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Abstract In the present article, we derive a new dispersion relation for slow magnetoa-
coustic waves invoking the effect of thermal conductivity, compressive viscosity, radiation,
and an unknown heating term along with the consideration of heating–cooling imbalance
from linearized MHD equations. We solve the general dispersion relation to understand
the role of compressive viscosity and thermal conductivity in the damping of slow waves
in coronal loops with and without heating–cooling imbalance. We have analyzed the wave
damping for the range of loop length L = 50 – 500 Mm, temperature T = 5 – 30 MK, and
density ρ = 10−11 – 10−9 kg m−3. It was found that the inclusion of compressive viscos-
ity along with thermal conductivity significantly enhances the damping of the fundamental
mode oscillations in shorter (e.g. L = 50 Mm) and super-hot (T > 10 MK) loops. How-
ever, the role of viscosity in the damping is insignificant in longer (e.g. L = 500 Mm) and
hot loops (T ≤ 10 MK) where, instead, thermal conductivity along with the presence of
heating–cooling imbalance plays a dominant role. For shorter loops at a super-hot regime
of temperature, the increment in the loop density substantially enhances the damping of the
fundamental modes due to thermal conductivity when viscosity is absent, however, when the
compressive viscosity is added the increase in density substantially weakens the damping.
Thermal conductivity alone is found to play a dominant role in longer loops at lower tem-
peratures (T ≤ 10 MK), while compressive viscosity dominates the damping at super-hot
temperatures (T > 10 MK) in shorter loops. The predicted scaling law between damping
time (τ ) and wave period (P ) is found to better match the observed SUMER (Solar Ultravi-
olet Measurements of Emitted Radiation) oscillations when the heating–cooling imbalance
is taken into account in addition to thermal conductivity and compressive viscosity for the
damping of the fundamental slow mode oscillations.
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1. Introduction

Doppler shift oscillations in hot coronal loops were first directly observed by the SUMER
(Solar Ultraviolet Measurements of Emitted Radiation) spectrograph onboard the Solar and
Heliospheric Observatory (SoHO) (Wang et al., 2002, 2003a). These observations are found
to be associated with the fundamental mode of the slow magnetoacoustic oscillations ex-
hibiting an efficient damping (Ofman and Wang, 2002). Wang et al. (2003b) have detected
such slow-mode oscillations in numerous hot coronal loops, and using a large enough statis-
tics established their physical properties consistently, e.g., the phase speed derived from the
observed period and loop length matches approximately the local sound speed; the intensity
fluctuation lags the Doppler shift by 1/4 period. It was also found that the observed scaling of
the damping time with the wave period matches the predicted scaling for slow waves when
the damping effects due to thermal conduction and compressive viscosity are considered.
The numerical modeling by Taroyan and Bradshaw (2008) showed that such oscillations are
also expected to be detected in normal coronal loops maintained at 1 – 2 MK temperature,
and later this supposition was confirmed by observations from the EUV Imaging Spectrom-
eter (EIS) onboard Hinode (Mariska et al., 2008; Erdélyi and Taroyan, 2008; Srivastava and
Dwivedi, 2010). Damped slow-mode oscillations are also suggested to be produced in stellar
flaring loops because some quasi-periodic pulsations (QPPs) detected in stellar flares show
many features similar to those observed in solar flares (Mitra-Kraev et al., 2005; Srivastava,
Lalitha, and Pandey, 2013; Cho et al., 2016).

The SUMER and Yohkoh/SXT (Soft X-Ray Telescope) observations suggested that such
loop oscillations may be associated with an impulsive deposition of the heat at their foot-
points due to localized transient events (e.g. microflares) that may lead to perturbations both
in velocity and density within the loop (Wang et al., 2005). While impulsive heating is pro-
posed as a primary exciter of slow magnetoacoustic oscillations in solar loops (Wang et al.,
2005; Patsourakos and Klimchuk, 2006; Taroyan et al., 2007), there are several other mech-
anisms that may also trigger them, e.g., pressure or velocity pulses and the kink instability
(e.g. Selwa, Murawski, and Solanki, 2005; Selwa, Ofman, and Murawski, 2007; Haynes,
Arber, and Verwichte, 2008; Taroyan et al., 2005, and references therein). Additionally, the
pressure pulse and flows may also inevitably be associated with a response to impulsive heat-
ing. Since such loops may cool after the transient energy release and heating, thermal con-
duction is termed initially as a viable dissipation mechanism for interpreting the observed
damping of slow magnetoacoustic oscillations (Ofman and Wang, 2002). The effect of dissi-
pative agents, e.g., thermal conduction, compressive viscosity, and radiation have been stud-
ied on slow magnetoacoustic oscillations in a greater detail by Pandey and Dwivedi (2006).
They have found that by varying the density from 108 to 1010 cm−3 at a fixed temperature
in the range 6 – 10 MK as observed by SUMER, strong damping occurs at lower density
and weak damping occurs at higher density. It was also noted that the effect of optically thin
radiation provides some additional dissipation apart from thermal conductivity and viscosity
in weak-damped oscillations. Mendoza-Briceño, Erdélyi, and Sigalotti (2004) have pointed
out the effect of stratification on the wave damping, and concluded that the dissipation rates
of slow waves by thermal conduction and compressive viscosity are enhanced by the non-
linear effect caused by gravitational stratification. Later, Sigalotti, Mendoza-Briceño, and
Luna-Cardozo (2007) argued that thermal conduction alone cannot produce strong damping
as observed in SUMER oscillations, while the inclusion of compressive viscosity is required.

Bradshaw and Erdélyi (2008) have reported the effect of the radiative emission arising
from a non-equilibrium ionization on damping of the slow magnetoacoustic oscillations
in the loops, and inferred that this loss may reduce the damping timescale by up to 10%
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than that typically observed by SUMER. Haynes, Arber, and Verwichte (2008) have stud-
ied the fact that even in the absence of thermal conduction, large-amplitude slow-mode
oscillations are getting damped strongly by the dissipation of the shocks. Verwichte et al.
(2008) have further found that in the presence of thermal conduction, shock dissipation at
large amplitudes enhances the damping rate by 50% higher than the rate achieved during
the presence of thermal conduction enabled dissipation alone. Erdélyi, Luna-Cardozo, and
Mendoza-Briceño (2008) have reported the damping scenario of standing slow waves in
nonisothermal, hot, gravitationally stratified coronal loops, and established the physical fact
that the decay time of waves decreases with the increase of the initial temperature. Al-Ghafri
and Erdélyi (2013) have found that although the background plasma is cooling, thermal con-
duction is still found to cause a strong damping for the slow magnetoacoustic oscillations
in hot coronal loops. However, they consider only the effect of thermal conduction that
has a weak damping effect at very high temperature. Therefore, when the loop cools from
super-hot to the hot regime close to a maximum damping temperature, then damping due to
conduction increases with the cooling (De Moortel and Hood, 2003). Kumar, Nakariakov,
and Moon (2016) have presented a theoretical model of the standing slow magnetoacoustic
mode and found that these modes are highly sensitive to the radiative cooling and choice of
the heating function as well.

It was found that the thermal conductivity is nearly suppressed and compressive viscosity
is enhanced by more than an order of magnitude in very hot loops, affecting the dissipation
of the various harmonics of the slow magnetoacoustic oscillations (Wang et al., 2015, 2018).
Many previous studies on the dynamics of compressive MHD wave modes in coronal loops
have described the significance of thermal equilibrium along with mechanical equilibrium
in the wave guiding magnetic structures (e.g. Kumar, Nakariakov, and Moon, 2016; Nakari-
akov et al., 2017). Various representative theories, on the physical processes that balance
the internal energy losses to maintain thermal equilibrium, have been given to explain the
unknown mechanism underlying the observed coronal heating. For a long time, it has been
termed as the coronal heating problem (e.g. Parnell and De Moortel, 2012). Although it is
established that many efforts have been made to understand the different heating and cooling
mechanisms in coronal loops, no explanation has proven to be accepted preferably. Since the
specific heating mechanism is unknown, many previous theoretical models of MHD waves
in coronal loops have taken into account the heating function depending upon the loop pa-
rameters, e.g., temperature, density, and magnetic field, as well as a static or time-dependent
heating function, more specifically in the form of power law functions (e.g. Rosner, Tucker,
and Vaiana, 1978; Reale, 2014; Kolotkov, Nakariakov, and Zavershinskii, 2019, and refer-
ences therein). Compressive and longitudinal MHD wave modes change the local thermal
equilibrium by locally perturbing the background equilibrium quantities such as density,
temperature, pressure, which ultimately leads to a heating–cooling imbalance. This physical
scenario is inferred as the imbalance between the equilibrium balance of radiative cooling
losses and unknown coronal heating. This affects the slow wave by modifying the dispersion
relation and can be attributed to the suppressed or enhanced damping of the waves. Many
previous theoretical studies have concentrated on the effects of this imbalance in the limit
of weak non-adiabacity. However, a more recent work by Kolotkov, Nakariakov, and Za-
vershinskii (2019) has removed this approximation by taking into account the non-adiabatic
terms to be arbitrarily large, and we have followed a similar procedure in our present model.

