
Solar Phys (2021) 296:23
https://doi.org/10.1007/s11207-021-01761-0

Nonlinear Analysis of Radial Evolution of Solar Wind
in the Inner Heliosphere

K. Kiran1 · K.C. Ajithprasad1 ·
V.M. Ananda Kumar1 · K.P. Harikrishnan2

Received: 6 February 2020 / Accepted: 2 January 2021 / Published online: 28 January 2021
© The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract We analyzed the radial evolution of solar wind in the inner heliosphere using
nonlinear time series tools such as correlation dimension D2, correlation entropy K2 and
multifractal analysis, to get information regarding the inherent nonlinearity associated with
the solar wind data and to know how it is affected by the radial distance from the Sun. Our
study provides some detailed information regarding the change of dynamics of the fast solar
wind with radial distance in the inner heliosphere, apart from confirming the previous obser-
vation about the chaotic nature in the dynamics of the slow solar wind. Also we found that
the fast wind in the inner heliosphere is dominated by stochastic fluctuations. As the wind
is flowing radially away from the Sun, stochastic fluctuation in the fast wind decreases. The
stochastic fluctuation present in the data is a clear indication of the Alfvénic fluctuation asso-
ciated with the solar wind. Finally, our analysis suggests that Alfvénic fluctuation strongly
influences the solar wind as it flows radially outwards to mask the nonlinear component
associated with the fast wind.

Keywords Solar wind · Waves, Alfvén · Turbulence

1. Introduction

The supersonic flow of charged particles from the hot corona of the Sun along with the mag-
netic field constitutes solar wind. This magnetized plasma can be classified into fast and slow
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wind based on their source of origin. The fast wind originates from open coronal holes that
are uniform and stable. Its composition resembles that of the photosphere. The fast wind is
Alfvén wave dominated (Ovenden, Shah, and Schwartz, 1983). Alfvén waves are transverse
magnetohydrodynamic waves in which ions oscillate with magnetic tension on the magnetic
field lines as the restoring force. Large-amplitude Alfvén waves propagating away from the
Sun are considered to belong to the causes of coronal heating and acceleration of the solar
wind (De Pontieu et al., 2007; Jess et al., 2009; McIntosh et al., 2011; Morton et al., 2012;
Tomczyk et al., 2007). The slow wind originates from the lower solar latitude and is highly
variable in terms of their speed, density, temperature, etc. Its composition resembles that of
the corona (Schwenn, 1990). Alfvén waves in the fast wind evolve in the inner heliosphere
getting weaker as the wind moves away from the Sun. Fast wind Alfvénicity becomes equal
to that of slow wind near 0.3 AU. The slow wind turbulence is less Alfvénic compared to
the fast wind and shows no radial dependence (Bruno and Carbone, 2013).

Systems in nature can be described either by linear or nonlinear models. Nonlinear mod-
els are generally more suitable for most real world systems (Kaplan and Glass, 1995).
Thus nonlinear time series tools are essential to understand the dynamics of real world
systems. Development of chaos theory and related techniques, applied to time series data,
gives more potential to recover the underlying dynamics of the real world system from
its complex temporal behavior (Abarbanel and Gollub, 1996; Ott, 2002; Abarbanel et al.,
1993; Grassberger, Schreiber, and Schaffrath, 1991; Kugiumtzis, Lillekjendlie, and Christo-
phersen, 1994; Lillekjendlie, Kugiumtzis, and Christophersen, 1994; Schuster, 1988; Kantz
and Schreiber, 2004). Nonlinear time series analysis using chaos theory has been widely
used in a variety of fields such as social science, astronomy, and physics (Schreiber, 1999).
“Time delay embedding” is a method used in nonlinear time series analysis to reconstruct
the phase space from single scalar time series data. In a dissipative system, time evolution
trajectories in phase space converge to an invariant set called an attractor (Takens, 1981;
Sauer, Yorke, and Casdagli, 1991). The static, as well as dynamic aspect of the attractors,
are obtained by using certain nonlinear time series quantifiers such as correlation dimension,
D2, correlation entropy, K2, and multifractal analysis, etc. (Mayer-Kress, 2012). A complex-
ity measure which quantifies the geometry and shape of the attractor of a dynamical system
is called the correlation dimension D2. The variation of D2 with embedding dimension M

