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Abstract Sunspot-number prediction plays a very important role in space-weather forecasts
and environmental research. In 2015, the international relative sunspot-number publisher
released a new version of the data. Compared with the old version, the new data changed
enough to influence sunspot-prediction methods that were based on the old data. The aim
of this study is to propose a new prediction method based on the new data, and improve
prediction accuracy as much as possible. A modified gaussian function, which has four
parameters, was used in our method to describe each single cycle. Via four relationships
among the four parameters, we found the most probable values and their uncertainties for
the four parameters, and then we obtained the sunspot-number variation curve and its range
for Solar Cycle 24. The results showed that the peak value should be 113.3 (the real value
was 116.4), at the 57th month (between the two real peak at the 39th and the 64th month).
A range of peak values was also given by this method, which range from 91 (less than the
real value by 25) to 134 (greater than the real value by 18).

Keywords Solar Cycle, models · Sunspots, statistics

1. Introduction

Sunspots are important surface manifestations of solar activity. The observation of sunspots
was started in the 17th century by Galileo Galilei with his telescope (Casas, Vaquero, and
Vazquez, 2006), but sunspot cycles were not confirmed until 1844, when Schwabe discov-
ered the existence of Solar Cycles 7 and 8 with his observation of sunspots from 1826 to
1843 (17 years) (Schwabe and Schwabe, 1844). In 1849, during Cycle 9, a recording method
was proposed by Wolf to standardize records, which was the beginning of the international
relative sunspot-number (SSN) record (Wolf, 1861). Thereafter, by collecting and scaling
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up prior observations, the monthly averaged SSN time series extends back to 1749, and the
annually averaged SSN series stretch back to 1700.

In 1957, during Cycle 19, the first spacecraft lifted off (Williamson, 2006), and the is-
sue of the impact on spacecraft of solar activity started to attract attention. In March 1989,
around the peak of Solar Cycle 22, a coronal mass ejection (CME) event caused large geo-
magnetic storms, which in turn led to serious impacts on multiple spacecraft (Leach, 1996).
In October 1989, a flare eruption damaged solar-array electronics of GOES-5 and decreased
its lifetime (Marvin and Gorney, 1992). In 2003, after the peak of Solar Cycle 23, the “Hal-
loween storms” damaged 28 spacecraft, knocking two out of commission (Toth et al., 2005).
To minimize the impact on spacecraft from a hostile environment, we should enhance not
only the adaptability of spacecraft to various space-weather disturbances but also our moni-
toring ability and early warning systems. By predicting the sunspot number, we can estimate
the occurrence possibility of extreme solar events, which were the main cause of the hostile
space environment.

Solar Cycle 24 started in December 2008. The maximum SSN for this cycle was pre-
dicted by several different methods. Gholipour et al. (2005) used a decomposition method
based on singular spectrum analysis with the neural network method and found the maxi-
mum would be around 145. Wang et al. (2008) predicted that the peak value of Cycle 24
would be 119.5±12.4 by the similarity cycle method. Aguirre, Letellier, and Maquet (2008)
used a dynamic model with a deterministic part and a stochastic part and deduced the peak
value of 65 ± 13 and 87 ± 13. Kakad (2011) used a new empirical model with two parame-
ters QC and L, which are derived numerically solely from the information of the preceding
solar cycle, and got the result 74 ± 10.

In 2016, after the peak of Cycle 24, Pesnell (2016) analyzed 105 different predictions
for this cycle. These predictions were found before 2015 based on the old data, for which
the peak value is around 90. The predicted results showed the predicted value distributed
in a wide range from 40 to 185. Pesnell analyzed these prediction methods and classified
them into six categories, which are climatology, recent climatology, spectral, dynamo model,
neural network, and precursor. Among them, the climatological method predicted based on
the previous statistical rules of sunspot number. Our method could be classified into this
category, of which the forecast results are between 40 and 185.

In 2015, because of the growing gap between the SSN and the sunspot group number, the
Royal Observatory of Belgium, the international sunspot-number publisher, revised the old
data and released the new data (Clette et al., 2014, 2015; Clette and Lefèvre, 2016; SILSO,
2015). Compared to the old data, the new data had significant changes, which were irregular
and nonlinear. So, it is reasonable to think that this change may affect the prediction method.

