
Solar Phys (2019) 294:80
https://doi.org/10.1007/s11207-019-1473-z

Fast Solar Image Classification Using Deep Learning and
Its Importance for Automation in Solar Physics

John A. Armstrong1 · Lyndsay Fletcher1,2

Received: 4 April 2019 / Accepted: 29 May 2019 / Published online: 21 June 2019
© The Author(s) 2019

Abstract The volume of data being collected in solar physics has exponentially increased
over the past decade and with the introduction of the Daniel K. Inouye Solar Telescope
(DKIST) we will be entering the age of petabyte solar data. Automated feature detection
will be an invaluable tool for post-processing of solar images to create catalogues of data
ready for researchers to use. We propose a deep learning model to accomplish this; a deep
convolutional neural network is adept at feature extraction and processing images quickly.
We train our network using data from Hinode/Solar Optical Telescope (SOT) Hα images
of a small subset of solar features with different geometries: filaments, prominences, flare
ribbons, sunspots and the quiet Sun (i.e. the absence of any of the other four features). We
achieve near perfect performance on classifying unseen images from SOT (≈ 99.9%) in
4.66 seconds. We also for the first time explore transfer learning in a solar context. Transfer
learning uses pre-trained deep neural networks to help train new deep learning models i.e.
it teaches a new model. We show that our network is robust to changes in resolution by
degrading images from SOT resolution (≈0.33′′ at λ = 6563 Å) to Solar Dynamics Obser-
vatory/Atmospheric Imaging Assembly (SDO/AIA) resolution (≈1.2′′) without a change in
performance of our network. However, we also observe where the network fails to gener-
alise to sunspots from SDO/AIA bands 1600/1700 Å due to small-scale brightenings around
the sunspots and prominences in SDO/AIA 304 Å due to coronal emission.

Keywords Instrumentation and data management

1. Introduction

With each new solar physics mission/telescope, instruments are improving in spatial, tem-
poral and/or wavelength resolution. Increased resolution in any of these three categories

B J.A. Armstrong
j.armstrong.2@research.gla.ac.uk

1 SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland,
UK

2 Rosseland Centre for Solar Physics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo,
Norway

http://crossmark.crossref.org/dialog/?doi=10.1007/s11207-019-1473-z&domain=pdf
http://orcid.org/0000-0003-1589-9365
http://orcid.org/0000-0001-9315-7899
mailto:j.armstrong.2@research.gla.ac.uk


80 Page 2 of 23 J.A. Armstrong, L. Fletcher

equals greater volumes of data. This has led to an exponential increase in the amount of data
acquired in the past decade, from < 10 TB per year from Hinode/Solar Optical Telescope
(SOT) in 2006 (Tsuneta et al., 2008) to 500 TB per year from the Solar Dynamics Observa-
tory (SDO) in 2012 (Schwer et al., 2002) to 10 000 TB per year expected from the Daniel
K. Inouye Solar Telescope (DKIST) which is seeing first light in 2019 (Elmore et al., 2014).
On top of this, the Hinode and SDO data is all archived1 totaling 3.1 PB (petabytes) of data
which will only keep growing with each passing year.

This is a huge amount of data, and sorting through it is not a task which can be given
to humans. For an efficient alternative, we must turn to automation, particularly machine
learning. Machine learning is the process of using statistical techniques to give comput-
ers the ability to learn how to perform a certain task without being explicitly programmed.
In the past two years, applications of machine learning techniques in solar physics have
seen a rise in popularity, being applied to complex problems such as the inversion of solar
flare atmospheres (Osborne, Armstrong, and Fletcher, 2019); magnetogram super-resolution
(Díaz Baso and Asensio Ramos, 2018); photospheric horizontal velocity field calculations
(Asensio Ramos, Requerey, and Vitas, 2017); real-time multi-frame solar image deconvolu-
tion (Asensio Ramos, de la Cruz Rodríguez, and Pastor Yabar, 2018); solar flare and space
weather forecasting (Florios et al., 2018; Liu et al., 2017, 2018; Nishizuka et al., 2017; Pi-
ana et al., 2018, to name a few); looking at the spatial and temporal correlations of spectral
profiles during flares (Panos et al., 2018) and detecting emergent flux (Hao, Chen, and Fang,
2018). Machine learning in solar physics has proved its worth and will only continue to in-
crease in usage as time goes on. On top of performing complex tasks, machine learning is
also adept at data management and dataset reduction. This is the kind of automation that can
save data analysts time and effort when acquiring and traversing their data and in the age of
data-intensive solar physics these techniques can prove invaluable.

