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Abstract
Research on the detection of solar events has been conducted over many years. Recently,
deep learning and data-driven approaches have been applied to solar event recognition.
In this study, we present solar event detection using deep-learning-based object detection
methods for real-time space weather monitoring. First, we construct a new object detec-
tion dataset using imaging data obtained by the Solar Dynamics Observatory with bounding
boxes as labels for three representative features: coronal holes, sunspots, and prominences.
Second, we train two representative object detection models: the Single Shot MultiBox De-
tector (SSD) and the Faster Region-based Convolutional Neural Network (R-CNN) using
the new dataset. The results show that both models perform similarly well for coronal hole
and sunspot detection. For prominence detection, the SSD and Faster R-CNN exhibited rel-
atively low performance. This study demonstrates that deep-learning-based object detection
can successfully detect multiple types of solar events, and it may be extended to detect other
solar events. In addition, we provide the dataset for further achievements of object detection
studies in solar physics.

Keywords Event detection · Data management · Sunspots · Coronal holes · Prominences

1. Introduction

In the field of solar physics, feature detection on the surface of the Sun is an important topic.
Solar event detection using images is primarily based on conventional image processing
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algorithms and neural network learning algorithms which apply the artificial intelligence
technology. The solar phenomena observed in the solar atmosphere include sunspots, fila-
ments, coronal holes, prominences, coronal loops, active regions, and sigmoids. Because the
characteristics of solar events are different, a feature detection algorithm that is optimized
for the characteristics of each event is necessary. Aschwanden (2010) introduced four im-
age analysis methods for solar event feature detection: curvilinear one-dimensional (1D),
region-based (2D), spectral methods, and artificial intelligence. Curvilinear 1D feature de-
tection is used to extract the features of loops and images by applying a high-pass filter
(Lee, Newmann, and Gary, 2006; Aschwanden et al., 2008; Inhester, Feng, and Wiegel-
mann, 2008). Region-based (2D) feature detection is used to determine approximate out-
lines of solar events, such as sunspots, active regions, and filaments. Additionally, the fol-
lowing conventional computer vision methods are applied: labeling, symmetrical difference,
dilation, erosion, morphological gradient distance transform, opening, closing, conditional
dilation, closed holes, hit-or-miss transform, thinning, thickening, skeleton pruning, water-
shed (McAteer et al., 2005; Curto, Blanca, and Martinez, 2008; Martens et al., 2012). The
spectral method decomposes spatial images into spatial Fourier components in the form of
a power spectrum. This method is similar to the Fourier or wavelet analysis of time-series
data, and it is used to detect active regions and filaments (Ireland et al., 2008; Portier-Fozzani
et al., 2001). A neural network, which is an artificial intelligence approach, is applied after
undergoing a learning process using data. It is primarily applied to classification, and it can
be used in any of the three above mentioned methods (Banda and Angryk, 2010, 2014).

Detection refers to the accurate identification of an object area, which is a basic problem
in computer vision. Object recognition is a combination of object localization and image
classification; therefore, it is a more difficult and complex problem compared with image
classification. Various algorithms for object detection have been proposed, and the detec-
tion of the area of an object determines the accuracy and speed of the model (Huang et al.,
2017). The object detection algorithm extracts features from an object to be searched; it
then detects the features in the image and classifies them using these features. Many object
detection models based on deep learning and convolutional neural networks (CNNs) have
been proposed in recent studies. Both the Single Shot MultiBox Detector (SSD) (Liu et al.,
2016) and “You Only Look Once” (YOLO) (Redmon et al., 2016) systems process classifi-
cation and localization simultaneously; these are called 1-stage detectors. YOLO defines the
object detection problem as a regression and obtains the bounding box coordinates and class
probability directly from the input image. However, YOLO uses a single-scale feature map,
whereas SSD extracts features using multi-scale feature maps. Thus, SSD is faster and more
accurate than YOLO (Liu et al., 2016). Region-based CNN series models (R-CNN (Girshick
et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2017), Mask R-CNN
(He et al., 2017), Cascade R-CNN (Cai and Vasconcelos, 2018), and Region-based Fully
Convolutional Networks (R-FCN) (Dai et al., 2016), known as 2-stage detectors, perform
localization and classification in sequence. R-CNN solves the CNN localization problem by
applying recognition using the region paradigm. The R-CNN model extracts objects from
proposed regions and trains them individually through classification and box regression.
Owing to such a complex process, the optimization of this method is limited; R-CNN also
has the disadvantage of a large inference time. To improve R-CNN, state-of-the-art object
detection systems have been proposed, such as Fast R-CNN, Faster R-CNN, R-FCN, Mask
R-CNN, and Cascade R-CNN.

