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Abstract
We consider the effects of the heat balance on the structural stability of a preflare current
layer. The problem of small perturbations is solved in the piecewise homogeneous magne-
tohydrodynamic (MHD) approximation taking into account viscosity, electrical and thermal
conductivity, and radiative cooling. Solution to the problem allows for the formation of an
instability of thermal nature. There is no external magnetic field inside the current layer in
the equilibrium state, but it can penetrate inside when the current layer is disturbed. The
formation of a magnetic field perturbation inside the layer creates a dedicated frequency in
a broadband disturbance subject to thermal instability. In the linear phase, the growth time
of the instability is proportional to the characteristic time of radiative cooling of the plasma
and depends on the logarithmic derivatives of the radiative cooling function with respect
to the plasma parameters. The instability results in transverse fragmentation of the current
layer with a spatial period of 1–10 Mm along the layer in a wide range of coronal plasma
parameters. The role of that instability in the triggering of the primary energy release in
solar flares is discussed.

Keywords Plasma physics · Magnetohydrodynamics · Magnetic reconnection, Theory ·
Instabilities · Flares, Models

1. Introduction

In recent decades, space observatories have made it possible to study the development of
solar flares in all the ranges of the electromagnetic radiation (Benz, 2017). The brightness
of flare coronal loops in the ultraviolet range is one of the most spectacular manifestations
of a solar flare which has been observed in detail. The complex structure of the distribution
of bright loops in space indicates the heterogeneity of the primary energy release in a flare
(Krucker, Hurford, and Lin, 2003; Reva et al., 2015). Nevertheless, quasiperiodicity in the
spatial distribution of bright loops in a flare arcade can often be noticed. The Bastille day
flare is a telling example of a well-observed flare arcade extending over the photospheric
neutral line (Aulanier et al., 2000; Somov et al., 2002).
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According to current understanding, a thin current layer is formed over the arcade of
magnetic loops before the flare (Priest and Forbes, 2002; Somov, 2013; Toriumi and Wang,
2019). This current layer separates colliding magnetic fluxes preventing them to reconnect.
This leads to the accumulation of free energy in a non-potential magnetic field associated
with the current. Free energy is released in the form of a solar flare during fast magnetic re-
connection when the preflare current layer is destroyed (Oreshina and Somov, 1998; Somov
and Oreshina, 2000; Uzdensky, 2007). The aim of this work is to search for a mechanism
that can lead to the destruction of the current layer that is quasiperiodic in space.

The effect of the decay of the current layer into individual current filaments is known as
tearing instability (Furth, Killeen, and Rosenbluth, 1963; Somov and Verneta, 1993). This
process separates the current layer along streamlines facilitating the transition from slow
reconnection to fast one. However, it does not allow one to see in which places along the
current direction one should expect an increased energy release. The current layer decays
entirely in the classical tearing instability. From the mathematical point of view, this is due
to the absence of a wave-type solution in the direction along the current. Often, a similar so-
lution was sought in the interaction of the current layer with magnetohydrodynamic (MHD)
waves (Vorpahl, 1976; Nakariakov et al., 2006; Artemyev and Zimovets, 2012). Also, a spa-
tially inhomogeneous energy release was considered as a result of the corrugation instability
of a coronal arcade (Klimushkin et al., 2017). The magnetic field frozen into the plasma dis-
placed by the instability could reconnect with the overlying magnetic field, leading to the
heating of the unstable flux tube.

In Somov and Syrovatskii (1982), the heat balance inside the current layer (Syrovatskii,
1976) is considered. In fact, a particular case of thermal instability (Field, 1965) in the ge-
ometry of the current layer is studied. Investigation of the heat balance in the coronal plasma
is applied in modeling the observed properties of magnetic loops (Klimchuk, 2019; Antolin,
2020) and prominences (Carbonell et al., 2006). Thermal imbalance leads to the unstable
growth of entropy waves (Somov, Dzhalilov, and Staude, 2007) affecting the stability of
magnetosonic waves (Claes and Keppens, 2019; Perelomova, 2020) and causing the disper-
sion of slow MHD waves (Zavershinskii et al., 2019). The heat-induced attenuation of slow
waves in the cylindrical geometry of a magnetic tube (Nakariakov et al., 2017) is used to
diagnose the plasma in coronal loops on the Sun (Kolotkov, Nakariakov, and Zavershinskii,
2019).

We consider a piecewise homogeneous model of a current layer, which consists of a
magnetically neutral current layer surrounded by a plasma with an external magnetic field.
In the equilibrium state, the plasma inside the current layer does not contain a magnetic
field. However, the disturbance of the external magnetic field can penetrate inward when
the screening currents are disturbed. The situation of the appearance of a magnetic field in
an MHD medium that does not initially contain one happens. This situation is interesting
in itself, and not only in the context of magnetic reconnection. Therefore, we first consider
the more general problem of the heat balance of a homogeneous plasma without a magnetic
field (Section 2). Then, we apply the found solution to the particular geometry of the preflare
current layer (Section 3). Finally, we consider this current layer in the context of a coronal
plasma (Section 4). Our conclusions are given in Section 5.

