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Abstract
The processes of coronal plasma heating and cooling were previously shown to significantly
affect the dynamics of slow magnetoacoustic (MA) waves, causing amplification or attenu-
ation, and also dispersion. However, the entropy mode is also excited in such a thermody-
namically active plasma and is affected by the heating/cooling misbalance too. This mode
is usually associated with the phenomenon of coronal rain and formation of prominences.
Unlike adiabatic plasmas, the properties and evolution of slow MA and entropy waves in
continuously heated and cooling plasmas get mixed. Different regimes of the misbalance
lead to a variety of scenarios for the initial perturbation to evolve. In order to describe prop-
erties and evolution of slow MA and entropy waves in various regimes of the misbalance, we
obtained an exact analytical solution of the linear evolutionary equation. Using the charac-
teristic timescales and the obtained exact solution, we identified regimes with qualitatively
different behaviour of slow MA and entropy modes. For some of those regimes, the spatio-
temporal evolution of the initial Gaussian pulse is shown. In particular, it is shown that
slow MA modes may have a range of non-propagating harmonics. In this regime, pertur-
bations caused by slow MA and entropy modes in a low-β plasma would look identical in
observations, as non-propagating disturbances of the plasma density (and temperature) ei-
ther growing or decaying with time. We also showed that the partition of the initial energy
between slow MA and entropy modes depends on the properties of the heating and cooling
processes involved. The exact analytical solution obtained could be further applied to the
interpretation of observations and results of numerical modelling of slow MA waves in the
corona and the formation and evolution of coronal rain.
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1. Introduction

In a series of recent works (Prasad, Srivastava, and Wang, 2021; Kolotkov, Duckenfield, and
Nakariakov, 2020; Duckenfield, Kolotkov, and Nakariakov, 2021; Kolotkov, Nakariakov,
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and Zavershinskii, 2019; Claes and Keppens, 2019; Zavershinskii et al., 2019), the thermo-
dynamic activity of the solar corona, i.e. a wave-induced interplay between plasma heating
and cooling processes, was shown to be among the most important physical processes af-
fecting the dynamics of magnetoacoustic waves and oscillations in the corona. More specif-
ically, a compressive wave violating coronal thermal equilibrium via perturbations of the
local plasma parameters can experience a feedback from these unbalanced coronal-heating
and -cooling processes, which is known as the phenomenon of thermal misbalance (Field,
1965; Molevich and Oraevskii, 1988; Nakariakov et al., 2017). In a broad range of typical
physical conditions in the Sun’s corona, the characteristic timescales of this thermal misbal-
ance were shown to be about several minutes, which coincide with the oscillation periods
of magnetoacoustic waves ubiquitously present in the coronal-plasma structures (see, e.g.,
Nakariakov and Kolotkov, 2020, for the most recent comprehensive review). In particular,
the essentially compressive, slow-mode magnetoacoustic waves are confidently observed as
propagating or standing disturbances in various coronal plasma non-uniformities such as, for
example, polar plumes, quiescent and active-region loops, and they have oscillation periods
ranging from a few to a few tens of minutes and comparable damping times (De Moor-
tel, 2009; Banerjee, Gupta, and Teriaca, 2011; Wang, 2011; Banerjee and Krishna Prasad,
2016; Wang, 2016; Nakariakov et al., 2019; Wang et al., 2021). As such, slow waves are
considered to be strongly affected by the process of thermal misbalance.

The direct observations and theoretical modelling of coronal slow waves are extensively
used for seismological probing the coronal plasma. In particular, the effects of parallel
thermal conduction and compressive viscosity, leading to a frequency- and temperature-
dependent damping of slow waves and phase shifts between density and temperature per-
turbations, were measured by, e.g., Krishna Prasad, Banerjee, and Van Doorsselaere (2014),
Wang et al. (2015, 2018), Krishna Prasad, Jess, and Van Doorsselaere (2019) and modelled
by, e.g., Ofman and Wang (2002), De Moortel and Hood (2003), Selwa, Murawski, and
Solanki (2005), Owen, De Moortel, and Hood (2009), Reale (2016), Mandal et al. (2016).
An effective coronal polytropic index and its dependence on temperature were inferred seis-
mologically with slow waves by Van Doorsselaere et al. (2011) and Krishna Prasad et al.
(2018), respectively. Robust and reliable methods for measuring the apparent propagation
speed of slow waves in legs of long, fan-like loops in active regions, as an important seis-
mological tool, were designed by Yuan and Nakariakov (2012). Using a combination of the
theory of the perturbed thermal equilibrium and observations of slow waves in long-lived
coronal plasma structures, Kolotkov, Duckenfield, and Nakariakov (2020) seismologically
constrained the parameters of the unknown coronal-heating function. Likewise, Reale et al.
(2019) used observations of large-amplitude quasi-periodic pulsations associated with slow
waves and a comprehensive theoretical modelling to diagnose duration of the impulsive
coronal-heating events.

The feedback from the wave-induced thermal misbalance on the slow-wave dynamics
is manifested, in particular, in the wave damping or amplification. Thus, Kolotkov, Nakari-
akov, and Zavershinskii (2019) demonstrated three possible regimes of the standing slow-
wave evolution with enhanced damping (with respect to that caused by other dissipative
processes, e.g. parallel thermal conduction) or suppressed damping and even amplification
(over-stability) of the wave through the effective gain of energy from the heating source. It
was shown that the observed rapid damping of standing slow oscillations in hot and dense
coronal loops could be readily reproduced with a reasonable choice of the heating func-
tion. This study was generalised and extended by Duckenfield, Kolotkov, and Nakariakov
(2021) for the effects of non-zero plasma-β and a broader range of coronal conditions. In the
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over-stable regime, the effects of finite amplitude become important, leading to the distor-
tion of the wave front and/or formation of autowave (self-sustained) shock pulses (Nakari-
akov, Mendoza-Briceño, and Ibáñez S., 2000; Chin et al., 2010; Zavershinsky and Molevich,
2013; Molevich, Zavershinskiy, and Ryashchikov, 2016; Nakariakov et al., 2017; Zavershin-
skii et al., 2020). The nonlinear evolution of slow magnetoacoustic waves in the corona was
also addressed by, e.g., Ofman and Wang (2002), Ruderman (2006), Verwichte et al. (2008),
Afanasyev and Nakariakov (2015), and Wang and Ofman (2019).

Zavershinskii et al. (2019) demonstrated another effect of the heating/cooling misbalance
that is effective dispersion of slow waves. This additional misbalance-caused dispersion is
manifested through the dependence of the wave phase and group speeds and effective poly-
tropic index on the wave frequency; is fully attributed to the existence of the characteristic
timescales of the misbalance process; and is not connected with the geometrical dispersion
of magnetoacoustic waves, traditionally considered in the corona. Moreover, the slow-mode
wave increment/decrement (i.e. damping/growth time or length, respectively) caused by the
misbalance acquires the frequency dependence too, which is functionally different from that
caused by the parallel thermal conduction and viscosity. In particular, accounting for this
frequency-dependent damping by the misbalance in the model allowed Prasad, Srivastava,
and Wang (2021) to better match the observed relationship between the oscillation period
and damping time of the fundamental standing slow waves. Combining wave dispersion and
frequency-dependent damping/amplification both associated with the effect of thermal mis-
balance, Zavershinskii et al. (2019) demonstrated formation of a quasi-periodic propagating
slow magnetoacoustic wave train from the initially broadband aperiodic perturbation.

A particular regime, in which the wave evolves much faster/slower than the misbalance
process does, corresponds to the weak/strong limits of the latter, respectively. Thus, in the
regime of weak misbalance and low-β plasma, the slow-wave speed reduces to the standard
adiabatic sound speed determined by the standard adiabatic index and the plasma temper-
ature. In the regime of dominating misbalance, the wave becomes strongly non-adiabatic
with a modified propagation speed and a new value of the effective polytropic index deter-
mined by the properties of the heat-loss processes. In both these regimes, the wave speeds
are frequency-independent. This is similar to the theory of the lower and higher limits of par-
allel thermal conduction (see, e.g., Section 4.1 in Krishna Prasad, Banerjee, and Van Doors-
selaere, 2014), for which the slow-wave speed varies between the adiabatic and isothermal
values of the sound speed, respectively. A more general model of slow waves, including
the combined effects of the weak/strong misbalance and lower/higher limits of thermal con-
duction that for uniformity was referred to as regimes of weak/strong non-adiabaticity, was
considered by Duckenfield, Kolotkov, and Nakariakov (2021).