Based on the new data, we propose a new method to predict sunspot numbers. A function,
which was given by Hathaway, Wilson, and Reichmann (1994), was used to describe sunspot
cycles. This function has been used many times in studies of solar activity. Li (1997) applied
this function to predicted the maximum and other features of Solar Cycle 23. Li (1999)
made efforts in revising and simplifying this function, and analyzed characteristics of the
sunspot cycle shape with this function. Lasheng et al. (2005) analyzed the parameters of
this function based on sunspot-area data. Up to now, this function has been accepted to
describe the shape of the sunspots cycle. Using the data from Solar Cycle 1 to 23, we find
the internal relationships and changing rules of four parameters in the function, and then we
derive the prediction curve for Solar Cycle 24. Comparing the predicted curve with the real
curve, we can evaluate our new method. In addition, we will use this method on Cycles 22
and 23 to check its applicability and reliability.
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Figure 1 The upper panel
shows the changing value of the
ratio between the old
sunspot-number (SSN) data
(V1.0) and the new data (V2.0),
while the lower panel shows the
old data.

2. Change of International Relative Sunspot Number

The SSN data is from the Royal Observatory of Belgium (SILSO, 2015). The monthly aver-
aged SSN data start January 1749 and end March 2017, covering 23 completed cycles (Solar
Cycles 1 – 23) and the current cycle (Cycle 24). In 2015, Clette and co-workers revised the
data and released the version 2.0 data on 01 July 2015. This version contains several correc-
tions of past inhomogeneities in the time series (Clette and Lefèvre, 2016). We can see the
data changes in Figure 1. From 1749 to 1947, the new time series is 1.67 times higher than
the old time series for the most part. However, the ratio rises to 1.9 from 1849 to 1868, and
falls to 1.41 from 1947 to 1981. After 1981, the ratio varies with time. In addition, the ratio
fluctuates greatly for low values of the original. These changes may have a certain impact
on the prediction methods based on the old data.

3. Method

3.1. The Basic Function of the Model

A modified gaussian function was given by Hathaway, Wilson, and Reichmann (1994),
which was used to describe the curve of the SSN of each single solar cycle:

f (t) = a(t − d)3

e
(t−d)2

b2 − c

(1)

This function has four parameters: a, b, c, and d . The parameter a stretches the curve
along the y-axis; b stretches the curve along both the y- and the x-directions; c makes the
curve asymmetrical, and d moves the curve along the x-axis. The first three parameters a, b,
and c influence the height of the peak, while the last three parameters b, c, and d determine
the position of the peak.
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Figure 2 The monthly averaged
SSN data and the data after
removal of a 13-point moving
average. The red curve is
obviously smoother than the
green curve.

3.2. Moving Average and Fitting Curve

Compared with the daily SSN data, the monthly averaged data have less fluctuation. How-
ever, as can be seen in Figure 2, especially around the peak, the curve still has strong fluc-
tuation, which may complicate the prediction and cause unexpected errors during fitting.
In order to avoid these situations, the data need to be further smoothed before prediction.
Because what we predict is monthly average SSN data, we use a 13-point moving average.

The smoothed sequence is divided into 23 complete cycles and the ongoing Cycle 24.
We cut the cycle at the median position where there are several zero points around the valley
between two adjacent cycles. The Levenberg–Marquardt nonlinear least-square algorithm
(LMA) is applied to each of the 23 complete cycles with Equation 1, respectively. The LMA
is more robust than the Gauss–Newton algorithm, and it could obtain the minimum value
even if initial coefficient values are far from the final result (Seber and Wild, 1989). How-
ever, as with most nonlinear fitting algorithms, this method could only calculate the local
minimum. Therefore, the initial coefficients should be carefully considered. After testing,
we set the initial coefficients to

a0 = 0.005, b0 = 50, c0 = 0, d0 = 0.

The initial values of coefficients a and b (a0 and b0) are around its mean value in the trial
fitting with the values of 0.005 and 50. The parameter c affects the asymmetry of the curve,
and 0 is the watershed for c where the peak shifts neither toward earlier nor later times. So,
we set the initial value of c [c0] to zero. The parameter d affects the location of the curve
directly. For the same reason as c, we also set its initial value to zero.