can be effectively used to characterize the measured time series data, since it is a measure
of the dimension of the underlying attractor generated from the time series. For a random
process, D2 increase continuously with embedding dimension M , but for a chaotic process,
D2 saturates for some value of M . Correlation entropy K2 represents the rate at which in-
formation is lost due to exponential divergence of trajectories in phase space in the case of
a chaotic system (Ott, 2002). For a chaotic system, correlation entropy K2 saturates as the
embedding dimension M increases, but K2 tends to zero as M tends to infinity for a random
process. Multifractal analysis is an effective method to provide a statistical description of
the strange attractors of a chaotic system.

Time series data available from the real world systems are affected by noise. A direct ap-
plication of nonlinear techniques to the real world data may give spurious results if the noise
component masks or dominates the inherent nonlinearity in the data. The effect of noise in
the real world data can be effectively reduced by using nonlinear noise reduction techniques
(Davies, 1994; Grassberger et al., 1993; Kantz et al., 1993; Kostelich and Schreiber, 1993;
Schreiber, 1993).

The first step to begin the nonlinear time series analysis is hypothesis testing to con-
firm that the data are not resulting from a stochastic random process. Surrogate analysis
is the method used for the hypothesis testing in the nonlinear time series analysis (Theiler
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et al., 1992; Schreiber and Schmitz, 1996). The surrogate analysis also helps us to get an
idea about the noise present in real world data (Harikrishnan et al., 2006). We use both
D2 and K2 as a discriminating parameter (between noise and nonlinearity) in the surrogate
analysis. The correlation entropy K2 is more effective than the correlation dimension D2 in
the presence of colored noise which is correlated random process with the power varying
with frequency as 1/(f α) with the index α ranging from 1 to 2 (Kennel and Isabelle, 1992;
Redaelli, Plewczyński, and Macek, 2002). The colored noise present in real world data gives
a well saturated value of D2, whereas pure white noise is scale free.

As solar wind dynamics contain information about coronal heating and solar wind accel-
eration, it is desirable to characterize these properties using time series analysis tools. The
chaotic nature of the solar wind plasma is evident from the nonlinear time series analysis of
slow speed solar wind, the interplanetary magnetic field, and the solar wind radio pulsation
(Macek and Obojska, 1998, 1997; Macek and Redaelli, 2000; Pavlos et al., 1992; Poly-
giannakis and Moussas, 1994b,a). The multifractality of the solar wind chaotic attractor and
change of the degree of multifractality as the wind evolves radially out from the Sun has also
been studied using nonlinear time series tools (Macek, 2002, 2003, 2007; Marsch and Tu,
1994; Marsch, Tu, and Rosenbauer, 1996; Marsch and Tu, 1997; Carbone, 1993; Burlaga,
1991, 2001). The solar wind plasma studies are still relevant as many questions regarding
solar wind plasma dynamics, radial evolution of the wind, the interaction of individual flow,
etc., still remain unanswered. It is the turbulent nature of the solar wind plasma that demands
the nonlinear time series tools for its analysis.

In the present study, we use an automated non-subjective algorithm scheme proposed
by Harikrishnan et al. (2006), Harikrishnan, Misra, and Ambika (2009), Harikrishnan et al.
(2009) for the computation of D2, K2 and the multifractal analysis. The method of com-
putation is more useful for the comparison of the nonlinear measures computed from data
and surrogates (as compared to methods based on TISEAN package). We use the TISEAN
package to generate surrogate using Amplitude Adjusted Fourier Transformation (AAFT)
procedure (Hegger, Kantz, and Schreiber, 1999; Hegger and Schreiber, 2002).