Another natural magnetohydrodynamic (MHD) process efficiently perturbing the coro-
nal thermal equilibrium and strongly affected by the back-reaction of this perturbation is the
entropy wave. It is a non-propagating compressive mode (see, e.g., Somov, Dzhalilov, and
Staude, 2007; Murawski, Zaqarashvili, and Nakariakov, 2011), either growing or decaying
in response to the violation of the balance between plasma heating and cooling processes
(Field, 1965). In particular, the radiative instability of the entropy mode could lead to rapid
condensations of the coronal plasma and formation of coronal rain (see, e.g., Antolin, 2020,
and the references therein, for the most recent review) or prominences (e.g. Kaneko and
Yokoyama, 2017). Hence, in a continuously heated and cooling plasma of the solar corona,
the properties and evolution of entropy waves and slow magnetoacoustic waves could get
mixed through the mechanism of thermal misbalance, even in the linear regime. The ques-
tion of mixed properties of MHD waves in the solar corona is usually considered in the
context of radial fundamental kink modes and Alfvén waves in coronal loops (see, e.g.,
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Goossens, Arregui, and Van Doorsselaere, 2019, for a recent work), while the mixed proper-
ties of slow magnetoacoustic and entropy waves in the coronal plasma with heating/cooling
misbalance has not been addressed in the previous theoretical or observational work.

In this article, we perform a comprehensive, analytical treatment of slow magnetoacous-
tic and entropy waves, simultaneously excited and evolving in the linear regime in a ther-
modynamically active plasma of the solar corona, by obtaining an exact analytical solution
of the evolutionary equation (see Section 2 – 4). This exact analytical solution for the linear
wave dynamics in a plasma with thermal misbalance is derived for the first time in this work.
Unlike the previous work (e.g. Kolotkov, Nakariakov, and Zavershinskii, 2019; Zavershin-
skii et al., 2019) that considered the characteristic timescales of the thermal misbalance to
be strictly positive to avoid the instability of the entropy mode, the novel element of the
present work is that we do not use this assumption. Indeed, the estimations of the charac-
teristic misbalance time for typical coronal conditions (see, e.g., Table 2 and Figure 3 in
Kolotkov, Duckenfield, and Nakariakov, 2020) have shown that it could be both positive and
negative, depending on the properties of the heat-loss function. Taking these negative times
into account in this work allows us, in particular, to reveal the range of non-propagating
slow magnetoacoustic harmonics, which are thereby not obviously distinguishable from the
harmonics of the entropy wave. Revealing a specific regime of thermal misbalance in which
slow magnetoacoustic harmonics may become non-propagating and thus possess proper-
ties similar to those of the entropy waves is another new result of this work. Using the
obtained analytical solution, we describe and demonstrate different scenarios of the slow
and entropy wave spatio-temporal evolution (Section 5.1). We stress that the individual dy-
namics of those waves cannot be analysed by solving the original evolutionary equation
numerically, which allows for obtaining the dynamics of their superposition only. In Sec-
tion 5.2, we demonstrate partition of the energy of the initial perturbation between slow and
entropy waves, as another manifestation of their mixed properties. For example, this issue
cannot be resolved from the analysis of the dispersion relation and requires an exact so-
lution of the evolutionary equation obtained in this work. The dependence of the partition
of the initial perturbation energy between slow magnetoacoustic and entropy modes on the
coronal-heating and -cooling processes is demonstrated for the first time in this work. The
discussion of the results and conclusions is given in Section 6.

2. Governing Wave equation

The linear dynamics of slow magnetoacoustic (MA) and entropy waves in a uniform-along-
the-field plasma with the heating/cooling misbalance is described by the following evolu-
tionary equation, derived in the infinite-field approximation by Zavershinskii et al. (2019):

∂3ρ1

∂t3
− c2

S

∂3ρ1

∂t∂z2
= κ

ρ0CV

(
∂4ρ1

∂z2∂t2
− c2

S0

∂4ρ1

∂z4

)
− 1

τ2

(
∂2ρ1

∂t2
− c2

SQ

∂2ρ1

∂z2

)
. (1)

The two terms on the RHS of Equation 1 describe the effects of the field-aligned ther-
mal conduction with the coefficient κ and thermal misbalance on small-amplitude plasma
density perturbations ρ1. More specifically, cS = √

γ kBT0/m and cS0 = √
kBT0/m are the

standard adiabatic (with the adiabatic index γ ) and isothermal sound speeds, respectively;
cSQ = √

γQkBT0/m is the sound speed of wave propagation in the regime of strong mis-
balance (when the second term on the RHS of Equation 1 dominates), prescribed by the
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effective polytropic index γQ ≡ Q[P ]T /Q[ρ]T = γ τ2/τ1 (Heyvaerts, 1974; Molevich and
Oraevskii, 1988) and the characteristic timescales of the misbalance,

τ1 = CP/Q[P ]T , (2)

τ2 = CV/Q[ρ]T . (3)

Here, Q[P ]T and Q[ρ]T are the derivatives of the combined heat [H ] and loss [L] function

Q(ρ,T ) = L(ρ,T ) − H(ρ,T ), (4)

with respect to the plasma temperature [T ], taken at the constant gas pressure P and density
ρ, i.e. Q[ρ]T = (∂Q/∂T )ρ , Q[P ]T = (∂Q/∂T )P = (∂Q/∂T )ρ − (ρ0/T0) (∂Q/∂ρ)T . In this
notation, kB is the Boltzmann constant, m is the mean particle mass, and CP and CV are
specific heat capacities at constant pressure and volume, respectively.

As an initial equilibrium, we consider a long-lived coronal plasma with density ρ0 and
temperature T0, and with the radiative cooling and heating rates balancing each other, so that
Q0(ρ0, T0) = 0. As seen from Equation 1, the effects caused by the linear wave perturba-
tion of such a thermal equilibrium (wave-induced thermal misbalance) are determined not
by the sign and absolute value of Q, but by the sign and absolute values of its derivatives
[Q[P ]T and Q[ρ]T ] or, equivalently, by the characteristic times [τ1,2]. Previous estimations by
Kolotkov, Duckenfield, and Nakariakov (2020) showed that for typical coronal conditions
these timescales can be either positive or negative depending on a specific form of the heat-
loss function [Q(ρ,T ).] From the physical standpoint, those thermal-misbalance timescales
[τ1 and τ2] are the main parameters determining the effect of the perturbed thermal equilib-
rium on the wave dynamics described by Equation 1, which demonstrates how quickly the
plasma restores its initial thermal equilibrium or becomes thermodynamically unstable.

The infinite magnetic-field approximation used for obtaining Equation 1 implies the
magnetic-field strength is high enough to neglect its perturbations by the slow MA wave
and hence to consider the wave dynamics as one-dimensional, strictly along the field. Its
applicability to slow MA waves in the solar corona was recently justified by Duckenfield,
Kolotkov, and Nakariakov (2021), for the magnetic-field strength greater than 10 G in the
quiescent loops and polar plumes and greater than 100 G in hot and dense loops in active
regions. In these cases, the potential dependence of the unknown coronal-heating function
on the magnetic-field strength was shown to have no effect on the wave dynamics. Hence,
without loss of generality in our work this dependence is omitted in Equation 1. Also, the
effects of the gravitational stratification of the coronal plasma are missing in Equation 1,
which is consistent with the physical conditions in, e.g., hot and dense loops for which
the characteristic stratification scale height is known to be much greater than a typical loop
height (see, e.g., Wang et al., 2018; Wang and Ofman, 2019). In this work, we use Equation 1
originally obtained by Zavershinskii et al. (2019) as a starting point, without re-deriving it.
Being third-order with respect to time, Equation 1 describes three wave modes, which are
two slow MA modes and one entropy mode.

In addition to the assumptions described above, the most recent seismological studies
with slow waves revealed evidence of strong suppression of the parallel thermal conduction
at least in some solar active regions (see a series of works by Wang et al., 2015, 2018; Wang
and Ofman, 2019). Likewise, Nisticò et al. (2017) obtained seismologically the effective
adiabatic index of about 5/3 in a hot loop hosting a slow-mode oscillation, which could
also be considered as an indirect evidence of a diminished efficiency of the parallel thermal
conduction. Moreover, observations by Krishna Prasad et al. (2018) showed the increase in
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the effective coronal polytropic index with temperature, which is also inconsistent with the
theoretical prediction arising from the effect of thermal conduction. Addressing these recent
observational precedents of anomalously low thermal conduction, in this work we neglect
the first term on the RHS of Equation 1.

