
connection is identified, producing a change in connectivity toward the polarity N in S1, as
shown in Panel (c) at t = 460 and toward N′ in simulations S2 and S3, as shown in Panels
(f) and (i) at t = 390 and t = 370, respectively. All the aforementioned changes, because of
reconnection in the field-line dynamics of red MFLs, can be summarized into the sequence
N2(N′

2) → N(N′) → advection → N(N′), which is preserved in all the simulations. Addi-
tionally, we note slipping reconnection in the P(P′) region during the course of evolution
(see the corresponding animations), thus contributing to the observed brightening b2.

Finally, we look at the field-line dynamics in the set of blue magnetic field lines. In partic-
ular, for this set of MFLs, we note that slipping reconnections dominate the entire simulated
evolution. To begin with, the initial magnetic field line configuration at t = 0 is depicted in
Figure 15, identified by field-line connectivity between the polarity pairs (P4,N) for S1 and
(P′

4,N′) for the other two simulations, as shown in Panels (a), (d), and (g), respectively. Over
time, slipping reconnection sets in (see animations), thus transforming the initial configura-
tion. The first significant change is noted where the footpoint mapping of a few magnetic
field lines change from P4 to P in S1, as shown in Panel (b) at t = 210 and from P′

4 to P′ in
simulations S2 and S3, as depicted in the corresponding Panels (e) and (h) at t = 140 and
t = 120 (Table 5). The final morphological organization of the blue MFLs at t = 500 is char-
acterized by the field-line connectivity between the polarity pair (P,N) in simulation S1, as
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Table 5 Summary of the footpoint mapping corresponding to yellow, red, and blue magnetic field lines in the
hyperbolic flux tube morphology for simulations S1, S2, and S3. The round brackets denote the precise num-
ber of selected magnetic field lines between the specified polarities, while the arrows indicate the direction
of the field line. The left (t = 0), middle (t = t1), and right (t = t2) columns represent the initial state, first,
and second instances of significant changes in the connectivity of field lines. Note that t1 and t2 are variables
depending on the set of magnetic field lines under consideration.

t = 0 t = t1 t = t2

Yellow

S1 P → N (10) P → N (6), P → N3 (4); t = 310 P → N (9), P → N3 (1)

S2 P′ → N′ (10) P′ → N′ (2), P′ → N′
3 (8); t = 230 P′ → N′ (6), P′ → N′

3 (4)

S3 P′ → N′ (10) P′ → N′ (5), P′ → N′
3 (5); t = 180 P′ → N′ (6), P′ → N′

3 (4)

Red

S1 P → N2 (15) P → N (1), P → N2 (14); t = 10 P → N (1), P → N2 (7)

P → N3 (6), P4 → N3 (1)

t = 470

S2 P′ → N′
2 (15) P′ → N′ (2), P′ → N2′ (13); t = 50 P′ → N′ (3), P′ → N′

2 (6)

P′ → N′
3 (6); t = 390

S3 P′ → N′
2 (15) P′ → N′ (1), P′ → N′

2 (14); t = 40 P′ → N′ (3), P′ → N′
2 (6)

P′ → N′
3 (6); t = 370

Blue

S1 P4 → N (10) P4 → N (6), P → N (4); t = 210 P → N (10); t = 500

S2 P′
4 → N′ (10) P′

4 → N′ (5), P′ → N′ (5); t = 140 P′ → N′ (10); t = 560

S3 P′
4 → N′ (10) P′

4 → N′ (5), P′ → N′ (5); t = 120 P′ → N′ (10); t = 560

shown in Panel (c), while the same mapping between polarity pair (P′,N′) is found in simu-
lations S2 and S3 at t = 560, as shown in Panels (f) and (i). Additionally, blue MFLs exhibit
slipping reconnection in the P(P′) region, thus tracing the region of observed brightening
b2 (see animations). Importantly, the sequence of change P4(P′

4) →P(P′) remains identical
across all the simulations.

5.4. Transient Magnetic Null

Astoundingly, all the three simulations show generation of a magnetic null point in the near
neighborhood of the HFT. In the following we present a detailed analysis of the null-point
generation by following two different sets of green and purple magnetic field lines during
their evolution. The evolution for simulations S1, S2, and S3 is depicted in the left, middle,
and right columns of Figure 16. With the focus of capturing null-point generation, we note
that initially, at t = 0, there is no identifiable magnetic null point, as shown in Panels (a),
(d), and (g). The null appear at t = 110 in S1 as shown in Panel (b), while in the other two
simulations, the null point generates at t = 400 and t = 300, as depicted in Panels (e) and (h),
respectively. The null is detected using the same trilinear method used earlier. Interestingly,
the null point is located in close proximity of the HFT (near b2) across all the simulations.
Subsequently, all the three nulls corresponding to the three simulations disappear (Panels
(c), (f), and (i) of Figure 16), prompting us to name it a transient null.