Current advances in object detection based on deep learning have enabled the expan-
sion of practical object identification in various fields, such as medical imaging, geography,
and geology. Solar phenomena detection has been attempted in the field of solar physics.
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Kucuk, Banda, and Angryk (2017) studied the classification of solar events, such as active
regions, coronal holes, flares, sigmoids, and quiet-Sun regions using deep CNN models,
and they showed that the accuracy of deep learning CNNs was significantly higher than
that of conventional classification methods. Kucuk, Aydin, and Angryk (2017) detected ac-
tive regions and coronal holes in multi-wavelength solar images from the Solar Dynamics
Observatory (SDO) using Faster R-CNN, and they showed that supervised deep-learning-
based object detection can be applied to the solar physics domain. Moreover, Armstrong and
Fletcher (2019) classified filaments, flare ribbons, prominences, sunspots, and quiet-Sun re-
gions using a deep CNN. They showed that a deep learning model, trained using Hinode/So-
lar Optical Telescope data, can classify unseen images from the SDO/Atmospheric Imaging
Assembly (AIA).

In this study, we focus on detecting three types of solar events (sunspots, prominences,
and coronal holes) from three different wavelength datasets obtained by the SDO. We
present solar event detection using SSD and Faster R-CNN, which are representative ob-
ject detection systems, and compare the results between them. The novelty of this study is
as follows:

• Unlike previous studies (Kucuk, Aydin, and Angryk, 2017; Kucuk, Banda, and Angryk,
2017), we created our own datasets for training and testing using SDO data. SDO is one of
the largest real solar image repositories. However, because there is no label for each solar
event and its location, deep learning methods have rarely been employed. We employ two
subject experts to assign labels to each image to create a dataset that is appropriate for
deep learning, which has not been attempted in the field of solar physics.

• Solar event detection using deep learning methods has been attempted. However, previous
studies trained classification models using cropped images (Kucuk, Banda, and Angryk,
2017; Armstrong and Fletcher, 2019), which output only the image class, but not the
location of the event. Kucuk, Aydin, and Angryk (2017) employed object detection meth-
ods; however, the accuracy of these methods was relatively low. We utilize more diverse
solar events (coronal holes, sunspots, and prominences) and advanced object detection
algorithms (SSD and Faster R-CNN). We achieve a more accurate model using object
detection approaches that output both the solar event and its location. Additionally, our
model is capable of classifying events in a relevant area in a solar full-disk image.

The remainder of this paper is organized as follows. Section 2 provides background in-
formation on solar events, SDO, and deep-learning-based object detection algorithms. In
Section 3, we present our methodology, including the data preparation and object detection
algorithms that we use. In Section 4, we present our experiments and results. Finally, in
Section 5, we conclude the article with an outline of our future work.

2. Background

2.1. Solar Events

The Sun is a dynamic star, which is the energy source for the Earth and the entire helio-
sphere. Representative solar phenomena include sunspots, flares, prominences, and coronal
holes (Kim, Park, and Kim, 2017; Brajša et al., 2018). A sunspot is a dark area that has strong
magnetic energy in the photosphere; associated loops appear bright in the upper atmosphere,
chromosphere, and corona (Priest, 2014). A flare is an energy release event that occurs in
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an active region which usually contains sunspots; it produces a strong emission at all wave-
lengths. Thus, sunspots are classified as active regions (ARs) with AR numbers assigned by
the National Oceanic and Atmospheric Administration. A prominence is a chromospheric
cool plasma structure held by the magnetic filed in the corona; it appears as a dark and thin
“filament” on the solar disk or as a bright “prominence” in the off-limb region. When it be-
comes unstable, its large mass is expelled as a coronal mass ejection into the interplanetary
space. A coronal hole, which is the source of high-speed solar wind, is observed as a quiet
dark hole in the corona. Because these phenomena are key factors that affect space weather,
it is important to detect and monitor them consistently.