As we mentioned above, the significance of heating–cooling imbalance and its effect on
the properties of slow magnetoacoustic oscillations has been recently studied by Kolotkov,
Nakariakov, and Zavershinskii (2019). They have analyzed the damping of standing slow
magnetoacoustic oscillations in solar coronal loops by taking into account the field-aligned
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thermal conductivity and a wave-induced misbalance between radiative cooling and some
unspecified heating rates, and found that the slow wave dynamics is highly sensitive to
the characteristic timescales of the thermal misbalance. Wang and Ofman (2019) have re-
cently shown the significance of suppressed thermal conductivity and enhanced effect of
the compressive viscosity that determine damping properties of the magnetoacoustic os-
cillations in hot loops at approximately 10 MK. In the present article, we have derived a
new dispersion relation taking into account the compressive viscosity, thermal conduction,
and radiative cooling as dissipative mechanisms, and an appropriate heating function in
order to heat the coronal loop plasma. We consider the coronal loops for a wide range of
length (50 – 500 Mm), temperature (5 – 30 MK), and density (10−11 – 10−9 kg m−3) with and
without heating–cooling misbalance to understand the evolutionary and dissipative proper-
ties of the slow magnetoacoustic oscillations. We refer to hot loops as those hosting the
SUMER oscillations with T = 5 – 15 MK (including the Doppler shift oscillations observed
with Yohkoh/BCS (Bragg Crystal Spectrometer) and longitudinal oscillations observed with
SDO/AIA (Atmospheric Imaging Assembly) and super-hot loops with T = 20 – 30 MK are
referred to the RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) detected
oscillations or QPPs in flares by Cho et al. (2016). Moreover, we have chosen the damped os-
cillatory regime of the magnetoacoustic oscillations of loops both with and without heating–
cooling imbalance, and also have performed a detailed analytical study of the effect of com-
pressive viscosity and thermal conductivity on the damping of slow waves. We have also
compared their individual roles in this damping under the consideration of heating–cooling
imbalance. We also have obtained new scaling relations between the damping time (τ ) and
wave period (P ) from the results of these studies, and have compared the theoretical results
and various scaling laws with the observed damped SUMER oscillations. In Section 2, we
present the basic model and dispersion relation. The numerical solution and related results
are described in Section 3. The last section presents the discussion and conclusions.

2. Analytical Model and New Dispersion Relation

The description of the model of slow magnetoacoustic oscillations in hot and dense coronal
loop is given below. It depicts the properties of slow waves in the viscous, thermal conduc-
tive, and radiative plasma with a certain heating, as well as with and without considering the
effect of heating–cooling imbalance.

2.1. Basic MHD Equations

We consider the effects of thermal conductivity, imbalance of radiative cooling and unknown
coronal heating, dissipative viscous forces, and heating in our model. For the generalization
of the results we compare the model results with and without heating–cooling imbalance as
well. To exclude the heating–cooling imbalance, we consider the constant heating term in
our model. To the best of our knowledge, this is the first effort to perform such a detailed
analytical calculation. Apart from these effects, we have the infinite magnetic field approx-
imation under which the perturbations are confined along the rigid magnetic field lines.
We derive a new more general dispersion relation for the slow magnetoacoustic waves in
the non-ideal coronal loop plasma. The governing magnetohydrodynamic equations (Priest,
2014) in 1D are given as follows.

Mass Equation,
∂ρ

∂t
+ ∂(ρV )

∂z
= 0. (1)
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Here V is the velocity field.
Momentum Equation,

ρ

(
∂V

∂t
+ V

∂V

∂z

)
+ ∂p

∂z
− 4

3

∂

∂z

(
η0

∂V

∂z

)
= 0. (2)

Here η0 is the coefficient of compressive viscosity.
Energy Equation,

Cv

(
∂T

∂t
+ V

∂T

∂z

)
−

(
kBT

ρm

)(
∂ρ

∂t
+ V

∂ρ

∂z

)

= −Q(ρ,T ) + 1

ρ

∂

∂z

(
κ

∂T

∂z

)
+

(
4η0

3

)(
∂V

∂z

)2

. (3)

Here Cv is defined as

Cv = kB

m(γ − 1)
(4)

and Q(ρ,T ) is composed of two functions

Q(ρ,T ) = L(ρ,T ) − H(ρ,T ), (5)

L(ρ,T ) = χρT α (radiative cooling function), (6)

H(ρ,T ) = hρaT b (unknown heating function), (7)

where a and b are power index factors and h, χ , α are the unknown heating coefficient and
radiative cooling coefficients, while κ is the thermal conductivity.

Gas Equation,

p = ρkBT

m
, (8)

where kB is the Boltzmann constant and m is the mean particle mass equal to 0.6mp , where
mp is the proton mass.

Furthermore, we take the temperature dependence of viscosity as (Braginskii, 1965)

η0 = 10−17T 5/2 kg m−1 s−1. (9)

We also take the temperature dependence of thermal conductivity as (Braginskii, 1965)

κ = 9 × 10−12T 5/2 W m−1 K−1. (10)

2.2. Linearised MHD Equations

In order to study the dynamics of slow magnetoacoustic waves, we consider linear pertur-
bations in the basic plasma state. In equilibrium, the plasma is isothermal with a constant
uniform density and pressure throughout. It is also assumed to be stationary having zero
velocity field and the gravitational effects are entirely ignored in the analysis.

p = p0 + p1 (pressure), (11)

ρ = ρ0 + ρ1 (density), (12)
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T = T0 + T1 (temperature), (13)

V = V1 (velocity field). (14)

Further using these linear perturbations, we linearize the MHD equations as follows.
Linearized Mass Equation,

∂ρ1

∂t
+ ρ0

(
∂V1

∂z

)
= 0. (15)

Linearized Momentum Equation,

ρ0

(
∂V1

∂t

)
+ ∂p1

∂z
=

(
4η0

3

)(
∂2V1

∂z2

)
. (16)

Linearized Energy Equation,

∂T1

∂t
−

(
(γ − 1)T0

ρ0

)(
∂ρ1

∂t

)

=
(

κ

ρ0Cv

)(
∂2T

∂z2

)
−

(
T1

τ2

)
−

(
1

τ2
− γ

τ1

)(
T0

ρ0

)
ρ1. (17)

Here γ = 5
3 is the adiabatic index and τ1, τ2 are the corresponding characteristic time scales

of the heating–cooling mechanisms involved. They are defined below according to Kolotkov,
Nakariakov, and Zavershinskii (2019):

τ2 = Cv

(∂Q/∂T )
,

τ1 = γCv

(∂Q/∂T − (ρ0/T0)(∂Q/∂ρ))
.

Ideal Gas Equation,

p1

p0
= T1

T0
+ ρ1

ρ0
. (18)

2.3. Fourier Analysis and New Dispersion Relation

We propose Fourier solutions of the form

F = F̂ ei(kz−ωt) (19)

to obtain our dispersion relation

ω3 + Aω2 + Bω + C = 0, (20)

where

A = i

(
4η0k

2

3ρ0
+ κk2

ρ0Cv

+ 1

τ2

)
,

B = −
(

γp0k
2

ρ0
+ 4η0k

2

3ρ0

(
κk2

ρ0Cv

+ 1

τ2

))
,

C = −i

(
k2p0

ρ0

(
κk2

ρ0Cv

+ γ

τ1

))
.
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3. Numerical Solutions of the Dispersion Relation

In order to solve our dispersion relation (Equation 20), we consider the following form of
the unknown heating function:

H(ρ,T ) = hρ−1/2T −3, (21)

where the power index factors a, b are chosen as −0.5 and −3, respectively, which is associ-
ated with determining a good quality factor of the damped oscillatory slow magnetoacoustic
oscillations during heating–cooling imbalance (Kolotkov, Nakariakov, and Zavershinskii,
2019) and h is determined by the initial equilibrium condition, i.e. Q(ρ0, T0) = 0. Through-
out the article we shall use this form of heating function whenever heating–cooling imbal-
ance is to be considered, otherwise H(ρ,T ) = constant is assumed.

Many previous studies have investigated the damping of slow waves by assuming the
unspecific heating term as constant (H = constant), which infers that the heating only plays
a role in balancing the optically thin radiation loss in the equilibrium but does not con-
tribute to the evolution of waves (Pandey and Dwivedi, 2006; Sigalotti, Mendoza-Briceño,
and Luna-Cardozo, 2007). These studies have demonstrated that the effect of radiation on
slow wave damping in the hot plasma is weak or negligible. However, when considering
heating as a function of density and temperature, the waves will, in turn, cause variations
of heating, leading to the so-called heating–cooling imbalance that can significantly change
the behavior of the wave evolution (Kumar, Nakariakov, and Moon, 2016; Nakariakov et al.,
2017; Kolotkov, Nakariakov, and Zavershinskii, 2019).

We have used the CHIANTI atomic database v. 9.0.1 in determining the specific values
of χ and α at different temperature and density for the radiative cooling. Using this we ob-
tain the values of τ1 and τ2 for different temperatures at a density of 10−11 kg m−3. In the
hot regime of temperature (T ≤ 10 MK), for T = 5.0, 6.3, 8.9, 10 MK, τ1 is estimated as 36,
37, 65, 100 mins, while τ2 as 10, 12, 19, 22 mins, respectively. In the super-hot regime of
temperature (T > 10 MK), for T = 20, 30 MK, τ1 is estimated as 308, 566 mins, while τ2 as
123, 226 mins, respectively. The values of τ1 and τ2 are reduced by 10, and 100 times respec-
tively at each given temperature for the loops with density 10−10 kg m−3 and 10−9 kg m−3.

We solve our dispersion relation numerically using the Wolfram Mathematica environ-
ment from 2016 for solution of standing wave form, where the wavenumber k is real and
the frequency ω is complex ωr + iωi . Further we solve our dispersion relation for a range of
temperature, density (normal and over-dense postflare loops), and loop lengths which also
include the values for observed temperature and loop length of SUMER oscillations (e.g.
Wang et al., 2003b; Wang, 2011, and references therein).

