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Abstract We use the Vondrak smoothing method and the V2.0 version of the monthly mean
sunspot number (SSN) to produce a series of smoothed SSN (denoted SSN-VS), which
closely mimics the 13-month running mean SSN. SSN-VS is then used to determine the
characteristics of solar cycles. In particular, we find that our simulations for the past seven
solar cycles yield predictions with relatively small errors. Applying the technique to the
descending portion (i.e. the 20 months following SSN-VS = 70) of the present Solar Cy-
cle 24, we make predictions for the next Solar Cycle 25. In particular, we find, assuming
that Solar Cycle 25 is not a statistical outlier, that: 1) the sunspot minimum occurrence is
expected around 2019.188 ± 0.98 years, 2) the sunspot maximum occurrence is expected
around 2023.918±1.64 years, and 3) a sunspot maximum value of about 228.8±40.5 units
of sunspot number is expected.
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1. Introduction

Several studies have shown that solar activity has an important influence on space weather
and Earth (Foukal et al., 2006; Soon et al., 2011), in particular, as it relates to climate change
(Ineson et al., 2011; Zhao, Xu, and Wang, 2011). Each solar cycle (SC) has a different distri-
bution of extreme solar activity, and therefore space weather (Le et al., 2013, 2014), which
can impact communication, power transmission, and the aerospace environment (Sushanta,
2016). Hence, the study and prediction of solar activity have become of great importance in
recent decades, especially as related to the development of accurate, predictive forecasting
tools for determining the size, shape, and timing of an SC.

Techniques for predicting and forecasting solar activity include: i) regression anal-
ysis (Thompson, 1988; Hathaway, Wilson, and Reichmann, 1994; Wilson and Hath-
away, 2006a, 2006b), ii) correlative analysis using multiple indicators of solar activ-
ity (e.g., sunspot number, sunspot area, 10.7-cm radio flux, geomagnetic activity, etc.)
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(Hathaway, Wilson, and Reichmann, 1999; Hathaway and Wilson, 2002; Cameron and
Schussler, 2008), iii) comparative analysis with similar cycles (Wang and Han, 1997;
Han and Wang, 1999; Wang et al., 2008), and iv) the rate of rise in sunspot number (SSN)
(Wilson, 1990a, 1990b, 1990c; Han, 2000; Karak and Choudhuri, 2010; Du and Wang, 2012;
Yin and Han, 2018). As applied to the past three SCs (i.e. SC22 – 24), these techniques have
given a broad range of sunspot maximum amplitudes (RM), ranging from 38 to 210 for
SC22, from 40 to 220 for SC23, and from 42 to 185 for SC24 (Li, Yun, and Gu, 2001;
Pesnell, 2012). The ratios for which the relative errors (predictions with respect to the ob-
served RM) were within ± 10% are only 21%, 14%, and 26% for SC22 – 24, while those
for which the relative errors were ± 20% are only 35%, 27%, and 35%, respectively, for the
three SCs separately (Han, Yin, and Wang, 2018). Hence, an accurate prediction for the size
of an SC remains a difficult task at present (Miao et al., 2015).

As related to the RM of the upcoming SC25, we have collected some 35 individual pre-
dictions published between 2004 and 2017, the smallest being about 50 ± 15, based on the
V1.0 series of SSN, equivalent to about 80 ± 24, based on the revised V2.0 series of SSN
(Clette, Svalgaard, and Vaquero, 2014), available online at http://sidc.oma.be/silo/datafiles.
We note that 12 of the 35 predictions have RM < 150, 19 of the 35 predictions have RM
between 150 and 200, and only 4 of the 35 predictions have RM > 200. Of the 35 pre-
dictions, 15 predict the epoch of occurrence for RM. Of these, three predict the epoch of
occurrence for RM between 2020 and 2030, two in 2022, six in 2023, and four in 2024.
Of the 35 predictions five predict the epoch of sunspot minimum. Of these, one suggests the
onset of SC25 to begin in late 2019, three in mid-2020, and one sometime between 2019 and
2020. Based on the variation of the number of spotless days relative to the epoch of sunspot
minimum, Wilson (2015, 2017) suggests that SC25 onset will occur in 2020 or later.