Motivated by this, we propose an efficient machine learning algorithm for the classifica-
tion of solar images: a convolutional neural network (CNN). This is designed to learn the
different geometry of large-scale features on the Sun such that, after the model has been
trained, a dataset of solar images can be passed to the network and it will identify which im-
ages contain which relevant feature in a very short time. This process has already been used
for galaxy classification in cosmology (Dai and Tong, 2018; Alhassan, Taylor, and Vaccari,
2018) and we propose adopting a similar algorithm for solar purposes.

The algorithm we propose will allow the user to easily identify the images of most im-
portance to the study they are carrying out. Furthermore, having a pre-trained CNN that
understands the geometry of solar features can be very beneficial for “transfer learning”.
Transfer learning is when a previously trained neural network is used for initialisation and/or
training for a new network which aims to learn a different but related task. Neural networks
themselves approximate a functional representation of a process from the input to the output
that is learned through a complex optimisation problem known as training. This is known as
the Universal Function Approximation Theorem and was proven for fully-connected layers
with sigmoid activations by Cybenko (1989) and more generally with rectified linear unit
(ReLU) activations by Lu et al. (2017). Training is performed on a high-dimensional space
and thus contains many local minima which can correspond to non-physical solutions, and
optimisers can get stuck there. This is the most difficult problem to overcome when apply-
ing neural networks to physical data. Therefore, transfer learning can be beneficial as the
old network teaches the new network what it knows about the physical system and can steer
the optimiser towards a physical solution.

1Hinode data available from http://sdc.uio.no/sdc/ and SDO data available through VSO in SolarSoft and
SunPy.

http://sdc.uio.no/sdc/


Fast Solar Image Classification Page 3 of 23 80

We are interested in optical wavelengths and will focus on images within this range.
We train our CNN using images from Hinode/SOT instrument taken by the Hα (6563 Å)
filter. The images are sorted into 5 classes: filaments, flare ribbons, prominences, sunspots
and the quiet Sun (i.e. lack of any of the other four features). Thus, the network learns the
geometry of these features when observed at this wavelength. One of our goals is to see
if the computer perceptually understands what these features are. That is, if it can identify
the same features correctly when they are imaged in different wavelengths e.g. sunspots
observed in 1600/1700 Å and prominences observed in 304 Å.

The training set itself, is a catalogue of 13175 Hα images from SOT that were classified
by hand into one of the five classes. The aim of this dataset was to take as wide a space of
each feature as possible i.e. the sunspot class contains images with single sunspots, multiple
sunspots, different shapes and sizes of sunspots etc. The catalogue of data we have amassed
may be useful for anyone looking to train a machine learning model on solar image data or
transferring pre-trained knowledge of features on the Sun to their project.2 Furthermore, our
data catalogue provides a good template for how to organise a dataset for a solar classifi-
cation problem and may be beneficial for classification in other wavelengths such as radio
using LOFAR (Bastian, 2004) or X-ray using RHESSI (Lin, 2000).

The structure of the paper is as follows: in Section 2 we give a comprehensive overview of
deep learning and how a convolutional neural network actually learns a task. In Section 3, we
describe our model architecture and the specifics of how we trained. In Section 4, we discuss
statistical tests to challenge our model and the issue of expanding our network beyond visible
wavelengths. Finally, in Section 5, we present our conclusions and examples of how the
model we have developed can be used beyond the scope of this paper.

2. Convolutional Neural Networks

2.1. Background

Neural networks (NNs) are very powerful universal function approximators meaning that
they have the (theoretical) ability to model any unambiguous function no matter how com-
plex. To understand NNs, we must look back to the conception of machine learning, namely
Rosenblatt’s perceptron. This is a simple setup modelled on a neuron in the brain: there are
many inputs with varying electrical signals which are integrated, and depending on a thresh-
old the neuron will either fire or not. This translates to there being an input dataset and a
weight vector (which are the parameters learned by the system). The vector inner product
is found between the input and the weights before being passed to a step function which
decides whether or not the neuron fires. This is the basis for nodes in NNs (however, mod-
ern nodes are more generalised in the linear and non-linear part of the transformation). Each
node has a different associated weight vector and a linear transformation. Then non-linearity
is applied to the input which will determine the nature of the signal outputted by each node.
An NN is a system of interconnected nodes which learn to perform a specific task after being
trained in a supervised manner.