2.2. Solar Dynamics Observatory (SDO)

SDO is designed to understand the Sun and the effect of solar activity on Earth. SDO has
the following scientific instruments: the AIA, the Helioseismic and Magnetic Imager (HMI),
and the Extreme Ultraviolet (EUV) Variability Experiment (EVE). AIA observes the solar
atmosphere using multiple channels with 10 wavelengths (94, 131, 171, 193, 211, 304, 335,
1600, 1700, and 4500 Å) every 12 seconds (Lemen et al., 2012). HMI explores the Sun’s in-
terior and magnetic fields using magnetogram and intensitygram with temporal cadences of
45 seconds and 720 seconds (Schou et al., 2012). EVE aims to probe the changes in the Sun’s
ultraviolet irradiance and magnetic fields, and it produces solar EUV data of 0.1 – 105 nm
with a spectral resolution of 0.1 nm and a 10-second temporal cadence (Woods et al., 2012).

AIA and HMI produce high-resolution 4096 × 4096 pixel images and generate 1.5 TB of
data every day since 2010. The total data size from SDO to date is approximately 5 PB. This
big data set obtained by SDO enables various studies and the application of deep learning
techniques in solar physics (Armstrong and Fletcher, 2019; Jeong et al., 2020; Kim et al.,
2019; Kucuk, Aydin, and Angryk, 2017; Park et al., 2018, 2020; Rahman et al., 2020). We
use SDO/AIA and HMI data to train the solar event auto-detection models.

2.3. Object Detection Algorithms

Object recognition is a computer vision technology that identifies specific object instances
in an image or video. Recent advancements in object detection methods include CNN and
deep learning. Various deep-learning-based models have been proposed, such as YOLO,
SSD, RetinaNet (Lin et al., 2017), RefineDet (Zhang et al., 2018), R-CNN family (R-CNN,
Fast R-CNN, Faster R-CNN, Mask R-CNN, and Cascade R-CNN), and R-FCN.

YOLO processes feature extraction, bounding box, and classification simultaneously
through unified detection. The unified detection combines parts of the divided detection
model into a single neural network and enables high-speed processing with high accuracy
(Redmon et al., 2016). However, YOLO cannot detect objects that are smaller than the grid
size, and it can only detect one object per grid cell because it divides a predetermined grid
and performs a bounding box prediction. SSD is a technique that detects objects in images
using a single deep neural network. SSD is faster and more accurate than YOLO, and it has a
higher accuracy than other techniques, such as Faster R-CNN that uses region proposal and
pooling (Liu et al., 2016). SSD creates several default boxes with different aspect ratios and
scales in a feature map. When making predictions, each default box is scored for the object
category and adjusted to a box that matches the object shape. SSD is relatively simpler than
methods that require region proposals because the proposal generation and subsequent pix-
els completely eliminate the feature resampling stage; thus all computational processes are
summarized in one network. In general, since the number of objects in an image is small,
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less areas are predicted for positive samples (objects) than negative samples (background).
To solve such class imbalances, RetinaNet proposes a new function termed the focal loss
and improves its performance (Lin et al., 2017). RefineDet proposes a 1-stage detector that
has the advantages of 2-stage detectors (less class imbalances and more sophisticated pre-
dictions due to the use of a two-step cascade with two-step features) by adding the anchor
refinement module (ARM), object detection module (ODM), and transfer connection block
(TCB) (Zhang et al., 2018).