Thus, the main equation governing the linear evolution of slow MA and entropy waves
in a plasma with heating/cooling misbalance and under the assumptions described above is

∂3ρ̃

∂ t̃3
− γ

∂3ρ̃

∂ t̃∂z̃2
= −ν̃2

(
∂2ρ̃

∂ t̃2
− γQ

∂2ρ̃

∂z̃2

)
. (5)

Here, we have introduced the dimensionless density perturbation [ρ̃ = ρ1/ρ0], coordinate
[z̃ = z/L], and time [t̃ = tcS0/L], where L is the characteristic spatial scale of the medium
(for example, the loop length). Also, hereafter we use dimensionless characteristic frequen-
cies ν̃1, ν̃2, and ν̃12, defined through the characteristic thermal-misbalance timescales [τ1 and
τ2] as

ν̃1,2 = 1

τ̃1,2
= L

τ1,2cS0
, ν̃12 = τ̃1 − τ̃2

2τ̃2τ̃1
. (6)

In Section 3, we demonstrate that depending on the ratio, sign, and absolute values of the
characteristic thermal-misbalance times [τ1,2] (or their dimensionless counterparts [̃ν1,2 and
ν̃12]), the harmonics of slow MA and entropy waves may evolve differently. Further analysis
is conducted for dimensionless quantities, hence the tilde sign is omitted.

3. Parametric Analysis

We obtain the solution for the evolutionary Equation 5 by the separation of variables that
is also known as the Fourier method. A perturbation of the plasma equilibrium state can, in
general, be represented as a sum of the wave modes constituting it (in our case a sum of the
entropy and slow MA modes). The Fourier method allows us to distinguish between the im-
pact of these different physical modes, determine partition of the energy of the initial pertur-
bation between them, and analyse their evolution separately. Moreover, this method allows
us to analyse the behaviour of the individual Fourier harmonics of those physical modes,
which may grow or decay, and propagate or not propagate. The latter non-propagating be-
haviour is retained across the whole spectrum of the perturbation for entropy waves and may
occur in a specific interval of harmonics for slow MA waves. For example, in the discussed
coronal plasma with thermal misbalance, some harmonics of the slow MA mode may grow
and propagate, while other harmonics of the same mode may also grow but not propagate, if
certain physical conditions are fulfilled. In this section, we derive those conditions explicitly
for both the slow MA and the entropy modes and link them with the characteristic timescales
of the misbalance: τ1,2 (Equations 2 and 3).

3.1. Behaviour of the Individual Fourier Harmonics

Applying the Fourier method, we search for the solution for Equation 5 of the form ρ (z, t) =
ϕ (z)ψ (t). This substitution allows us to split Equation 5 into two equations describing
dependence of the full solution on coordinate [ϕ (z)] and on time [ψ (t)], respectively.
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The equation describing the dependence of the perturbation on coordinate [ϕ (z)] has the
form of a harmonic oscillator,

d2ϕ

dz2
+ k2ϕ = 0, (7)

where k2 are the eigenvalues that appear after the separation of variables in Equation 5
as F1(ψ,ψ ′

t ,ψ
′′
t t ,ψ

′′′
t t t ) = F2(ϕ,ϕ′′

zz) = −k2. We assume that there are no mass flows at the
boundaries, which implies that Neumann boundary conditions ∂ρ (0, t) /∂z = ∂ρ (l, t) /∂z =
0, or equivalently dϕ (0) /dz = dϕ (l) /dz = 0, are applied. Here, l is the length of the
medium normalised to the characteristic length scale L.

The oscillatory solutions of Equation 7 exist only for eigenvalues k2 > 0. In this case, the
eigenvalues k can be defined by the harmonic number n as

k = πn

l
, n = 1,2,3, ... (8)

The eigenvalues (Equation 8) correspond to the set of possible wavenumbers of the entropy
and slow MA modes, which in turn defines the set of possible wavelengths λ = 2π/k. The
quantisation of the wavenumbers [k] in terms of the characteristic length of the medium [l]
implies the existence of a closed resonator (for example, the coronal loop), which would
eventually allow the initially localised MA perturbation to form standing waves if it does
not dissipate or leak out before getting reflected from the resonator boundary. On the other
hand, the developed theory can be readily applied for description of propagating waves in
open plasma structures too, if the wave travel time to the resonator boundary is longer than
its lifetime or by the use of open boundary conditions. In this case, the set of wavenumbers
[k] would be continuous and fully prescribed by the driver.

The solution of Equation 7 for k2 > 0 and the chosen boundary conditions is well-known
and gives us the spatial dependencies [ϕ (z) = ϕn (z)] for n > 0 of the full solution [ρ (z, t)].
The particular case with k2 = 0 (n = 0) corresponds to a non-oscillatory background of the
full solution [ρ0(z, t)] with spatial dependence ϕ0 (z).

In order to describe temporal evolution of the entropy and slow MA harmonics with
wavenumbers k2 > 0, we consider the equation for ψ (t), arising from the same separation
of variables procedure. This equation is the third-order, linear, ordinary differential equation
with constant coefficients written as

d3ψ

dt3
+ ν2

d2ψ

dt2
+ k2(n)γ

dψ

dt
+ k2(n)γQν2ψ = 0. (9)

The solution of Equation 9 may have different forms (see, e.g., Polyanin and Zaitsev, 2002),
depending on the type of roots of the following cubic algebraic equation:

ω3 − iν2ω
2 − k2(n)γω + ik2(n)γQν2 = 0, (10)

obtained by writing d/d t → iω in Equation 9. The cubic equation with complex coefficients
(Equation 10) coincides with the general dispersion relation for slow and entropy modes in
the plasma with thermal misbalance, derived by, e.g., Field (1965), Ryashchikov, Mole-
vich, and Zavershinskii (2017), Zavershinskii et al. (2019), and Kolotkov, Nakariakov, and
Zavershinskii (2019). Thus, roots of Equation 10 can be considered as complex frequen-
cies [ω1,2,3] of entropy and slow MA harmonics, corresponding to real wavenumber [k].
The asymmetry in the temporal and spatial dependencies (powers of ω and k) described by
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Equation 10 can be explained by the fact that out of all three possible solutions only two
slow MA modes can propagate. The phase speed of the entropy mode is always equal to
zero.

The discriminant � of Equation 10 is

� = −108(R3 + U 2), (11)

where R and U are real coefficients,

R = 3k2γ − ν2
2

9
, U = 2ν3

2 − 9ν2k
2γ + 27k2γQν2

54
.

Thus, as the discriminant � (Equation 11) is purely real-valued, frequencies ω1,2,3 may have
the following types for given k:

i) Case 1 with one purely imaginary root [ω1] and two complex conjugate roots [ω2,3]. This
case is physically equivalent to the existence of one non-propagating (entropy) harmonic
and two propagating (slow MA) harmonics.

ii) Case 2 with all three roots [ω1,2,3] being purely imaginary. In this case, not only the
entropy harmonic but also two slow MA harmonics become non-propagating.

Occurrence of Cases 1,2 directly depends on the sign and absolute values of the constant
coefficients in Equation 10. In our problem, they are defined not only by the harmonic num-
ber n, but, more importantly, by the properties of the heat-loss function Q(ρ,T ) through
the quantities γQ = γ τ2/τ1 (Equations 2 and 3) and ν2 = L/(τ2cS0) (Equation 6). In other
words, for some chosen heat-loss function Q(ρ,T ) providing fixed values of the timescales
τ1 and τ2 (and their combinations γQ and ν2), Case 1 (with one non-propagating and two
propagating harmonics) does not necessarily hold true for all harmonic numbers n in the
perturbation spectrum. Thus, the possibility for certain MA harmonics excited in a thermo-
dynamically active plasma of the solar corona to propagate or not propagate directly depends
on the coronal heat-loss function [Q(ρ,T )].

According to Cardano’s formula, the roots of the dispersion relation (Equation 10) can
be written as

ω1 = i
(
−ν2

3
+ A + B

)
,

ω2 = A − B

2

√
3 − i

(
ν2

3
+ A + B

2

)
, (12)

ω3 = −A − B

2

√
3 − i

(
ν2

3
+ A + B

2

)
,

where

A = 3
√

−U + √−�/108, B = −R/A.

