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Abstract
Space-weather HMI Active Region Patches (SHARPs) data from the Helioseismic and Mag-
netic Imager (HMI) on board the Solar Dynamics Observatory (SDO) provides high cadence
data from the full-disk photospheric magnetic field. The SHARP’s MEANALP (αm) param-
eter, which characterizes the twist, can provide a measure of nonpotentiality of an active
region, which can be a condition for the occurrence of solar flares. The SDO/Atmospheric
Imaging Assembly (AIA) captures images at a higher cadence (12 or 24 seconds) than the
SDO/HMI. Hence, if the αm can be inferred from the AIA data, we can estimate the mag-
netic field evolution of an active region at a higher temporal cadence. Shortly before a flare
occurs, we observed a change in the αm in some active regions that produced stronger (M-
or X-class) flares. Therefore, we study the ability of neural networks to estimate the αm pa-
rameter from SDO/AIA images. We propose a classification and regression scheme to train
deep neural networks using AIA filtergrams of active regions with the objective to estimate
the αm of active regions outside our training set. Our results show a classification accuracy
greater than 85% within two classes to identify the range of the αm parameter. We also at-
tempt to understand the nature of the solar images using variational autoencoders. Thus, this
study opens a promising new application of neural networks which can be extended to other
SHARP parameters in the future.
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1. Introduction

Solar coronal activity is driven by strong magnetic field which amount to several thousand
gauss on the solar surface (Aschwanden, 2005). The internal rotation of the Sun creates com-
plex coronal magnetic fields in active regions which are responsible for solar activity such as
flares and coronal mass ejections (CMEs). Solar activity can be detrimental to the geospace
environment and warrants a thorough understanding of the physical processes that cause
it. The magnetic forces dominate other forces in the solar corona which causes plasma of
different densities in the coronal loops to be confined and thus coronal loops can have differ-
ent temperatures and hence are visible in different extreme ultraviolet (EUV) wavelengths.
Solar activities such as flares and CMEs release part of the free magnetic energy (which is
the difference in the magnetic energy of the coronal field to that of a potential field) present
in the corona (Falconer, Moore, and Gary, 2002). Therefore, a high-fidelity magnetic field
model is essential to understanding the dynamics of the solar corona. Certain assumptions
about the nature of the magnetic field are necessary in order to model it accurately. Based on
the observation that in the region between the photosphere and upper corona we can neglect
all lower-order nonmagnetic forces (low plasma β), we arrive at a force-free approximation
(Gary, 1989, 2001).

In our previous work we used a linear force-free magnetic field (LFFF) model to syn-
thesize the coronal magnetic field of active regions of simple (Benson et al., 2017) and
multi-dipolar magnetic fields (Benson et al., 2019). We also used loops generated from the
LFFF based on a vector magnetogram of active region (AR) 11117, which was utilized to
estimate the linear force-free parameter αff . In Benson et al. (2019), we generated datasets
of synthetic coronal loop images by varying the value of α, which represents the top-view
of 3D magnetic field flux tubes from the random footpoints of simple and multi-dipolar con-
figurations. Figure 1 shows the vector magnetogram of AR 11117 and the synthetic coronal
loop images for each of αff value. In the context of neural networks, each value of α rep-
resents a class of synthetic coronal loop images. These images were then used to train deep
learning models to estimate the value of the force-free parameter αff and we found that we
were able to predict the αff values with good accuracy.

Since large amounts of solar observational data from both ground- and space-based in-
struments have become readily available, machine learning algorithms have been increas-
ingly applied for predictive studies. The ability of machine learning and deep learning mod-
els to analyze vast volumes of data quickly and efficiently, gives them an edge over tradi-
tional methods. Several studies implemented machine learning and deep learning models
successfully in heliophysics for prediction and forecasting studies (Fernandez Borda et al.,
2002; Qu et al., 2003; Li et al., 2007; Qahwaji and Colak, 2007; Wang et al., 2008; Yuan
et al., 2010; Ahmed et al., 2013; Bobra and Couvidat, 2015; Nishizuka et al., 2018; Jonas
et al., 2018; Huang et al., 2018; Pala and Atici, 2019; Benson et al., 2020). Camporeale
(2019) provided an extensive review on the current state of machine learning research in
heliophysics.