R-CNN suggests a region-based convolutional neural network. The features are extracted
by passing 2000 region proposals, which are obtained using a selective search and deep
CNN, and the regions are classified based on the features. R-CNN improves the perfor-
mance of object detection (Girshick et al., 2014). However, R-CNN is slow because 2000
region proposals must be processed in a deep CNN forward pass for each object proposal.
Fast R-CNN was proposed to improve the test-time speed. Instead of putting each region
proposal into a CNN, the entire image was placed directly into the CNN to create a feature
map, thereby reducing the training and testing speed of the model and improving perfor-
mance (Girshick, 2015). However, Fast R-CNN is still slow in terms of processing region
proposals based on a selective search. Faster R-CNN introduces the Selective Search Region
Proposal Network, which is a method that calculates region proposals using a deep network.
Faster R-CNN reduces the learning time by sharing the detection network and convolutional
layer for region proposals (Ren et al., 2017). Mask R-CNN detects more specific object (in-
stance) areas by adding a region of interest (RoI) to generate segmentation masks for the
detection boxes from Faster R-CNN and to even estimate human poses (He et al., 2017).
Cascade R-CNN proposes a method of maximizing the model by learning with a higher
intersection-over-union (IoU) criterion (greater than 0.8) using additional classifiers (Cai
and Vasconcelos, 2018), whereas Faster R-CNN uses a single classifier.

3. Proposed Methods

3.1. Data

We coupled coronal holes, sunspots, and prominences as solar events for the detection ex-
periment. These events were selected as relatively recognizable phenomena in the Sun and
were extracted clearly using the wavelengths of the SDO/AIA and HMI. Each coronal hole,
sunspot, and prominence could be recognized on AIA 193, HMI intensitygram, and AIA
304, respectively (Lemen et al., 2012; Scherrer et al., 2012). We used full-disk SDO data
from the Korean Data Center for SDO (http://sdo.kasi.re.kr) spanning ten years
from 2010 to 2019. The data were sampled at 12-hour intervals for sunspots and coronal
holes, and at 4-hour intervals for prominences. Original SDO images are in the FITS format
(4096 × 4096 pixels). Because the events we wanted to extract were also visible even in
lower-resolution images, we used the JPEG format (512 × 512 pixels). Samples of each
solar event with bounding boxes and labeling are shown in Figure 1.

Object detection requires supervised learning; therefore, image label data is also required
for training. Event catalogues and label data for deep learning are completely different.
Event catalogues contain the position of the center at the event location, whereas label data
include bounding boxes (event area) where the event is located. Besides, there is no public
event label dataset. In previous solar event detection and classification studies that used deep
learning algorithms (Kucuk, Aydin, and Angryk, 2017; Kucuk, Banda, and Angryk, 2017),
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Figure 1 Examples of the application of bounding boxes and event labeling on the SDO data. Coronal hole
instances on AIA 193 (left), sunspot instances on the HMI intensitygram (middle), and prominence instances
on AIA 304 (right).

Table 1 Number of images for solar event detection.

Solar Events Coronal hole Sunspot Prominence

SDO Instrument AIA 193 HMI Intensitygram AIA 304

Number of images 5085 4383 2926

Training set 4068 3500 2340

Test set 1017 883 586

the input dataset was the event list used in conventional image processing methods. Ku-
cuk, Banda, and Angryk (2017) used the Large-Scale Solar Dynamics Observatory Dataset
(LSDO), and Kucuk, Aydin, and Angryk (2017) used the Heliophysics Event Knowledge-
base (HEK) (Hurlburt et al., 2012) for solar event reports. However, they did not publish
their label datasets.