We can discriminate between Cases 1,2, using discriminant � (Equation 11) and roots
ω1,2,3 (Equation 12) for a given harmonic number n. Thus, Case 1 occurs for � < 0. Taking
a real-valued cubic root in the expression for the coefficient A in Equation 12, we can deter-
mine the type of roots [ω1,2,3] and uniquely associate them with the physical wave modes. In
this case, the frequency ω1 is purely imaginary and the conjugate frequencies ω2,3 are com-
plex. This corresponds to a non-propagating entropy harmonic with the number n, which has
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zero real part [ωER = 0] and non-zero imaginary part [ωEI �= 0] (i.e. increment/decrement)
of the frequency ω1,

ωEI = −ν2

3
+ A + B. (13)

In addition, there are two slow MA harmonics propagating in the opposite directions with the
same number n. They have non-zero real part [ωAR �= 0] and non-zero imaginary part [ωAI �=
0] (i.e. increment/decrement) of the complex conjugate frequencies ω2,3 = ±ωAR − iωAI.
From Equation 12, those MA real and imaginary parts are

ωAI = ν2

3
+ A + B

2
, ωAR = A − B

2

√
3. (14)

Case 2 with three purely imaginary roots ω1,2,3 (Equation 12), corresponding to one non-
propagating entropy harmonic and two non-propagating slow MA harmonics, occurs for
� > 0. In this case, all values of the cubic root in the expression for the coefficient A are
complex. It can be shown that for this case both slow MA and entropy harmonics have zero
real part of the frequency ωAR = ωER = 0. However, all modes have non-zero imaginary
parts ωAI, ωEI �= 0 (i.e. increment/decrements), coinciding with the imaginary roots ω1,2,3

(Equation 12). In this regime, perturbations of the plasma density and/or temperature caused
by slow MA and entropy harmonics with the same wavenumber [k(n)] would look identical,
as a non-propagating disturbance either growing or decaying with time. In other words, it
is not always obvious to distinguish between the physical modes of a slow MA or entropy
nature in the set of roots ω1,2,3 (Equation 12) in Case 2. On the other hand, for varying
properties of the heat-loss function [Q(ρ,T )], i.e. different values of the parameters τ1 and
τ2, one of those imaginary roots can change sign (causing the corresponding physical mode
to be stable or unstable) independently of the two other imaginary roots. In the following
analysis, we use this property as a rule of thumb to differentiate between slow MA and
entropy modes among the roots ω1,2,3 (Equation 12) in Case 2.

Thus, using Equations 12 – 14 we can write conditions for the plasma modes to am-
plify/attenuate (be unstable/stable), in terms of the characteristic misbalance times τ1 and
τ2 (Equations 2 and 3). These conditions are visualised for the entropy and slow MA (both
propagating and non-propagating) modes in the left-hand panel of Figure 1. In this work, we
analyse the dependence of the roots ω1,2,3 (Equation 12) on the characteristic times numer-
ically, i.e. we numerically search for the real and imaginary parts of ω1,2,3 for all possible
values of τ1,2 (from −∞ to +∞).

The slow MA waves amplify (become unstable) if the imaginary part of two frequencies
in the set of roots (Equation 12) is negative regardless of the sign of the increment/decre-
ment of the other root, thus associated with the entropy wave, for all harmonic numbers n.
As shown by Figure 1, this condition is satisfied in three distinct regions of positive and
negative τ1,2. These regions coincide with the isentropic instability condition for slow MA
modes introduced by Field (1965) and written in terms of the characteristic times τ1,2 by
Zavershinskii et al. (2019) and Kolotkov, Nakariakov, and Zavershinskii (2019) as

τ1 − τ2

τ1τ2
< 0, (15)

in the limit of weak dispersion.
Similarly, the entropy mode is considered to amplify (become unstable), if the imaginary

part of one of three roots (Equation 12) is negative regardless of the sign of the other two
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Figure 1 Left: Parametric regions of the misbalance timescales τ1 and τ2 (Equations 2 and 3) showing ampli-
fication of slow MA waves (red shading, imaginary parts of two out of three roots (Equation 12) are negative
regardless of the sign of the other root for all n) and entropy wave (blue-dashed lines, imaginary part of one
out of three roots (Equation 12) is negative regardless of the sign of the other two roots for all n). The am-
plification/attenuation of slow MA and entropy waves corresponds to the regimes of their instability/stability,
respectively. Right: Parametric regions of τ1 and τ2 showing different behaviour of slow MA and entropy
waves prescribed by the sign of the discriminant � (Equation 11). The blue-shaded regions correspond to
� < 0 for all harmonics n (two propagating slow MA modes and one non-propagating entropy mode, see
Case 1 in Section 3.1). The green- and yellow-shaded regions show the regimes in which the discriminant �

can be both positive and negative depending on the harmonic number n (see Table 1). In this case, all three
modes become non-propagating for � > 0 in a certain range of harmonic numbers n (see Case 2 in Sec-
tion 3.1). The Roman numerals indicate specific regions of τ1,2 with different scenarios of the evolution of
the entropy and slow MA waves, described in detail in Section 3.2 and demonstrated in Section 5.1. We also
recall that the blue (τ2 = τ1) and yellow (τ2 = τ1/9) lines are equivalent to γQ = γ and γQ = γ /9, respec-
tively, see Equations 1 – 3. In both panels, the misbalance timescales τ1,2 are normalised to the isothermal
acoustic travel time along the loop: L/cS0 (see Section 2).

slow MA roots for all harmonic numbers n. This condition is satisfied for

τ1 < 0, (16)

which corresponds to the isobaric instability (see Field, 1965). The same condition for the
instability of the entropy mode was used by Kolotkov, Duckenfield, and Nakariakov (2020),
in the context of the stability of the solar corona and seismological constraining the coronal-
heating function.

In order to determine where in the spectrum (i.e. a specific range of the perturbation
harmonic numbers n and the corresponding wavenumbers k) switching between Cases 1
and 2 takes place, we solve � = 0 (Equation 11) with respect to k2. This gives us three
critical wavenumbers: kcr0, kcr1, and kcr2. One of these critical wavenumbers is equal to
0 (i.e. kcr0 = 0 and ncr0 = 0), thus corresponding to the non-oscillatory background (see
Section 3.1). The other two critical wavenumbers are

kcr1,2 =
√

ν2
2

8γ 3

[(
γ 2 + 18γ γQ − 27γ 2

Q

) ± (
γQ − γ

) 1
2
(
9γQ − γ

) 3
2

]
. (17)
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Table 1 Relationship between the discriminant sign � ≶ 0 and the harmonic number n in different parametric
regions of the characteristic times τ1 and τ2, shown in Figure 1. Negative discriminant � < 0 indicates
the regime of two propagating and one non-propagating modes (see Case 1 in Section 3.1). For positive
discriminant � > 0, all modes become non-propagating (see Case 2 in Section 3.1). The critical harmonic
numbers ncr1 and ncr2, determining the switch between those regimes, are given in Equation 18.

Regions I±, II±
ncr1,2 are complex
(see blue in Figure 1)

� < 0 for all n

Regions III±
ncr1,2 are real
(see yellow in Figure 1)

if ncr1 > ncr2 ≥ 1 :
� < 0, 1 ≤ n ≤ ncr2
� > 0, ncr2 + 1 ≤ n ≤ ncr1
� < 0, n > ncr1

if ncr1 ≥ 1, ncr2 = 0 :
� > 0, 1 ≤ n ≤ ncr1
� < 0, n > ncr1

if ncr1 = ncr2 = 0 :
� < 0 for all n

Regions IV±
ncr1 is real
ncr2 is complex
(see green in Figure 1)

if ncr1 ≥ 1 :
� > 0, 1 ≤ n ≤ ncr1
� < 0, n > ncr1

if ncr1 = 0 :
� < 0 for all n

These eigenvalues, in turn, give the critical harmonic numbers at which the change of the
discriminant sign happens,

ncr1 = floor

(
kcr1

π
l

)
, ncr2 = floor

(
kcr2

π
l

)
. (18)

It is clearly seen that the critical harmonic numbers ncr1 and ncr2 depend on the absolute
value and ratio of the characteristic timescales τ1 and τ2. These numbers can be either real
or complex defining the boundaries of the non-propagating harmonic range (if ncr1, ncr2

are real, then ncr1 > ncr2). Thus, the parametric regions of τ1,2 with different sign of the
discriminant � (Equation 11) across the perturbation spectrum are shown in the right-hand
panel of Figure 1. The blue-shaded regions in Figure 1 indicate the regime with � < 0 for
all harmonic numbers n. It means that Case 1 holds true for any harmonic in the spectrum,
i.e. all slow MA harmonics propagate (see also Table 1). The yellow shading in Figure 1
indicates the region where the discriminant may be either positive or negative. This implies
that in some range of the harmonic number n the slow modes become non-propagating
(Case 2). This range is determined by the critical harmonic numbers ncr1 and ncr2 (Equation
18). Depending on the absolute value of the characteristic times τ1,2, it may be located at
high or low harmonic numbers n and include numerous harmonics (see Table 1). For a
particular case with ncr2 = 0, this range starts from the fundamental harmonic n = 1, which
thus becomes non-propagating. The green shading in Figure 1 indicates the region where the
discriminant may be either positive or negative too. However, in this case the range of non-
propagating slow MA harmonics (Case 2) may only start from the fundamental harmonic
n = 1 (ncr2 is complex) and is limited by ncr1. For ncr1 = ncr2 = 0 in the yellow-shaded
regions and for ncr1 = 0 in the green-shaded regions in Figure 1, Case 2 degenerates to Case
1, i.e. all slow MA harmonics propagate.