4. Theoretical Results

In Section 4.1, we analyze the effect of viscosity and thermal conductivity in the damping
of slow waves in coronal loops with and without considering heating–cooling imbalance.
Thermal conductivity and radiative cooling are always present as the damping mechanisms
in these analyses. However, we switch on and off the effect of compressive viscosity both in
the case of heating–cooling imbalance and without it in order to understand its effects with
respect to thermal conductivity on the damping of slow magnetoacoustic oscillations. The
role of the loop density in the damping of slow waves in coronal loops of length L = 500 Mm
within the hot regime of temperature (T ≤ 10 MK) is discussed in Section 4.2. In Sec-
tion 4.3, we study the role of loop density in the damping of slow waves in coronal loops of
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length L = 50 Mm within the super-hot regime of temperature (T > 10 MK). In Section 4.4,
we compare the individual role of viscosity and thermal conductivity on the damping of slow
waves in coronal loops in the presence of heating–cooling imbalance. Thereafter, in the light
of detailed analytical results, we made new scaling laws between the damping time (τ ) and
the wave period (P ) of the fundamental mode of slow magnetoacoustic oscillations and
compare them with the SUMER oscillations in Section 4.4.

4.1. Effect of Viscosity and Thermal Conductivity on the Damping of Slow Waves
in Coronal Loops with and Without Heating–Cooling Imbalance

We have solved a new dispersion relation (Equation 18) in order to understand the effect of
compressive viscosity and thermal conductivity at different sets of physical parameters, e.g.,
loop length, temperature, and density.

The main objective of the present work is to understand the evolution and damping of
the fundamental mode of the slow magnetoacoustic oscillations, i.e. k = π/L, where L

is the loop length and k is the wave number. However, the most general solution of the
dispersion relation depends on the dimensionless wave number K , where it is defined as
K = kL/π (K = 1 corresponds to the fundamental mode (or first harmonic), K = 2, 3,
4 correspond to the second, third, fourth harmonics respectively). We study the damping
of slow magnetoacoustic oscillations with and without heating–cooling imbalance in our
analysis due to the linear perturbation of the plasma. This is a very detailed parametric
study that considers the variation of the parameters in a wide range, e.g., loop length (L =
50 – 500 Mm), temperature (T = 5 – 30 MK), and density (ρ = 10−11 – 10−9 kg m−3) in order
to understand the evolution and damping of slow magnetoacoustic oscillations. We define
two regimes of loops based on their temperature, i.e. i) hot loops with T ≤ 10 MK and
ii) super-hot loops with T > 10 MK. Later, for the loop lengths of L = 50 Mm (shortest)
and 500 Mm (longest), we perform similar parametric studies at three different densities,
e.g., normal (ρ = 10−11 kg m−3) and over-dense (ρ = 10−10, 10−9 kg m−3) hot loops that are
also maintained at a wide range of the temperature (5 – 30 MK).

From the following analysis of the results shown in Figures 1 – 5, we find that the ef-
fect of heating–cooling imbalance on damping is more remarkable for the loops of lower
temperatures but greater lengths. The panels in Figure 1 – 3 show the variation of ωI with
dimensionless wave number K at fixed loop lengths (50, 180, 500 Mm) for different tem-
peratures from 5 MK to 30 MK. In each panel, the red and yellow curves are the solution
of the dispersion relation respectively with and without the effect of compressive viscosity
when the heating–cooling imbalance is present. The blue-dotted and green-dotted curves are
the solution of the dispersion relation respectively with and without the effect of compres-
sive viscosity when the heating–cooling imbalance is not present. It should be noted that
thermal conductivity is by default present in these analytical calculations. Therefore, when
we consider an absence of compressive viscosity, this means that in the background thermal
conductivity is present as a natural damping mechanism. When we include compressive vis-
cosity, its effect will be added to the presence of thermal conductivity. These estimations and
related analyses are performed both with and without heating–cooling imbalance. Therefore,
in principle, the red curve shows the joint effect of both thermal conductivity and compres-
sive viscosity during heating–cooling imbalance, while the yellow one exhibits only the
presence of thermal conductivity with heating–cooling imbalance. Similarly the blue-dotted
curve shows the joint effect of both thermal conductivity and compressive viscosity during
the absence of heating–cooling imbalance, while the green-dotted curve includes only the
effect of thermal conductivity without heating–cooling imbalance.
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Figure 1 The panels show the variation of ωI with dimensionless wave number K at a fixed loop-length of
50 Mm for different temperatures from 5 MK to 30 MK. In each panel, red and yellow curves correspond to
the solution of the dispersion relation with and without the effect of compressive viscosity respectively when
the heating–cooling imbalance is present. The blue-dotted and green-dotted curves represent the solution of
the dispersion relation with and without the effect of compressive viscosity respectively when the heating—
cooling imbalance is not present. Thermal conductivity is always present as a damping mechanism in these
analyses.

In the next two sections, we will provide the detailed results and their analyses/interpreta-
tions regarding the effect of thermal conductivity and viscosity on the fundamental modes,
and higher order harmonics of the slow waves, respectively.

4.1.1. Effect of Thermal Conductivity and Viscosity on the Damping
of the Fundamental Modes

In Figure 1, we present the variation of ωI w.r.t. K for the fundamental modes in a loop
of length L = 50 Mm. We show this variation at T = 5.0, 6.3, 8.9, 10, 20, and 30 MK.
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In the super-hot regime at T = 20, and 30 MK, for the fundamental mode (K = 1.0), the
value of ωI represented by red and blue-dotted curves drops down significantly compared
to the same depicted by the yellow and green-dotted curve (cf. bottom-left and right panels
in Figure 1). This shows that the compressive viscosity causes an enhanced damping of the
fundamental mode in a super-hot regime of shorter loops, when it is added in the presence of
thermal conductivity. The red and blue-dotted (or yellow and green-dotted) curves coincide
with each other (cf. bottom-left and right panels in Figure 1), which depicts that heating–
cooling imbalance has no significant effects on the damping of the fundamental modes in
the super-hot regime of shorter loops (T > 10 MK). In conclusion, Figure 1 demonstrates
that the compressive viscosity clearly enhances the damping of the fundamental modes in
shorter loops (L = 50 Mm) at a super-hot regime of T > 10 MK in the presence of thermal
conductivity. At a hot regime of T ≤ 10 MK at T = 8.9 and 10 MK (cf. middle-left and right
panels in Figure 1), the compressive viscosity still plays certain roles in the damping of the
fundamental mode of slow waves along with thermal conductivity, but not as effective as
we have already seen for the super-hot regime. Again, the effect of heating–cooling imbal-
ance in this condition is still negligible. As temperature goes down to T = 6.3 MK and then
further to T = 5.0 MK (cf. top-left and right panels in Figure 1), for the fundamental mode
(K = 1.0), the value of ωI shown by red, blue-dotted, yellow, and green-dotted curves is
almost the same. This indicates that the effects of both heating–cooling imbalance and vis-
cosity on the damping of the fundamental mode are insignificant compared to the thermal
conductivity.

In Figure 2, we present the variation of ωI w.r.t. K in the case of L = 180 Mm and
T = 5.0, 6.3, 8.9, 10, 20, and 30 MK. In the super-hot regime at T = 20, and 30 MK, for the
fundamental mode (K = 1.0), the value of ωI shown by red and blue-dotted curves drops
down compared to that depicted by yellow and green-dotted curves (cf. bottom-left and right
panels in Figure 2). This shows that compressive viscosity along with thermal conductivity
cause an enhanced damping of the fundamental mode in a super-hot regime for the loops of
intermediate length (L = 180 Mm). It is also seen that the red and blue-dotted (or yellow
and green-dotted) curves coincide with each other, which means that heating–cooling imbal-
ance has little effects on the damping of the fundamental mode oscillations in the super-hot
regime loops even with an intermediate length. In conclusion, compressive viscosity has a
definite role along with the presence of thermal conductivity in the damping of the funda-
mental oscillations for intermediate loops (e.g. L = 180 Mm) at the super-hot regime of
T > 10 MK. However, this physical effect is comparatively weaker compared to that in the
case of shorter loops (cf. compare the bottom panels of Figures 1 and 2). In the hot regime at
T = 8.9 and 10 MK (cf. middle-left and right panels in Figure 2), for the fundamental mode
(K = 1.0), the value of ωI on red/blue-dotted curves has a smaller drop in its value compared
to the yellow/green-dotted curves. Moreover, red and blue-dotted curves coincide with each
other, and the same is true for the yellow and green-dotted ones. These results infer that the
heating–cooling imbalance affects little the damping of the fundamental mode oscillations.
Additionally it indicates that the damping caused by the viscosity is insignificant compared
to that caused by thermal conductivity. The effect of the compressive viscosity is nearly
minimal at these temperatures. At T = 5.0 and 6.3 MK (cf. top-left and right panels in Fig-
ure 2), for the fundamental mode, the value of ωI represented by red/yellow curves is lower
compared to that shown by blue/green-dotted curves. Moreover, the red curve coincides
with the yellow one and the same is valid for the green and blue-dotted curves. The physical
scenario for the damping of the fundamental mode in the loops of intermediate length (e.g.
L = 180 Mm) at these lower temperatures now demonstrates that i) the heating–cooling im-
balance enhances the damping of the fundamental mode, ii) the compressive viscosity has
almost no effect on the damping, therefore, thermal conductivity dominates.
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Figure 2 The panels show the variation of ωI with dimensionless wave number K at a fixed loop-length of
180 Mm for different temperatures from 5 MK to 30 MK. In each panel, the red and yellow curves correspond
to the solution of the dispersion relation with and without the effect of compressive viscosity respectively
when the heating–cooling imbalance is present. The blue-dotted and green-dotted curves represent the so-
lution of the dispersion relation with and without the effect of compressive viscosity respectively when the
heating–cooling imbalance is not present. Thermal conductivity is always present as a damping mechanism
in these analyses.