Since there is no label dataset for solar events, we created our own dataset. We used an
image annotation and labeling tool called LabellImg (Tzutalin, 2015). LabelImg has capa-
bilities to create data that includes the position of the bounding box and labeling information
by drawing a box around the object that the user wants to find in the image and then labels the
object. Solar physics experts identified the events, drew bounding boxes, and labeled them
on the images using LabelImg. We defined the events which had clearly visible features, and
drew the bounding box around each event. In the case of sunspots, we made a single box
not only for a sunspot but also for sunspot groups that were relatively close to other. Two
experts performed cross-validations to increase the event annotation and labeling accuracy
of the entire dataset. The saved file format for the bounding box and labeling information of
LabelImg can be Pattern Analysis, Statistical Modelling, and Computational Learning (PAS-
CAL)/Visual Object Classes (VOC) in the Extensible Markup Language (XML) format or
YOLO in text format; we used the PASCAL/VOC type. After this process, the input dataset
of the object detection models included solar images and XML files with the bounding box
position and labeling information. The number of data points used for solar event detection
was 5085, 4383, and 2926 for coronal holes, sunspots, and prominences, respectively. The
ratio of the training data to the test (unseen) data was 80:20. Table 1 shows the number of
images used for the solar event detection with the number of event labels contained in the
dataset for each event type.
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Table 2 Number of solar events for our dataset and HEK dataset.

Coronal hole Sunspot Prominence Total

Our dataset 9984 11244 9241 30469

HEK dataset 7198 8857 82 16137

Figure 2 The event bounding boxes of our dataset (top) and HEK dataset (bottom). The left column shows
coronal holes, the middle column shows sunspots, and the right column shows prominences.

We compared our dataset to the HEK data to prove its reliability and to compare targets
with the number of events and bounding boxes. We matched bounding boxes based on event
positions and classes labeled as event types in the HEK dataset. The event types in the
HEK dataset included coronal holes and sunspots, but prominences did not exist separately
but were included in the filament database. Thus, we extracted prominences that could be
clearly identified based on the event description of the filament database in the HEK dataset.
We compared events of our dataset and the HEK dataset during the target period (from 2010
to 2019). Table 2 shows the number of each event type in our dataset and the HEK dataset.
The numbers of total events were 30,469 for our dataset and 16,137 for the HEK dataset. In
our dataset, the number of events was evenly distributed. Whereas, in the HEK dataset, the
number of coronal holes and sunspots were similar to each other; however, the number of
prominences was 82, which was less than 1% of the entire dataset.

We drew by eye bounding boxes for each event to compare event locations between both
datasets. In the case of coronal holes, event locations of our dataset and the HEK dataset
were similar to each other. In the case of sunspots, our dataset considered the boundary of
the entire area of the sunspot group, whereas the HEK dataset selected only relatively large
sunspots in most cases. In the case of prominences, many of prominences in our dataset
were not listed in the HEK dataset. Figure 2 shows the examples of bounding boxes for
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our dataset (top) and HEK dataset (bottom). In the case of coronal holes (left column), the
area and position of coronal holes in the north pole and central disk were well matched
in both datasets while the small coronal hole near the south pole was only included in
the HEK dataset. In the case of sunspots (middle column), our dataset considered a re-
gion that included a sunspot group, whereas the HEK dataset included only a small area
with relatively large sunspots. This was the reason why the sunspot numbers of the HEK
dataset were less than those of our dataset. In the case of prominences (right column), our
dataset specified three prominences in the north limb, whereas the HEK dataset had only
one.

As a result of comparison of our dataset and the HEK dataset, we found that the size and
location of the bounding boxes were similar only in the case of the coronal holes. In the case
of sunspots, the detection results of HEK and our dataset were different, probably owing to
the difference in the detection criteria of events. For object detection, a well-defined dataset
with bounding boxes that sufficiently cover the area of the object to be found is impor-
tant. Since the HEK dataset was not constructed for deep-learning-based object detection,
the bonding boxes did not seem suitable as labels. As shown in Figure 2, we provided bet-
ter bounding boxes for the object detection, which implied that our dataset1 is suitable for
training deep learning models that automatically detect solar events.

3.2. Model Configuration

We selected representative object detection models, namely SSD as a 1-stage detector and
Faster R-CNN as a 2-stage detector. Since the introduction of these two models, many mod-
els such as Mask R-CNN, RetinaNet, RefineDet, and Cascade R-CNN have been proposed.
However, the basic structures of these models are similar to those of the SSD or Faster R-
CNN. RefineDet is one of the SSD-series models with additional modules. Mask R-CNN
and Cascade R-CNN add new layers to Faster R-CNN to predict a new parameter or to im-
prove the performance. The use of these models has no significant advantage for detecting
solar events; thus, we chose the SSD and Faster R-CNN.