Supervised learning means that the data used for training has a defined structure. That is,
the user knows what the function between the input and output should produce in the predic-
tion stage (be it classification or regression). In supervised learning, we want the algorithm

2This can be downloaded from http://github.com/rhero12/Slic/releases/tag/1.1.1.

http://github.com/rhero12/Slic/releases/tag/1.1.1


80 Page 4 of 23 J.A. Armstrong, L. Fletcher

to learn the functional approximation by understanding the pre-defined structure between
the input and output.

The simplest NN example is that of a shallow neural network (SNN) – this is a neural
network that consists of one hidden layer, where a hidden layer is a layer of nodes that
comes between the input and the output. This, however, can only learn simple functions in a
reasonable amount of time. To learn more complex functions, we must look towards “deep”
learning. Deep learning is the practice of stacking more than one intermediate layer in an
NN. The introduction of more layers allows the network to learn more complex functions in
a smaller amount of time. While it is true that a single hidden layer can learn any non-linear
function (Jones, 1990), it will need increasing amounts of time to do so, such that it is more
efficient to stack hidden layers as each hidden layer will learn a part of the overall non-linear
function (Hornik, 1991).

The connections made between different layers in an NN is important for the number
of parameters that need to be learned and how efficiently and well this can be done. Clas-
sic feed-forward neural networks (NNs with a linear graph) make use of fully-connected
layers, in which each node in a previous layer is connected to each node in the next layer.
This utilises a linear transformation of the data followed by a non-linearity and will result
in a very dense, high-dimensional matrix since every connection will have a correspond-
ing weight vector filled with parameters to be learned. This is an issue when it comes to
image data as each individual pixel would need to be represented by a node. For example,
for a megapixel image, the layers in a fully-connected network (FCN) would have a width
O (106). This means that there would be 106 × N calculations to be done between the input
layer and the first hidden layer with width N . This is impractically computationally expen-
sive. To counter this, Lecun et al. (1998) introduced a concept that would revolutionise using
machine learning for image-based tasks: convolutional neural networks.

2.2. Convolutional Neural Networks

Following the biological trend, CNNs are modelled after the visual cortices of animals. The
idea is that the visual cortex of an animal is a system of interconnected neurons, starting
at the eye with an image and ending at the brain with an understanding of what is in the
image, and passing a specific electrical signal between the connected neurons depending on
the features that each layer identifies. This is achieved in a hierarchical manner meaning that
the first layers identify low-level features (e.g. colours, gradients, lighting) followed by later
layers identifying high-level features (e.g. facial features). This means that the biological
neurons do not detect specific features of objects but rather each layer identifies an abstract
feature whose signal will help the subsequent layers to pick out other abstract features and
the final combination of these abstract features tells the brain what the animal is seeing. The
animal in question then subconsciously teaches its neurons how to react to different objects
i.e. it learns. This is what we want to accomplish with a CNN. We set up our artificial net-
work to model the biological network described previously with each deeper layer learning
how to react to more and more abstract features in the image data such that the output layer
will learn different objects’ geometry. This, however, comes at a cost of interpretability as
the abstract features that the network chooses to learn in each image classification task are
chosen by the computer itself. In essence, the features are learned within the machine’s
imagination rather than being something we can explicitly write down.

Rather than having every node connected to every other node in the subsequent layer,
convolution nodes make use of what is known as the receptive field: this is where the image
is convolved with some kernel of a pre-defined size at certain locations on the image to



Fast Solar Image Classification Page 5 of 23 80

produce what is known as a feature map. This means that the linear transformation in each
node is represented by the convolution function, as CNNs were specifically designed to take
an image as input and it works well when making the analogy to the biological network
described above. The key ideas are that the convolution layer will extract features from the
image and the network will learn to extract the most important features for the task at hand;
and the combination of many feature detector layers will form a good understanding of the
spatial arrangement of the pixels in an input image. Each convolutional node produces a
feature map, with each convolutional layer producing many, such that many features can be
extracted and analysed at the same time. This concept relies on the fact that neighbouring
pixels in an image are strongly correlated with the correlation decreasing with distance from
the pixels in question. The other benefit to this is that, rather than there being a weight to
train between every node, the convolutional kernel for each convolutional node (i.e. for each
feature map) will be the trainable weights in the system (known as “weight sharing”). So, for
a 1 megapixel image, rather than having 106 nodes with 106 ×N weights, if a convolutional
kernel of 3 × 3 pixels is used in a convolutional layer producing 64 feature maps then there
will only be 576 trainable parameters which is a huge computational advantage.