Our study mainly focuses on the radial dependence of the chaotic nature of the wind
and how Alfvén waves influence the nonlinear and chaotic nature of the wind. We make
a detailed nonlinear analysis of the radial evolution of the solar wind plasma in the inner
heliosphere using our automated non-subjective algorithm scheme. Our algorithm allows
us to compare the dynamics of solar wind plasma at different heliocentric distances in the
presence of noise. It helps us to study the dynamics of solar wind plasma without using
the nonlinear noise reduction methods. The nonlinear Alfvén waves in the solar wind are
more dominant in the inner heliosphere. The Alfvén waves have a stochastic random nature
(Ovenden, Shah, and Schwartz, 1983). The surrogate analysis provides an excellent qualita-
tive estimate of noise in our data. It motivates us to study the change in the Alfvén wave in
the solar wind as it radially flows out from the Sun.

Our paper is arranged as follows. Section 2 describes the data used for analysis. A de-
tailed description of the methods used for the analysis of our data is given in Section 3.
Results are presented in Section 4. Discussion and conclusion of our study are given in
Section 5

2. Solar Wind Data

In the present study, we use radial component of velocity of solar wind plasma flow recorded
in situ by Helios 2 at three different distances 0.3 AU, 0.7 AU and 0.9 AU during its primary
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Figure 1 Plot of the slow (left
panel) and the fast (right panel)
solar wind measured at different
radial distance from the Sun.

Table 1 Details of solar wind
data used in our analysis. Type Radial distance

from Sun (AU)
Date and time
(dd:mm:yy:hh)

Slow 0.9 14:02:76:12–17:02:76:12

0.7 12:03:76:00–14:03:76:12

0.3 08:04:76:12–11:04:76:12

Fast 0.9 17:02:76:12–20:02:76:12

0.7 15:03:76:12–18:03:76:12

0.3 15:04:76:12–17:04:76:12

mission to the Sun. The observed data at three different distances are from the same co-
rotating stream during three consecutive solar rotation. We divide the selected data at each
heliospheric distances into two data sets; one continuous fast wind data set and another
continuous slow wind data set. Each data set includes near about 6000 data points and the
time interval between each data point is �t = 40.5 s. The solar wind plasma used in our
analysis is presented in Figure 1. Table 1 gives the heliocentric distances and the periods of
different solar wind streams used in our analysis.

3. Nonlinear Measures Used for the Analysis

The Takens delay embedding method is used to reconstruct the entire phase space of the sys-
tem from a single scalar time series output of the system. A multi-dimensional embedding
space is created from the scalar time series s(ti) by choosing a suitable value of embedding
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dimension M and delay time τ (Takens, 1981; Sauer, Yorke, and Casdagli, 1991)

Xn = [
s(ti), s(ti + τ), . . . .., s

(
ti + (M − 1)τ

)]
. (1)

The attractor in phase space is characterized by computing the correlation dimen-
sion D2, the correlation entropy K2 and the multifractal spectrum. Grassberger and Pro-
caccia (1983a,b, 1984) used the time delay embedding method in the algorithm proposed
for the computation of D2 and K2. In the present study, we use an automated modified
Grassberger and Procaccia (GP) algorithm.

3.1. Correlation Dimension D2

The correlation dimension quantifies the static aspect of the underlying attractor, such as the
geometry of the attractor. Correlation dimension D2 is defined as

D2 = lim
R→0

d logCM(R)

d logR
. (2)

Here CM(R) is the correlation sum. It is calculated as finding the relative number of data
points within a distance R from a particular ith data point, say pi(R) in phase space,

pi(R) = lim
Nv→∞

1

Nv

Nv∑

j=1,j �=i

H
(
R − | �xi − �xj |

)
, (3)

where Nv is the total number of reconstructed vectors and H is the Heaviside step function.
Averaging this quantity over randomly selected centers Nc gives the correlation sum

CM(R) = 1

Nc

Nc∑

i=1

pi(R). (4)

The correlation dimension measures how the correlation sum scales with distance in the
embedded space.