The errors of the original data are used to estimate the errors in the derived fitting param-
eters with Monte Carlo method. For each cycle, we generated 10,000 curves and fitted them
to get 10,000 groups of parameters. The errors were obtained to be

σ 2
Xi

=
∑10000

j=1 (Xij − Xi)
2

10000 − 1

where i is the cycle number, and j is the number of the simulated curves in this cycle [i].
X represents one of the parameters a, b, c, and d . Xi is the fitting result of the curve without
error of this cycle [i]. Fitting results and errors are presented in Table 1.
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Table 1 The fitting results and the errors of four parameters in the basic function from Solar Cycles 1 – 23.

Cycle a × 10−2 σa × 10−2 b σb c σc d σd

1 0.18 0.07 69.6 2.4 −7.67 7.05 −35 6

2 0.28 0.04 51.7 1.6 0.40 0.38 −14 4

3 0.71 0.09 39.4 1.2 0.86 0.03 1.5 1.2

4 0.18 0.02 59.3 1.8 0.90 0.02 −10.6 1.3

5 0.18 0.12 59.4 2.1 −5.68 13.63 −24 10

6 0.13 0.03 54.1 2.4 −1.02 1.11 8 5

7 0.80 0.28 58.1 1.0 −51.67 28.59 −35 5

8 0.42 0.02 45.6 0.6 0.88 0.01 −1.7 0.6

9 0.15 0.01 65.2 0.8 0.26 0.11 −12.4 1.4

10 0.17 0.01 56.4 0.7 0.88 0.01 −1.1 0.6

11 0.42 0.02 47.2 0.5 0.55 0.08 −6.3 1.0

12 0.16 0.06 55.7 1.2 0.04 2.63 −17 9

13 0.20 0.01 50.3 0.6 0.88 0.02 −6.9 0.7

14 0.12 0.01 54.8 1.4 0.90 0.19 −2 4

15 0.35 0.03 49.3 0.5 −0.66 0.36 −11.9 1.3

16 0.19 0.01 52.8 0.7 0.45 0.25 −12 3

17 0.26 0.01 50.7 0.4 0.84 0.02 0.9 0.7

18 0.35 0.01 49.4 0.4 0.74 0.04 −4.0 0.8

19 0.59 0.01 44.3 0.2 0.87 0.02 0.9 0.4

20 0.13 0.01 60.0 0.4 0.87 0.01 −7.2 0.5

21 0.39 0.01 49.1 0.4 0.63 0.07 −3.0 1.0

22 0.44 0.01 45.6 0.3 0.79 0.04 −4.0 0.7

23 0.23 0.01 55.9 0.4 0.27 0.16 −10.0 1.4

3.3. Parameters of the Special Cycle 7

Before seeking the relationships between parameters, a special cycle will be discussed first.
Cycle 7 started in November 1823 and ended in May 1834, after the valley of the Gleissberg
cycle. This cycle seems very different from the other cycles in terms of variation trend. The
peak of Cycle 7 appeared obviously later than other cycles (Figure 2). The ratio between
the length of the rising and falling part can be found in Table 2. The ratio for Cycle 7 is
much larger than those other cycles (even more than 1.5 times the secondary large value in
the table). The delay of the peak has a large effect on the fitting result. Figures 3 show the
variation of the parameters a, b, and c. Cycle 7 deviates clearly from these parameters of
other cycles.

Schwabe and Schwabe (1844) showed that the peak of the sunspot group number of
Cycle 7 was in 1828, which is obviously earlier than that of our SSN data at May 1830.
Normally, there are differences between the sunspot group number and the sunspot relative
number, but, compared with the 11-year total cycle length, the two years difference of peak
position seems too long. For SSN data, the more reliable data start at 1850, after Wolf put
forward the standard formula for the sunspot relative number. Cycle 7 is before 1850, so we
consider that some of the particularity of Cycle 7 might to be caused by the reliability of
data. This cycle will not be used in the prediction.
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Table 2 The ratio between the
length of the rising part and the
falling part. The value of Cycle 7
is obviously larger than other
cycles.

Cycle Ratio Cycle Ratio

1 1.25 13 0.48

2 0.59 14 0.66

3 0.51 15 0.69

4 0.37 16 0.85

5 1.21 17 0.56

6 0.83 18 0.48

7 2.18 19 0.54

8 0.55 20 0.57

9 0.79 21 0.57

10 0.59 22 0.47

11 0.40 23 0.79

12 0.80

Figure 3 (a) The parameters a vs. b. The circle is Cycle 7, which deviates from the crosses of other cycles.
(b) Value of parameter c as a function of cycle number. The point for Cycle 7 is obviously smaller than the
other points.