In this article, we give predictions for the expected size and occurrences of sunspot min-
imum and maximum for SC25 using a particular regression method. Previously, Han (2000)
used the method to study the relationship between the rising rate of monthly sunspot number
(SSN) in the initial phase of a solar cycle and the following RM for SC23. Later, Han, Yin,
and Wang (2018) used the method to simulate predictions for SC22 – 24. In particular, the
method generates a monthly series of SSN, which based on the rate of change in SSN during
the descending phase of an SC can be used to predict the epochs of minimum and maximum
for the following SC (and its size).

2. Vondrak Smoothing Series of SSN

In the studies of SSN prediction, the 13-month smoothed SSN series (denoted as SSN-13mS)
is commonly used because to the monthly mean SSN series (denoted as SSN-mon) has
relatively large fluctuations. SSN-13mS lags SSN-mon by six months. In order to use
the observed SSN data as early as possible, we employ the Vondrak smoothing method
(Vondrak, 1977) to generate a new smoothed SSN series (SSN-VS), which is of the
same length as the SSN-mon series. The Vondrak smoothing method minimizes the value
Q = F + λ2S, where F expresses the fidelity of the graduated values, S is the smoothness
of the graduated curve, and λ2 is an arbitrary constant that defines the degree of gradu-
ation. We employ the smoothing factor ε = 1/λ2, where ε has values between zero and
infinity noting that smaller values of ε yield a smoother curve. The chief advantage of
the method is that the pre-defined fitting function is not required and that the filter val-
ues at the two ends of the data series can be calculated (Zheng, Zhong, and Ding, 2005;
Yin and Han, 2018).

http://sidc.oma.be/silo/datafiles
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Figure 1 The SSN-mon, SSN-13mS, and SSN-VS series from 1749 to 2017.

Figure 2 The SSN-13mS and SSN-VS from 1933 to 2017.

We aim that the generated series SSN-VS matches as closely as possible the SSN-13mS
for the trend of the rising and declining phase. Using various values of ε, we find that the
value ε = 0.01 provides the best fit. Figure 1 compares the SSN-mon (the V2.0 series)
and SSN-VS series for the years 1749 – 2017. Figure 2 compares SSN-13mS and SSN-VS
for the years 1933 – 2017, spanning SC17 – 24. Clearly, SSN-VS is smoother than SSN-
13mS and the resultant RM values are slightly smaller than the RM values based on SSN-
13mS. In this article, we will examine the relationship between the SSN changing rates
in the declining phase (denoted bd) and selected parameters of the present and following
solar cycles described using SSN-13mS. We note that the SSN-VS series reduces the large
fluctuations found in the SSN-13mS series and that the bd determined using the SSN-VS
series might provide a better representation of the variation trend during the late stages of a
solar cycle.

3. Predictions of Some Parameters for SC25

Previously, Yoshida and Yamagishi (2010) found that the monthly smoothed SSN values in
the last few years of a solar cycle (the descending phase of a solar cycle) correlate with the
RM value of the following SC, with the best correlation obtained after the SSN has dropped
below about 50 (based on the V1.0 SSN series). In our analysis (using SSN-VS), we also find
this to be true, not just for RM of the following cycle but also for other parameters, as well.
In particular, we find that when SSN-VS drops below about 70, using the next 20 months
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Figure 3 Schematic diagram of some parameters of the solar cycle.

of SSN allows us to determine a slope (bd) that strongly correlates with the following RM
(r > 0.99, statistically significant at the 99.9% level of confidence).

In order to facilitate the following discussion, we define some parameters related to the
solar cycle and show them in a schematic diagram in Figure 3. In the figure, i is the serial
number of the SC, LCMin is the elapsed time between the minima of two consecutive cycles,
LCMax is the time between the RM for two consecutive cycles, Ld is the duration of the
declining phase, and Lr is the duration of the rising phase of an SC. The parameters of the
past 24 SCs in the SSN-13mS series are listed in Table 1. In the table, the abbreviation ‘my’
is for year of minimum and ‘mm’ is for month of minimum, ‘My’ is for year of maximum
and ‘Mm’ is for month of maximum, respectively. The analysis shows that the bd of SCi

has a significant correlation with the main parameters of SC(i + 1). Before attempting a
prediction of the main parameters for SC25, we will first perform simulated predictions for
SC18 – 24 and compare them with their observed values to evaluate the effectiveness of our
method. Then we will make predictions of the main parameters for SC25.