3.2. Correlation Entropy K2

Correlation entropy is the dynamic measure of the underlying attractor. It represents the rate
at which the information is created when trajectories evolve in phase space (Ott, 2002). The
relation connecting correlation entropy K2 and correlation sum CM(R) is

K2�t = lim
R→0

lim
M→∞

lim
N→∞

log

(
CM(R)

CM+1(R)

)
. (5)

Here �t is the time step between successive values in the time series.
In our modified scheme, we use a non-subjective algorithm approach for identifying the

scaling region in the correlation sum for the computation of the correlation entropy K2

and the correlation dimension D2. The modified Grassberger and Procaccia (GP) algorithm
computes several D2 and K2 for different values of R in the scaling region for a fixed M

value and taking an average of these values. The error in D2 and K2 is the mean of the
standard deviation of each value from this average value. The detailed algorithm is given in
the papers of Harikrishnan, Misra, and Ambika (2009) and Harikrishnan et al. (2006).
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3.3. Multifractal Spectrum

Chaotic dynamical systems always have strange attractors. The multifractal formalism is
critical in determining the strange attractors present in dynamical systems and also provid-
ing a new statistical description to these sets. Strange attractors formed in the phase space
due to the stretching and folding of trajectories have multifractal structure. Strange attrac-
tors always have a spectrum of dimension Dq , where the index q varies from −∞ to +∞
(Hentschel and Procaccia, 1983).

Since the dimension represents a scaling index, the spectrum of dimension implies that
the chaotic attractor, in general, involves a range of scaling indices. In other words, different
parts of the attractor scales differently. This spectrum of scaling indices is represented by
what is called a multifractal spectrum. To get a formal definition of this, we divide the
attractor into M dimensional cube of side ε. Let Nj be the number of points in the j th cube

and NT be the number of points on the attractor; then pj (ε) = Nj

NT
, the probability for the

j th box.
This pj (ε) scale with ε is given by

pj (ε) ∝ εαj , (6)

where αj is the scaling index for the j th cube. The number of cubes g(α)dα having scaling
index in the range α and α + dα also varies as

g(α) ∝ ε−f (α), (7)

where f (α) represent fractal dimension with singularity strength α. The Dq to f (α) trans-
formation is done by using the Legendre transformation (Atmanspacher, Scheingraber, and
Wiedenmann, 1989).

The generalized correlation dimension Dq is defined as

D(q) = lim
R→0

d(logC
q

M(R))

d(log(R))
, (8)

where C
q

M(R) is the generalized correlation sum and is given by

C
q

M(R) =
[

1

Nc

Nc∑

i

(
1

Nv

Nv∑

j=1,j �=i

H
(
R − | �Xi − �Xj |

)
)q−1] 1

q−1

. (9)

The generalized correlation dimension is also obtained by using a non-subjective algorithm
approach proposed by Harikrishnan et al. (2009). In this approach, an analytic form of the
f (α) function is first assumed to be

f (α) = A(α − αmin)
γ1(αmax − α)γ2 , (10)

where A, γ1, γ2, αmax , αmin are set of parameters used to characterize a particular f (α)

curve. Here “αmin” and “αmax” represent the extreme values of “α” and “γ1” and “γ2” spec-
ify the slope of the profile at the extreme points.

The above function satisfies the following conditions which are characteristic of any
typical f (α) curve:

i) It is a single valued function between αmax and αmin.
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Figure 2 Plot of the
reconstructed phase space for the
slow (left panel) and the fast
(right panel) solar wind.

ii) It has a single maximum.
iii) f (αmax) = f (αmin) = 0.
iv) By imposing a condition on f (α) it can be shown that 0 < γ1, γ2 < 1.