2. Thermal Instability of a Homogeneous Plasma

In order to study the physical nature of the process of instability formation, homogeneous
plasma in the single-fluid dissipative MHD approximation is considered. The MHD approx-
imation has been successfully used for coronal applications for more than 50 years (e.g.
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Nakariakov and Kolotkov, 2020). It imposes some restrictions on the possible plasma pro-
cesses under consideration. First, these processes must be sufficiently slow compared with
the time of electron-ion collisions, so that the Maxwell distribution of electrons and ions
with a common temperature is established in the plasma. Plasma processes must be also
sufficiently slow with respect to the inverse plasma conductivity to neglect the displacement
current in comparison with conductive current in Maxwell’s equations. Second, the mag-
netic field must be weak enough to use isotropic conductivity in the generalized Ohm’s law.
Third, the velocities of the considered plasma motions must be sufficiently small in compar-
ison with the speed of light, so that the action of electric forces as compared with magnetic
ones can be neglected in the nonrelativistic limit.

The first condition satisfies our consideration of the preflare state of the plasma in the
solar corona, when fast energy release does not yet take place, and the separation of electron
and ion temperatures is not important. The second condition is consistent with the general
idea of a solar flare as a result of the process of magnetic reconnection at the zero point
of the magnetic field. The third condition is certainly valid in the context of the observed
preflare plasma velocities in the solar corona. However, the effects of finite conductivity
during the formation of the preflare current layer cannot be neglected. The subject of this
study is the thermal balance of the plasma in the preflare configuration, and therefore it
is assumed that Joule and viscous heating, thermal conductivity, and radiative cooling in
the energy equation are preserved. Thus, the following set of dissipative MHD equations is
sufficient for our consideration (Syrovatskii, 1958; Somov, 2012):

∂n

∂t
+ div (nv) = 0 ,

μn
dv

dt
= −∇(2nkBT ) − 1

4π
(B × curlB) + η�v + ν ∇ divv ,

2nkB

γ − 1

dT

dt
− 2kBT

dn

dt
= c2

(4π)2σ
(curlB)2 + ∂

∂rα

(σαβvβ) + div (κ∇T ) − λ (n,T ) ,

∂B

∂t
= curl (v × B) − c2

4π
curl

(
1

σ
curlB

)
,

divB = 0 . (1)

Here, μ = 1.44mH , mH is the mass of the hydrogen atom, kB is the Boltzmann constant, γ

is the heat capacity ratio, κ and σ are the thermal and electric conductivities of the plasma,
λ (n,T ) is the radiative cooling function, η and ν are viscosity ratios, and σαβ is the viscous
stress tensor. Transfer coefficients are isotropic in the absence of an external magnetic field.
The heat capacity ratio is assumed γ = 5/3 for simplicity. T is the temperature, n is the
plasma density, v is the plasma velocity, and B is the magnetic field. The system of Equa-
tions 1 will be also used to describe a piecewise homogeneous model of the current layer in
Section 3.

2.1. Increments of the Instability

The solution to Equations 1 in the form of the sum of a constant homogeneous term and
a small perturbation is sought using the following Fourier transform with subsequent lin-
earization in f ′:

f (r, t) = fconst + f ′ exp(−iωt + i(kr)) .
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Here f ′ ≡ {v′, n′, T ′,B ′} are perturbation amplitudes.
Let us set vconst = 0 and Bconst = 0. It is worth noting that both Joule and viscous heating

turn out to be of second order in the perturbation and can be neglected in a linear phase.
Only radiative cooling and thermal conductivity affect the thermal balance of the plasma
in a linear approximation. The first seeks to cool the plasma, while the second redistributes
heat between regions with different temperatures. Thus, the plasma tends to cool against the
background of small perturbations. Naturally, this does not contradict the initial heat bal-
ance. Even if radiative cooling is not compensated by Joule or viscous heating in an unper-
turbed plasma, one can consider additional constant heating as part of the thermal function
λ. An additional constant term produces an initial heat balance and does not affect small per-
turbations, since it disappears during the linearization (Hood, 1992; De Moortel and Hood,
2004; Claes and Keppens, 2019). It is also possible to consider a more general non-constant
thermal function, but such a consideration goes beyond the physical formulation of our prob-
lem (Rosner, Tucker, and Vaiana, 1978; Ibanez and Escalona, 1993; Kolotkov, Duckenfield,
and Nakariakov, 2020). The set of linear equations takes the following form:

ωn′ = n (kv′) , (2)

iω nv′ = ik
2kB

μ
(nT ′ + T n′) + k2 η v′ + ωk

ν

n
n′ , (3)

iω
2nkB

γ − 1
T ′ − iω 2kBT n′ = k2 κ T ′ + ∂λ

∂T
T ′ + ∂λ

∂n
n′ , (4)

iωB ′ = c2

4πσ
(k2 B ′ − k (kB ′)) , (5)

(kB ′) = 0 . (6)

Equations 2–6 split into two subsystems of equations. The perturbations of velocity, den-
sity, and temperature enter only in the first three equations, while the perturbation of the
magnetic field enters only in Equations 5 and 6. In this regard, it is worth paying attention
to a couple of nuances.

First, we assume that B ′ �= 0. In this article, we will not investigate the reasons for the oc-
currence of a nonzero magnetic field perturbation in an initially magnetically neutral plasma.
Such a study goes beyond the framework of our MHD approach and requires the use of
kinetic theory, such as the Weibel instability (Weibel, 1959). In this section, we want to
show that the formation of a magnetic field perturbation creates a dedicated frequency in a
broadband disturbance subject to thermal instability. In what follows, when considering the
piecewise homogeneous model of the preflare current layer (Section 3), we will assume that
the perturbation of the magnetic field penetrates into the magnetically neutral current layer
from the surrounding plasma upon dissipation of the screening currents flowing over the
surface of the current layer in an unperturbed state. The formulation of the problem implies
the appearance of a magnetic field in a medium that initially does not contain one, and this
is exactly what we expect in the region of magnetic reconnection. External magnetic fields
compensate each other inside the current layer in equilibrium state, but they can penetrate
inside when electric currents are disturbed.