3.4. Prediction of Parameters a and b for Cycle 24

The prediction model starts with parameters a and b for Cycle 24. To predict these two
parameters we need at least two relationships about them. The first relationship established
between parameters a and b will be introduced in Section 3.4.1. The second relationship,
which establish the connection between a of different cycles, will be introduced in Sec-
tion 3.4.2. In Section 3.4.3, we will discuss two special cycles that were found in Sec-
tion 3.4.2. In Section 3.4.4, the prediction about parameters a and b for Cycle 24 will be
given.

3.4.1. Relationship Between a and b

The first relationship is between a and b, but it is not a direct relationship. In Equation 1,
parameter a multiplies t3, while parameter b is in the denominator of t . It would be useful
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Figure 4 Scatter plot of the
parameter b′ ≡ 1/b3 vs.
parameter a. The errors have
been added for each point, and
the solid line is the linear
relationship between parameters
a and b′ .

to define a new parameter b′:

b′ = 1

b3
(2)

There is a linear relationship between a and b′, and we can see it in Figure 4. The rela-
tionship between a and b′ is

b′ = 1.8(±0.3) × 10−3a + 2.4(±1.1) × 10−6 (3)

with root-mean-square error (RMSE) σ = 1.16 × 10−6. The Pearson correlation coefficient
r , 0.93, is higher than the 99.9% confidence level.

3.4.2. Relationship Between a and δa

The second relationship should connect the parameters of different cycles so that the param-
eters for Cycle 24 can be calculated from the known parameters. That is between a and δa,
which is defined as

δai = ai − ai+1 (4)

where i is the cycle number.
The a and δa of 23 cycles are shown in Table 3, and the relationship can be seen in

Figure 5. In the figure, the dot–dashed line is the linear-fit result of all of the points (Cycle
7 was eliminated). It is:

δa = 1.2(±0.5)a − 3.3(±1.6) × 10−3 (5)

with RMSE σ = 1.6 × 10−3. The value of the correlation coefficient r is 0.762.
In Figure 5, there are two points that deviate from the other points (in the lower-right part

of the solid line). They are parameters a for Cycles 2 and 18. They deviate from the linear
relationship by 2.75σ and 2.03σ , while the third-largest deviation is just 1.16σ . In addition,
they are on the same side of the fitting curve. So, their impact on fitting is considerable.
To reduce the effect caused by these two points, we used bisquare-weight robust-fitting to
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Figure 5 Scatter plot of δa

vs. a. The circles are the original
data in Table 3, and the errors
have been added for each point.
They have an obviously linear
relationship. The solid line is the
robust-fitting result, while the
dot–dashed line is the
least-squares fitting result.

Table 3 The parameter δa and
its error used to compute the
second relation. Cycle 7 has been
eliminated. Because
δa6 = a6 − a7 and a7 has been
eliminated, Cycle 6 is eliminated
too.

Cycle δa × 10−4 σ
δa×10−4 Cycle δa × 10−4 σ

δa×10−4

1 −10 8 13 8.1 1.0

2 −44 9 14 −23.1 2.8

3 53 9 15 15.7 3.0

4 1 12 16 −7.5 1.5

5 4 12 17 −8.1 1.3

8 26.3 2.3 18 −24.4 1.5

9 −1.9 1.2 19 45.9 1.3

10 −24.4 2.2 20 −26.1 1.2

11 25 6 21 −4.4 1.7

12 −3 5 22 20.5 1.6

replace the least-square fitting. The robust-fitting result is shown as solid line in Figure 5. It
is:

δa = 1.2(±0.4)a − 3.038(±1.5) × 10−3 (6)

with a RMSE σ = 1.482 × 10−3. The correlation coefficient r , 0.811, is obviously higher
than the least-square fitting result and higher than 99.9% confidence level.

3.4.3. Discussion About Cycles 2 and 18

In the last section, we found Cycle 2 and 18 deviate from the linear relationship. In addition,
they have other special characteristics.