With the results in Benson et al. (2019), we showed that loops observed by the Atmo-
spheric Imaging Assembly (AIA) can be useful in inferring some magnetic field parameters
like α using deep neural networks. In this study, we generalize the method outlined earlier
from synthetic data to actual observational data by training deep neural networks to estimate
the SHARP’s MEANALP αm parameter, which is similar to the LFFF αff , from the high
temporal cadence coronal EUV images without the need for photospheric magnetograms to
infer the changing magnetic free energy. The objective is to determine a quick estimation of
αm given AIA filtergrams of active regions outside the training set. Since AIA images are
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Figure 1 Vector magnetogram of AR 11117 and the psuedo-coronal loop simulations with varying values of
the αff parameter. Each value in the panels corresponds to a class. α = −0.013 represents class 0 and so on
to α = 0.013 representing class 9.

available at a higher (12 s) cadence as compared to the Helioseismic and Magnetic Imager
(HMI) data (12 min), this method allows us to quickly predict magnetic field parameters,
which can be of use in space weather studies.

The rest of the article is outlined as follows. Section 2 presents the motivation to use
the αm parameter and the data assimilation of active regions used for training deep neural
network models. Section 3 discusses the initial tests and results that motivate our future
experiments. In Section 4, we describe our phase-I and phase-II experiments in detail. We
present our results and discussion in Section 5. Finally, we conclude the study in Section 6
and point out some avenues for future work.

2. Data Assimilation

2.1. SHARP MEANALP as a Flare Indicator

Photospheric magnetic field measurements are known to provide insights into the mecha-
nism of solar flares and coronal mass ejections. Therefore, studying the correlations or the
lack thereof between parameters of the photospheric magnetic field and eruptive solar activ-
ity is an ongoing research topic (Bobra et al., 2014).

As a starting point in this study, in order to verify the accuracy of the synthetic coronal
loop simulations to those of actual EUV images, we test AIA image data from AR 11117
with the convolutional neural network (CNN) (LeCun et al., 1998) model trained on their
corresponding synthetic coronal loop images using the method outlined in Benson et al.
(2019). We select a time series of AIA EUV image data with a duration of 6 hours at 12 s
cadence from 94 Å, 131 Å, 171 Å, 193 Å, and 211 Å wavelengths while centering the peak
time of the flare. These images are passed through the SolarNet model (Benson et al., 2019)
trained on the AR 11117 pseudo-coronal loops dataset to test the output prediction. Figure 2
shows a sharp change in the value of α during the time of a flare aligned against the GOES
X-ray flux for AR 11117. The value of α changes at the same time as the flare occurs which
signifies that this parameter can be a good indicator of flare activity. The blank values in
the figure represent the lowest value of α belonging to class 0. As explainability is not a
strong suite in deep learning models, it is difficult to evaluate the model predictions of the
lowest class randomly before the flare peak time. To validate these results, we repeat the



163 Page 4 of 16 B. Benson et al.

Figure 2 a) CNN model response while comparing pseudo-coronal loop images of AR 11117 (which oc-
curred on 25 October 2010) to their corresponding sequence of AIA images. The height of the blue lines
indicates the class value of α. The orange line shows the percentage of certainty that the CNN model as-
sociates with the prediction. The gaps in data represent the lowest value of alpha. b) The GOES X-ray flux
data for AR 11117 aligned in time with the corresponding time series of AIA images. In the inset xrsa (xrsb)
corresponds to GOES X-ray sensor a (b) and C2.3 indicates the flare X-ray class.

same process by generating coronal loop images for a different active region (AR 11283)
and test them with their corresponding AIA loop images. These results as shown in Figure 3
also indicate a sharp change in α during the time of the flare.