Second, the division of the Equations 1 into subsystems of equations does not indicate
the formation of several perturbation modes, as is the case in a complete MHD system with
a magnetic field during the formation of entropy, Alfvén, and slow and fast magnetoacous-
tic waves. Mode separation occurs when one dispersion relation allows several different
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solutions, but here we have several dispersion relations for one solution. It is also not a
resonance between different solutions, because we are initially looking for one solution
that satisfies two conditions. The system of Equations 2–4 describes the linear evolution of
entropy and sound modes in a nonideal hydrodynamic medium, but Equations 5 and 6 addi-
tionally require the occurrence of a magnetic field perturbation. This disturbance should not
be confused with standard fast and slow magnetoacoustic waves for which the existence of
the initial guiding field is essential. The system of Equations 2–6 describes a hydrodynamic
disturbance that allows a magnetic field to arise. This type of perturbations requires specific
conditions that occur in coronal plasma structures such as current layers only.

Two different subsystems allow us to directly determine the frequency of perturbations
which may become unstable according to the scenario described above. Let us substitute
Equation 6 in Equation 5 and express the value of k2. Then, we multiply Equation 3 per
the wave vector k and replace (kv′) and k2 by Equations 2 and 5, respectively. Finally, we
exclude one of the perturbations n′ and T ′ from Equation 3 with the help of Equation 4.
Then, the second perturbation is absent in the resulting equation. Finally we get

Γ 3 −
[

1

τσ − τη

(
1 +

(
1

γ − 1
− τκ

τσ

)−1
)

+ −α

τλ

(
1

γ − 1
− τκ

τσ

)−1
]

Γ 2

+
[

1

τσ − τη

β − α

τλ

(
1

γ − 1
− τκ

τσ

)−1
]

Γ = 0 . (7)

Here the growth rate of the instability is Γ = −iω. Positive values of Γ correspond to the
exponential growth of the perturbation in time while negative values indicate stabilization of
the initial perturbation. Also we introduce the new notations for the logarithmic derivatives
of the cooling function

α = ∂ lnλ

∂ lnT
, β = ∂ lnλ

∂ lnn
, (8)

and the characteristic times

τσ = μνm

2kBT
, τη = η + ν

2kBT n
, τκ = μκ

(2kB)2T n
, τλ = 2kBT n

λ
, (9)

of the magnetic resistivity, viscosity, thermal conduction, and optically thin radiation, re-
spectively. Derivatives of the heating function do not affect the development of the instabil-
ity, as it is taken constant in time in this work. The magnetic viscosity is denoted as

νm = c2

4πσ
.

We mention that Equations 9 for the characteristic times are written in such a manner to clar-
ify the final result. For this reason, they do not coincide, for example, with similar equations
in Somov and Syrovatskii (1982).

We also introduce the dimensionless parameter

δ =
(

1

γ − 1
− τκ

τσ

)−1

(10)
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Figure 1 (a) Radiative loss function of an optically thin medium L(T ) based on the CHIANTI atomic
database (Dere et al., 2019) for the coronal abundance of elements (Schmelz et al., 2012) and n = 108 cm−3.
(b) The logarithmic derivative of the radiative cooling function α with respect to the logarithm of the temper-
ature for the same conditions.

and the effective viscous time

τν = τσ − τη . (11)

Then Equation 7 can be written in the following simple form:

Γ 3 −
[

1 + δ

τν

+ −α δ

τλ

]
Γ 2 +

[
1

τν

(β − α) δ

τλ

]
Γ = 0 . (12)

2.2. Features of the Instability

In the current section, Equation 12 is applied to the physics of solar flares. To this end, the
characteristic values of the quiet coronal plasma are used as a starting point: n = 108 cm−3,
T = 106 K. The same instability will be considered in broad intervals of plasma densities
and temperatures in Section 4. An anomalous conductivity σ = 1012 s−1, caused mainly by
the ion-acoustic turbulence, is usually applied in the context of the emerging preflare current
layer (Somov, 2013). The viscosity changes the effective viscous time according to Equation
11. The coefficient of dynamic viscosity is estimated as (Hollweg, 1986)

η ≈ 10−16 T 5/2 .

Hereinafter, all quantities are measured in Gaussian units in practical equations. Using Equa-
tions 9 we are convinced that τη � τσ here and for all further calculations in the article.
Therefore we set η = 0, ν = 0 in what follows. We also use a common representation of
the radiative cooling function λ (n,T ) = n2L(T ), where L(T ) is the radiative loss func-
tion of an optically thin medium. Figure 1a shows the function L(T ) based on the CHI-
ANTI version 9 atomic database (Dere et al., 2019) for coronal abundance elements (see file
sun_coronal_2012_schmelz_ext.abund in the standard CHIANTI distribution and Schmelz
et al., 2012). The temperature dependence of the coefficient α is shown in Figure 1b. The
plasma thermal conductivity is considered as a free parameter in this section.