We used SSD and Faster R-CNN architectures with ResNet-101 as the feature extractor
provided by the TensorFlow object detection API. The accuracy and speed of the object de-
tector vary depending on the feature extractor (Huang et al., 2017). The feature extractor has
a key influence on the number of parameters or the types of layers, and these directly affect
the memory usage, speed, and performance of the detectors. We selected ResNet-101 be-
cause it configures an appropriate combination that considers the optimal accuracy, memory
usage, and training time ratio (Huang et al., 2017). ResNet solves gradient vanishing using
shortcut connections, and improves the performance of deep CNNs (He et al., 2016).

TensorFlow provides pretrained models of an object detection application programming
interface (API) using Common objects in Context (COCO) and ImageNet. However, real-
life images from COCO and ImageNet are completely different from those of the Sun and
solar events. There is no advantage from using pretrained codes with COCO and ImageNet;
therefore, we trained models using the solar event dataset that we developed. We set the
image sizes to 512 × 512 pixels and the batch size to 24 for the two models. For SSD,
we set the activation function as RELU, the loss function as a sigmoid, and the initial
learning rate to 0.002. For Faster R-CNN, the number of region proposals should be set
manually. Usually, Faster R-CNN uses 300 region proposals. However, as shown in Huang
et al. (2017), the accuracy of Faster R-CNN using only 50 region proposals resulted in

1Our dataset is available online on http://sdo.kasi.re.kr/dataset_object_detection.aspx.

http://sdo.kasi.re.kr/dataset_object_detection.aspx
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Table 3 Summary of the performance of SSD and Faster R-CNN for the mAPs and detection accuracy of
solar events.

Model mAP (@0.5IoUa) Accuracy [%]

Coronal hole Sunspot Prominence

SSD 82 77 79 51

Faster R-CNN 79 76 80 45

aThe ratio of IoU between predicted and ground truth boxes is greater than 0.5.

96% of that of the model using 300 region proposals. Moreover, increasing the number of
proposed regions from 300 to 600 did not significantly affect the accuracy (Kucuk, Aydin,
and Angryk, 2017). Therefore, we reduced the number of region proposals to 50. Addition-
ally, we set the score converter at the second stage as softmax and the initial learning rate
to 0.0002.

4. Experimental Results

The trained object detection models were from the deep learning framework TensorFlow.
The models were trained on a GPU server dedicated to deep learning using four NVIDIA
TITAN XP 12 GB GPUs. For training and testing, we used 10-year data from 2010 to 2019
and divided the training and evaluation data in the ratio of 80% and 20%, respectively.
We selected two object detection models, namely Faster R-CNN and SSD, for solar event
detection and compared the results of these two models.

We used the accuracy, average precision (AP), mean average precision (mAP), and true
positive rates (TPRs) to evaluate the performance of the two models. In the field of computer
vision, the performance of object detection and image classification algorithms is evaluated
using AP. In the case of multiple object classes, the performance of the algorithm is evaluated
using mAP, which is calculated using the AP for each class. The TPR (i.e. recall) is the
proportion of correctly detected objects. To increase the TPR, the model must specify many
bounding boxes to correct the answer and reduce the false negative (FN) detections. We
used a cut-off point for the correctness criterion of the measurements. The detection results
are considered correct if the intersection over union (IoU) (based on the Jaccard overlap)
between the bounding boxes of our dataset and predicted boxes is greater than 0.5. Among
the regions predicted by the models, we also used prediction boxes with a detection score of
0.8, or higher, when calculating the AP and TPR.

The performance of the two models is presented in Table 3. Our results for the detec-
tion accuracy based on mAP (@0.5IoU) are 82% and 79% for SSD and Faster R-CNN,
respectively. The detection accuracies for different solar events are similar for SSD and
Faster R-CNN, except for prominence detection. The prominence detection has a lower ac-
curacy than the other events for both models; the accuracy is less than 50% using Faster
R-CNN.