To investigate the change in α during a flare using observed coronal images, in our study,
we use the SHARP MEANALP parameter (αm), which is the average characteristic twist of
the magnetic field lines in the entire active region patch. The αm parameter is defined by the
equation

αm ∝
∑

JzBz
∑

Bz
2 Mm−1, (1)

where Jz is the vertical electric current, and Bz is the vertical component of the magnetic
field. The Bz

2-weighted method proposed by Hagino and Sakurai (Hagino and Sakurai,
2004) was used to calculate αm by computing the sum of the product JzBz for the pixels
in the active region patch, divided by the sum of Bz

2. Dividing the pixels by the sum of
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Figure 3 a) CNN model response while comparing pseudo-coronal loop images of AR 11283 (which oc-
curred on 9 September 2011) to their corresponding sequence of AIA images. The height of the blue lines
indicates the class value of α. The orange line shows the percentage of certainty that the CNN model as-
sociates with the prediction. The gaps in data represent the lowest value of alpha. b) The GOES X-ray flux
data for AR 11283 aligned in time with the corresponding time series of AIA images. In the inset xrsa (xrsb)
corresponds to GOES X-ray sensor a (b) and C2.3 indicates the flare X-ray class.

squares of the magnetic field ensures that only the regions with a strong magnetic field
are represented in calculating the αm parameter. The Jz values derived in the SHARP are
dependent on some assumptions which we have supposed to be accurate in our study. The
αm considered here is averaged over the whole active region and might not show small
scale changes. A study conducted by Bobra and Ilonidis (2016) that predicts coronal mass
ejections (CMEs) using SHARP parameters as features, rank them according to their F-
score. The study found that the αm parameter ranked third on a list of 19 parameters used to
predict whether an X- or M-class flaring active region would produce a CME.

2.2. Active Region Selection

To check if the change in characteristic twist, αm, of an active region during the occurrence
of a flare is typical, active regions that appear within a maximum of 800 arcseconds from
the center of the solar disk with a flare strength greater than M 1.0 were selected from the
Hinode flare catalog (Watanabe, Masuda, and Segawa, 2012) using SunPy (Mumford et al.,
2020). This yielded 379 X- and M-class flares that occurred between 2010 and 2015. We
then plotted the αm parameter for a duration of six hours centered around the peak time of
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Figure 4 One active region example for each of the four characteristic groups of variation in the twist param-
eter αm, plotted in time for 6 hours during a flare with the time of the flare centered. The blue line indicates
the peak time of the flare. The labels Group-1 to Group-4 signify the amount of change in αm.

the flare. As the photospheric data from the vector magnetogram is available with a cadence
of 12 minutes, we could extract ≈30 time steps of the αm parameter. These active regions
were then binned into four groups based on the amount of change in the αm parameter value
during the flare.

Figure 4 shows the αm plots for one example in each of the four active region groups.
The lines across the data points are error bars. Active regions in group 1 showed a stark
change in αm. In contrast, active regions in groups 2 and 3 showed a noticeable change, and
active regions in group 4 showed no change or noisy data with big error bars. Tables 1 and
2 show the breakdown of the number of X- and M-class flares. Approximately 60% of the
total X-class flares and approximately 27% of M-class flares show a noticeable change in
the αm parameter. Of the active regions that have flares stronger than M2.0 class, ≈40%
show a noticeable change in the αm parameter. These statistics indicate that stronger flares
are more likely to show a noticeable change in the characteristic twist parameter αm since
the magnetic field changes are greater.

3. Regression Tests

The estimation of the value of the αm parameter for future active regions from EUV coronal
images is formulated as a regression problem. Regression is a supervised learning method
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Figure 5 Collection of AIA training images over time t and over different active regions in 94, 131, 171,
193, 211 Å wavelengths and the associated αm.

where the model learns to predict a continuous target value. To test the ability of the CNN-
regression model to handle AIA images, initially, we use a single active region (AR 11283)
with its corresponding αm values as labels. AIA images are available at a 12-second cadence
and the αm is available at a 12-minute cadence. This allows us to use more AIA data per αm

value. We use 60 AIA images (obtained during a 12-minute duration and five wavelengths)
that are labeled with a single αm value which is obtained from the header of the HMI SHARP
data. The 12-minute time window for the AIA images is centered around the SHARP data
timestamp which ensures that no image is less than 6 minutes away from the SHARP αm

label. This data is taken for 6 hours forming 1800 images per active region. These images
are cropped to only represent the active region patch.