The roots of Equation 12 depend on the dimensionless parameter δ. The characteristic
time τκ is directly proportional to the coefficient of thermal conductivity κ , while the char-
acteristic time τσ is inversely proportional to the electrical conductivity σ according to the
definitions in Equations 9. Therefore the fraction τκ/τσ is proportional to both thermal and
electrical conductivities of the plasma in Equation 10. In addition, both of them have similar
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Figure 2 Profiles depending on the thermal conductivity of the plasma: (a) parameter δ (Equation 10), (b) dis-
criminant D, (c) root Γ1, and (d) root Γ2 of Equation 12. The thermal conductivity is measured in units of
the classical electronic thermal conductivity calculated for T = 106 K (Spitzer and Härm, 1953).

physical nature associated with the mean free path of the particles. It is expected that both of
them increase or decrease under similar conditions in the plasma. For simplicity, in this sec-
tion we treat electrical conductivity as a constant and vary thermal conductivity. Figure 2a
shows the dependence of the parameter δ on the thermal conductivity measured in units of
the Spitzer’s thermal conductivity (Spitzer and Härm, 1953),

κ e ≈ 9 × 10−7 T 5/2 .

As one can see, | δ | < 1 for all κ , except an interval 2 × 10−8 κ e < κ < 6 × 10−8 κ e.
The sign of the parameter δ changes when the plasma thermal conductivity decreases to
κ � 3 × 10−8 κ e. For example, if thermal conductivity is suppressed by a perturbation of
the magnetic field, then ionic thermal conduction becomes more efficient (Rosenbluth and
Kaufman, 1958)

κ i ≈ 2 × 10−17 n2

T 1/2B ′2
.

So in Section 3, the thermal conductivity inside the current layer is suppressed by a per-
turbation of the magnetic field directed along the external magnetic field (for more details
on the field configuration, see Section 3). The magnitude of the required perturbation of the
magnetic field can be found from the evaluation κ i ≈ 3 × 10−8 κ e. The amplitude of the
magnetic field perturbation B ′ � 0.01 G is sufficient to change the sign of the parameter δ.
This will be important for further discussion.
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The roots of Equation 12 are as follows:

Γ0 = 0 ,

Γ1,2 = 1

2

⎧⎨
⎩

(
1 + δ

τν

+ −α δ

τλ

)
±

[(
1 + δ

τν

+ −α δ

τλ

)2

− 4
1

τν

(β − α) δ

τλ

]1/2
⎫⎬
⎭ .

The root Γ0 is not of interest here, since it corresponds to the transition to a new stationary
state, which differs from the initial one by the magnitude of the perturbation. The relation
τν/τλ is much smaller than 1 for the described conditions of the solar corona. Therefore, the
roots Γ1,2 can be expanded in the small parameter τν/τλ. Keeping only zero-order terms,
one obtains

Γ1 � 1 + δ

τν

, Γ2 � β − α

τλ

δ

1 + δ
. (13)

Figure 2b shows the dependence of the discriminant D in Equation 12 on the thermal
conductivity, while Figure 2c and d shows the roots Γ1,2. The exact calculation of the roots
Γ1,2 completely coincides with the approximate Equations 13 in the scale of Figure 2c and
d. Differences are observed only in the region of rapid growth of | δ |, where the discriminant
D also tends to infinity, and in the region where the discriminant D is negative (Figure 2b).
The root Γ1 has a discontinuity in the first region (Figure 2c), while the root Γ2 has a dis-
continuity in the second region (Figure 2d). In these areas, the linear approximation of the
problem of small perturbations is unsuitable. Changing the initial parameters n, T , and σ

within the limits which are acceptable for the conditions of the solar corona stretches or
compresses Figure 2 along the coordinate axes, but does not make any qualitative changes
in these plots.

The figure shows that Γ1 	 Γ2 for almost all values κ except for a narrow interval near
κ = 4 × 10−8 κ e where Γ1 is negative and Γ2 is positive. This means that the instability
described by the root Γ1 should grow much faster than the instability described by the root
Γ2 everywhere except in this narrow interval. In the geometry of the preflare current layer
in the solar corona, the spatial scale of the root Γ1 does not satisfy the MHD approximation
used (Section 4.1) and we should use a higher frequency approximation to study it further.
Therefore, in what follows, we will focus on the root Γ2 and assume that the value of the
thermal conductivity satisfies the condition Γ2 > Γ1.

3. Current Layer Model

We consider the piecewise homogeneous model of the preflare current layer, presented by
Somov and Syrovatskii (1982). The current layer is located in the (x, y) plane (Figure 3).
The z-axis complements the right triplet (x, y, z) and is directed toward the reader in Fig-
ure 3. The plasma concentration and temperature inside the layer are equal to ns and Ts ,
respectively. The current layer is assumed magnetically neutral, Bs = 0, without any di-
rected plasma flows, i.e. vs = 0. The half-thickness of the current layer a is much smaller
than its half-width b. When considering the preflare non-reconnecting current layer, b → ∞
is assumed. As a consequence, ∂/∂x = 0 in such model. This means that we neglect the evo-
lution of the current layer along the x-axis, such as the tearing instability (Furth, Killeen,
and Rosenbluth, 1963). We focus on the structure of the current layer along the z-axis. The
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Figure 3 Location of the current
layer in the coordinate system.

inner region of the current layer is separated from the outer plasma by a tangential discon-
tinuity (Ledentsov and Somov, 2015b). Outside the layer, we denote the concentration and
the temperature of the homogeneous plasma as n0 and T0, correspondingly. A uniform mag-
netic field B0 is directed against the x-axis for positive y and along the x-axis for negative
y. Thus, the current in the layer is directed along the z-axis. In order to study the effect of
thermal balance on the structural stability of a preflare current layer, the effects of viscosity,
electrical and thermal conductivity, and radiative cooling are considered inside the current
layer, but these effects are insignificant outside. An important difference between the model
considered here and the Somov and Syrovatskii (1982) model is the possibility of penetra-
tion of a magnetic field perturbation inside the current layer. Mathematically, this boils down
to considering the current layer interior in the magnetohydrodynamic approximation rather
than in the hydrodynamic one.