The important steps in the algorithm for the computation of f (α) are

i) First set the parameters αmax
∼= D+∞, αmin

∼= D−∞, α1
∼= D1 and choose a value γ1 in

the range [0,1].
ii) Use the input parameters and find the value of γ2, A.

iii) Compute f (α) in the range αmin to αmax .
iv) Obtain Dq curve from f (α) using the inverse Legendre transformation.
v) Adjust the input parameters to obtain a Dq spectrum that best matches with Dq spectrum

obtained from the time series.
vi) The final f (α) is obtained from the best fit Dq curve.

4. Results

Figure 2 presents the projection of attractor on to the two-dimensional subspace of the phase
space for the fast and the slow solar wind at different radial distances from the Sun in the
inner heliosphere. For the faithful comparison of the attractor, all the time series data are
changed to a uniform deviate. Numerically, the time series is transformed into the range
0 to 1 which makes the embedding space unity. The attractor for the slow solar wind is
shown in the left panel. The geometry of the attractor of the slow speed wind shows not
much variation as the wind flows out from the Sun. The right panel shows the attractor for
the fast wind in the inner heliosphere. The spread of attractor in phase space is greater for
fast wind near 0.3 AU and 0.7 AU than the attractor near 0.9 AU. This result indicates that
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Figure 3 Surrogate analysis of
the slow (left panel) and the fast
(right panel) solar wind using
correlation dimension D2 as
discriminating parameter.

the percentage of white noise in the fast wind is higher in the inner heliosphere, and it is
decreasing as the wind flows away from the Sun.

To determine the noise in the solar wind data in the inner heliosphere, we perform a
surrogate analysis using the correlation dimension D2 and the correlation entropy K2 as dis-
criminating parameters. The correlation entropy K2 is a more effective discriminator in the
presence of colored noise. In the present study, we made ten surrogates for each solar wind
time series based on the AAFT procedure using the TISEAN code. Figure 3 presents the
results of the surrogate analysis for all the solar wind with the correlation dimension D2 as a
discriminating measure. The fast wind near 0.3 AU and 0.7 AU shows a stochastic random
behavior whereas the fast wind near 0.9 AU shows a slight deviation from its stochastic na-
ture. A saturated value of correlation dimension D2 is obtained for the slow solar wind and
its surrogates. It indicates the presence of colored noise in the slow solar wind. The results
of the surrogate analysis using the correlation entropy K2 as a discriminating parameter are
shown in Figure 4. The result obtained in the second surrogate analysis test also supports
the results obtained in the first method. The colored noise contamination is more evident in
the second method.

We calculated the correlation dimension D2 of the solar wind flow, and the results are
shown in Figure 5. The value of the correlation dimension D2 of the slow solar wind is
decreasing as it flows away from the Sun. Based on the above result, this change in D2

value does not indicate any change in dynamics but confirms that white noise in the data
decreases with distance from the Sun. This result also supports the presence of colored
noise in the data. In the case of the fast wind, the presence of white noise is more dominant
and behaves as a stochastic random process. However, near 0.9 AU the fast solar wind shows
evidence of D2 saturation with M . It indicates that the percentage of the white noise in the
fast wind is more near the Sun and its percentage is slowly decreasing with distance from
the Sun.
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Figure 4 Surrogate analysis of
slow (left panel) and fast (right
panel) solar wind using
correlation entropy K2 as a
discriminating parameter.

Figure 5 Variation of the
correlation dimension D2 with
the embedding dimension M for
the slow (left panel) and the fast
(right panel) solar wind.