In Figure 3, we present the variation of ωI with K in the case of L = 500 Mm and
T = 5.0, 6.3, 8.9, 10, 20, and 30 MK. At the highest temperature of 30 MK in the super-hot
regime, for the fundamental mode (K = 1.0), the value of ωI shown by red and blue-dotted
curves drops down compared to that represented by yellow and green-dotted curves (cf.
bottom-right panel in Figure 3). This shows that the compressive viscosity along with ther-
mal conductivity causes an enhanced damping of the fundamental mode at the highest tem-
perature in the longest loop considered in our analysis (L = 500 Mm). It is also seen that the
red and blue-dotted (or yellow and green-dotted) curves coincide with each other at 30 MK,
which means that heating–cooling imbalance has no distinct effects on the damping of the
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Figure 3 The panels show the variation of ωI with dimensionless wave number K at a fixed loop-length of
500 Mm for different temperatures from 5 MK to 30 MK. In each panel, the red and yellow curves correspond
to the solution of the dispersion relation with and without the effect of compressive viscosity respectively
when the heating–cooling imbalance is present. The blue-dotted and green-dotted curves represent the so-
lution of the dispersion relation with and without the effect of compressive viscosity respectively when the
heating–cooling imbalance is not present. Thermal conductivity is always present as a damping mechanism
in these analyses.

fundamental mode compared to the case when it is absent. At T = 20 MK (cf. bottom-left
panel in Figure 3), for the fundamental mode (K = 1.0), the value of ωI shown by red, blue-
dotted, yellow, and green-dotted curves is almost the same. The heating–cooling imbalance,
therefore, does not cause any enhanced damping of the fundamental mode compared to the
case when it is absent. Moreover, the damping effect of the compressive viscosity is not
important compared to that of thermal conductivity even at this high temperature. In the hot
regime at T = 5 – 10 MK, for the fundamental mode (K = 1.0), ωI shown by red/yellow
curves has lower values compared to the case of the blue/green-dotted curves (cf. top-left
and right, middle-left and right panels in Figure 3). Further, the red curve coincides with the
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yellow one, and the same is true for the green and blue-dotted curves. This suggests that the
heating–cooling imbalance causes more damping of the fundamental mode compared to the
case when it is not present. In addition, this indicates that the compressive viscosity has in-
significant effect on the damping of the fundamental mode, therefore, thermal conductivity
dominates. Moreover, as the temperature goes towards the lowest value, the heating–cooling
imbalance causes larger damping compared to the case without it.

4.1.2. Effect of Thermal Conductivity and Viscosity on the Damping of the Higher
Order Harmonics

Figure 1 also shows that in the case of shorter loops (L = 50 Mm) at the super-hot regime
(T > 10 MK) the compressive viscosity dominates in the damping and its effect increases
with the harmonic number, whereas heating–cooling imbalance has little effects on the
damping and is nearly independent of the harmonic number.

Figure 2 shows that in the case of intermediate loops (e.g. L = 180 Mm), the behav-
ior of the compressive viscosity and heating–cooling imbalance on the damping of higher
harmonics is similar to that for shorter loops in the super-hot regime. While at the lowest
temperature of T = 5 MK, the thermal conduction dominates in the damping and its effect
increases with the harmonic number, the heating–cooling imbalance plays a little role and
its dependence on the harmonic number is weak.

Figure 3 shows that in the super-hot regime, the longest chosen loop (L = 500 Mm)
has similar damping properties for higher harmonics as the intermediate loops. While at the
lowest temperature of T = 5 MK, thermal conduction still dominates in the damping and its
effect increases with the harmonic number. Compared to the intermediate loops, the longest
loop shows a significant effect of the heating–cooling imbalance on the damping, which
appears to be independent of the harmonic number.

In the next section, we present a brief summary of the results obtained in Sections 4.1.1
and 4.1.2.

4.1.3. Brief Summary

Note that in Sections 4.1.1 and 4.1.2, we have not compared the individual roles of thermal
conduction and viscosity in the damping of the fundamental modes and higher order har-
monics of slow waves, which will be done next in Section 4.2. In summary, from Figures 1 –
3, we find that: i) viscosity causes a significant and dominant damping of slow modes in the
super-hot regime for shorter loops with a damping rate even higher for the higher harmonics
(cf. bottom panels of Figure 1), while the heating–cooling imbalance has little effect on the
damping of slow modes in this condition; ii) the heating–cooling imbalance causes a signif-
icantly enhanced damping of slow modes in the less hot and longer loops with effects that
weakly depend on the frequency (or harmonic number, cf. top panels of Figure 3), while
the viscosity plays nearly no role or a very small one in the damping for this condition. It is
worth noting that the y-axes on Figures 1 – 3 have varying scales of ωI , therefore, describing
significantly different decay rates for the different cases.

Many previous studies on the damping of standing slow MHD waves in coronal loops
have defined dimensionless parameters in order to quantify the damping effect of thermal
conductivity, viscosity, and radiative losses/gains (De Moortel and Hood, 2003, 2004; Siga-
lotti, Mendoza-Briceño, and Luna-Cardozo, 2007). These parameters are defined as

ε = η0

ρ0Lcs

(viscous ratio), (22)
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d = (γ − 1)κρ0T0cs

γ 2p2
0L

(thermal ratio), (23)

r = (γ − 1)Lρ0L(ρ0, T0)

γp0cs

(radiative ratio), (24)

here cs =
(

γ kBT0
m

)1/2
.

The damping rate of the standing waves has been analytically studied in terms of these
dimensionless ratios and it was found that it is a monotonically increasing function of ε

(Sigalotti, Mendoza-Briceño, and Luna-Cardozo, 2007) whereas it increases up to a peak
maximum value and then reduces with increasing d ratio (De Moortel and Hood, 2003). In
the regime for hot (5 – 10 MK) and longer loops (500 Mm) with normal density, both d and
ε are small (� 1), this is the condition for the so-called weak dissipation approximation, in
this case, d

ε
is a constant and d

ε
� 1, so thermal conduction dominates in the damping. In

the regime of super-hot (20 – 30 MK) and short loops (50 Mm) with normal density both

thermal ratio (d ∝ T 2
0

ρ0L
) and viscous ratio (ε ∝ T 2

0
ρ0L

) are large (� 1). The different behavior
of the damping rate depending on d and ε implies that when both d and ε are � 1, the
viscous damping is dominant.

In the next section, we analyze the velocity oscillations of the fundamental mode in the
hot regime of temperature T ≤ 10 MK.

4.1.4. Analyses of Velocity Oscillations of the Fundamental Mode in the Hot Regime
of Temperature T ≤ 10 MK

We analyze the time evolution of damped slow-mode oscillations in a similar manner as
done by Wang et al. (2003a) and consider the velocity perturbations as

V (z, t) = V0 sin (kz) cos (ωRt)e−|ωI |t . (25)

Here ωR is the real component of cyclic frequency while k and V0 are the wave number and
amplitude of velocity oscillations, respectively. We calculate the time variation of velocity
oscillations using our numerical solutions for the dispersion relation in different cases.

In Figure 4, the time variation of V at the chosen position of z = L
2 for the damped

fundamental mode oscillations in the loops of L = 50 Mm (left column), 180 Mm (middle
column), and 500 Mm (right column) are plotted at T = 5.0, 6.3, 8.9 MK respectively. Since
we estimate normalized temporal variations of V , and sin(kz) varies between ±1, any of the
arbitrary choices of z will not change the shape of the velocity oscillations. In each panel,
the yellow (red) solid curve shows the temporal variation of the oscillations without (with)
the effect of compressive viscosity under the consideration of heating–cooling imbalance
and presence of thermal conductivity as a default damping mechanism. The dotted-green
(dotted-blue) curve shows the temporal variation of the oscillations without (with) the ef-
fect of compressive viscosity without the consideration of heating–cooling imbalance and
presence of thermal conductivity as a default damping mechanism.

It is clear that the velocity oscillations decay quickly in the shortest loop of 50 Mm
length at T = 5.0 – 8.9 MK. However, all the curves are merged together (cf. left column
in Figure 4). Although, the case shown in the left-bottom panel (L = 50 MK and T = 8.9)
indicates a weak effect of viscous damping. This implies no difference in the damping be-
tween the cases with and without consideration of heating–cooling imbalance. In both cases,
thermal conductivity is always switched on as a default damping mechanism. Therefore, it
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is clear that the fundamental mode oscillations are damped dominantly due to thermal con-
ductivity in the case of an L = 50 Mm loop, and both the heating–cooling imbalance and
viscosity cause no enhancement of the damping. Top and middle panels in the left-column
in Figure 4 for T = 5.0 and 6.3 MK clearly demonstrate such cases where thermal conduc-
tion dominates the damping, while both the viscosity and heating–cooling imbalance have
nearly no effects on it.

Velocity oscillations also show decay in the loop of 180 Mm length at T = 5.0 – 8.9 MK.
At T = 5 MK, the heating–cooling imbalance causes a reduction in the velocity amplitude
(red/yellow curve) and thus an enhanced damping compared to the case in the absence of
imbalance (dotted-green/dotted-blue curve; cf. top panel in the middle column). The red and
yellow curves superimpose on each other, which means that the compressive viscosity has
insignificant effect on enhancing the damping in the presence of heating–cooling imbalance,
and its damping is mainly caused by thermal conductivity. Similarly the dotted green and
blue curves also superimpose with each other indicating that the effect of viscous damping is
negligible compared to the damping due to thermal conductivity in the absence of heating–
cooling imbalance. As temperature reaches 6.3 MK, an enhanced damping is again observed
in the presence of heating–cooling imbalance, but its effect decreases as there is a reduction
in the velocity amplitude compared to the one observed at T = 5.0 MK (cf. middle panel in
the middle column). At T = 8.9 MK, the heating–cooling imbalance has still a little higher
effect on the damping of the fundamental mode oscillations compared to the case without
it. However, the reduction in the velocity amplitude oscillations is even smaller compared
to the one seen at lower temperatures of 6.3 and 5.0 MK (cf. bottom panel in the middle
column). In conclusion, this scenario indicates that for the intermediate loop length (e.g.
L = 180 Mm here), the damping is mainly due to the presence of thermal conductivity and
the effect of heating–cooling imbalance is evident mostly at the hot regime of temperature
(T ≤ 10 MK). Heating–cooling imbalance causes more damping at lower temperature in the
longer loops.