We treat these images with a multi-scale Gaussian normalization filter (MGN) (Morgan
and Druckmüller, 2014) which enhances the features in the image while flattening the noisy
regions. Figure 5 shows the collection of the AIA training images over time t in different
wavelengths used to train the CNN-regression model. The αm values for our training data
come from the HMI SHARP header and thus are our labels, labels do not change with a
change in saturation. The CNN learns the same αm label for both saturated and unsaturated
AIA images belonging to a single αm. As the same label is applied to a 12-minute dataset, the
effects of fluctuations in saturation during flares are also averaged out by the CNN. Finally,
the percentage of over-saturated images in the dataset is less than 3%, therefore, we do not
consider any separate treatment for over-saturated images.

In the first experiment, we train the model on five wavelengths of AIA data for AR 12297,
which produced an X 2.1 flare, and test it with AIA data from AR 11261, which produced
an M 6.0 flare. Figure 6 shows the box plot of the αm ranges for the training and testing data,
respectively. The box plot shows that the ranges for αm values about the mean are similar.
Figure 7 shows1 the results of the regression test. It can be seen that the predicted values
follow the rise in αm value. This gives us the framework to group active regions by their αm

values and train the models over a broad range of αm values.

1The data needed to reproduce this figure is missing.
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Figure 6 Box plot showing the
ranges of αm value for AR 12297
(X2.1) (train set) and AR 11261
(M6.0) (test set). The box denotes
the first and third quartiles of the
entire range of αm values and the
green line is the median. The
circle denotes an outlier value.

Figure 7 Actual vs. predicted
values of αm for all five
wavelengths for the initial
regression test. The blue lines
represent the actual αm values of
the test images and the orange
lines represent the predicted
values. The model was trained on
AIA images from AR 12297
(X2.1) and tested with AIA
images from AR 11261 (M6.0).

Figure 8 Flow diagram showing the training scheme to estimate the αm value of an unseen active region
image.

4. Experimental Setup

We carry out our experiments in two phases based on the initial regression test results. While
we know the value of the αm parameter of active regions known to the model, the goal is to
estimate the value of αm for an unseen active region. The CNN-regression model used here
is shown in Figure 9, and contains 4.7 million parameters and consists of eleven convolution
layers, two fully connected layers, and a linear layer to output the single prediction. The
same architecture is used for the classification model by replacing the linear layer with a
softmax layer. The results from the initial regression tests indicated that the CNN-regression
model was able to estimate the value of an unseen active region within the same αm range.
Therefore, we propose a scheme to first classify active regions into bins before sending them
to the CNN-regression models trained on separate bins. Figure 8 shows the flow diagram for
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Figure 9 Convolutional neural network architecture used for training. The output layer provides a classifica-
tion result with a softmax activation or a regression output with a linear activation.

Table 1 Count of X-class and
M-class flares for the groups 1 – 4
seen in Figure 3.

Group-1 Group-2 Group-3 Group-4 Total

X-class 11 1 1 9 22

M-class 15 41 40 261 357

our scheme. First, we group known active regions into groups/bins. Each of these bins is
trained separately on a CNN-regression model and saved. Then, a classification model is
developed to classify new data into these bins. Based on the classification results, the new
data is sent to the appropriate CNN-regression model to estimate the value of αm. We train
all our datasets on a NVIDIA DIGITSTM DevBox workstation using Keras (Chollet, 2015)
layers with a Tensorflow backend (Abadi et al., 2015).

4.1. Phase-I Experiments

In phase-I experiments, we train the model to classify active regions into bins using 20 active
regions at specific times and test the model using an additional 11 active regions. Based on
the αm values, the active regions are grouped into eight bins. Figure 10 shows the ranges
of the αm parameter for the selected active regions. The data consists of five wavelengths
of AIA images belonging to active regions producing greater than M2.0-class flares. The
training was performed with 70% of the images from the dataset, while 15% of the images
were each allocated for cross-validation and testing purposes.

4.2. Phase-II Experiments

For the phase-II experiments, we implement the full proposed scheme of classification of ac-
tive regions into bins and implement the αm parameter estimation using the CNN-regression
models. We choose only the active regions belonging to groups 1 and 2 of Table 2 due to our
limited data handling capabilities for these sets of experiments. Of the 68 active regions that
belong to groups 1 and 2 from Table 1, we could only use 57 active regions as the remaining



163 Page 10 of 16 B. Benson et al.

Figure 10 Box plot of αm ranges of active regions from phase-I experiments grouped into eight bins based
on their average value.