In Table 1, the maxima and minima of a few of the SCs are found to be slightly differ-
ent from those given by Hathaway (2015). Namely, using the SSN V1.0 series, Hathaway
(2015) determined that SC22 has RM = 158.5 in July 1989. Using the SSN V2.0, we deter-
mine RM = 212.5 in November 1989 for SC22. Likewise, for SC23, Hathaway determined
RM = 120.7 in April 2000, while we determine RM = 180.3 in November 2001. For SC16,
Hathaway (2015) identified August 1923 (5.6) as minimum, while we determine July 1923
(9.4) to be minimum. For SC21, he identified March 1976 (12.2) as minimum, while we
determine the minimum to be June 1976 (17.9). Lastly, he identified May 1996 (8.0) as
minimum for SC23, while we determine minimum to be August 1996 (11.2). The numbers
between parenthesis are the smoothed monthly sunspot numbers.

3.1. Prediction for the Beginning of SC25

The linear regression analysis shows that the bd value of SCi correlates with the LCMin
value between SCi and SC(i + 1). Hence, we can use the known bd value of SCi to predict
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Table 1 Data and relevant parameters of each SC used in the work.

SCi bd my mm My Mm RM LCMin/yr LCMax/yr

1 −2.123 1755 2 1761 6 144.1 11.332 8.252

2 −2.859 1766 6 1769 9 193.0 9.0 8.664

3 −2.521 1775 6 1778 5 264.3 9.253 9.753

4 −1.653 1784 9 1788 2 235.3 13.58 16.999

5 −1.988 1798 4 1805 2 82.0 12.335 11.25

6 −1.337 1810 8 1816 5 81.2 12.748 13.501

7 −3.068 1823 5 1829 11 119.2 10.503 7.33

8 −2.088 1833 11 1837 3 244.9 9.664 10.92

9 −2.696 1843 7 1848 2 219.9 12.42 12.0

10 −2.554 1855 12 1860 2 186.2 11.246 10.499

11 −2.218 1867 3 1870 8 234.0 11.754 13.335

12 −2.406 1878 12 1883 12 124.4 11.246 10.084

13 −1.395 1890 3 1894 1 146.5 11.838 12.081

14 −2.347 1902 1 1906 2 107.1 11.496 11.5

15 −2.2 1913 7 1917 8 175.7 10.0 10.667

16 −2.367 1923 7 1928 4 130.2 10.169 8.998

17 −2.558 1933 9 1937 4 198.6 10.417 10.083

18 −3.015 1944 2 1947 5 218.7 10.164 10.833

19 −1.907 1954 4 1958 3 285.0 10.503 10.67

20 −1.816 1964 10 1968 11 156.6 11.665 11.084

21 −2.972 1976 6 1979 12 232.9 10.251 9.916

22 −2.364 1986 9 1989 11 212.5 9.917 12.0

23 −1.82 1996 8 2001 11 180.3 12.334 12.414

24 −2.818 2008 12 2014 4 116.4 – –

the LCMin value and thereby estimate the occurrence of the minimum between SCi and
SC(i + 1). For the past seven cycles, we determine the linear regression equations (given
below as Equations 1 – 7) for the LCMin values between SCi and SC(i + 1). The inferred
linear correlation coefficient r for each of these inferred regressions is 0.568, 0.578, 0.594,
0.562, 0.570, 0.582, and 0.576, respectively. Although the inferred regressions can explain
only about one-third of the variance in LCMin, statistical testing shows that the inferred
regressions are statistically important at the 99% level of confidence. The linear regression
equations are:

LCMin17/18 = (14.60 + 1.539 bd17) ± 1.11, (1)

LCMin18/19 = (14.63 + 1.560 bd18) ± 1.08, (2)

LCMin19/20 = (14.55 + 1.519 bd19) ± 1.04, (3)

LCMin20/21 = (14.26 + 1.419 bd20) ± 1.05, (4)

LCMin21/22 = (14.26 + 1.417 bd21) ± 1.02, (5)

LCMin22/23 = (14.20 + 1.389 bd22) ± 0.99, (6)

LCMin23/24 = (14.19 + 1.403 bd23) ± 0.99. (7)
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Table 2 Simulated predictions
of LCMin for SC18 – SC24
using bd.