The curves for Cycle 2 and 18 can be seen in Figure 6. They seem very similar on
variation tendency. Because there are only two cycles, we cannot confirm whether it is just
a coincidence. We will discuss this problem further in the future.
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Figure 6 The curves of Cycle 2
and 18 are similar in many ways.
There are four dotted lines,
which correspond to the four
peaks of the curve. They all have
the primary peak around the 40th
month, two secondary peak
around the 55th month and the
65th month, and have a little
secondary peak at around the
90th month in the falling part.
Beside the peaks, the changing
trend of the two peak are very
similar.

3.4.4. Prediction of a24 and b24

Using Equation 6, the δa23 could be calculated as

δa23 = 1.175 a23 − 3.038 × 10−3 = −3.227 × 10−4

where a23 could be found in Table 3. Then we calculate a24 with Equation 4:

a24 = a23 − δa23 = 2.634 × 10−3

Afterward, we calculate the parameter b′
24 with Equation 3:

b′
24 = 1.772 × 10−3 a24 + 2.420 × 10−6 = 7.088 × 10−6

The most probable values of a24 and b24 for Cycle 24 are

a24 = 2.634 × 10−3

b24 = b′
24

− 1
3 = 52.0584

The errors of a24 and b24 will be discussed in Section 3.6 using the Monte Carlo (MC)
method.

3.5. Prediction of c24 and d24

In Section 3.4, the parameters a24 and b24 have been found by two relations (Equation 3 and
Equation 6). The other two parameters in the model [c24 and d24] should be calculated using
another two relations, but it is quite a challenge to find a direct relationship between them.
As an alternative, two new parameters were introduced to establish two new relationships
for prediction and to find c24 and d24 indirectly. These two new parameters are fmax and the
fratio, and the two relations are:

i) The linear relationship between the Uslope and the fmax

ii) The linear relationship between the Uslope and the fratio
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We defined them as the third and fourth relationship, where the third relationship is the
Waldmeier effect (Waldmeier, 1955).

In order to use these two relations, we first need to define two new parameters. There
are several maxima for each cycle, such as the maximum of the moving-averaged data, the
average of the primary and secondary peaks, and the maximum of the fitting curve. We have
chosen the peak value of the fitting curve as fmax, and the fratio is defined as

fratio = fmax

Position of the max
(7)

where the Position of the max means the month number of fmax in the current cycle.
The definition of the Uslope will be introduced in Section 3.5.1. These two relations will be

introduced in Section 3.5.2 and Section 3.5.3. In Section 3.5.4, we will give our prediction
of parameters c and d , and the most probable curve for Cycle 24.

3.5.1. Definition of the Uslope

Uslope is the slope of linear fitting of the rising part. Different ranges of the rising part will
have different fits. Therefore, a unified fitting range is necessary. For this calculation, the
range should satisfy the following three conditions:

i) The end of the range should not be later than the end of second year of current cycle.
ii) The fitting slope of this range should have good relationship with the fmax and fratio.

iii) The range should be long enough for fitting.

Based on these conditions, establish the following restrictions:

i) The range should end before the 25th month in the cycle.
ii) The range should not be shorter than five months.

iii) the correlation coefficient between the slope of this range and the maximum should be
greater than the 99.9% confidence level.

iv) On the basis of the above three restrictions, the correlation coefficient between the rising
slope and the maximum should be as large as possible.

According to these restrictions, the possible range of the starting point is from the first
to the 20th month, and the possible range of the ending point is from the fifth to the 25th
month. We investigate all of the possible combinations of starting and ending points. The
total event space was shown in Figure 7. Each small square in the figure represents a possible
combination, and the color represents the correlation coefficients between the slopes of this
range and the fmax. The darkest red square, containing the 13th to the 25th month, is the best
fitting range.

3.5.2. Relationship Between USlope and fmax

There is a linear relationship between the rising slope and the fmax, which can be seen in
Figure 8. This relationship can be described by

fmax = 15(±4) × USlope + 85(±24) (8)

with RMSE σ = 26. The correlation coefficient r , 0.877, is higher than the 99.9% confidence
level.
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Figure 7 The x-axis is the position of the ending month of the range, while the y-axis is the position of
the starting month of the range. A starting time could be combined with each ending and become possible
selected ranges (each grid in the figure). The color reflects the correlation coefficient between the maximum
and the slope of this selected range from Cycle 1 to Cycle 23. Because the starting month should be later than
ending month, the lower-left part of the figure is impossible and we assign it the value −1 (indicated by dark
blue). We can calculate the 99.9% confidence line of the possible ranges according to its length. For the range
in which the correlation coefficient is less than its 99.9% confidence level, we assign it the value 0 indicated
by green. The remaining fitting ranges (red squares) could be chosen as the range. The darker area indicates
the higher correlation coefficient.