Table 2 Breakdown of flaring
active regions into four
characteristic groups.

Class Group-1 Group-2 Group-3 Group-4 Total

≥ M2.0 13 23 32 89 157

≥ M3.0 11 13 12 46 82

≥ M4.0 10 8 5 32 55

≥ M5.0 8 7 4 21 40

were located on the solar limb during the time of their flares. This dataset contains approxi-
mately 102,600 images from 57 active regions, 5 wavelengths, 30 αm values, 12 images per
αm value. For the classification tasks, the active regions are grouped into six bins based on
the αm parameter range. Each bin is trained separately using a CNN-regression model for
estimating the αm parameter. Figure 11 shows the ranges of αm for all the active regions in
the dataset and their grouping into bins. It clearly shows that the data has a class imbalance
problem. To counter this, we assign weights to each class based on the number of images per
each class compared to the total number of images in the dataset. This reduces the tendency
of the classification model from favoring the class with the highest number of images.

5. Estimating SHARP MEANALP Parameter Results

5.1. Phase-I Results

Phase-I tests consist of testing the classification performance of the 20 active regions using
SolarNet. We use an additional 11 active regions to test the generalization ability of the
phase-I classification model.

Table 3 shows the summary for the phase-I classification results. Due to the limited num-
ber of active regions, none of the test images belongs to either Bin-0 or Bin-7. The Top-1
accuracy is 17.24%, while the Top-2 and Top-3 accuracies are 34.44% and 82.33%, respec-
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Figure 11 Box plot of SHARP MEANALP (αm) ranges of active regions from phase-II experiments grouped
into six bins based on their range. The bins are made based on the average value of the αm parameter.

tively. The Top-1 accuracy measures the proportion of correctly classified examples com-
pared to the target label. Top-2 and Top-3 accuracies indicate the second and third highest
probabilities of the model that match the target label. The results indicate that over 80% of
the guesses by the classifier are within two classes. The overall generalization ability of the
classifier is not very clear from the phase-I tests due to the limited data. Therefore, we do
not conduct any further regression tests on this dataset.

5.2. Phase-II Results

For phase-II tests, we select 57 active regions from our groups 1 and 2 that showed a no-
ticeable change with respect to the characteristic twist parameter αm. To maximize the gen-
eralization ability of our classification model, we separate our data into training (60%) and
holdout sets (40%). We then divide the holdout set equally into validation and test sets. By
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Table 3 Summary of
classification performance on
phase-I and phase-II experiments.

Phase-I Phase-II

Top-1%
Accuracy

17.24% 29.43%

Top-2%
Accuracy

34.44% 61.51%

Top-3%
Accuracy

82.33% 87.76%

Table 4 CNN-regression model
MSE of SHARP MEANALP
(αm) on individual bins for the
phase-II active regions.

Bin MSE

Bin-0 4.57 × 10−4

Bin-1 1.53 × 10−4

Bin-2 5.09 × 10−5

Bin-3 1.49 × 10−5

Bin-4 6.55 × 10−5

Bin-5 7.68 × 10−5

doing so, we ensure that the model does not see the images from the holdout set. We also
ensure that active regions used for training are not present in the test sets. By making sure
the validation and test sets come from the same distribution, we can optimize the classifi-
cation model improving the validation performance, which guarantees that the test set will
indicate the generalization ability of the trained model.

Table 3 shows the summary of the results. The Top-1 accuracy is 29.43%, while the
Top-2 and Top-3 accuracies are 61.51% and 87.76%, respectively. This indicates that over
87% of the guesses by the classifier are within two classes. These results are better than
the results from the phase-I classifier while using significantly more data, which adds much
more complexity to identifying similar active regions. We can say that the generalization
ability of the phase-II classifier is better than that of the the phase-I classifier. The regression
bins are trained individually using the CNN-regression model with the mean square error
(MSE) shown in Table 4. However, as the Top-1 accuracy is low, incorrect classification
could lead to a higher error in the estimation of the αm parameter.