In summary, the solution of Equation 9 gives us temporal dependence [ψ (t)] of the full
solution [ρ(z, t)] of the wave Equation 5. It may have two different forms, referred to as
Cases 1 and 2 in this section. The difference is caused by the fact that slow MA harmon-
ics may become non-propagating in a certain range of the perturbation spectrum depend-
ing on the characteristic thermal-misbalance timescales τ1,2. The range of non-propagating
harmonics may be located at different parts of the spectrum (i.e. at high or low harmonic
numbers), and it determined by the critical harmonic numbers [ncr1 and ncr2] (Equation 18).
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The parametric regions of the characteristic times τ1,2 where the change of the solution
form takes place are demonstrated in Figure 1 and Table 1. In addition to the effect of non-
propagating slow MA harmonics, thermal misbalance leads to the amplification/attenuation
of slow MA and entropy modes (see the left-hand panel of Figure 1). Thus, a combination of
the left-hand and right-hand panels in Figure 1 should be used for determining values of τ1,2

that allow for i) stable/unstable behaviour of slow MA and entropy waves and ii) propaga-
tion/non-propagation of slow MA harmonics. In Section 3.2, we discuss the dependence of
the slow MA speed and increments/decrements of slow MA and entropy modes on the har-
monic number (i.e. an effective dispersion and frequency-dependent damping/amplification
of slow MA and entropy waves, respectively), also caused by the phenomenon of thermal
misbalance. A synergy of these effects leads to a number of different scenarios for the initial
perturbation to evolve, which are outlined in Section 3.2 and demonstrated in Section 5.1.

3.2. Parametric Regions with Different Behaviour of the Individual Fourier
Harmonics

A combination of the left panel (regions of damping/amplification of slow MA and en-
tropy modes) and right panel (regions of propagating/non-propagating slow MA harmonics)
in Figure 1 allows us to distinguish parametric regions of τ1,2 with qualitatively different
spatio-temporal behaviour of slow MA and entropy waves (the Roman numerals in Fig-
ure 1). Quantitatively, the difference in the wave behaviour is caused by the dependence
of the phase speed of slow MA waves (the phase speed of the entropy wave is always zero:
ωER/k ≡ 0) and increment/decrement of slow MA and entropy waves on the harmonic num-
ber n (the wavenumber k), which are different for different combinations of the misbalance
parameters τ1,2. To illustrate this, we calculated dependencies of the wave increment/decre-
ment and phase speed on the harmonic number n for slow MA and entropy waves in some
of those regions (see Figure 2). We used Equations 13 and 14 for the harmonics n satisfying
Case 1, and general expressions (Equation 12) for the harmonics n satisfying Case 2.

As was shown in previous work (e.g. Zavershinskii et al., 2019; Kolotkov, Nakariakov,
and Zavershinskii, 2019), the thermal misbalance has a weak impact on the dispersion prop-
erties of waves in the short-wavelength limit (n → ∞) and strongly affects them in the long-
wavelength limit (n → 0). Assuming that harmonics in both of these limits satisfy Case 1,
we can write the increments/decrements of entropy and slow MA waves as

lim
n→0

ωEI = −ν2, lim
n→∞ωEI = −ν1, (19)

lim
n→0

ωAI = 0, lim
n→∞ωAI = −ν12,

with the parameters ν1, ν2, and ν12 determined by Equation 6. Equations 19 have no contra-
diction with the results shown in Figure 1, stating that growth/decay of the entropy wave is
defined by the sign of the characteristic time ν1 (τ1) for all n. For long-wavelength harmon-
ics (n → 0), Case 1 occurs only if the characteristic times ν1,2 (τ1,2) are of the same sign
(see the first to third rows in Figure 2). Thus, the negative/positive ν2 (τ2) is equivalent to
the negative/positive ν1 (τ1) in this case.

Due to the effect of non-propagation, the slow MA phase speed may have two values in
the long-wavelength (strong misbalance) limit:

lim
n→0

ωAR

k
= cSQ, for propagating slow MA waves, Case 1 (20)
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lim
n→0

ωAR

k
= 0, for non-propagating slow MA waves, Case 2

as shown by the first to third rows and the fourth row in Figure 2, respectively. In the short-
wavelength limit (weak misbalance), the effect of non-propagation never takes place and
slow MA phase speed is not affected by the misbalance process, so that

lim
n→∞

ωAR

k
= cS. (21)

Entropy mode in Regions I± – IV±. As shown by Figure 2, in all Regions I+ to IV+ the
entropy mode decays (ωEI < 0). Being excited simultaneously with slow MA modes, the
entropy mode contains a part of the initial perturbation energy. Thus, after the slow MA
waves run away from the site of the initial perturbation, the essentially non-propagating
entropy mode forms a localised density and temperature disturbance that decay with time.
However, the decay rate of the individual entropy harmonics is different in those regions.
Namely, in Regions I+ and IV+ (II+ and III+) the shorter- (longer-) wavelength harmonics
decay more efficiently, respectively. The situation is symmetrically opposite in Regions I−
to IV−, where ωEI > 0 and the entropy mode grows (not shown in Figure 2).

Slow MA modes in Region I+. According to the top row in Figure 2, slow MA
waves propagate and amplify in Region I+ (ωAI > 0), with higher growth rate at shorter-
wavelength harmonics. In this region also, the phase speed of slow MA modes experiences
a negative dispersion, i.e. longer-wavelength harmonics propagate faster than those with
shorter-wavelength. A combination of these effects leads to the formation of propagating
quasi-periodic patterns, which could be referred to as slow MA wave trains. The linear stage
of their formation (with the relative amplitude of the plasma density perturbation ρ 
 1)
from the initial Gaussian pulse has been discussed in detail by Zavershinskii et al. (2019)
in terms of the linear Equation 5. In a weakly nonlinear regime with ρ � 1, the growing
slow MA wave develops into self-sustained shock pulses, for description of which a nonlin-
ear evolutionary equation is required (see, e.g., Molevich et al., 2011; Zavershinskii et al.,
2020). The strong amplification may also lead to highly nonlinear variations with ρ � 1.
In this case, parameters of the nonlinear slow MA shock structures can be found using the
solution of the full set of hydrodynamic equations (Molevich and Ryashchikov, 2020).

Slow MA modes in Region II+. The second row of Figure 2 shows properties of slow
MA modes in Region II+. In this case, slow MA waves propagate and decay (ωAI < 0) with
larger decrease for shorter-wavelength harmonics. The phase speed of slow MA modes has
a positive dispersion, with shorter-wavelength harmonics overtaking. In this case, the effect
of dispersion and frequency-dependent damping causes the initial Gaussian pulse to become
asymmetric, broaden, and decrease in its amplitude with time (see Zavershinskii et al., 2019,
for details). As both slow MA waves decay in this case, the description of nonlinear effects
is required only in the case of a nonlinear initial perturbation.

Slow MA modes in Region III+. In this region of the misbalance parameters τ1,2 (see
the third row of Figure 2), the range of non-propagating slow MA harmonics may appear
in the spectrum (see Case 2 in Section 3.1), that is determined by the critical wavenumbers
ncr1 and ncr2 (Equation 18). Both the propagating slow MA waves with ωAI < 0 and all non-
propagating harmonics with purely imaginary ω1,2,3 < 0 decay in this region. The dispersion
of the phase speed can be either positive or negative in this region. For harmonics n <

ncr2, the dispersion is negative and |ωAI| is lower (weaker damping); for harmonics n >

ncr1, it becomes positive and |ωAI| is higher (stronger damping). Potentially, formation of
quasi-periodic slow MA structures from a broadband initial perturbation due to the negative
dispersion and weak damping in the long-wavelength band is possible. However, the effect is
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Figure 2 Left column indicates the regions of the thermal-misbalance timescales [τ1,2] in which the disper-
sive properties of slow MA and entropy waves are qualitatively different (see also Figure 1), with τ2/τ1 = 2 in
Region I+ (the top row), τ2/τ1 = 0.5 in Region II+ (the second row), τ2/τ1 = 0.01 in Region III+ (the third
row), and τ2/τ1 = −1.4 in Region IV+ (the bottom row). Middle and right columns show the dependence
of the phase speed ωAR,ER/k and increment/decrement ωAI,EI of the slow MA and entropy modes on the
harmonic number n, respectively. The dependencies are calculated using Equations 13 and 14 for harmonics
n satisfying Case 1, and general expressions (Equation 12) for harmonics n satisfying Case 2. The red sym-
bols correspond to the harmonics of two propagating slow MA waves. The blue symbols correspond to the
entropy mode. The green symbols correspond to the harmonics satisfying Case 2, for which all three modes
become non-propagating. The ranges of n in which those non-propagating slow MA harmonics appear are
determined by the critical harmonic numbers ncr1,2 (Equation 18) and shown by grey shading. The harmonic
number nup shows the change of the sign of the gradient of the dependence ωAR(n) in Region IV+ , and is
obtained from the condition ∂ωAR/∂n = 0. The limiting values of the slow MA phase speed [cS and cSQ]
are given in Equation 1, and normalised to the isothermal sound speed cS0. The limiting values of the slow
MA and entropy increments/decrements, ν1,2 and ν12 are given by Equation 6.
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Table 2 Exact solution of Equation 5 in different regions of the characteristic thermal-misbalance timescales
τ1,2 (see Figure 1), for ncr1 > ncr2 > 1 (Equation 18). The functions ρn�− (z, t), ρn�+ (z, t), and ρ0 (z, t)

are given in Equations 22, 28, and 30, respectively.