SC bd LCMin/yr PLCMin/yr DLCMin/yr DLCMinP

17/18 −2.558 10.42 10.67 0.25 2.4%

18/19 −3.015 10.16 9.93 −0.23 −2.3%

19/20 −1.907 10.50 11.66 1.15 11.0%

20/21 −1.816 11.66 11.69 0.02 0.2%

21/22 −2.972 10.25 10.05 −0.20 −2.0%

22/23 −2.364 9.92 10.92 1.00 10.1%

23/24 −1.820 12.33 11.64 −0.70 −5.6%

Figure 4 Scatter plots and
regression line of bd and LCMin.

Using the bd values listed in Table 1 for the past seven cycles, we determine simu-
lated predictions for LCMin (i.e. PLCMin) for each SC. Shown in Table 2 are the LCMin,
PLCMin, DLCMin (i.e. the difference PLCMin–LCMin) and DLCMinP (i.e. the relative
error DLCMin/LCMin) for the seven SCs. The results show that there is close agreement
between the observed and predicted values with small relative errors, suggesting that the
technique is promising to estimate the onset of a following cycle. Based on SC1 – 23, we
infer the regression equation to be

LCMin24/25 = (14.36 + 1.464 bd24) ± 0.98, (8)

where 14.36 represents the y-axis intercept, 1.464 is the inferred slope, and 0.98 is the in-
ferred standard deviation about the regression line. The inferred regression is found to be
statistically important at the 99.5% level of confidence.

Figure 4 displays the scatterplot of LCMin versus bd for SC1 – 23, where the horizon-
tal and vertical bars are the median values of LCMin (11.246) and bd (2.347), respectively,
and the inferred regression line. Also shown are the bd value for SC24 (shown as an arrow
along the horizontal axis) and the results of Fisher’s exact test for the observed 2 × 2 contin-
gency table, indicating that the probability of obtaining the observed result is P = 2.7%. The
probability of obtaining the observed result, or one more suggestive of the departure from
independence, is slightly larger, being P = 3.0%. Because the known value of bd for SC24
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Table 3 Simulated predictions
for RM for SC18 – SC24 using
bd.

SC bd RM PRM DRM DRMP

17/18 −2.558 218.70 201.81 −16.89 −7.7%

18/19 −3.015 285.00 247.40 −37.60 −13.2%

19/20 −1.907 156.60 139.84 −16.76 −10.7%

20/21 −1.816 232.90 132.01 −100.89 −43.3%

21/22 −2.972 212.50 247.53 35.03 16.5%

22/23 −2.364 180.30 189.69 9.39 5.2%

23/24 −1.820 116.40 142.01 25.61 22.0%

is −2.818 (based on the regression analysis of the 20 months spanning September 2015 to
May 2017), we predict that the ±1 standard deviation prediction interval for LCMin24 and
LCMin25 is 10.23±0.98 years, inferring a minimum for SC25 about 2019.188±0.98 years
(i.e. (2008.958 + 10.23) ± 0.98). Unless SC25 is a statistical outlier, its expected LCMin
should be <11.246 years (i.e. it should be located in the lower-left quadrant of Figure 4).

3.2. Prediction for the Maximum Amplitude of SC25

For the past SCs, we note that RM for SC(i + 1) correlates strongly with the preceding
bd for SCi. Before making a prediction of RM for SC25, we will first make simulated
predictions for the past seven SCs, as we did in the previous section. The results of the
linear regression analysis for SC18 – 24 is the following:

RM18 = (−41.80 − 95.236 bd17) ± 39.4, (9)

RM19 = (−44.01 − 96.653 bd18) ± 38.3, (10)

RM20 = (−56.92 − 103.176 bd19) ± 38.0, (11)

RM21 = (−52.71 − 101.716 bd20) ± 37.1, (12)

RM22 = (−25.29 − 91.796 bd21) ± 42.6, (13)

RM23 = (−15.93 − 86.980 bd22) ± 42.1, (14)

RM24 = (−16.05 − 86.846 bd23) ± 41.1. (15)

The inferred linear correlation coefficients are −0.770, −0.777, −0.809, −0.808,
−0.732, −0.726, and −0.725, respectively, and all are statistically important within a 99.9%
level of confidence.