The results of the computation of the correlation entropy K2 for different types of solar
wind flow are shown in Figure 6. The results also suggest that slow wind in the inner helio-
sphere does not show any dynamical modulation with distance from the Sun. The results of
the correlation entropy K2 for the fast wind also support its stochastic random nature.
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Figure 6 Variation of the
correlation entropy K2 with the
embedding dimension M for the
slow (left panel) and the fast
(right panel) solar wind. Several
K2 values are computed for
different values of R in the
scaling region for a fixed M

value and an average of these
values are taken. The error in K2
is the mean of the standard
deviation of each value from this
average value.

Finally, we show results of the multifractal analysis of both the slow and the fast wind in
the inner heliosphere. The spectrum of dimension Dq of the strange attractors as a function
of q for the fast and the slow wind are shown in Figure 7. The Dq versus q curve for the
fast wind becomes steeper as the wind move away from the Sun, whereas the steepness of
the curve for the slow wind shows no significant variation as the wind moves away from the
Sun. Therefore one can say that both the slow and the fast wind in the inner heliosphere are
the multifractal. The degree of multifractality of the fast wind increases with an increase in
radial distance from the Sun and the degree of multifractality of the slow wind does not vary
with radial distance from the Sun. The f (α) spectrum computed from the best fit Dq curve
for both slow and fast wind are shown in Figure 8. The width of the f (α) spectrum for the
fast wind increases as the wind moves away from the Sun, whereas the width for the slow
wind show no significant variation. These observations also support the previous result. The
narrow width of f (α) spectrum for the fast wind in the inner heliosphere supports white
noise dominance in the wind because as the white noise in the data increase then the f (α)

spectrum tends more and more towards a delta function.

5. Discussion and Conclusion

Nonlinear studies of the radial evolution of the solar wind provide a deeper understanding
of the solar wind dynamics. The solar wind is a complex real world system. Its complex
dynamics and evolution can be obtained from the comparison of nonlinear analysis results
of the solar wind plasma at different radial distances from the Sun in the inner heliosphere.
Our results confirm the deterministic chaotic nature of slow solar wind plasma as found in
the previous studies. The previous studies have analyzed a change of dynamic of slow solar
wind in the inner heliosphere using methods such as false nearest neighbors, average mutual
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Figure 7 The spectrum of
generalized dimension for the
slow (left panel) and the fast
(right panel) solar wind.

Figure 8 The f (α) spectrum for
the slow (left panel) and the fast
(right panel) solar wind.

information, etc. But in the present study, we analyzed this problem in a detailed manner
using correlation dimension D2, correlation entropy K2, surrogate analysis and multifractal
analysis and obtained the same as previous result. Our results also give a good qualitative
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estimate of noise present in the slow solar wind in the inner heliosphere. Our results show
that white noise and colored noise are present in the slow solar wind near the Sun and the
colored noise become more and more dominant noise with an increase in distance from
the Sun. The fast wind dynamics change in the inner heliosphere contrary to the slow solar
wind. Our present study also analyzed these results in detail. We found that the fast wind
in the inner heliosphere is a stochastic random process and a deviation from this stochastic
character is found near 0.9 AU. The multifractal analysis done in our study clearly shows
a dynamic change of the fast wind in the inner heliosphere. Also, we found that dominant
noise present in the fast wind is white noise which decreases with an increase in radial
distance from the Sun. The white noise masks the actual dynamics of the fast wind in the
inner heliosphere.

Surrogate analysis in the present study strongly provides the following observation.
White noise is present in both the fast and the slow wind. The presence of white noise is
greater in the fast wind than in the slow wind. The white noise in both fast and slow wind de-
creases with increasing radial distance from the Sun, and this radial variation is more evident
in the fast wind. The Alfvénic fluctuations in the solar wind have stochastic nature. Thus,
we interpret stochastic random element in the solar wind as outward propagating Alfvén
waves. The incompressive nature of Alfvénic fluctuations inhibits damping and leads to it
dominating solar wind turbulence. The Alfvénic fluctuations are more dominant in the fast
wind than in the slow wind. These Alfvénic fluctuations fade with increasing heliocentric
distance. Our results indicate that the complex dynamics of the solar wind are characterized
by a nonlinear process occurring at the source of origin and is convected along with the
wind. The presence of large-amplitude Alfvén waves in the wind increases the stochastic
nature of wind.