Figure 8 The linear relationship
between the Uslope and the fmax.
The x-axis is the slope of select
section (the 13th to the 25th
month) for each of the 23 cycles.
The y-axis is the fmax for each
of the 23 cycles. We have defined
the fmax in 3.5.

3.5.3. Relationship Between USlope and fratio

The relationship between the selected USlope and the fratio has been defined in Section 3.5,
and can be seen in Figure 9, described by

fratio = 4.1(±0.7) × 10−1USlope + 1.0(±0.4) (9)

with RMSE σ = 0.5. The correlation coefficient r , 0.938, is higher than the 99.9% confi-
dence level.
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Figure 9 The linear relationship
between the Uslope and the fratio.
The x-axis is the Uslope of each
selected section. The y-axis is the
fratio, which has been defined in
Section 3.5.

3.5.4. Calculating c24 and d24, and Most Probable Curve

We have already found the four parameters for Cycle 24. The next step is to calculate c

and d . To simplify the calculation, we can transform the basic function into

f (r) = ab3r3

er2 − c
(10)

where r is

r = t − d

b

assuming f ′(r) = 0 and yields

c =
(

1 − 2

3
r2

)

er2
(11)

replacing c in Equation 10, which yields

fmax × er2 = 1.5ab3r

where r is the variable.
We calculate the numerical solution r of the equation. c can be calculated by Equation 11

and d can be expressed as

d = −r × b + Loc

where the Loc is fmax
fratio

. The most probable c24 and d24 are

c24 = −1.176,

d24 = −11.02.

Then we obtain the most-probable curve (calculated) for Cycle 24 using a24 and b24 in
Section 3.4.4 and c24 and d24 in Section 3.5.4. The curve can be seen in Figure 10.
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Figure 10 The x-axis is the
month of Cycle 24. The y-axis is
SSN. The thin line is the
smoothed monthly averaged SSN
data. The thick line is the most
probable curve we predicted. The
real peak appears at the 64th
month, with the value of 116.4.
The predicted peak appears at the
59th month, with the value of
124.2.

3.6. Predicting the Cycle 24 Curve with the Monte Carlo Method

The most probable curve (calculated) for Cycle 24 has been given in Section 3.5, but the
error ranges of the four relationships (Equations 3, 6, 8, and 9) have not been considered.
In this section, these error ranges will be used to simulate the possible curves by the Monte
Carlo method (MC). Then, from the simulated result, we will obtain the most probable
curve (statistics from MC) and the range of prediction curve. The four relationships and
their RMSE, which will be used in MC, have been summarized in Equation 12.

b′ = 1.8 × 10−3a + 2.4 × 10−6, σ = 1.2 × 10−6

δa = 1.18a − 3.0 × 10−3, σ = 1.5 × 10−3

fmax = 15 × USlope + 85, σ = 26

fratio = 4.1 × 10−1USlope + 1.0, σ = 0.5

(12)

3.6.1. The Structure of MC

There are four layers of loops in the MC, and each loop generates one of the four parameters.
From Equation 6, we can generate the a24 as

a24 ∼ N
(
μa24, σa24

2
)

μa24 = 2.6 × 10−3

σ 2
a24 = (

1.5 × 10−3
)2 = 2.2 × 10−6

This is the first loop of the MC.
For each randomly generated a24, we calculated the μb24 via Equation 3, and then gener-

ate b24 as

b24 ∼ N
(
μb24, σb24

2
)

We set this as the second loop of the MC calculation.
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Figure 11 SSN vs. month for
Cycle 24, showing the original
data, the most-probable curve
and mean curve from the Monte
Carlo calculation.

Then, with Equation 8 and 9, we derive the expectations [μ] of fmax and fslope, generate
them to obey the Gaussian distribution, and set these two ranges as the third and fourth loops
of the MC calculation.

If each loop runs 70 times (each parameter generates 70 random numbers), there will be
704 (24,010,000) prediction curves.