Table 3 gives the simulated predictions in comparison to the observed values of RM,
where PRM is the predicted RM, DRM is the difference between the predicted and observed
RM (i.e. PRM–RM) and DRMP is the relative error expressed as a percentage (i.e. 100
× DRM/RM). We note that DRM for SC21 measures −100.89 (DRMP = −43.3%), very
different in comparison to the other cycles, suggesting that the bd value for SC20 (used
to predict RM for SC21) is a statistical outlier. Indeed, SC20 displayed large fluctuations
during its declining phase, in contrast to the usual gradual decline seen for most SCs. We
believe that this inherent fluctuating behavior during the declining phase of SC20 accounts
for the large PRM and DRMP seen in SC21. Hence, when large fluctuations are encountered
during the late stages of an SC, predictions of RM for the following SC will be less reliable
(i.e. DRMP will be considerably larger).
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Figure 5 Scatter plots and
regression line of bd(i) and
RM(i + 1).

Based on SC1 – 23 bd values (Table 1), we infer the regression equation relating RM for
SC(i + 1) to bd for SCi to be

RM25 = (−22.25 − 89.084 bd24) ± 40.5. (16)

The inferred regression equation has a linear correlation coefficient r = −0.738 and is found
to be statistically important within a 99.9% level of confidence.

Figure 5 shows the scatterplot of RM for SC(i + 1) versus bd for SCi, the inferred re-
gression line and the results of Fisher’s exact test for the observed 2 × 2 contingency table
(determined by the medians, −2.347 and 186.2), indicating that the probability of obtaining
this contingency table is P = 0.89%. Using bd = −2.818 for SC24, we infer from the linear
regression that RM for SC25 will be about 228.8 ± 40.5 units of sunspot number (the ±1
prediction interval) and very probably ≥186.2 (based on the observed 2 × 2 contingency
table).

3.3. Prediction for the Maximum Epoch of SC25

For the past SCs, we note that LCMax for SC(i + 1) also correlates with bd for SCi. As
previously, before predicting the occurrence of RM for SC25, we first show the results of
the linear regression analysis for the past seven SCs, given as follows:

LCMax17/18 = (18.28 + 3.256 bd17) ± 1.82, (17)

LCMax18/19 = (18.26 + 3.245 bd18) ± 1.76, (18)

LCMax19/20 = (17.45 + 2.836 bd19) ± 1.79, (19)

LCMax20/21 = (17.11 + 2.717 bd20) ± 1.76, (20)

LCMax21/22 = (16.81 + 2.610 bd21) ± 1.73, (21)

LCMax22/23 = (16.58 + 2.491 bd22) ± 1.69, (22)

LCMax23/24 = (16.60 + 2.473 bd23) ± 1.67. (23)
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Table 4 Simulated predictions
of LCMax for SC18 – SC24
using bd.

SC bd LCMax/yr PLCMax/yr DLCMax/yr DLCMaxP

17/18 −2.558 10.08 9.95 −0.13 −1.3%

18/19 −3.015 10.83 8.48 −2.35 −21.7%

19/20 −1.907 10.67 12.04 1.37 12.9%

20/21 −1.816 11.08 12.17 1.09 9.8%

21/22 −2.972 9.92 9.06 −0.86 −8.7%

22/23 −2.364 12.00 10.69 −1.31 −10.9%

23/24 −1.820 12.41 12.10 −0.32 −2.5%

Figure 6 Scatter plot and
regression line of bd and LCMax.

The inferred regressions have linear correlation coefficients equal to 0.666, 0.669, 0.628,
0.612, 0.601, 0.601, and 0.593, respectively, and all are found to be statistically important
within a 99.5% level of confidence.