Region Solution

I±, II± ρ (z, t) = ρ0 (z, t) + ∑∞
n=1 ρn�− (z, t)

III± ρ (z, t) = ρ0 (z, t) + ∑ncr2
n=1 ρn�− (z, t)+∑ncr1

n=ncr2+1 ρn�+ (z, t) + ∑∞
n=ncr1+1 ρn�− (z, t)

IV± ρ (z, t) = ρ0 (z, t) + ∑ncr1
n=1 ρn�+ (z, t) + ∑∞

n=ncr1+1 ρn�− (z, t)

likely to be less pronounced than in Region I+ due to a small number of harmonics n < ncr2,
and relatively low variation of their phase speed between cSQ and 0. Indeed, in this region,
the maximum value of cSQ prescribed by γQ = γ τ2/τ1 is cS/3 that is associated with the
upper boundary of Region III+, 0 < τ2/τ1 < 1/9.

Slow MA modes in Region IV+. In this region (see the bottom row in Figure 2), the
range of non-propagating slow MA harmonics may also appear in the spectrum. However,
in contrast to Region III+, slow MA waves grow with ωAI > 0. Similarly to Region III+, the
non-propagating slow MA harmonics may have both higher and lower increments relative to
the propagating harmonics. The phase speed of slow MA waves is a non-monotonic function
of the harmonic number n, providing either positive or negative dispersion (see the middle
panel in the bottom row of Figure 2). The range of propagating harmonics with positive dis-
persion has a finite number of harmonics. The lower limit of this range is determined by the
critical number ncr1 (Equation 18). The upper limit, nup can be found by solving the equation
∂ωAR/∂n = 0 (Equation 14). The range of harmonics with negative dispersion, in turn, has
no upper limit. A combination of negative dispersion and amplification again may lead to
formation of quasi-periodic slow MA patterns. The effect will be more strongly pronounced
for low values of nup, so that the majority of slow MA harmonics will have negative disper-
sion. The dispersion properties of slow MA waves in this case will be qualitatively similar
to those in Region I+. The amplifying non-propagating slow MA harmonics in Region IV+,
which occur for the harmonic numbers 1 < n < ncr1, would develop into long-wavelength
density disturbances, similarly to those caused by the entropy mode, thus making the plasma
essentially non-uniform along the field.

In Regions I− to IV−, the properties of slow MA waves are symmetrically opposite to
those in Regions I+ to IV+ described above. Hence, these regions are not shown in Figure 2.

Thus, the dispersive properties of slow MA and entropy waves are shown to strongly de-
pend on the characteristic timescales τ1 and τ2 of the thermal-misbalance process, that may
lead to dramatically different scenarios for the evolution of the initial broadband perturba-
tion of the coronal plasma. For illustration, in Section 5 we show how entropy and slow MA
modes excited simultaneously share the initial perturbation energy and evolve in the linear
regime in Regions I± and II±, using the exact full solution ρ(z, t) presented in Section 4.

4. Exact Solution

In Section 3, we have discussed the spatial ϕ (z) and temporal ψ (t) dependencies of the full
solution ρ (z, t) = ϕ (z)ψ (t), described by Equations 7 and 9, respectively. Using solutions
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to these equations, in this section we present the full exact solution of the governing evo-
lutionary Equation 5 for the density perturbation ρ (z, t) caused by a superposition of slow
MA and entropy waves with harmonic number n. There are three possible cases:

i) The solution for the nth harmonic with � < 0 (Case 1: two oppositely propagating slow
MA modes and one non-propagating entropy mode),

ρn�− (z, t) = C1neωEIt cos (kz) + (22)

C0neωAIt [cos (ωARt + kz − φn) + cos (ωARt − kz − φn)] ,

where

C0n =
√

C2
2n + C2

3n

2
, φn = arctan

(
C3n

C2n

)
. (23)

The constants C1n, C2n, and C3n can be obtained by solving the following set of linear
equations:

⎛
⎝ 1 1 0

ωEI −ωAI ωAR

ω2
EI

(
ω2

AI − ω2
AR

) −2ωARωAI

⎞
⎠

⎛
⎝C1n

C2n

C3n

⎞
⎠ =

⎛
⎝I1n

I2n

I3n

⎞
⎠ . (24)

The integrals I1n, I2n, and I3n are prescribed by the initial perturbation ρin(z,0) and the
derivatives (∂ρ(z, t)/∂t)|t=0, and (∂2ρ(z, t)/∂t2)

∣∣
t=0

as

I1n = 2

l

∫ l

0
ρin(z,0) cos (kz)dz, (25)

I2n = 2

l

∫ l

0

∂ρ(z, t)

∂t

∣∣∣∣
t=0

cos (kz)dz, (26)

I3n = 2

l

∫ l

0

∂2ρ(z, t)

∂t2

∣∣∣∣
t=0

cos (kz)dz. (27)

ii) The solution for the nth harmonic with � > 0 (Case 2: all three modes non-
propagating),

ρn�+ (z, t) = (
C1ne−iω1t + C2ne−iω2t + C3ne−iω3t

)
cos (kz) . (28)

The constants C1n, C2n, and C3n can be obtained by solving the following set of linear
equations:

⎛
⎝ 1 1 1

ω1 ω2 ω3

ω2
1 ω2

2 ω2
3

⎞
⎠

⎛
⎝C1n

C2n

C3n

⎞
⎠ =

⎛
⎝I1n

I2n

I3n

⎞
⎠ , (29)

with the integrals I1n, I2n, and I3n determined by Equations 25 – 27.
iii) A non-oscillating and non-propagating background value with � = 0 and n = 0 is

ρ0 (z, t) = C10e−ν2t + C20t + C30. (30)
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The constants C10, C20, and C30 can be obtained by solving the following set of linear
equations:

⎛
⎝ 1 0 1

−ν2 1 0
ν2

2 0 0

⎞
⎠

⎛
⎝C10

C20

C30

⎞
⎠ =

⎛
⎝I10

I20

I30

⎞
⎠ , (31)

where

I10 = 1

l

∫ l

0
ρin(z,0)dz, (32)

I20 = 1

l

∫ l

0

∂ρ(z, t)

∂t

∣∣∣∣
t=0

dz, (33)

I30 = 1

l

∫ l

0

∂2ρ(z, t)

∂t2

∣∣∣∣
t=0

dz. (34)

Using Equations 22, 28, and 30, we can construct the exact solution of Equation 5 by the
superposition principle. In other words, to obtain the exact solution we sum up the solutions
for all harmonics from n = 1 to infinity, using Equations 22 and 28 for harmonics satisfy-
ing � < 0 and � > 0, respectively, and add Equation 30 for a non-oscillating background
(n = 0). The series describing the exact solution for different regions of the characteristic
thermal-misbalance timescales τ1,2 (see Figure 1) are presented in Table 2. The exact solu-
tion obtained gives us plenty of possibilities for the analysis of the perturbation evolution.

5. Applications of the Exact Solution

The exact solution shown in Table 2, in particular, allows us to study the initial (linear) stage
of the perturbation evolution in any regions of the characteristic misbalance times [τ1 and
τ2]. Moreover, it allows us to study the evolution of slow MA and entropy waves separately,
attributing the first and second terms on the RHS of Equation 22 to the entropy and slow MA
mode, respectively. As was discussed in Section 3, this distinct attribution is only possible
for Case 1 with the discriminant � < 0 (Equation 11), while in Case 2 with � > 0 and the
solution of Equation 28 it is less obvious because of the mixed properties of those waves.
Hence, in this section, for illustration we apply the obtained exact solution to the evolution of
the initial localised perturbation in parametric Regions I± and II± (see Figure 1), throughout
which Case 1 holds true, i.e. all slow MA harmonics propagate and all entropy harmonics
do not propagate.