3.6.2. Eliminating the Unrealistic Curves

The MC method gives us the possible curves for Cycle 24, but some of them are obviously in
conflict with the characteristics of the SSN curve. The unrealistic curves have the following
characteristics:

i) At least one point on the curve lower than zero.
ii) The first month (the valley value) of the curve has a large value.

iii) The peak is much higher than the real curve (some values even reach 103).

Some restriction is needed to eliminate these kinds of curves. The mean value of the
peaks μp of the 23 cycles is 168.2, and the variance σp is 52.8. The mean value of the valley
[μv] of the 23 cycles is 9.7, and the variance σv is 5.8. It is reasonable to restrict the value
of peak and valley with the range of μ±3σ . So, we restrict the curve as follows:

i) There are no points less than zeros on the curve.
ii) The peak value of the curve should be within the range of 10.0 to 326.4 (μp±3σp).

iii) The first point and the 151st point (the end position of the longest cycle) of the curve
should be within the range of 0 (μv − 3σv = −7.8 < 0) to 27.3 (μv + 3σv).

Finally, 20,685,127 curves were selected from all 24,010,000 curves.

3.6.3. The Most Probable Curve and Mean Curve from Monte Carlo Method

The results will be introduced in two parts. In this section, we will discuss the most probable
curve and the mean curve of the MC method.

In the previous section, we selected the possible curves. Taking the average of each
month, we obtain the mean curve. Moreover, we extract the SSN values of all possible
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Figure 12 The range of the
predicted curve for Cycle 24. The
color reflects the frequency of the
curve passing through the
position.

curves monthly, and count their distribution with the bin �SSN = 1. Taking the peaks of
distribution of every month, we can get the most probable curve (statistics from MC). These
two curves can be seen in Figure 11.

In the figure, the peak value of the mean curve appears at the 54th month, with a value
of 109.2, and the peak value of the most probable curve (statistics from MC) is at the 57th
month with the value of 113.3. The real peak appears at the 64th month, with the value of
116.4. The two predicted peak values are very close to the real value. Meanwhile, we should
note that there are two peaks in Cycle 24, and the two predicted peaks position is between
the two peaks of original data (at the 39th and the 64th months). Our prediction results are
consistent with the changing characteristics of the real curve.

3.6.4. The Range of Prediction from the Monte Carlo Method

The range of the predicted curve can be seen in Figure 12. The color reflects the frequency of
the curve passing through the position. We count the distribution of each month. According
to the distribution, we can get the 99.74%, 95.54%, and 68.26% confidence interval (α =
0.0026,0.0446, and 0.3474). The range of peak for the 99.74% line is from 38 to 175. For
the 95.54% line, the range is from 65 to 155, and for the 68.26% line, it is from 91 to 134.

3.6.5. Discussion of the Two Kinds of Predicted Curves

In this section, we will discuss the bias, consistency, and correlation of the mean curve and
most probable curve (statistics from MC).

By subtracting the real curve, the residuals of the two curves could be obtained, respec-
tively. For the mean curve, the mean value and the variance of the residual are 5.52 and
95, and, for the most probable curve, they are 3.61 and 99. To evaluate them, the residuals
between the fitting curve and the real curve for the past 23 cycles are calculated. The mean
values and variances of the variance of the residuals for these 23 cycles can be found in
Table 4.

The mean values of the variance of the residuals of the for Cycle 23 range from −3.73
to 0.60. The mean values of two predicted curves are out of this range, and even out of the 3
σ range, which means that these two predicted curves are biased. However, obviously, it is
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Figure 13 Predicted (mean and
most probable) vs. real data. The
solid line and the dashed line
show the results of linear fits to
the most probable value and the
mean value, respectively.

too strict to use the statistical results of the fitting residual to judge a prediction. We should
notice that the bias is only 3.61 and 5.52, which is acceptable in the prediction. The most
probable curve (statistics from MC) has less bias than mean curve.

The variances range from 33 to 378. The median and the mean value are 76 and 121.
The variances of mean curves and most probable curve (statistics from MC) are obviously
in this range and between the median and the mean value. It can be considered that the two
predicted curves agree well with the real curve, and the mean curve is a little bit better than
the most probable curve (statistics from MC) at this point.