Table 4 presents the simulated predictions for the past seven SCs, where PLCMax is the
predicted LCMax, DLCMax is the difference between the predicted and observed LCMax
(i.e. PLCMax–LCMax), and DLCMaxP is the relative error in percentage (i.e. 100 × DL-
CMax/LCMax). From SC1 – 23, we determine the inferred linear regression to be

LCMax24/25 = (16.68 + 2.50 bd24) ± 1.64. (24)

Figure 6 shows the scatterplot of LCMAX for SC(i + 1) versus bd for SCi, the inferred
regression and the results of Fisher’s exact test for the observed 2 × 2 contingency table
(P = 2.7%). Being, bd = −2.818 for SC24, we have PLCMax = (9.63 ± 1.64) years for
SC25 (i.e. the ±1 prediction interval). Hence, we estimate RM occurrence for SC25 to be
about (2023.918 ± 1.64) years (i.e. (2014.288 + 9.63) ± 1.64), probably before 2025.121
(February 2025), based on the 2 × 2 contingency table.



107 Page 10 of 14 Y.B. Han, Z.Q. Yin

Figure 7 Scatter plot and
regression line of bd(i) and
Lr(i + 1).

4. Conclusion and Discussion

This study has shown that major characteristics of the immediately following SC (e.g. the
epochs of sunspot minimum and maximum and the RM) can be determined based on the
behavior characteristics late in the declining phase of the preceding SC. The variation of
solar activity over an SC is very complex, involving a variety of components of varying
timescales (Le and Wang, 2003). Although a solar cycle is generally described using SSN
(i.e. SSN-13mS), Hathaway (2015) note that each SC actually starts well before its mini-
mum smoothed SSN occurrence and ends well after the following cycle minimum smoothed
SSN occurrence (cf. Jiang et al., 2016), with consecutive cycles overlapping typically by
1 – 3 years. Likewise, long ago, Waldmeier (1935) showed that the maximum amplitude of
a cycle is related to the time it takes to reach that maximum amplitude, denoted here as Lr.

Figure 7 displays the scatterplot of Lr for SC(i + 1) versus bd for SCi. The format of
the figure follows that of our previous figures. Using bd = −2.818 from SC24, we note that
the Lr for SC25 should be about 3.4 ± 0.82 years (from the inferred regression equation)
and probably <4.081 years (based on the 2 × 2 contingency table). The inferred regression
equation is

Lr25 = (7.50 + 1.453 bd24) ± 0.82. (25)

The linear correlation coefficient is r = 0.640, meaning the inferred regression can ex-
plain about 41% of the variation in Lr, and the regression is inferred to be statistically im-
portant within a 99.9% level of confidence. The results of Fisher’s exact test of the observed
2 × 2 contingency table is P = 0.27%. Hence, once we know when SC25 minimum occurs,
we can use Equation 25 to determine when we should expect SC25 maximum (i.e. RM) to
occur.

Figure 8 shows the scatterplot of LCMax for SCi versus Ld for SCi, where Ld is
the length of the descent from maximum amplitude for SCi to minimum amplitude for
SC(i + 1). Again, the format of the figure follows that of the previous figures. The inferred
regression equation is

LCMax24/25 = (1.51 + 1.408 Ld24) ± 0.97. (26)
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Figure 8 Scatter plot and
regression line of Ld and LCMax.

Figure 9 Scatter plot and
regression line of Lr and RM.

The linear correlation coefficient is r = 0.881, meaning that the inferred regression can ex-
plain about 78% of the variation in LCMax, and the regression is inferred to be statistically
important within a 99.9% level of confidence. The results of Fisher’s exact test of the ob-
served 2 × 2 contingency table is P = 0.95%. Hence, again, once we know when the SC25
minimum occurs, we will then know Ld for SC24 and can then use Equation 26 to determine
when we should expect SC25 maximum to occur.

Figure 9 shows the scatterplot of RM for SCi versus Lr for SCi. The inferred regression
equation is

RM25 = (345.0 − 38.25 Lr25) ± 38.8. (27)

The inferred regression has a linear correlation coefficient r = −0.753 that is statisti-
cally important within a 99.9% level of confidence. The observed 2 × 2 contingency ta-
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ble has a probability of occurring by chance of only P = 0.16%. Hence, there is a very
strong correlation between the length of the rise and the maximum amplitude of an SC,
as previously noted by many investigators (e.g. Waldmeier, 1935; Kiepenheuer, 1953;
Karak and Choudhuri, 2010; Hathaway, 2015; Wilson, 2015; and many others).