Interestingly, the MFLs constituting the fan plane of the transient nulls contribute toward
the observed brightening b2. To capture the associated reconnection process, which occurs in
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Figure 14 Snapshots from the simulated evolution of red magnetic field lines in the hyperbolic flux tube
(HFT) morphology for S1 (left column), S2 (middle column), and S3 (right column). The first row depicts ini-
tial field-line configuration, the second row shows the change in footpoint mapping from N2(N′

2) → N(N′),
while the third row corresponds to the final morphological arrangement, postadvection. To analyze the asso-
ciated slipping reconnection, the distribution of lnQ is shown at the bottom boundary with the same color
coding as in Figure 8. The cospatiality of observed brightening b2 with the HFT can be seen from the overlaid
line-of-sight magnetogram from SDO/HMI at 02:48 UT along with an image of AR11977 from SDO/AIA in
the 131 Å channel at 02:59:56 UT on the bottom boundary (animations available).

a small time window due to the transient property of the null point, we first analyze the field-
line configuration slightly before the instance of the null-point appearance (Panels (a), (d),
and (g) of Figure 17) for the three simulations. The emphasis here is on the field lines whose
footpoints are enclosed by the red circle, overlaid on a section of the observed brightening
b2. During a very small time span, centered at the instance of null-point generation, the
footpoints of the fan planes break the flux freezing condition and do not move in the direction
of the plasma flow (shown in black arrows). The footpoints of the fan plane move in the
leftward direction, while the plasma flow vectors are in the rightward direction, as is evident
in Panel (b) at t = 110 for S1, and in Panels (e) and (h) at t = 400 and t = 300 for the other
two simulations. Such slippage of MFLs from the plasma flow are indicative of slipping
reconnection (see animations for a clearer view), thus contributing toward the brightening
b2. Further along the simulated evolution, the null point disappears, as shown in Panels (c),
(f), and (i) for the three simulations.

6. Summary and Conclusions

The paper explores the influence of the relevant initial conditions on the magnetohydrody-
namic simulations of the coronal plasma in the presence of magnetic reconnections. Con-



91 Page 26 of 31 S. Agarwal et al.

Figure 15 Snapshots from the simulated evolution of blue magnetic field lines in the hyperbolic flux tube
(HFT) morphology for S1 (left column), S2 (middle column), and S3 (right column). The first row depicts the
initial field-line configuration, the second row shows the change in footpoint mapping from P4(P′

4) →P(P′)
due to slipping reconnection, while the third row represents the final morphological structure. To analyze the
associated slipping reconnection, the distribution of lnQ is shown on the bottom boundary with the same
color coding as in Figure 8. The cospatiality of observed brightening b2 with the HFT can be seen from
the overlaid line-of-sight magnetogram from SDO/HMI at 02:48 UT along with an image of AR11977 from
SDO/AIA in the 131 Å channel at 02:59:56 UT on the bottom boundary (animations available).

strained by observations, physically relevant initial conditions are generated from nonforce-
free and nonlinear force-free extrapolations of AR11977. To ensure the presence of magnetic
reconnection, the simulations cover a time span of ∼ 33 min, approximately covering the
duration of a C6.6 class flare. Comprehensive analysis of the extrapolated magnetic field is
presented. The nonlinear force-free field is constructed to have zero Lorentz force, whereas
the nonforce-free field is found to exert a small Lorentz force on the coronal plasma. Both
fields have nonzero magnetic field and volume current density at coronal heights. The quan-
titative difference between the extrapolated magnetic fields is investigated by computing the
angular deviation (θ ) and difference metric (d) between the magnetic field vectors. We find
that the fraction of computational volume with θ ≤ 40◦ and d ≤ 10 corresponds to 80 % and
99.9 %, respectively, which suggests that the two extrapolated magnetic fields are nearly
similar. The nonforce-free field shows a slightly better correlation with the measured pho-
tospheric field, having Pearson correlation coefficients of 0.99 for the line-of-sight and 0.92
for the transverse magnetic fields, in contrast to 0.96 and 0.88 for the NLFFF extrapolation.
Further, morphological analysis reveals the presence of several complex magnetic field line
structures around the observed brightenings, having plausible reconnection topologies like
magnetic null points, quasiseparatrix layers, and hyperbolic flux tubes in both the extrapo-
lated fields.
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Figure 16 Snapshots from the simulated evolution of selected green and purple magnetic field lines to capture
the generation of magnetic null in time for S1 (left column), S2 (middle column), and S3 (right column). The
first row depicts the initial field-line configuration when there is no magnetic null point, the second row
corresponds to the instance of null-point appearance, while the last row captures the disappearance of the
null point. The bottom boundary is overlaid with a line-of-sight magnetogram from SDO/HMI at 02:48 UT
along with an image of AR11977 from SDO/AIA in the 131 Å channel at 02:59:56 UT (animations available).