3.1. Outside the Current Layer

Following Somov and Syrovatskii (1982), we set σ → ∞, κ = 0, λ = 0, η = 0, and ν = 0 in
the set of Equations 1 outside the current layer. Plasma density contrast inside and outside
the super-hot turbulent-current layers is about 5 (see Section 8.5.3 in Somov, 2013). Kinetic
models give the same values (Kolotkov, Vasko, and Nakariakov, 2015; Pascoe et al., 2017).
Here the external plasma could radiate up to a factor of 100 less efficiently than the internal
one. In other words, the characteristic timescales of radiative processes outside the layer and
those inside it (including the characteristic timescales of the perturbation and of the other
non-adiabatic processes) could differ by two orders of magnitude, allowing one to neglect
the effects of radiation in the external plasma. Moreover, we suppose that the considered
preflare current layer is more similar to the neutral current layer by Syrovatskii, in which the
density contrast can be much higher (Syrovatskii, 1976). In addition, the plasma is assumed
to be at rest, i.e. v0 = 0. The solution is sought in the form of a periodic perturbation along
the z-axis in Figure 3 which decays exponentially with distance from the current layer:

f (y, z, t) = f0 + f1(y) exp(−iωt + ikzz) ,

f1(y)top = f1 top exp[−ky1(y − a)] , f1(y)bottom = f1 bottom exp[ky1(y + a)] ,
with perturbation amplitudes

f1 top ≡ {vy1, vz1, n1, T1,Bx1} , f1 bottom ≡ {−vy1, vz1, n1, T1,−Bx1} ,

on either side outside the current layer, respectively. Here, ω is the perturbation frequency,
kz and ky1 are the perturbation wave numbers along the z and y axes, respectively, and a

is the half-thickness of the current layer. Index “1” refers to quantities outside the layer.
Thus, we are looking for a solution in the form of a perturbation that propagates through the
surface of the current layer and decays with distance from it.
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Based on the symmetry of the problem, the set of Equations 1 is considered only for the
upper half space. Neglecting the squares of the perturbed quantities, one finds the linearized
system of equations:

iω n1 = −ky1 n0vy1 + ikz n0vz1 , (14)

iωμn0vy1 = −ky1 2kB(n0T1 + T0n1) + ky1
B0

4π
Bx1 , (15)

iωμn0vz1 = ikz 2kB(n0T1 + T0n1) − ikz

B0

4π
Bx1 , (16)

(γ − 1) T0n1 = n0T1 , (17)

iωBx1 = ky1 B0vy1 − ikz B0 vz1 . (18)

The dispersion relation for perturbations outside the current layer is determined by equating
the determinants of a homogeneous system of linear Equations 14–18 to zero,

k2
y1 = k2

z − ω2

V 2
S + V 2

A

, (19)

where the sound and the Alfvén speeds are denoted as

VS =
√

2γ kBT0

μ
, VA = B0√

4πn0μ
, (20)

respectively. The dispersion relation in Equation 19 describes a fast magnetoacoustic wave
propagating over the surface of the current layer perpendicular to the magnetic field.

3.2. Inside the Current Layer

Dissipative effects of Joule and viscous heating, thermal conductivity, and radiative cooling
should be considered inside the current layer. The current layer is assumed magnetically
neutral, Bs = 0, without any directed plasma flows, i.e. vs = 0. The solution is sought in the
same form as outside the current layer,

f (y, z, t) = fs + f2(y) exp(−iωt + ikzz) .

The perturbations decrease exponentially along the y-axis when moving from the upper
boundary of the current layer,

f2(y)top = f2 top exp[−ky2(a − y)] ,

f2 top ≡ 1

2
exp(ky2a) {vy2, vz2, n2, T2,Bx2},

and when moving from the lower boundary

f2(y)bottom = f2 bottom exp[−ky2(a + y)] ,

f2 bottom ≡ 1

2
exp(ky2a) {−vy2, vz2, n2, T2,−Bx2} .
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Here, index “2” refers to perturbations inside the layer, 1
2 exp(ky2a) is a scale factor that uni-

fies the solution for all thicknesses of the current layer. Inside the current layer, perturbations
coming from the upper and lower boundaries add up,

f2(y) = f2(y)top + f2(y)bottom .

The resulting dependences of the perturbations on the coordinate y are hyperbolic func-
tions. The sum of the perturbations which are odd in the y direction gives a hyperbolic sine,

{
vy2(y)

Bx2(y)

}
=

{
vy2

Bx2

}
sinh(ky2y) .

The sum of the perturbations which are even in y gives a hyperbolic cosine,

⎧⎨
⎩

vz2(y)

n2(y)

T2(y)

⎫⎬
⎭ =

⎧⎨
⎩

vz2

n2

T2

⎫⎬
⎭ cosh(ky2y) .

Real values of ky2 determine the effective thickness of the skin depth of the layer, that is,
the distance to which the disturbance of the layer boundary penetrates. On the other hand,
a standing wave is formed inside the current layer along the y-axis at imaginary ky2. The
value of the wave number ky2 is not prescribed and can be determined from the solution,
however, this is not the purpose of this article. The solution describes the plasma motion
which is symmetric about the (x, z) plane.