For the loop of L = 500 Mm maintained at T = 5.0 MK, the heating–cooling imbal-
ance enhances the damping of the fundamental mode oscillations significantly. The velocity
oscillation is reduced significantly in magnitude (cf. top panel in the right column). When
temperature increases to 6.3 MK, the heating–cooling imbalance still affects strongly the
damping of the fundamental mode as the velocity oscillations are still reduced significantly
(cf. middle panel in the right column). In the case of T = 8.9 MK, the same scenario holds
with the reduction of the velocity oscillations in the presence of heating–cooling imbalance
(cf. bottom panel in the right column). In this case compressive viscosity has no appreciable
role in the damping of the fundamental modes compared to thermal conductivity, and even
the presence of heating–cooling imbalance enhances the dissipation caused by it. In conclu-
sion, in the hot regime T ≤ 10 MK, the compressive viscosity has an insignificant role in
enhancing the damping of the fundamental mode oscillations. Whereas thermal conductiv-
ity plays an appreciable role and its effect is enhanced by the presence of heating–cooling
imbalance especially in longer loops of lower temperature. The case at T = 5.0 MK in the
longest loop shows the most significant effect of heating–cooling imbalance in the damping
while no effect is observed due to viscosity. In the hot temperature regime, especially in
the longer loops, there is a phase-shift in the velocity oscillations (e.g. top right panel of
Figure 4). A detailed study on the physical cause of this is out of the scope of the present
article, and will be taken-up extensively in future studies.

In the next section, we analyze the velocity oscillations of the fundamental mode in the
super-hot regime with T > 10 MK.
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4.1.5. Analyses of Velocity Oscillations of the Fundamental Mode in the Super-Hot
Regime of Temperature T > 10 MK

In Figure 5, the time variation of V at z = L
2 for the fundamental mode oscillations in the

loops of L = 50 Mm (left column), 180 Mm (middle column), and 500 Mm (right column)
are plotted at T = 10, 20, 30 MK respectively. In each panel, the yellow (red) solid curve
shows the temporal variation of the oscillations without (with) the effect of compressive
viscosity under the consideration of heating–cooling imbalance and presence of thermal
conductivity as a default damping mechanism. The dotted-green (dotted-blue) curve shows
the temporal variation of the oscillations without (with) the effect of compressive viscosity
without the consideration of heating–cooling imbalance.

For the loop of 50 Mm length, at a temperature of 10 MK (cf. top panel in the left
column), the velocity curves without viscosity in both the cases with heating–cooling im-
balance (yellow) and without it (dotted-green curve) are superimposed with each other and
have higher amplitude of oscillations. On the other hand, the velocity curves with viscosity
in both cases with heating–cooling imbalance (red) and without it (dotted-blue curve) are
also almost superimposed and have lower amplitude of oscillations. This scenario is also true
for higher temperatures of 20 and 30 MK, in general. It describes that the heating–cooling
imbalance or constant heating rate without imbalance plays no role in the damping of fun-
damental mode oscillations in shorter loops. On the other hand in the super-hot regime,
it is obvious that the inclusion of viscosity (red/blue-dotted curve) significantly enhances
the damping of the fundamental modes compared to the case of thermal conductivity alone
(yellow/green-dotted curve). At T = 10 MK, the velocity oscillations are damped (cf. Fig-
ure 5, top panel in the left column) due to the effects of both compressive viscosity and
thermal conductivity. It can be seen that when temperature increases to 20 MK for the loop
of L = 50 Mm, the damping effect due to viscosity becomes even more prominent compared
to the case with thermal conduction alone (cf. Figure 5, middle panel in the left column).
We find that the velocity oscillations show the most serious damping (only one cycle of the
oscillations is visible) at T = 30 MK for the shortest loop of L = 50 Mm when the vis-
cosity is included, while the damping of oscillations in the case with thermal conduction
alone become weaker with increasing temperature (cf. Figure 5, bottom panel in the left
column). The cases with L = 50 Mm and T = 20 and 30 MK have the damping dominated
by viscosity because the cases without it (or with thermal conduction alone) show only a
weak damping. Additionally the effect of heating–cooling imbalance for this condition is
negligible.

For the intermediate loop length L = 180 Mm, the red/yellow as well as blue/green dotted
curves are almost superimposed with each other at 10 MK temperature. According to this
behavior it is inferred that the damping of the fundamental mode oscillations is mostly due
to the presence of thermal conductivity, and on the other hand the presence of heating–
cooling imbalance and compressive viscosity do not enhance the amount of damping (cf.
Figure 5, middle panel in the middle column). At T = 20 MK, the velocity oscillations
are seen damped due to the joint effect of viscosity and conductivity while the imbalance
plays no role in the damping in the case of 180 Mm loops (cf. Figure 5, middle panel in the
middle column). At T = 30 MK, velocity oscillations are damped significantly due to the
joint effect of viscosity and conductivity while the imbalance plays no role in the damping
for the case of 180 Mm loops (cf. Figure 5, bottom panel in the middle column).

For the highest considered loop length L = 500 Mm at 10 MK temperature (cf. Figure 5,
top panel in the right column), heating–cooling imbalance dominates along with thermal
conductivity (red/yellow curve) the damping of the fundamental modes. The effect of the
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compressive viscosity is not likely the cause of enhanced damping of the fundamental modes
at 10 MK as indicated by the almost superimposed yellow and red curves. At T = 20 MK,
the red/yellow and blue/green-dotted curves are almost superimposed with each other, which
suggests that the damping of the fundamental mode slow magnetoacoustic oscillations is
mostly due to the presence of thermal conductivity while both heating–cooling imbalance
and compressive viscosity do not play a role in the damping (cf. Figure 5, middle panel in the
right column). At T = 30 MK, the damping effect of the compressive viscosity only slightly
takes over that of thermal conductivity, but both cases attenuate the velocity oscillations
significantly in the case of 500 Mm loop, while the effect of heating–cooling imbalance on
the damping is negligible (cf. Figure 5, bottom panel in the right column). This implies that
thermal conduction is dominant. In conclusion, the super-hot loops have quite appreciable
velocity damping of the fundamental modes under the joint effects of compressive viscosity
and thermal conductivity especially in the shorter loops, where the viscous damping dom-
inates over thermal conduction damping, while the effect of heating–cooling imbalance is
negligible. Nevertheless in the longest loop (L = 500 Mm), once we go towards 10 MK
temperature the effect of heating–cooling imbalance along with thermal conductivity causes
a dominant effect on the damping. While, towards the highest temperature of 30 MK, as
usual the joint effect of compressive viscosity and thermal conductivity causes an enhanced
damping. It should be noted that all these estimations are made for the appropriate density
values of the normal coronal loops, i.e. typically of the order of ρ = 10−11 kg m−3.

In the next section, we present a brief summary of the results obtained in Sections 4.1.4
and 4.1.5.

4.1.6. Brief Summary

In summary, there are mainly three different cases on the damping of slow modes by ther-
mal conduction, viscosity, and heating–cooling imbalance which show the dominant role
in different conditions: i) the viscosity dominates the damping in super-hot shorter loops
(cf. bottom-left panel of Figure 5) while the heating–cooling imbalance plays nearly no role
in this condition; ii) the slow modes are damped mainly due to the joint effects of thermal
conduction and heating–cooling imbalance for the less hot loops with longer length (cf. top-
right panel of Figure 4) while the viscous effect is negligible in this condition; iii) thermal
conduction dominates the damping while the effects of both viscosity and heating–cooling
imbalance are negligible (cf. cases with L = 50 and T = 5.0 and 6.3 MK in the upper two
panels of the left column of Figure 4, cases with L = 180 and T = 8.9 and 10 MK in bottom-
middle panel of Figure 4 and top-middle panel of Figure 5, and the case with L = 500 Mm,
and T = 20 MK in the middle-right panel of Figure 5).

Up to this point we have analyzed and established comprehensively the damping scenario
of the slow waves in the presence of thermal conductivity and compressive viscosity with
and without heating–cooling imbalance for a wide range of loop lengths and temperatures.
In the following sections, we will analyze the role of loop density in the damping of slow
waves in two extreme cases: one for the longest loop of 500 Mm length in the hot regime
T ≤10 MK (Section 4.2), and another for the shortest loop of 50 Mm length in the super-hot
regime T >10 MK (Section 4.3).

4.2. Role of Loop Density on the Damping of Slow Waves in a Coronal Loop of
Length L = 500 Mm within the Hot Regime of Temperature (T ≤ 10 MK)

In the previous section, we have found that the thermal conductivity along with the heating–
cooling imbalance causes the efficient damping of the fundamental slow mode oscillations
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in the hot regime (T ≤ 10 MK) of the longer loops, while compressive viscosity does not
lead to any significant enhancement of the damping of this oscillation. Keeping this scenario
in view, in this section we present some additional analyses about the role of loop density in
the damping of slow waves in a coronal loop of length L = 500 Mm within the hot regime.