Based on the nonlinear analysis of the slow solar wind near 0.3 AU, the interplanetary
magnetic field and the temperature near 1 AU, and radio pulsation have been confirming
that the solar wind generates by some nonlinear process in the corona (Macek and Obojska,
1997, 1998; Macek and Redaelli, 2000; Pavlos et al., 1992; Polygiannakis and Moussas,
1994b,a; Kurths and Herzel, 1987). Hydrodynamic turbulence and intermittency character-
istics of the solar wind plasma in the inner heliosphere have been obtained from previous
work based on the multifractal analysis of solar wind data (Macek, 2002, 2003; Marsch and
Tu, 1994; Marsch, Tu, and Rosenbauer, 1996; Marsch and Tu, 1997). These pieces of knowl-
edge are still not enough to unveil the nature of solar wind that pervades the interplanetary
space.

The results obtained in our work are in good agreement with the previous studies. Our
results could be relevant in the sense that the radial evolution of the solar wind is very much
related to Alfvén waves in the wind. The Alfvén wave-dominated fast wind is a stochastic
random process and the less Alfvénic slow wind is chaotic. Our results set two important
questions; the first is whether the Alfvén wave dominance in the fast wind masks the actual
dynamics of the fast wind and the second is whether the different dynamics of both slow and
fast wind is due to the source of origin or due to the Alfvén wave influence. To answer these
questions, we need a detailed future study about solar wind plasma in the inner heliosphere
and outer heliosphere. The future studies based on the data available from new missions like
Parker Solar Probe and Solar Orbiter will provide a better idea about the solar wind source
because these missions approach more closely to the Sun than Helios mission. These two
missions will give more information regarding the source and evolution of slow solar wind.
The information about Alfvénic slow wind closer to the Sun will be provided by Parker Solar
Probe and, more about the source of solar wind plasma will be provided by Solar Orbiter.
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Redaelli, S., Plewczyński, D., Macek, W.M.: 2002, Influence of colored noise on chaotic systems. Phys. Rev.

E 66(3), 035202.
Sauer, T., Yorke, J., Casdagli, M.: 1991, Embedology. J. Stat. Phys. 65(3–4), 579.
Schreiber, T.: 1993, Extremely simple nonlinear noise-reduction method. Phys. Rev. E 47(4), 2401.
Schreiber, T.: 1999, Interdisciplinary application of nonlinear time series methods. Phys. Rep. 308(1), 1.
Schreiber, T., Schmitz, A.: 1996, Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77(4), 635.
Schuster, H.G.: 1988, Deterministic chaos: An introduction, 2nd revised edn. Verlagsgesellschaft mbH/VCH

Publishers, Weinheim.
Schwenn, R.: 1990, Large-scale structure of the interplanetary medium. In: Physics of the Inner Heliosphere

I, Springer, Berlin, 99.
Takens, F.: 1981, Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick

1980, Springer, Berlin, 366.
Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J.D.: 1992, Testing for nonlinearity in time series:

The method of surrogate data. Physica D 58(1–4), 77.
Tomczyk, S., McIntosh, S., Keil, S., Judge, P., Schad, T., Seeley, D., Edmondson, J.: 2007, Alfvén waves in

the solar corona. Science 317(5842), 1192.

http://arxiv.org/abs/chao-dyn/9401003

	Nonlinear Analysis of Radial Evolution of Solar Wind in the Inner Heliosphere
	Abstract
	Introduction
	Solar Wind Data
	Nonlinear Measures Used for the Analysis
	Correlation Dimension D2
	Correlation Entropy K2
	Multifractal Spectrum

	Results
	Discussion and Conclusion
	Acknowledgements
	Disclosure of Potential Conﬂicts of Interest
	References