The set of Equations 1 is linearized as in the previous section:

iω n2 = ky2 nsvy2 + ikz nsvz2 , (21)

iωμnsvy2 = ky2 2kB(nsT2 + Tsn2) + (k2
z − k2

y2) ηvy2 − iωky2
ν

ns

n2 , (22)

iωμnsvz2 = ikz 2kB(nsT2 + Tsn2) + (k2
z − k2

y2) ηvz2 − iωikz

ν

ns

n2 , (23)

iω
2kBns

γ − 1
T2 − iω 2kBTs n2 = (k2

z − k2
y2) κT2 + ∂λ

∂T
T2 + ∂λ

∂n
n2 , (24)

iωBx2 = (k2
z − k2

y2) νmBx2 . (25)

Equation 25, like the set of Equations 5 and 6, can be satisfied at Bx2 = 0, however, if the
perturbation of the magnetic field, Bx2 �= 0, penetrates into the current layer, then Equation
25 gives an additional dispersion relation independent of the Bx2 value. After expressing the
difference k2

z −k2
y2 from Equation 25, we can exclude it from the remaining Equation 21–25.

Making transformations similar to those in Section 2.1, gives again Equation 12 with n = ns

and T = Ts . It is worth noting that the possibility to directly determine the instability incre-
ment is due to the simultaneous presence of two dispersion relations in Equations 21–25 at
once: the first follows from Equations 21–24, and the second one from Equation 25. An im-
portant feature of Equations 21–25 is that the wave vector kz turns out to be perpendicular to
the arising perturbation of the magnetic field Bx2. This promotes the suppression of thermal
conductivity along the z-axis (in the direction of the current) and the formation of a thermal
instability (see Section 2.2).
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3.3. Boundary of the Current Layer

The considered model of the current layer has no plasma motion neither outside nor inside
the layer in equilibrium (v0 = 0, vs = 0), but a magnetic field jump occurs at the layer
boundary. A tangential discontinuity in MHD corresponds to such conditions (Ledentsov
and Somov, 2015a).

The sum of the gas-dynamic and magnetic pressure should be equal on the different sides
of the tangential discontinuity (Syrovatskii, 1956). In a linearized form, it looks as follows:

n0T1 + T0n1 − B0Bx1

8πkB

= (nsT2 + Tsn2) cosh(ky2a) . (26)

The left side of Equation 26 can be expressed in terms of the perturbation vy1 using Equation
15. The right side of Equation 26 can be expressed in terms of the perturbation vy2 using
Equations 21–23 and substituting k2

z − k2
y2 from Equation 25. Then Equation 26 takes the

form

− n0

ns

vy1

ky1
= τν

τσ

vy2

ky2
cosh (ky2a) . (27)

Here, the Equations 9 are also used with substitutions n = ns and T = Ts .
Velocity perturbations distort the surface of the tangential discontinuity. For reasons of

continuity, the velocity perturbation on both sides of the discontinuity should have the same
magnitude and direction

v2
y1 + v2

z1 = v2
y2 sinh2(ky2a) + v2

z2 cosh2(ky2a) , (28)

vz1

vy1
= vz2 cosh(ky2a)

vy2 sinh(ky2a)
. (29)

Equation 28 is then rewritten as

vy1 = ±vy2 sinh(ky2a) , (30)

where the choice of sign depends on the signs of perturbations vy1 and vz1.
Let us divide Equation 30 by Equation 27

± τν

τσ

ns

n0
ky1 = ky2 tanh(ky2a) . (31)

Equation 31 differs from Equation 23 of Somov and Syrovatskii (1982) by a coefficient
τν/τσ determining the role of viscosity in the formation of the structure of the preflare cur-
rent layer. Note that the right side of Equation 31 is positive for any real ky2. This means
that ±(τν/τσ ) should also be positive for physically meaningful values ky1. Substitution of
the wave numbers ky1 and ky2 from Equations 19 and 25, respectively, gives the dispersion
relation which relates the instability increment to the wave number kz

(
τν

τσ

ns

n0

)2 [
k2

z + Γ 2

V 2
S + V 2

A

]
=

[
k2

z + Γ

νm

]
tanh2

{
a

[
k2

z + Γ

νm

]1/2
}

. (32)

We determine the growth increment, Γ = −iω, from Equation 12, which is identical to
the solution of Equations 21–25. Then we determine the spatial period of the instability,
l = 2π/kz, from Equation 32.
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4. Thermal Instability of the Current Layer

Now the growth rate of the instability can be calculated using Equation 12 and the corre-
sponding spatial period of the perturbation can be found from Equation 32. For this aim,
the appropriate values of the parameters of the current layer and the surrounding plasma
should be chosen. Taking into account the possibility of plasma gathering by the magnetic
field and its heating during the formation of the current layer before the onset of the stud-
ied instability, the range of values n0 = 108 − 1012 cm−3, ns/n0 = 10 − 103, T0 = 106 K,
Ts = 106 − 108 K, B0 = 1 − 102 G, σ = 1011 s−1, a = 105 − 107 cm is considered. This
range covers all the reasonable parameters of the coronal plasma. As one can see from the
first two brackets on the left hand side of Equation 32, the effect of an increase in viscos-
ity is the opposite to an increase in the density jump. Therefore, no viscosity is introduced,
because its effect is taken into account in the density jump (η = 0, ν = 0). In addition, the
viscosity effect is small (τν ≈ τσ ) in the investigated range of coronal plasma parameters.