5.1. Spatio-Temporal Evolution of Entropy and Slow MA Modes

The specific form of the initial perturbation is determined by its functional dependence on
the z-coordinate and what plasma parameters are perturbed. This in turn determines the
functions ρin(z,0), (∂ρ(z, t)/∂t)|t=0, and (∂2ρ(z, t)/∂t2)

∣∣
t=0

, which affect the partition of
the initial perturbation energy between slow MA and entropy waves, according to Equa-
tion 24. From the set of governing MHD equations written for the perturbations along the
field in a zero-β plasma (see, e.g., Equations 1 – 4 of Zavershinskii et al., 2019), the deriva-
tives ∂ρ(z, t)/∂t and ∂2ρ(z, t)/∂t2 (and hence their values at t = 0) are connected with the
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perturbations of the other plasma parameters as

∂ρ(z, t)

∂t
= −∂Vz(z, t)

∂z
, (35)

∂2ρ(z, t)

∂t2
= ∂2P (z, t)

∂z2
. (36)

In this work, we consider an initial Gaussian pulse perturbing the plasma density, pres-
sure, and temperature,

ρin (z,0) = Aρ exp
[− (z − z0)

2 /w
]
,

Pin (z,0) = AP exp
[− (z − z0)

2 /w
]
, (37)

Tin (z,0) = Pin (z,0) − ρin (z,0) ,

Vz,in (z,0) = 0.

Here, the initial perturbation of the plasma velocity Vz,in is taken to be zero, implying the ab-
sence of the injected plasma flows. All the initial perturbations (Equation 37) are normalised
to the equilibrium values ρ0, ρ0c

2
S0, T0, and cS0, respectively; Aρ and AP are magnitudes of

the density and pressure variations; w and z0 are the effective width and position of the
perturbing pulse, respectively. We assume here that Aρ = AP , which implies that the ini-
tial perturbation (Equation 37) is of an isothermal type (i.e. Tin = 0). This assumption is
justified, for example, for perturbations by impulsive heating events in the solar corona, in
which the rapid increase in the plasma temperature strengthens the efficiency of the parallel
thermal conduction that tends to smooth the temperature perturbation out, on a timescale
much shorter than the timescale of the waves excited (see, e.g., Reale, 2016; Reale et al.,
2018, 2019). In addition, it can be shown that, for the initial perturbation (Equation 37), the
coefficients C10 and C20 in Equation 30 are equal to zero, so that the background value [ρ0]
does not vary in time and, hence, does not affect the damping or amplification of entropy
and slow MA modes.

In the examples shown in Figure 3, we focus on the evolution of the entropy wave and
one slow MA wave, as the evolution of the other slow MA wave is symmetrical. Thus, for
demonstration of the solution at t = 0 we use half of the second term in Equation 22. For
t �= 0, the second slow MA wave escapes the z-domain shown in Figure 3 and is therefore
not visible. We have varied the width [w] of the initial signal (Equation 37) to obtain the
most illustrative examples.

In the top row of Figure 3, we show evolution of the isothermal density perturbation
(Equation 37) in Region I+ of the characteristic thermal-misbalance times τ1,2, shown in
Figure 1. As was demonstrated in Section 3, the entropy mode attenuates in this region
of parameters. The slow MA mode, in turn, forms a propagating quasi-periodic pattern at
some distance from the site of the initial perturbation with the characteristic wavelength
about 0.1L and period about 0.07L/cS0, as a result of amplification of its harmonics and
negative dispersion of the phase speed (see the top row of panels in Figure 2 and discussion
in Section 3.2). For example, for typical parameters of coronal loops with L = 200 Mm and
T0 = 1 – 10 MK, the wavelength and period are 20 Mm and 40 – 120 seconds, respectively.
The formation of a similar propagating slow MA wave train for a set of parameters from
Region I+ was demonstrated by Zavershinskii et al. (2019) by numerical solution of the
evolutionary Equation 5, i.e. without separating the total solution into the individual entropy
and slow MA waves.
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Figure 3 Evolution of the initial plasma-density perturbation of a Gaussian shape (Equation 37) situated
at z0 = l/2, in the parametric Regions I+ with τ2 = 0.016 and τ1 = 0.01 (top row); II+ with τ2 = 0.04
and τ1 = 0.1 (second row); I− with τ2 = −0.4 and τ1 = −0.15 (third row); and II− with τ2 = −0.05
and τ1 = −0.15 (bottom row) of the characteristic misbalance timescales τ1,2 (see Figure 1). The exact
analytical solution describing the wave evolution in those regions is given in Table 2. Left, middle, and right
columns indicate the solutions at t = 0, t = 0.15, and t = 0.3 of the computational time, respectively. The
red and blue dashed lines correspond to one slow MA mode and one entropy mode, respectively. The solid
black line corresponds to the full solution (sum of solutions for one entropy and two slow MA modes). The
relative-density amplitude on the vertical axis is shown in the units of the initial density pulse amplitude
[Aρ ], shared between one entropy wave and two slow MA waves. The horizontal axis is normalised to
the characteristic spatial scale of the medium (for example, the loop length [L]). The background value
[ρ0(z, t)] (see Table 2) is included into the entropy-mode solution (the blue lines), since it does not propagate
(similarly to all harmonics of the entropy wave.) Animations showing the evolution of separate modes and
the development of full density perturbation (sum of entropy and slow MA modes) can be found in the
Supplementary Materials.

The second row in Figure 3 was obtained for a set of parameters τ1,2 corresponding to
Region II+ in Figure 1 and the second row of panels in Figure 2. In this case, both the
entropy and the slow MA waves decay, leading to the disappearance of the density perturba-
tion. Moreover, the decaying and propagating slow MA pulse becomes strongly asymmetric.
This effect is caused by a positive dispersion of the slow MA phase speed accompanied by
stronger damping of higher harmonics. In addition, the slow MA pulse shape is affected by
the effective excitation of the entropy mode in such a thermodynamically active plasma that
violates the symmetry in the partition of the initial perturbation energy across the spectrum.
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The decay of the propagating slow MA pulse in this regime was also shown numerically by
Zavershinskii et al. (2019), without discussion of the entropy-mode behaviour.

The wave evolution in Region I− of the parameters τ1,2 is shown by the third row of
Figure 3. In this case, the entropy mode grows and leads to the formation of a localised
plasma condensation at the site of the initial perturbation. The slow MA mode, in turn, runs
away from the perturbation epicenter and decays. In the coronal context, for example, this
regime could correspond to observations or numerical simulations of coronal rain formed
in response to impulsive perturbations of the coronal mechanical and thermal equilibria,
with weakly pronounced (or not pronounced at all) signatures of slow MA waves (see, e.g.,
Kohutova et al., 2020).

The opposite situation occurs in Region II− (see the bottom row in Figure 3), in which
both entropy and slow MA modes are amplified. Thus, one should expect to observe an
effective formation of localised plasma condensations by the growing entropy mode, ac-
companied by well developed and visible propagating slow MA waves. The exponential
growth of both modes in this regime will breach the realm of the linear analysis when the
perturbation amplitude becomes sufficiently large. However, taking additional dissipative
processes, such as thermal conduction and viscosity, into account may suppress the wave
growth rates or even stabilise the perturbations, thus extending the range of applicability of
the developed linear theory. This issue will be addressed in follow-up work.

5.2. Partition of Energy between Entropy and Slow MA Modes

In this section, we consider the question of the relative efficiency of the excitation of slow
MA and entropy waves in a plasma with heating/cooling misbalance. The set of linear equa-
tions (Equation 24) connecting the initial amplitude coefficients [C1n, C2n, and C3n] of the
entropy and slow MA waves with the initial perturbation [ρin(z,0), (∂ρ(z, t)/∂t)|t=0, and
(∂2ρ(z, t)/∂t2)

∣∣
t=0

] can be treated as effective initial Fourier spectra of those waves, pro-
viding the distribution of the initial perturbation energy over the harmonic numbers n. More-
over, the partition of this initial energy between the entropy and slow MA waves and their
harmonics is seen to directly depend on the properties of the plasma heat-loss function
Q(ρ,T ) through the presence of the parameters τ1,2 on the LHS of Equation 24. In other
words, for some regimes of the misbalance (values of τ1,2) the entropy/slow MA waves could
be excited with a higher/lower efficiency. We also note that the question of this energy par-
tition makes sense only for the regimes of decaying waves, as otherwise the wave instability
would cause the amplitude to grow exponentially independently of its initial value. Hence,
in this section we consider Region II+ of the misbalance parameters τ1,2 (see Figure 1), for
which both modes decay and all slow MA harmonics propagate.

In this work, we do not discuss the distribution of the initial energy over the individual
entropy and slow MA harmonics, but focus on the partition of the total (i.e. integrated over
all harmonics) initial energy between the modes. Thus, the ratio of the total initial ener-
gies Etot and Atot gained by the entropy and slow MA modes, respectively, from the initial
Gaussian pulse (Equation 37) can be estimated as

Etot

Atot
=

∞∑
n=1

C2
1n/2

∞∑
n=1

C2
0n, (38)

where

Etot =
∞∑

n=1

[
I1n

(
ω2

AR + ω2
AI

) + I3n

ω2
AR + (ωAI + ωEI)

2

]2

,
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Figure 4 Dependence of ratio
Etot/Atot (Equation 38) of the
entropy-mode energy to
slow-mode energy on the
misbalance timescale τ2
calculated for 200 harmonics and
for different values of the
timescale τ1 in the parametric
Region II+ (see Figure 1), i.e.
τ1/9 ≤ τ2 ≤ τ1. Both parameters
τ1 and τ2 are normalised to the
isothermal acoustic travel time
along the loop [L/cS0].