For further inspection of the trained models, we analyzed the AP and TPR scores. Fig-
ure 3 shows the AP of the models for each solar event. A higher AP indicates that the
events are classified more precisely. The AP of coronal holes and sunspots using SSD and
Faster R-CNN was higher than 90%. The highest AP was 99% for sunspot detection using
SSD, which is considered a remarkable performance. For prominence detection, the APs
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Figure 3 AP of the trained
models for different solar events.

Figure 4 TPR scores of the
trained models for different solar
events.

using SSD and Faster R-CNN were relatively low at 59% and 52%, respectively. This in-
dicates that the performance of classifying prominences using both models is significantly
poor.

The TPR is a correctly identified fraction based on the total number of target objects in the
training dataset. Figure 4 shows TPR results for each solar event. TPR scores for the coronal
hole and sunspot detection were higher than that for prominence detection. The highest TPR
score was recorded for sunspot detection: 90% using SSD and 86% using Faster R-CNN.
For coronal hole detection, we obtained TPR scores of 83% and 85% using SSD and Faster
R-CNN, respectively, which are similar. For prominence detection, we obtained lower TPR
scores compared with the other solar events. Both models exhibit poor prominence detection
and can detect approximately 50% of the labeled data.

In Figure 5, we display the bounding boxes of our dataset (left) and predicted boxes
using SSD (center) and Faster R-CNN (right) for the same data to compare the prediction
results of each model. The top panel is for coronal hole detection; the boxed area of Faster
R-CNN looks similar to the bounding boxed area. The middle panel corresponds to sunspot
detection, and the size of the detection boxes of the two models is similar to the bounding
boxes. However, in some cases (e.g., the sunspot on the right of the solar disk), only one
model can detect the sunspots. The bottom panel presents prominence detection, and only
SSD can detect the prominences in some cases (e.g., the prominence on the bottom right of
the solar limb).

We tested our trained SSD model, which had higher mAP than Faster R-CNN, with the
HEK dataset. Figure 6 shows examples of the SSD test results using HEK. The top panel
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Figure 5 Sample bounding boxes of our dataset (left) and detection results for coronal hole (top), sunspots
(middle), and prominences (bottom) using SSD (center) and Faster R-CNN (right) on the same dataset.

shows the prediction results from the SSD model and the bottom panel shows the bounding
boxes of events from the HEK dataset. Our trained model found the coronal holes except the
small size coronal holes in the HEK dataset which were out of the criteria of our dataset. In
the case of sunspots, our trained model found sunspot groups that included small sunspots,
whereas the HEK dataset detected smaller areas than the model prediction results which only
included large sized sunspots. We visually extracted “areas of sunspots” since our sunspot
dataset is aimed to extract the sunspot areas, not to distinguish the active regions. Therefore,
the result of our model detected not only a sunspot but also sunspot groups that are relatively
close to each other with a single box. In the case of prominences, our model detected off-
limb prominences which are easily recognized by human eyes. Some events were missed
in the HEK dataset because the HEK only recognized prominence events associated with
filament structure which appeared on the solar disk. HEK is not designed for solar event
detection only; hence, it did not serve the object detection purpose that we intended. As
shown in Figure 6, our dataset was more appropriate as a label, and we recommend using
our dataset when training deep-learning-based object-detection models.
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Figure 6 Examples of test results from our trained SSD model using HEK dataset. The top panel shows
prediction results from SSD and the bottom panel shows bounding boxes of the events from HEK dataset.
The left column corresponds to coronal holes, the central one to sunspots, and the right one to prominences.