In Figure 6, the variation of ωI with non-dimensional wave number K is presented
at T = 5.0, 6.3, 8.9 MK in the loop with densities (ρ) 10−11, 10−10, and 10−9 kg m−3.
These panels collectively show that in the hot regime at each temperature value of 5.0, 6.3,
and 8.9 MK, the ωI values for the fundamental mode do not show any appreciable drop
(red/yellow curves when compared to each other) as the density increases. This depicts that
the damping rate due to heating–cooling imbalance is not affected much in more bulky
loops (e.g. post-flare loop arcades) compared to the loops with normal coronal density. At
a given temperature, the value of ωI shown by the red-yellow curve slightly decreases with
the increase in density for the fundamental mode, which depicts that the increase in density
slightly suppresses the damping due to thermal conduction and heating–cooling imbalance.
The red and yellow curves are superimposed, and a similar scenario is true for the green-
dotted and blue-dotted curves. This implies that compressive viscosity does not add any
enhancement to the damping of the fundamental modes, while the damping is mostly per-
formed by thermal conductivity. A similar physical scenario is also evident for the damping
of the higher order harmonics in the longest loop of 500 Mm length. The damping effects
caused by the heating–cooling imbalance and thermal conductivity on the higher order har-
monics (e.g. second harmonics with K = 2.0) do not change appreciably with the increase
of the loop density. However, the curves of ωI become flatter with the increase of the har-
monic number, showing a behavior distinctly different from those where thermal conduction
dominates the damping (compare the right columns of Figure 6 and Figure 8). This may
suggest that the role of optically thin radiation becomes important in the damping of higher
harmonic slow modes in the over-dense loops (De Moortel and Hood, 2004; Pandey and
Dwivedi, 2006). A detailed analysis of the effects of radiation is beyond the scope of this
study. In the longest loop with a normal coronal density at a temperature of 6.3 – 8.9 MK,
some weak damping effect caused by the viscosity on the higher mode harmonics can been
seen (cf. middle and bottom panels in the left column in Figure 6). In all the panels, the
values of ωI shown by the red/yellow curves are significantly lower compared to the ones
represented by the blue/green-dotted curves. This implies that overall the heating–cooling
imbalance has larger effects on the damping of slow waves compared to the case when it is
not considered.

The top-left and top-right panels in Figure 7 compare the velocity oscillations at differ-
ent densities in the cases with and without heating–cooling imbalance. It is clear that the
velocity oscillations are more damped in the case with heating–cooling imbalance (top-left
panel). As temperature increases (middle and bottom panels), this difference in the damping
rate reduces. However, one can still see that the velocity oscillations with heating–cooling
imbalance considered (middle and bottom-left panels) are more damped compared to the
case without it (middle and bottom-right panels).

In summary, in the hot (T ≤ 10 MK) longer loops, both thermal conduction and heating–
cooling imbalance play significant roles in the damping of fundamental mode oscillations
in loops of different densities, however, the damping rate due to heating–cooling imbalance
only decreases a little as the loop density increases. In addition, the damping effect of radi-
ation may become more important than that of thermal conduction for the higher harmonics
in over-dense long loops, which needs to be investigated further in the future.
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Figure 7 Left panels show the temporal variation of velocity V for the fundamental mode of slow magnetoa-
coustic oscillations at z = L

2 for a loop of length L = 500 Mm with densities ρ = 10−11 (red), 10−10 (blue–

dotted), 10−9 (green-dotted) kg m−3 at T = 5.0, 6.3, 8.9 MK when heating–cooling imbalance is present.
Right panels are similar to the ones on the left but for the case without heating–cooling imbalance.

4.2.1. Effect of Loop Density on Slow Wave Damping in a Coronal Loop of Length
L = 50 Mm Within the Super-Hot Regime of Temperature (T > 10 MK)

As we have previously detected a significant role of compressive viscosity and thermal con-
ductivity jointly for the shorter loops (e.g., L = 50 Mm) with a typical coronal loop den-
sity at the super-hot regime of temperature (T > 10 MK). We examine next the effect of
density variations on the properties of the slow magnetoacoustic oscillations in a shorter
loop (L = 50 Mm) for different temperatures ranging between 10 – 30 MK. It should be
noted that compressive viscosity along with thermal conductivity have significant effects
on the damping of the fundamental mode for all considered temperatures ranging between
5 – 30 MK (Figure 1) compared to the case of thermal conductivity alone, however, the con-
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tribution of compressive viscosity becomes significant only at very high temperatures, e.g.,
10 – 30 MK (Figure 1). We divide such loops into two categories based on their density
values, namely, the normal density loops (ρ = 10−11 kg m−3, and over-dense flaring loops
(ρ = 10−10 – 10−9 kg m−3) (Aschwanden, 2004), and analyze the variation of ωI with K for
the super-hot regime of T ≥ 10 MK. The results of this analysis are presented in Figure 8.

In the top row of Figure 8, at T = 10 MK and ρ = 10−11 kg m−3 (normal dense loops), for
the fundamental mode, the value of ωI represented by the red/blue-dotted curves drops com-
pared to the same shown by the yellow/green dotted curves. As previously, it is inferred that
when viscosity is added to thermal conductivity, it enhances the damping (cf. top-left panel
in the first row of Figure 8). Since red and blue-dotted curves are coincident with each other
this means that heating–cooling imbalance does not have any significant role in enhancing
the damping in the present case. A similar physical scenario also works for the higher order
harmonics. However, when density is increased by an order of magnitude (mildly over-dense
loops), i.e. 10−10 kg m−3 (cf. top-middle panel in the first row of Figure 8), for the funda-
mental mode, the red, yellow, green-dotted and blue-dotted curves are almost all coincident.
This describes the fact that even at a higher temperature, if the density of the shorter loop
is higher, the inclusion of compressive viscosity does not cause more damping than thermal
conductivity alone (yellow/green dotted curves). Moreover, the effect of heating–cooling im-
balance on the damping in this condition is almost negligible. However, when examining the
higher order harmonics (e.g. K = 2.0), we find that viscosity still has some small effects in
enhancing the damping along with thermal conductivity (red/blue-dotted curves still lower
down) compared to thermal conductivity alone (yellow/green-dotted curves). When density
is increased by one more order (over-dense loops), i.e. 10−9 kg m−3 (cf. top-right panel in the
first row of Figure 8), then for the fundamental mode, the red and yellow (green-dotted and
blue) curves coincide with each other and the values of ωI shown by the red/yellow curve
drop compared to the ones represented by the green/blue-dotted curves. Now, the inclusion
of compressive viscosity does not cause any appreciable enhancement of the damping com-
pared to the one already caused by thermal conductivity. Therefore, thermal conductivity
remains dominating the damping mechanism while viscosity does not play any significant
role in the bulky loops (e.g. post flare loops) even if they are shorter and maintained at high
temperature. Moreover, it is noticed that the heating–cooling imbalance enhances slightly
more the damping compared to the case without its presence. For the higher order harmon-
ics, the compressive viscosity still plays some roles in slightly enhancing the damping. At
temperatures T = 20 MK (cf. middle row in Figure 8) and 30 MK (cf. bottom row in Fig-
ure 8), it is seen a similar trend as density increases, the effect of the compressive viscosity
diminishes. However, it still remains effective for the second harmonics. In conclusion, even
for the shorter and super hot loops, the damping effect of compressive viscosity may be weak
or negligible if the loop density is high enough.

For post flare bulky loops, since the thermal ratio d � 1 for super-hot and short loops,
thermal conduction damping is weak but with an increase in density, d decreases since
d ∝ 1/ρ0 and comes close to the value of the peak damping rate (De Moortel and Hood,
2003) causing an increase in the damping. When viscosity is added, which is a dominant
damping mechanism in the regime, the increase in density reduces the viscous ratio (ε ∝ 1

ρ0
)

thus reducing the damping effect due to viscosity. Note that the scales for the Y-axis between
the left and right panels are distinctly different in Figure 8.

In contrast, both the thermal ratio (d) and viscous ratio (ε) are � 1 for hot (5 – 10 MK)
and longer loops (500 Mm) and thermal conduction is a dominant damping mechanism
while the damping due to viscosity is weak. As the value of density is increased, both ε and
d decrease even further and thus the damping rate due to thermal conductivity is reduced
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Figure 9 Left column: Temporal variation of the velocity amplitude V of the fundamental mode of slow
magnetoacoustic oscillations at z = L

2 for a loop of length L = 50 Mm with densities ρ = 10−11 (red), 10−10

(blue-dotted), 10−9 (green-dotted) kg m−3 at T = 10 MK (top), 20 MK (middle), and 30 MK (bottom) when
heating–cooling imbalance is present. Right column: Similar panels as shown in the left column but without
heating–cooling imbalance.

for over dense loops (cf. Figure 6) while the addition of viscosity does not make significant
difference in the overall damping for normal as well as for post flare bulky loops.

Figure 9 shows the temporal variation of the velocity V of the fundamental mode for a
loop of length L = 50 Mm with densities ρ = 10−11 (red), 10−10 (blue-dotted), 10−9 (green-
dotted) kg m−3 at different temperatures with and without heating–cooling imbalance. It is
seen that left and right columns are almost similar, implying that in the super-hot regime
the damping of the velocity amplitude oscillations is less influenced by the heating–cooling
imbalance. In the left (or right) column, when we see from the top-panel (at 10 MK) to
the bottom-panel (at 30 MK), we notice that the velocity amplitude oscillations are largely
damped in the loop of density 10−11 kg m−3 (red curve) under the inclusion of compressive
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viscosity together with the thermal conductivity, while it is less damped in the loops of
densities 10−10 and 10−9 kg m−3 (blue-dotted and green-dotted curves). The damping rate of
the velocity oscillations in normal, mild, and over-dense loops increases with the increment
in temperature which can be seen clearly from these plots.