5.3. Latent Space Visualization and Discussion

To understand the nature of the AIA image data and the reasons for the low Top-1 accuracy,
we use a variational autoencoder (Kingma and Welling, 2013; Chollet, 2016) to map the
latent representations of the images belonging to each active region bin. To compare the
visualizations, we also map the latent representations of the Modified National Institute of
Standards and Technology (MNIST) dataset (LeCun et al., 1998) and the phase-II active
regions. Figure 12 shows the comparison of the latent space visualizations of the MNIST
digits and the phase-II active regions dataset. The color bars on each side represent the
different bins or classes. For the MNIST latent space visualization, it can be clearly seen
that the digits that look different are separated in the latent space. For example, the red color
representing digit 0 and the blue color representing digit 1 are on different corners in the
latent space because there is no similarity in their physical representations. However, for the
phase-II active region images, the samples that belong to each class are dispersed throughout
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Figure 12 Comparison of the latent space visualizations using variational autoencoders for phase-II active
regions. Here z[0] and z[1] are the two latent variables that remain after the encoding stage. The color bars
on each side represent the different bins or classes. a) Visualization for MNIST dataset. b) Visualization for
phase-II active regions.

Figure 13 Latent space
visualization in two dimensions
for the phase-II active regions
grouped into two bins based on
the sign of the SHARP
MEANALP (αm) parameters.
Here z[0] and z[1] are the two
latent variables that remain after
the encoding stage.

the latent space and are not separable. This explains to a certain extent why immediate
classes or bins cannot be sharply differentiated, thus causing the CNN to perform poorly on
the Top-1 accuracy but perform far better within one or two groups or classes.

We bin the active regions into two groups based on the sign of the αm parameters to see
if the classifier improved its performance. Figure 13 shows the latent space visualization
for the binary classes. It can be seen that the classes are better separable than the active
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regions grouped into six bins. For training this model, class weights are assigned to penalize
the over-represented positive class and favor the under-represented negative class. The data
are divided into training and holdout sets as done with the 6-bin dataset. Validation and
test sets are then formed from the holdout set. The classifier acore an accuracy of 80.78%
in being able to differentiate between the positive and negative classes. As this is a binary
classification problem, the true skill score TSS which varies between −1 and 1 is calculated
as 0.47.

The binary classification results reveal the conundrum with the classification-regression
scheme. The classification would need fewer bins to reduce the classification error whereas
narrower bins are required to keep the regression error low. Also, as the latent space vi-
sualizations shows, active regions are not well separable by the values of the MEANALP
parameter.

6. Conclusion and Future Work

In this study, we build on our work with the pseudo-coronal loop image models (Benson
et al., 2019), the response of AIA data to the SolarNet model. This derived from our obser-
vation of a change in the characteristic twist parameter αm shortly before the peak flaring
time for strong flares. This correlation between the change in the αm parameter during a
short time before flares can be used as a feature in flare prediction studies. We propose a
framework to estimate the αm parameter by using a classification and regression scheme.
Our phase-II results show greater than 85% accuracy within two classes in identifying the
range of the αm parameter. We also analyze the nature of solar satellite image data from
the SDO/AIA mission using variational autoencoders by plotting the latent space visualiza-
tions of AIA data. These experiments aid our understanding of the complex nature of the
magnetic field configurations of solar active regions. Our effort to estimate the αm param-
eter from AIA image data yields acceptable results despite the complex nature of the data
and given the limited number of active regions used. This study also reveals some of the
limitations of convolutional neural networks in handling data with high dynamic ranges.

In the future, the correlation between solar flares and the αm parameter, including other
SHARP parameters, can be further explored during short time periods before the eruption
of solar flares. This study can also be extended to using the AIA data to estimate other
SHARP parameters that are better indicators of flaring activity. The ability to process large
amounts of data is key to such tasks, especially while using high-resolution and high dy-
namic range image data. The use of magnetogram images of active regions for estimating
the αm parameter can also be explored. A scheme where we can use magnetogram image
data for classification and AIA images for regression can be considered given the issues with
grouping active regions into very narrow bins.

A time series analysis of all SHARP parameters where solar activity can be classified
based on the type of flares also merits consideration and thought. Studying the long term
variability and evolution of the SHARP parameters over the lifetime of an active region and
using forecasting methods can also be an area of further research. Forecasting models using
univariate/multivariate time series data can be applied to SHARP parameters that display
trends that correlate to solar activity.
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