4.1. Growth Increment in the Current Layer

The instability occurs when the roots of Equation 12 are positive. The roots Γ1 and Γ2 are
real numbers everywhere except for a narrow interval where D < 0 (Figure 2b). In this
interval, the roots become complex. Three unstable solutions are possible: the left branch
of Γ1 (Figure 2c), the positive part of the right branch of Γ1 (also Figure 2c), and the left
branch of Γ2 (Figure 2d). As one can see, |Γ1 | 	 |Γ2 | everywhere except perhaps in a
small area near D = 0 (see Figure 2b). Calculation of the instability scale over the entire
range of coronal plasma parameters described above gives l � 104 cm. It is less than the
corresponding Larmor radius of the proton for most of the values of the plasma parameters.
Moreover, complex values of Γ1 for D < 0 lead to complex values of kz, which corresponds
to the spatial attenuation of the perturbation at the same scales (l � 104 cm). The presence
of viscosity can only increase the value Γ1 as seen from Equations 11 and 13. Therefore, it
further reduces the scale of the instability.

The MHD approximation is incorrect for the description of the plasma at such scales.
Therefore, in this article we cannot say whether such instability appears in a more general
kinetic description. Remaining within the framework of the MHD, we further consider the
root Γ1 physically meaningless. In any case, if the instability associated with the root Γ1

exists in the kinetic description and dominates the instability with an increment Γ2, there is
a narrow interval of plasma thermal conductivities κ where Γ1 is negative and Γ2 is positive,
and an instability occurs due to the root Γ2 (Figure 2). We assume that the thermal con-
ductivity is suppressed by the perturbation of the magnetic field in the current layer, which
triggers the instability. Note that, for further reasoning, it is not important which process
led to the suppression of the thermal conductivity. The space scale of the instability (Equa-
tion 32) does not depend on the exact value of the thermal conductivity coefficient and can
be calculated for any range of coronal plasma parameters.

The negative right branch of the root Γ2 indicates the stabilizing effect of the high thermal
conductivity of the plasma. However, if, for some reason, the thermal conductivity falls
below the threshold value δ = −1 (see Equation 13 and Figure 2d), Γ2 becomes positive and
an instability occurs. The value β −α is positive over the entire range of the above-described
coronal plasma conditions. As it was shown in Section 2.2, the transverse magnetic field can
cause a decrease of the thermal conductivity. Equations 21–25 allow the perturbations of the
x-component of the magnetic field to appear inside the current layer. This field is actually
perpendicular to ∇T in the current layer under consideration. However, the specific nature of
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the suppression of the thermal conductivity is not very important for further considerations.
It is enough for us to assume that the thermal conductivity went down for some reason
(τκ � τσ ). Then the growth rate of the instability tends to the value

Γ = 2

5

β − α

τλ

(33)

(see Equations 13 and 10). The growth time of the instability is proportional to the character-
istic time of the plasma cooling and depends on the logarithmic derivatives of the radiative
cooling function (with respect to concentration and temperature). Thermal instability criteria
(Field, 1965) in our notation can be written as follows:

α < 0 , (isochoric)

α < β − 1 , (isobaric)

α < −β − 1

γ − 1
, (isentropic)

where β = 2, γ = 5/3. Thus, the criteria for isochoric, isobaric, and isentropic instabilities
are α < 0, α < 1, and α < −3/2, respectively. Figure 1b shows that the isobaric criterion
of the thermal instability is fulfilled for the entire range of coronal plasma parameters. We
expect that the instability discussed in this work is a special case of the condensation mode
of the isobaric thermal instability.

4.2. Spatial Period in the Current Layer

Equation 32 has two obvious approximations: tanh(ky2a) → ky2a for small ky2a and
tanh(ky2a) → 1 for large ky2a. In what follows, they are called the thin and thick approxima-
tions, respectively. In the first case, the current layer is thin enough, so that the perturbation
arising at one boundary of the layer does not decay along the way to the other boundary. On
the contrary, the current layer is quite thick compared to the attenuation length of the per-
turbation in the second case. Numerical calculations of Equation 32 with Γ from Equation
33 show that k2

z � Γ/νm over the entire range of coronal plasma parameters. Therefore, the
dispersion Equation 32 can be simplified.

In the thin approximation,

k2
zthin �

[(
τσ

τν

n0

ns

)2 1

V 2
D

− 1

V 2
S + V 2

A

]
Γ 2 , (34)

where the drift velocity VD = νm/a is introduced. This is the velocity at which the plasma
drifts into the current layer (see Section 8.1.1 in Somov, 2013). There is no drift in our
model, but we will use this notation for convenience. For sufficiently strong magnetic field
(see Equation 20) and low viscosity, Equation 34 transforms to

kzthin � n0

ns

Γ

VD

. (35)

In the thick approximation,

k2
zthick �

(
τσ

τν

n0

ns

)2
Γ

νm

− Γ 2

V 2
S + V 2

A

, (36)
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Figure 4 The spatial period of the instability depending on the temperature of the current layer. Parame-
ters of the coronal plasma: n0 = 1010 cm−3, ns/n0 = 10, a = 105 cm, B0 = 100 G. One of the param-
eters changes in each figure: (a) n0 = 108 cm−3 (circles), n0 = 109 cm−3 (triangles), n0 = 1010 cm−3

(squares), solid lines show analytical solutions (Equation 35); (b) ns/n0 = 10 (circles), ns/n0 = 100 (tri-
angles), ns/n0 = 1000 (squares), dotted line shows the analytical solution (Equation 35) for circles, solid
and dashed lines show analytical solutions for Equation 36 and 37, respectively, for squares; (c) a = 105 cm
(circles), a = 3 × 105 cm (triangles), a = 107 cm (squares), upper and lower solid lines show analytical so-
lutions for Equation 35 and 37, respectively; (d) ns/n0 = 1000, B0 = 1 G (circles), B0 = 10 G (triangles),
B0 = 100 G (squares) dotted line shows analytical solution (Equation 35) for circles, solid line shows analyt-
ical solution (Equation 36) for triangles, dashed line shows analytical solution (Equation 37) for squares.

and, for strong field and low viscosity,

kzthick � n0

ns

√
Γ

νm

. (37)

Figure 4 shows a series of profiles of the dependence for the spatial period of the insta-
bility calculated as l = 2π/kz for kz from Equation 32 (circles, triangles, and squares) and
kzthin and kzthick approximations from Equations 35 and 37, respectively (thin lines), on the
temperature of the current layer. The exact calculation of Equations 12 and 32 is shown by
circles, triangles, and squares in the figure. The approximative Equations 35–37 are shown
by solid, dashed, and dotted lines.