4.1. Discussion of RM Prediction of SC25

As previously noted, using bd = −2.818 for SC24, we have predicted: 1) RM = 228.8 ±
40.5 and 2) Lr = (3.40±0.82) years for SC25. Now, these are ±1 standard deviation predic-
tion intervals. This means that there is a 68.3% probability that SC25 will have both an RM
and Lr within the stated ranges, or an 84.3% probability that SC25 will have RM ≥ 188.3
and Lr ≥ 2.58 years (the same probabilities are found for RM < 269.3 and Lr < 4.22 years).
In comparison with SC24, the predicted values for SC25 suggest that it will be both larger
than SC24 and have a faster rise (RM = 116.4 and Lr = 5.33 years for SC24). Because
SC25 is an odd-numbered SC, the predictions we give for SC25 are in line with those ex-
pected from the even–odd effect (i.e. the Gnevyshev-Ohl rule (Gnevyshev and Ohl, 1948));
namely, the odd-following cycle usually is larger in amplitude compared to the preceding
even cycle. We do note, however, that of the 11 even–odd cycle pairs (see Table 1), 3 do not
adhere to the inferred preferential behavior, including Cycle pairs 4 and 5, 8 and 9, and 22
and 23. In fact, SC5 is 153.3 units of sunspot number smaller than was seen in SC4.

From Table 1, we note that there have been 11 cycles that have RM ≥ 188.3, all of these
cycles have Lr between 2.92 and 4.58 years, within an average to about (3.48 ± 0.44) years.
This suggests that, assuming RM ≥ 188.3 for SC25, we should expect Lr < 3.92 years,
suggesting that it will rise fast. Once SC25 gets under way, we hope that its rising rate will
provide a better prediction of its RM (Han, Yin, and Wang, 2018; Yin and Han, 2018).

4.2. Discussion of the Prediction of the RM Epoch of SC25

As previously noted, using bd = −2.818 for SC24, we also have predicted LCMax =
(9.63±1.64) years for SC25, inferring that its maximum epoch should be about (2023.918±
1.64) years, or about December 2023±20 months. Solar activity is extremely low at present
and has been so for some time. The rapid decrease in monthly SSN began in late 2017 with a
smoothed monthly SSN decreasing below 10 in March 2018. Monthly values of SSN for the
first three months of 2019 have been 7.8, 0.8, and 9.5, respectively, and smoothed monthly
SSN have continued to decrease, being 7.1, 6.7, and 6.6 for July – September 2018. Many
solar observers are now suggesting that the minimum between SC24 and 25 will be an ex-
tended minimum, much like that experienced between SC23 and 24 (Russell, Luhmann, and
Jian, 2010). If true, then both the predicted epochs of the minimum and the maximum SSN
for SC25 will occur later.

At present (April 2019), the decline phase of SC24 has extended 5 years, with an in-
ferred LCMax ≥ (8.55 ± 0.82) years for SC25 (see Figure 8). With each passing month,
the value of LCMax for SC25 will increase to a higher value. Should Ld for SC24 be 6
years, LCMax ≥ (9.96 ± 0.82) years, indicating the epoch of maximum for SC25 probably
in late 2024 to early 2025. It is important to note that Ld has almost always been longer than
Lr. There have been only three exceptions, all early cycles, including SC1, 5, and 7. For
all other SCs, Ld > Lr, with the difference in length averaging to about (36 ± 16) months.
The smallest observed difference is 8 months (SC16). Therefore, the epoch of minimum for
SC25, likely, will be late 2019 or later.
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In conclusion, our results based on SC24 having bd = −2.818 and presuming that SC25
is not a statistical outlier, are as follows: i) sunspot minimum occurrence about (2019.188 ±
0.98) years (i.e. before February 2020), ii) sunspot maximum occurrence about (2023.918±
1.64) years (i.e. before July 2025), and iii) a maximum amplitude about (228.8±40.5) units
of sunspot number (i.e. ≥188.3).
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