Atot =
∞∑

n=1

ω2
EII

2
1n

(
ω2

AR + ω2
AI

) − 2ωEIωAII1nI3n + I 2
3n

ω2
AR

[
ω2

AR + (ωAI + ωEI)
2
] .

The values of the integrals I1n and I3n can be obtained either analytically or numerically
using Equations 25 – 27 for the chosen initial conditions (Equations 35 – 37).

Figure 4 shows the dependence of the entropy to slow MA total energy ratio [Etot/Atot]
(Equation 38) on the characteristic misbalance times τ1,2. It is seen that, for τ1,2 ≥ 1 in the
considered Region [II+], the total initial energy of slow MA waves is almost equal to the
total initial energy of the entropy wave. For lower values of τ1,2, the ratio Etot/Atot decreases,
indicating a preferential excitation of slow MA waves in this regime of thermal misbalance.

6. Summary and Conclusions

The exact solution obtained (Table 2) presents the effects of thermal misbalance on the
evolution of entropy and slow MA waves in the optically thin, non-adiabatic plasma of the
hot solar corona. It gives us comprehensive information about the spatio-temporal dynamics
and dispersive properties of those waves, allows for the analysis of the energy partition
between slow MA and entropy waves and across their harmonics. In particular, the theory
developed here allowed us to identify the regimes in which properties of slow MA and
entropy waves get mixed through the mechanism of thermal misbalance. Now we summarise
the distinct misbalance-caused features of those waves, which have been revealed using the
exact solution obtained.

i) The exact analytical solution of the dispersion relation (Equation 10) of slow MA and
entropy waves is obtained without assumption of weak amplification/attenuation (cf. the
previous work on thermal misbalance by Zavershinskii et al., 2019; Kolotkov, Nakari-
akov, and Zavershinskii, 2019; Duckenfield, Kolotkov, and Nakariakov, 2021), where
the dispersion relation was solved under this assumptions. It allowed us to obtain the de-
pendence of the phase speed and increment/decrement of entropy and slow MA waves
on wavenumbers (see Figure 2). In particular, it is shown that for some regimes of ther-
mal misbalance the dependence of the slow MA wave phase speed on wavenumber can
be even non-monotonic (see the third and fourth rows in Figure 2).

ii) The theory presented is developed for any values of the characteristic misbalance
timescales [τ1,2]. Indeed, previous estimations of τ1,2 for typical coronal conditions
showed that they could be either positive or negative, depending on the specific form
of the coronal-heating function (Kolotkov, Duckenfield, and Nakariakov, 2020). Thus,
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the quantitative analysis performed in our work generalises and extends the qualitative
picture of the impact of thermal misbalance on slow MA and entropy modes shown in
Table 2 of Kolotkov, Duckenfield, and Nakariakov (2020).

iii) For specific regimes of thermal misbalance prescribed by the values of its characteristic
timescales τ1,2, harmonics of slow MA modes may become non-propagating. The cut-
off wavenumbers kcr1 and kcr2 (Equation 17) defining the non-propagating range have
been obtained analytically. In this non-propagating regime, slow MA and entropy har-
monics manifest mixed properties, so that the perturbation of a low-β coronal plasma
caused by these modes would look identical, as a non-propagating disturbance of the
plasma density either growing or decaying with time. The longitudinal structuring of
plasma density and temperature in coronal loops that are initially uniform along the
field, caused by those non-propagating slow MA harmonics, may have different spatial
scales depending on the values of the cut-off wavenumbers [kcr1 and kcr2]. Traditionally,
the parallel non-uniformity of plasma structures in the solar atmosphere, affecting the
dynamics of magnetoacoustic waves, is associated with the gravitational density strati-
fication and/or divergence of the magnetic-field lines with height (see, e.g., De Moortel
and Hood, 2004; Andries, Arregui, and Goossens, 2005; McEwan et al., 2006; Botha
et al., 2011; Luna-Cardozo, Verth, and Erdélyi, 2012; Riedl, Van Doorsselaere, and San-
tamaria, 2019). In this context, the non-propagation of essentially compressive, slow
MA harmonics offers an alternative mechanism for creating non-uniformity of plasma
along the loop, leading to the necessity to consider the interaction between the perturb-
ing wave and the non-uniformity of the background plasma caused by this wave, and
also indirectly affecting the waves elsewhere in the loop (see, e.g., Nisticò et al., 2017,
where the slow and fast kink magnetoacoustic oscillations were observed to co-exist
in a bundle of coronal loops). A detailed analysis and validation of this effect and its
consequences for coronal MHD seismology would require comprehensive numerical
simulations, taking nonlinear and additional dissipative effects into account.

iv) There are a number of different scenarios for the evolution of the initial perturbation
caused by the combination of a frequency-dependent damping/amplification of slow
MA and entropy modes and monotonic positive/negative or non-monotonic dispersion
of slow MA waves, associated with the phenomenon of thermal misbalance. In partic-
ular, the entropy wave could decay and slow MA wave grow and develop into a propa-
gating quasi-periodic slow MA wave train; both waves decay smoothing the initial per-
turbation out; the entropy wave grows and forms a localised condensation of the plasma
density, while the slow MA wave runs away and decays; both slow and entropy waves
grow. In the regime of formation of slow MA wave trains, their characteristic period for
typical coronal conditions is shown to be a few minutes, which coincides with typical
periods of quasi-periodic pulsations often observed in the thermal emission from so-
lar flares and usually interpreted in terms of the evolution of compressive MHD waves
in the solar atmosphere (see, e.g., Van Doorsselaere, Kupriyanova, and Yuan, 2016;
McLaughlin et al., 2018; Kupriyanova et al., 2020). The regime of formation of the lo-
calised plasma condensations by the instability of the entropy mode is of a clear impor-
tance in the context of coronal-rain formation (see, e.g., Antolin, Shibata, and Vissers,
2010; Fang, Xia, and Keppens, 2013). In particular, the dynamics of a similar localised
plasma condensation of an unspecified nature in a gravitationally stratified coronal loop
was considered by Kohutova and Verwichte (2017), the initial formation of which could
be self-consistently attributed to the instability of the entropy mode through the mecha-
nism of thermal misbalance, developed in our work. The regime of misbalance causing
both waves to decay could be used for the interpretation of rapid damping of standing,
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propagating, and sloshing slow MA waves in quiescent and active-region coronal loops,
polar plumes, and interplume regions (De Moortel, 2009; Wang, 2011; Banerjee, Gupta,
and Teriaca, 2011; Nakariakov et al., 2019). The first successful attempts of applying
the phenomenon of thermal misbalance to observations of rapidly decaying, standing
slow MA oscillations (also known as SUMER oscillations) in hot and dense loops in
active regions were performed by Kolotkov, Nakariakov, and Zavershinskii (2019) and
Prasad, Srivastava, and Wang (2021).

v) The initial distribution of energy in and between slow MA and entropy waves depends
on the properties of the coronal heat-loss function [Q(ρ,T )]. It has been shown that
for the initial perturbation of an isothermal nature the total initial energies are either
equal or most goes into slow MA waves. In particular, for the characteristic misbalance
timescales τ1,2 being about the acoustic travel time along the loop and higher, the ratio
between the entropy and slow MA wave initial energies is about unity. For lower val-
ues of τ1,2, this ratio becomes smaller. The estimation of this energy partition would
also depend on the type of the initial perturbation. For example, excitation of slow MA
waves in coronal loops by injected flows is often considered in modelling (see, e.g.,
Ofman, Wang, and Davila, 2012; Wang, Ofman, and Davila, 2013; Provornikova, Of-
man, and Wang, 2018), and it could lead to a different dependence of the entropy wave
to slow MA wave total initial-energy ratio on the misbalance parameters τ1,2. A more
detailed analysis of this question constitutes another potentially important follow-up of
this work.

Taking additional dissipative processes such as parallel thermal conduction and compres-
sive viscosity into account in future work would broaden the applicability of the developed
theory and obtained exact analytical solution. We expect that those additional dissipative
processes of the coronal plasma may change the picture presented in this work quantitatively
but not qualitatively, i.e. the aforementioned effects of thermal misbalance on the evolution
of slow MA and entropy waves will be retained. We also would like to mention that, simi-
larly to the process of parallel thermal conduction, the phenomenon of thermal misbalance
could lead to the appearance of additional phase shifts between slow MA perturbations of
the plasma density and temperature. The exact analytical solution obtained in this work is
seen to be useful for addressing this question in future work too.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s11207-021-01841-1.
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