The linear relationship between the original and predicted data can be seen in Figure 13.
The red-triangle-shaped points are the real values vs. the mean values, while the blue-square-
shaped points are the real values vs. the most probable values. The red-dashed line and the
blue-solid line are their fitting lines (set the intercept to 0) of the points in the same color.
The R-square of the blue line is 0.945, while that of the red line is only 0.880. However,
both of them are higher than 99.9% confidence level. So, we consider that the most probable
curve (statistics from MC) has better correlation with the real data.

To summarize, comparing with the mean curve, the most probable curve has less bias
and correlates better with the real curve. The variation of the residuals between the mean
curve and the real curve is less than that of the most probable curve (statistics from MC).
We considered that the shape of mean curve is more similar to the fitting curve (least square)
of the real curve. Also, the most probable curve reproduces the variation of the real curve
better and has less bias.

3.6.6. Verifying the Method with Cycle 22 and 23

In this section, we will verify the applicability and reliability of our method by applying
to Cycles 22 and 23. As shown in Figure 14 and Figure 15, the MC predicted results and
original data have been given.

For Cycle 23 in Figure 14, the predicted curve is slightly different from the original
data. The differences include the slightly lower peak and the slightly earlier peak position.
However, the difference in height of the peak is no more than 15, which is acceptable in
the prediction for sunspot number. Moreover, including the rising part and the peak part,
the MC 68.26% confidence interval, which means there is 68.26% probability that the real
curve will fall in this interval, nearly covers the total observed data.
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Table 4 The mean values and
variances of residuals between
the fitting curves and real curves
of 23 cycles.

Cycle Mean Variance of
residuals

Cycle Mean Variance of
residuals

1 0.04 69 13 −1.87 57

2 −0.13 102 14 0.60 45

3 −3.70 345 15 −0.47 111

4 −3.73 378 16 0.17 46

5 0.34 35 17 −1.04 76

6 −0.54 33 18 −0.44 82

7 0.59 35 19 −2.91 93

8 −2.23 278 20 −0.75 74

9 −0.81 269 21 −0.54 69

10 −1.24 213 22 −0.88 114

11 −2.03 141 23 −0.50 54

12 0.26 75

Figure 14 Comparison of the
real and predicted SSN curves for
Cycle 23.

For Cycle 22 in Figure 15, the result is even better than for Cycle 23. The predicted
curve perfectly reproduces the real curve, and nearly all of the parts of the curve are in the
interval of 68.26% confidence. The little part out of this interval is between the main peak
and secondary peak. However, what was given by our method is the predicted interval of the
fitting curve, and this part of the fitting curve still falls in the interval.

4. Discussion and Conclusion

i) A function with four parameters was used to describe each cycle, so, to predict the
curve of Cycle 24, we found four relationships, which are Equations 3, 6, 8, and 9,
which have been summarized in Equation 12

ii) From the above equations, we found four parameters for Cycle 24, and then we obtain
the most probable predicted curve for Cycle 24. The peak of this curve is at the 59th
month, with the value of 124.2. The real peak appears at the 64th month, with the value
of 116.4.
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Figure 15 Comparison of the
real and predicted SSN curve for
Cycle 22.

iii) Using the Monte Carlo method and the error ranges of the four relationships, we pre-
dicted the mean curve and the most probable curve for Cycle 24. The peak of the mean
curve is at the 54th month, and the peak of the most probable curve is at the 57th
month, which are both between the primary and the secondary peaks of the real curve.
The peak value of the most probable curve is 113.3, a little bit less than the value 116
of the real peak. The peak value of the mean curve is 109.2, which is less than that of
the most probable curve but higher than the secondary peak of the real curve.

iv) The range of peak values for the 99.74% line is from 38 to 175. For the 95.54% line,
the range is from 65 to 155, and, for the 68.26% line is from 91 to 134.

v) We found two similar cycles (Cycle 2 and Cycle 18), but we lack a reasonable ex-
planation for the behavior of those two cycles (Section 3.4.3). They will be studied
further.

vi) In the last two relationships, we used the 13th to the 25th months of the current pre-
dicted cycle, so the model was unable to give predicted results before the end of the
second year.

vii) The prediction model that we use established by the four factors is effective. We con-
sidered that the shape of the mean curve is more similar to the fitting curve (least
square) of the real curve. Also, the most probable curve (statistics from MC) follows
the changing detail of the real curve better and has less bias.

viii) We have tested the model, which contains four parameters, through the data of Cycle
24. For the next step, we will use this method on Cycle 25.
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