5. Conclusion

We carried out a solar event detection investigation using two object detection methods: SSD
and Faster R-CNN. We tested these models using coronal holes, sunspots, and prominences.
Our results show that for solar event detection the performance of SSD is slightly higher
than that of Faster R-CNN based on mAP. For sunspot detection, the AP of SSD exhibited a
remarkable performance, reaching 99%. However, for coronal hole detection, Faster R-CNN
is better than SSD, based on AP and the TPR score. The prominence detection performance
of both models was relatively lower than that of other solar events. The overall performance
of our results is high, due to the characteristics of the training data. Sunspots exhibit clear
differences between the background and objects. Coronal holes have clearly defined char-
acteristics in the data as well as a large area size. However, the performance of prominence
detection is relatively low, which is also due to the nature of the data and events. Promi-
nences have faint features compared with the other solar events types, and the complexity of
the AIA 304 data influences the prediction of the region in the models. Additionally, Faster
R-CNN performs better than SSD in coronal hole detection, owing to the method used to
identify the bounding box. The region proposal network, which determines the bounding
box in Faster R-CNN, tends to more accurately detect coronal holes, which are relatively
large areas, by designating an area using multi-scale anchors.

Our study shows that using SSD and Faster R-CNN is a promising approach for solar
event detection, and it provides excellent performance results for coronal hole and sunspot
detection. Kucuk, Aydin, and Angryk (2017) detected solar events using Faster R-CNN and
showed that the mAP (@0.5IoU) was 32% for coronal holes. Our results exhibited a signif-
icantly better performance – the mAP (@0.5IoU) of the coronal holes was 76%, and even
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if the IoU threshold was increased to 0.7, the mAP (@0.7IoU) still exhibited good perfor-
mance at 60%. We compared the object detection results of our dataset to the HEK dataset.
Our dataset had sufficient accuracy to train deep learning models for object detection, which
guarantees further achievements of object detection studies in solar physics. We believe that
these object detection approaches can lead to more diverse solar event detection.

There are some limitations in our current work, which imply future directions for con-
tinued research. First, we plan to improve and expand our dataset. The bounding boxes for
small sunspots can be more precise and distinguished from large sunspot groups. In addition,
other solar event types such as filaments, flares, and coronal loops will be included. Then,
we will examine the performance of these models on other solar event types. We intend to
use Hα image data to detect filaments because they are more clearly visible in these images.
In the case of flares, a method to determine the entire duration of the flaring time will be
studied. We will also investigate other deep learning models for solar event detection. In
particular, we expect that the application of instance segmentation algorithms, such as Mask
R-CNN, to sunspot and coronal hole detection will provide fine detection of the area and es-
timate a more accurate size. Moreover, we intend to publish a solar event catalog including
the coordinates and other parameters of the detected events.

Acknowledgements The SDO data were provided by the Korean Data Center (KDC) for SDO in cooper-
ation with NASA, Stanford University (JSOC), and KISTI (KREONET), which is supported by the “Next
Generation Space Weather Observation Network” project of the Korea Astronomy and Space Science Insti-
tute (KASI). This work was also supported by the Institute for Information and Communications Technology
Planning and Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2019-0-01343, Training
Key Talents in Industrial Convergence Security)

Declarations

Disclosure of Potential Conflicts of Interest The authors declare that there are no conflicts of interest.

References

Armstrong, J.A., Fletcher, L.: 2019, Fast solar image classification using deep learning and its importance for
automation in solar physics. Solar Phys. 294, 80.

Aschwanden, M.J.: 2010, Image processing techniques and feature recognition in solar physics. Solar Phys.
262, 235.

Aschwanden, M.J., Lee, J.K., Gary, G.A., Smith, M., Inhester, B.: 2008, Extraction of solar coronal magnetic
loops with the directional 2D Morlet wavelet transform. Solar Phys. 248, 359.

Banda, J.M., Angryk, R.A.: 2010, Selection of image parameters as the first step towards creating a CBIR sys-
tem for the Solar Dynamics Observatory. In: Proc. Int. Conf. on Digital Image Computing: Techniques
and Applications, 528.

Banda, J.M., Angryk, R.A.: 2014, Large-scale region-based multimedia retrieval for solar images. In: Proc.
Int. Conf. on Artificial Intelligence and Soft Computing, Zakopane, Poland, 649.
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