The spatial period of the instability strongly depends on the concentration of the sur-
rounding plasma (Figure 4a). The graphs are in good agreement with the thin approxi-
mation (Equation 35). Using Equation 34 instead of Equation 35 does not lead to a vis-
ible improvement in the result. The most remarkable feature of the graphs is a step at
Ts = 5 × 106 − 107 K. The spatial period is constant in a fairly wide temperature range,
and it is this temperature range that seems quite reasonable for a preflare current layer. It is
also reasonable to expect an increase in plasma concentration near the current layer. With
an increase in the strength of the magnetic field from 1 G (for a quiet corona) to 100 G (for
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the active region), the plasma concentration also increases by two orders of magnitude due
to magnetic freezing. Therefore, n0 = 1010 cm−3 is used for the other graphs in Figure 4.

An increase in the concentration jump does not change the spatial period quantitatively,
but it changes the solution qualitatively (Figure 4b). Large density jumps at low temperatures
Ts < 107 correspond to a thick approximation, and Equation 36 follows the exact solution
much better than Equation 37.

An increase in the half-thickness of the current layer obviously leads to a thick approxi-
mation, but it also slightly changes the spatial period of the instability (Figure 4c).

The influence of the magnetic field is manifested only at high jumps in concentration
when the second term on the right side of the Equations 34 and 36 prevails. Therefore,
Figure 4d is calculated for ns/n0 = 1000. Again, the dependence of the spatial period on the
magnitude of the magnetic field is rather weak. The influence of the magnetic field becomes
indistinguishable at lower density contrasts.

As a result, the spatial period of the instability is constant over a wide range of changes
in the parameters of the coronal plasma at the assumed temperature of the preflare current
layer Ts = 5×106 −107 K and the concentration of the surrounding plasma n0 = 1010 cm−3.
Its values belong to a narrow range from 1 to 10 Mm, which is in good agreement with the
distances between the solar flare loops observed in the ultraviolet range.

5. Conclusion

The stability problem of the preflare current layer with respect to small perturbations is
addressed. The problem is solved within the framework of dissipative MHD taking into
account viscosity, electrical and thermal conductivity, and radiative cooling of the plasma. A
piecewise homogeneous current layer model is used. The simplicity of the model allows one
to obtain accurate analytical expressions for the growth rate (Equation 12) and the spatial
scale (Equation 32) of the instability, as well as their simple approximations (Equations
33–37) in the conditions of the solar corona. The instability has a thermal nature. It occurs
as a result of a drop in thermal conductivity inside the current layer and increases on the
characteristic time scale of radiative plasma cooling. Due to the structural features of the
radiative loss function of an optically thin medium, the spatial instability period is contained
in a narrow range of values of about l = 1 – 10 Mm for a wide range of parameters of the
current layer and the surrounding plasma.

The instability properties allow us to offer the following qualitative picture of the solar
flare triggering. There is a preflare current layer above the arcade of coronal magnetic loops
(Figure 5). Due to a random perturbation, some of its sections begin to lose more heat by
radiation. High electronic thermal conductivity can redistribute heat between cold and hot
areas. However, if the electronic thermal conductivity is suppressed by the perturbation of
the transverse magnetic field penetrating in the current layer, then the ionic thermal conduc-
tivity does not have time to transfer heat from hot to cold areas. The temperature difference
between the cold and hot sections of the preflare current layer increases with the increment
described by Equation 33. The alternation of cold and hot sections leads to a wave-like
curvature of the surface of the current layer with a spatial period l due to the total pres-
sure balance. The curvature has a symmetrical shape in accordance with the solution found.
The current layer begins to disintegrate into individual fibers located across the direction of
the current, which can lead to its breaking and, as a result, to a solar flare. The regions of
the main energy release will alternate with the same spatial period l. Flows of accelerated
charged particles rush into the coronal magnetic loops located near the regions of energy
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Figure 5 Location of the
perturbed current layer above the
arcade of coronal magnetic loops.
The perturbation has a spatial
period l. The Roman numbers
mark the energy fluxes associated
with radiative plasma cooling (I)
and heat conduction (II).

release, which ultimately leads to the observed brightening of individual flare loops in the
ultraviolet range.

In order to mathematically simplify the model, many significant physical features of the
preflare current layer were neglected. Magnetic non-neutrality of the current layer leads
to a change in the pressure balance at its boundary, while the appearance of a component
of the magnetic field normal to the layer changes the type of MHD discontinuity on the
boundary (Somov and Titov, 1985a,b). The finite width of the current layer requires taking
into account the corresponding derivatives with respect to the x coordinate, which leads to
the appearance of tearing instability (Somov and Verneta, 1988, 1989). The observations of
flare loops on the Sun indirectly indicate a complex current layer geometry that is different
from a simple planar configuration. A statistical analysis of the flare loops themselves in the
context of the considered model is a separate complex task. Attention on these and other
issues will be paid in the following articles of this series (Thermal Trigger for Solar Flares).
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