To investigate reconnection, MHD evolution initiated with the nonlinear force-free and
the nonforce-free extrapolated field has been numerically simulated. The plasma is ideal-
ized to have zero physical resistivity, while being viscid, thermodynamically inactive, and
incompressible. The simulations are started with three different initial conditions. The NFFF
is used to initiate the first simulation (S1), where an implicit Lorentz force drives the plasma
dynamics in a self-consistent way. Secondly, we use the NLFFF for simulation (S2) where
the residual numerical forces drive the plasma. In the third simulation (S3), an external flow
is provided to the initial NLFFF, keeping the strength of the resulting perturbation small.
The comparison of simulations for volume-integrated quantities such as free magnetic and
total magnetic energy suggests a near independence of the magnetohydrodynamic evolution
with respect to the initial conditions in the presence of magnetic reconnection. Further, in-
vestigation of changes in magnetic field line connectivity during reconnection at magnetic
field line morphologies such as the null point and hyperbolic flux tube (HFT) indicate a near
similarity, except for a time delay between events in S1, S2, and S3. The delay is expected as
the initial Lorentz force starting the evolution in the three cases are of different magnitudes.
A few of the results are worth summarizing.

The order of dissipated free magnetic energy (∼1031 ergs) and percentage decrement in
total magnetic energy (∼ 5.5%) are nearly similar across all the simulations. In the mag-
netic null-point topology (Figure 12), the lower spine (S1) is lost with time owing to recon-
nection at the null point, irrespective of the initial conditions. Similarly, in the HFT mor-
phology, the sequence of changes in field-line connectivity associated with reconnection is



91 Page 28 of 31 S. Agarwal et al.

Figure 17 Snapshots from the simulated evolution of selected green and purple magnetic field lines to illus-
trate the contribution of transient magnetic null in the observed brightening b2, as shown in Panel (a), for S1
(left column), S2 (middle column), and S3 (right column). The first row shows the initial field-line configura-
tion, just before the instance of null-point generation. The red circle indicates the region of interest in terms of
observed brightening, while the black arrows represent the flow velocity vectors. The second row highlights
the footpoint movement of the fan plane, which does not follow the direction of plasma flow (black arrows).
The third row depicts the instance where the null point is lost in time. The bottom boundary is overlaid with
a line-of-sight magnetogram from SDO/HMI at 02:48 UT along with an image of AR11977 from SDO/AIA
in the 131 Å channel at 02:59:56 UT.

essentially the same, independent of the initial conditions. For yellow MFLs (Figure 13),
the sequence follows N(N′) →N3(N′

3) →N(N′). Similarly, for red MFLs (Figure 14), the
sequence is N2(N′

2) →N(N′) → advection from N2(N′
2) to N3(N′

3) →N(N′) and for blue
MFLs (Figure 15), the sequence is P4(P′

4) → P(P′). The analysis of multiple sets of field
lines belonging to the same HFT morphology suggests that in general, there exist multiple
contributions to a particular brightening and it is difficult to isolate the relative importance
of various MFL sets. Most importantly, we find spontaneous appearance and disappearance
of a magnetic null (referred to as a transient null) near HFT across all the simulations. Such
spontaneous generation indicates the possibility that the field-line evolution is independent
of the initial conditions. Moreover, the footpoints of the fan plane of this transient null are
cospatial with the brightening labeled as b2 in Figure 2—suggesting that in all three sim-
ulations, reconnections associated with this spontaneously generated null contribute to the
brightening and hence, has an observable signature. Further, this implies that transient struc-
tures produced during the magnetohydrodynamic simulation must be taken into account for
a complete analysis of the observed brightenings in solar corona.

The near insensitivity of magnetic field line evolution during reconnection to the partic-
ular initial condition inevitably leads to the conclusion that the nonforce-free and force-free
extrapolations can both be used as valid initial conditions in data-constrained simulations.
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Obviously, this inference is based on a single active-region study using idealized numerical
simulations and more such numerical experiments are required to arrive at a statistically
significant conclusion that we keep for future explorations.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s11207-022-02016-2.

Data Availability The data sets generated during and/or analyzed during the current study are available from
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