4.3. Comparison of the Role of Thermal Conductivity and Viscosity in Damping
of Slow Waves in Coronal Loops with Heating–Cooling Imbalance

In the previous sections, we have performed comprehensive analyses on the damping of slow
magnetoacoustic oscillations. We find that at a hot regime of the temperature (T ≤ 10 MK),
thermal conductivity along with heating–cooling imbalance plays a significant role in en-
hancing the damping of the fundamental mode. While, in the super-hot regime of tempera-
ture (T > 10 MK), the inclusion of compressive viscosity along with thermal conductivity
causes an enhanced wave damping. Therefore, in the present section, we estimate and an-
alyze the individual roles of compressive viscosity and thermal conductivity in the wave
damping under the effect of heating–cooling imbalance.

In Figure 10, we find that the damping of the fundamental mode is much higher due to
thermal conductivity (yellow) compared to compressive viscosity (cyan) in the hot regime
T = 5 – 10 MK in the shortest considered loop of length 50 Mm. However, their role is
getting reversed in the super-hot regime T > 10 MK as the compressive viscosity dom-
inates the damping of the fundamental mode at 20 and 30 MK temperatures. This result
also supports the conclusions of Mendoza-Briceño, Erdélyi, and Sigalotti (2004), Siga-
lotti, Mendoza-Briceño, and Luna-Cardozo (2007), and Abedini, Safari, and Nasiri (2012).
A similar physical scenario is also valid for the higher order harmonics with K ≥ 2.0. In Fig-
ure 11, for a loop of 180 Mm length, thermal conductivity dominates over the temperature
range of 5 – 20 MK for the dissipation of the fundamental mode oscillations. This result also
supports the conclusion derived in Ofman and Wang (2002) that the thermal conductivity is
a dominant damping mechanism in typical hot coronal loops. The compressive viscosity be-
gins to play some roles in the damping at 30 MK, and its effect is slightly stronger than that
of thermal conduction. At T > 20 MK, the damping of the higher harmonics is dominated
by compressive viscosity, while at T < 20 MK, it is dominated by thermal conduction. In
Figure 12, for the longest loop of 500 Mm length, thermal conductivity at all temperatures
dominates over compressive viscosity in the damping of the fundamental mode.

4.4. Comparison of Various Scaling Laws Between τ and P

Figure 13 displays the damping time vs. period for all kinds of theoretically estimations.
Filled red circles are the measurements related to the theoretically estimated τ and P for
the damped fundamental mode when we consider thermal conductivity, compressive vis-
cosity, and heating–cooling imbalance. Cyan circles are the theoretical data points when we
consider only compressive viscosity and heating–cooling imbalance. While, pink circles are
the data points when we consider only thermal conductivity and heating–cooling imbalance.
Blue rectangles are the points under the effect of compressive viscosity and thermal conduc-
tivity without heating–cooling imbalance. Finally, filled black rectangles are data related to
the observed SUMER oscillations (Wang et al., 2003b) that are overplotted. Various dashed-
dot yellow lines show the fittings on various sets of theoretical data points while the dark
green-dashed line corresponds to τ = P . It should be noted that we have taken all the esti-
mated data (τ , P ) corresponding to the fundamental mode oscillations derived from coronal
loops with a normal density of 10−11 kg m−3.
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Figure 10 The panels show the variation of ωI with dimensionless wave number K at a fixed loop-length
of 50 Mm for different temperatures ranging from 5 MK to 30 MK. In each panel, the cyan and yellow
curves correspond to the solution of the dispersion relation for compressive viscosity and thermal conductivity
respectively when heating–cooling imbalance is present.

These damped oscillations and related τ and P are being studied and plotted in Figure 13
without any information regarding loop length and temperature. Keep in mind that SUMER
oscillations were measured in a variety of loops with different lengths and temperatures
(Wang, 2011). It is clear that the observed data points (black rectangles) from SUMER os-
cillations match quite closely the theoretically estimated data of the slow-mode oscillations
when we consider thermal conductivity, compressive viscosity, and heating–cooling imbal-
ance (red circles). However, close inspection of Figure 13 provides some more interesting
scientific facts. For the period P ≤ 25 min, an almost linear trend is observed between τ

and P with a scaling τ ∝ P 1.05. Note that the dark green-dotted line is τ = P line. These
first 14 theoretically estimated data points are basically associated with the oscillations for
the shorter loops, and they are closely matching the observed SUMER oscillations (black
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Figure 11 The panels show the variation of ωI with dimensionless wave number K at a fixed loop-length
of 180 Mm for different temperatures ranging from 5 MK to 30 MK. In each panel, the cyan and yellow
curves correspond to the solution of the dispersion relation for compressive viscosity and thermal conductivity
respectively when heating–cooling imbalance is present.

rectangles) which were shown to follow a scaling law of τ ∝ P 0.96 as per the improved
measurements taking into account the flow effects (Wang et al., 2005) and also the more
recent oscillations detected by RHESSI (Cho et al., 2016) have shown a similar scaling law
for hotter and shorter loops. For P ≥ 25 min, the next 10 theoretically estimated data points
are more scattered and basically related to the various oscillations detected in the longer
loops. The lower dot-dashed yellow line that fits the red filled circles is indeed composed
of two power-law scalings. For the period P ≤ 25 min the scaling between τ and P is
τ ∝ P 1.05. While beyond this period, it is found to be τ ∝ P 0.95. A break point is detected
at P = 25 min, and the next linear trend/fit of/to the data has a lower slope with a scaling
τ ∝ P 0.95 close to the one estimated by Mariska et al. (2008) and Nakariakov et al. (2019).
It should be noted that this break point might occur due to the fact that the heating–cooling
imbalance becomes effective in the loops of longer length and helps to account for the ob-
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Figure 12 The panels show the variation of ωI with dimensionless wave number K at a fixed loop-length
of 500 Mm for different temperatures ranging from 5 MK to 30 MK. In each panel, the cyan and yellow
curves correspond to the solution of the dispersion relation for compressive viscosity and thermal conductivity
respectively when heating–cooling imbalance is present.

served excessive damping. Therefore, the analytical data and corresponding scaling law falls
more towards the observations. The data points (blue rectangles) estimated under the consid-
eration of a constant heating rate (i.e. without heating–cooling imbalance), has a scaling law
(middle yellow-dotted line in Figure 13) expressed by τ ∝ P 1.12. This is slightly deviated
from the SUMER observations, and damping is underestimated when the heating–cooling
imbalance is not considered. The other set of data points (cyan circles) estimated under the
consideration of only compressive viscosity (i.e. without considering thermal conductivity),
has a scaling law (upper yellow-dashed line on these points especially below P = 35 min)
expressed by τ ∝ P 1.55. This is far beyond the scaling related to SUMER observations, and
damping is heavily underestimated in the case when thermal conduction is not considered.
Note that in the period regime of P > 35 min, which is mostly related to longer loops, the
heating–cooling imbalance significantly enhances the damping and can cause the deviation
of some data points (cyan circles) towards the τ = P line. In conclusion, the consideration
of the joint effect of thermal conductivity, compressive viscosity, and heating–cooling im-
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Figure 13 Variation of the damping time (τ ) vs. period (P ): i) filled-red circles (with thermal conductivity
plus compressive viscosity plus heating–cooling imbalance), ii) cyan circles (only with compressive viscos-
ity plus heating–cooling imbalance), iii) pink circles (only with thermal conductivity plus heating–cooling
imbalance), iv) blue rectangles (without imbalance plus compressive viscosity plus thermal conductivity),
v) filled-black rectangles (observed SUMER oscillations). Various dashed-dotted yellow lines show the fit-
tings on (i), (ii) and (iv) theoretical data points. The dark green-dashed line corresponds to τ = P .

balance predicts a theoretical scaling law in between τ and P better matching the SUMER
observations. Even if we remove the effect of viscosity, and only consider thermal conductiv-
ity and heating–cooling imbalance, most of the data points in Figure 13 (empty pink circles)
still fall close to the filled red circles except for a few ones related to shorter loops associated
with the lowest periods. This suggests that thermal conductivity along with heating–cooling
imbalance may play a vital role in explaining the strongly damped slow-mode oscillations
observed with SUMER for most of the events, while the role of compressive viscosity may
be essential in interpreting the damping of short loops in the super-hot temperature regime
such as in postflare loops in solar and stellar flares (Cho et al., 2016).

5. Discussion and Conclusions

To the best of our knowledge, the present article firstly provides a comprehensive overview
on the physical scenario of the damping of the fundamental mode of slow magnetoacoustic
oscillations and its higher harmonics in coronal loops with diverse lengths (50 – 500 Mm),
temperatures (5 – 30 MK), and densities (10−11 – 10−9 kg m−3) under the consideration of
thermal conductivity, compressive viscosity, and heating–cooling imbalance. In the present
work, the temperature range chosen for the theoretical analysis is based on actual observa-
tions. Similar damped harmonic oscillations found with RHESSI observations showed aver-
age periods of 0.9 min and average decay times of 1.5 min, much shorter compared to those
of SUMER oscillations (Cho et al., 2016), while their oscillation quality (i.e. ratio of damp-
ing time to period) is similar. Therefore, the assumption of quasi-steady equilibrium may
still hold if the wave period is much smaller than the cooling timescale at T = 20 – 30 MK.
The quasi-static assumption here has a two-fold meaning: i) linear theory of different damp-
ing mechanisms is applicable on a time scale comparable to the wave period corresponding
to the “equilibrium” background condition (T0, ρ0, and L) at a certain instant; ii) the WKB
(Wentzel–Kramers–Brillouin) approximation, i.e. dP

dt
� 1, the change of the wave period is
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very slow during a certain period (e.g. the decay time considered). This allows us to analyze
the decay of relative perturbations, 
T

T0
and 
ρ

ρ0
where T0 and ρ0 are the averaged parame-

ters over this period. For example, Sharykin and Kosovichev (2015) showed observations of
super-hot flare loop with GOES that can reach T > 30 MK for a few minutes. Their damp-
ing behavior can be understood based on our parametric study in the regime of super-hot
short loops. It is known that the RHESSI energy band (3 – 25 keV) used to detect the os-
cillations (or QPPs) is associated with super-hot loops with T = 20 – 30 MK (e.g. Caspi,
Krucker, and Lin, 2014; Ryan et al., 2014, and references therein). The QPPs are commonly
detected in solar flares (e.g. Caspi, Krucker, and Lin, 2014; Ryan et al., 2014; Sharykin and
Kosovichev, 2015) which most likely correspond to short loops, however, parametric stud-
ies of long loops with super-hot temperatures may help understand the case of stellar flares
which have a wide length-scale range (e.g. Mitra-Kraev et al., 2005; Srivastava, Lalitha, and
Pandey, 2013), therefore, T = 20 – 30 MK is well relevant to the solar atmosphere and re-
lated dynamics in the confined heated loops. On the other hand, as we know the slow-mode
oscillations in cooler loops (1 MK < T < 5 MK), particularly related to impulsive heating,
are rarely observed compared to the temperature range considered in this study.

In general, the role of heating–cooling imbalance highly depends on the form of the
heating function assumed which is however unknown, so one can only say this result is
correct based on our assumption (i.e. a = − 1

2 , b = −3), which suits the damped oscillatory
regime of the slow modes as described by Kolotkov, Nakariakov, and Zavershinskii (2019).
On the other hand, as the result in Figure 13 suggested, the inclusion of heating–cooling
imbalance can produce a theoretical prediction better matching the observations. Moreover,
the results are compared with the case where no heating–cooling imbalance is present, or
the heating rate is assumed to be constant. The present model also adds in background
the radiative cooling term. However, the radiative effect is insignificant compared to other
dissipation mechanisms, actually we did not study its effect separately (Abedini, Safari, and
Nasiri, 2012). In the present work, we found that compressive viscosity along with thermal
conductivity causes strong damping of the fundamental mode oscillations in the shorter (e.g.
L = 50 Mm) and super-hot (T > 10 MK) loops, and compressive viscosity plays a dominant
role in this regime. Nevertheless, the effect of viscosity is insignificant in the damping of
these modes in longer (e.g. L = 500 Mm) and hot loops (T ≤ 10 MK), instead thermal
conductivity along with the presence of heating–cooling imbalance plays an important role
in this condition. Moreover, for longer loops at the hot regime of temperature, the increase
in density slightly decreases the damping due to thermal conduction and heating–cooling
imbalance (cf. Figure 6 and left bottom panels of Figure 7). Meanwhile, for shorter loops at
the super-hot regime of temperature, the increment in the loop density substantially enhances
the damping of the fundamental modes due to the thermal conductivity when viscosity is
absent (cf. bottom panels of Figure 8). The individual role of thermal conductivity is found
to be dominant in longer loops at lower temperatures (T ≤ 10 MK), while compressive
viscosity dominates the damping at super-hot temperatures (T > 10 MK) in the shorter
loops only. We have summarized our results for the fundamental mode in various physical
conditions of loops in Table 1. The scaling law between τ and P obtained by fitting the
theoretical data is found to be closer to the observed SUMER oscillations when we add the
effect of heating–cooling imbalance to the case with thermal conduction and viscosity for
the damping of fundamental slow mode oscillations.

Pandey and Dwivedi (2006) have reported that by varying the loop density from 108 to
1010 cm−3 (or ρ = 2 × 10−13 to 2 × 10−11 kg m−3) at a fixed temperature in the range 6 –
10 MK (we consider it as a hot regime, i.e. T ≤ 10 MK in our present work), they get two
sets of damping of fundamental slow mode oscillations, in which one was for τ/P ≈ 1 (dark-
green dotted line in Figure 13) related to the strong damping occurred at a lower density
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Table 1 Summary of the dominant damping mechanisms of the fundamental slow modes in the various
regimes of loop parameters considered throughout our study. TC: Thermal conductivity, H/C: heating–cooling
imbalance, Vis: Viscosity.

Loop length → Short loops (50 Mm) Long loops (500 Mm)

Loop density → Normal loops Bulky loops Normal loops Bulky loops

Hot Loops (5 – 10 MK) TC TC TC + H/C TC + H/C

Super-Hot Loops (20 – 30 MK) Viscosity TC TC + Vis. TC

(108 cm−3), while the other was for τ/P ≥ 2 corresponding to a weak damping occurring at
higher density (1010 cm−3). Note that ρ = 10−11 kg m−3 corresponds to Ne = 5 × 109 cm−3

or log10(Ne) = 9.6, which gives τ/P ≈ 1.5 from Figure 1 of Pandey and Dwivedi (2006),
while all theoretical data in Figure 13 of our article are for ρ = 10−11 kg m−3. Therefore, all
the predicted data here are below the τ = 2P line as given in Pandey and Dwivedi (2006)
which is consistent with their prediction. The results presented here are thus consistent with
the findings of Pandey and Dwivedi (2006). In the present article, a two-part power-law
scaling τ ∝ P 1.05 (at P ≤ 25 min) and τ ∝ P 0.95 (at P ≥ 25 min) is achieved for the fun-
damental mode oscillations for the range of loop lenghts (50 – 500 Mm) and temperatures
(5 – 30 MK) under the effect of thermal conductivity, compressive viscosity, and heating–
cooling imbalance, which is very close to the strong damping of τ/P ≈ 1.0 and also better
satisfy the observed SUMER oscillations. Joint effect of thermal conductivity, compressive
viscosity, along with heating–cooling imbalance produces strong damping of the fundamen-
tal mode oscillations in the normal coronal loops themselves, which match well with the
SUMER observations.

Sigalotti, Mendoza-Briceño, and Luna-Cardozo (2007) have numerically studied the
damped oscillations observed by SUMER in the linear and nonlinear regimes, and con-
cluded that the damping times of the oscillations are mostly shaped by compressive vis-
cosity rather than thermal conduction, and the damping due to optically thin radiation is
negligible when considering a constant heating rate. They showed that thermal conduc-
tion alone results in slower damping of the density and velocity oscillations than the ob-
served, while it is required to add the compressive viscosity so that the waves can be
damped quickly enough to match the SUMER observations. However, their conclusion for
viscosity dominating over thermal conduction in damping was deduced in the loops with
very low density of 108 cm−3. Instead, here we find that in coronal loops of typical den-
sity (ρ = 10−11 kg m−3 or Ne = 5 × 109 cm−3), the effect of compressive viscosity on the
damping of the slow waves is significant only in very short loops at a super-hot tempera-
ture regime. Thus, thermal conductivity along with heating–cooling imbalance dominates
in the damping of slow waves. Moreover, to better match the observed damped SUMER
oscillations (Figure 13), the joint effect of the thermal conductivity, compressive viscos-
ity, and heating–cooling imbalance is required (red circles; τ ∝ P 1.05 and τ ∝ P 0.95). On
the other hand, if we consider compressive viscosity alone (cyan circles), in the observed
range of SUMER oscillations (P ≤ 35 min), its variation (τ ∝ P 1.55) goes out of even the
weak damping regime (τ ≥ 2P line) as shown in Figure 13. This suggests that compres-
sive viscosity alone cannot explain the observed damping of the SUMER oscillations as
pointed by many previous reports (Sigalotti, Mendoza-Briceño, and Luna-Cardozo, 2007;
Abedini, Safari, and Nasiri, 2012). If we exclude the effect of the compressive viscosity,
and only consider thermal conductivity supported by heating–cooling imbalance, then most
of the data points in Figure 13 (empty pink circles) lie very close to the filled red circles
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(thermal conductivity+viscosity+imbalance) except for a few points for the oscillations of
very short periods associated with very short/super-hot loops. Therefore, we conclude that
thermal conductivity along with heating–cooling imbalance may be dominant in the damp-
ing mechanism for interpreting the strongly-damped slow-mode oscillations observed with
SUMER (filled black rectangles in Figure 13).

There were also several attempts in the past that investigated the damping of slow waves
in non-isothermal, hot, gravitationally stratified coronal loops (e.g. Erdélyi, Luna-Cardozo,
and Mendoza-Briceño, 2008). In the hot and super-hot regime, the non-uniformity in T0 and
ρ0 along the loop is expected to be negligible because of highly efficient thermal conduction
and very large density scale height. For example, the density scale height is H ≈ 500 Mm for
T = 10 MK plasma, which implies that the effect of gravitational stratification is very small
on the damping even for the longest loop of L = 500 Mm that has a height h = 160 Mm if
the loop is semi-circular.

We would like to mention that the background heating function which is described as a
function of density and temperature throughout our study has been taken just as a typical
physical scenario based on the model of Kolotkov, Nakariakov, and Zavershinskii (2019).
Many previous works in the area have studied different functional dependencies of this un-
known heating function such as its dependence on magnetic field and loop length (e.g. Li-
onello, Linker, and Mikic’, 2009; Nakariakov et al., 2017) as well as on time (e.g., Taroyan
et al., 2007; Reale, 2016) since the specific heating mechanism in the solar corona is still
unknown and remains an open research problem to date.

We conclude finally that although thermal conduction along with heating–cooling imbal-
ance may be the dominant damping mechanism for interpreting the strongly damped slow-
mode oscillations observed with SUMER, the role of compressive viscosity is essential to
explain the damping of SUMER oscillations in coronal loops at short length and super-hot
temperature regimes such as the slow modes excited in postflare loops in solar and stellar
flares.
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