Deep CNNs are well-established in image classification tasks. This is due to CNNs au-
tomatically dealing with any shift invariance via the convolution function. What this means
is that CNNs learn the geometry of the features in the images rather than relative positions
of pixels in images, which is important as features are not always going to be in the same
spatial position or orientation in every image or be the same size in every image. This leads
to easier identification of objects in images as the network looks for these feature maps as
opposed to specific sequences of pixels (Simard, Steinkraus, and Platt, 2003).

2.3. Training

Training is the most important and difficult process in any machine learning algorithm.
Training is how a network learns what method it is supposed to be approximating. In our
case, we are employing supervised learning which described in Section 2.1. This is im-
plemented in the network via a feed-forward and back-propagation system. A full pass of
feed-forward and back-propagation is what is referred to as an “epoch” and is one of the
hyperparameters (parameters that are not learned by the system) to be tuned while training.

The feed-forward nature of the network refers to the images being fed through the net-
work from input to output. Initialisation can be crucial to the performance of an NN. A ran-
dom or zero initialisation of the weights can lead to the network taking longer than needed
to learn and so to reduce the number of epochs needed we employ what is known as He ini-
tialisation (He et al., 2015b). This initialises the weight matrix to being randomly sampled
from a Gaussian distribution N (0,σ ) where

σ =
√

2

nl

, (1)

where nl is the number of connections in layer l (i.e. the number of feature maps per convo-
lution layer in a CNN). This result is derived from taking the variance of the forward linear
process in the neural network. This initialisation led to the first machine learning algorithm
that out-performed a human in image classification (see He et al., 2015b, for more details).

At the end of the feed-forward process, the network uses the current weights to calculate
what class the image belongs to in its current understanding. Then back-propagation begins:



80 Page 6 of 23 J.A. Armstrong, L. Fletcher

the gradient of the distance between the obtained class label and the true class label is cal-
culated and then fed backwards through the network updating each weight as it goes such
that next time this process begins the number of incorrect classifications will be reduced
(assuming that our optimiser has taken a step in the right direction in our loss space). The
optimisation technique used for back-propagation is stochastic gradient descent (SGD). This
parameterises the distance between what the network thinks and the truth by an analytical
function known as the loss function. This is a first-order gradient method and the updates to
the weights can be calculated very simply mathematically:

θt+1 = θt + η∇θL(x; θt ), (2)

where θt+1 is the updated weight. η is known as the learning rate which determines how
much the correction of the weight will move it throughout the loss space spanned by the
loss function (i.e. we are optimising the weights on some high-dimensional space and the
learning rate helps define our walk through that space in search of a minimum). This is the
second of two hyperparameters to be experimented with during training. The optimisation
method we use is SGD with Nesterov momentum (Sutskever et al., 2013) which is similar
to standard SGD but has a velocity term associated with it leading to an acceleration in the
weight updates over many epochs. Equation 2 can then be modified to include this velocity:

θt+1 = θt + vt+1 = θt + μvt − η∇θL(x; θt + μvt), (3)

so rather than θt+1 being solely updated by the gradient, it is also updated by the product μvt

where μ is the momentum coefficient and vt is the velocity for the previous epoch. The term
in the argument of the gradient allows this method to correct the velocity term in a faster
way if the prediction we are currently at is not good. For example, if the product μvt results
in a poor update for the weight then the gradient function calculated will be steeper and thus
tend back towards θt such that the optimiser can try again in another direction. Thus SGD
with Nesterov momentum allows us to traverse the loss space at an accelerated rate but, by
construction, since areas with flatter curvature will be closer to the minima we are trying
to achieve, the acceleration will slow as we approach this minimum and thus we will not
overshoot.

Another crucial part of training is hyperparameter tuning and in our network we have
three hyperparameters: the learning rate, the number of epochs and the momentum coeffi-
cient. However, we keep the momentum coefficient constant at 0.9 such that the momentum
will have a noticeable effect on the gradients and we only have two variable hyperparam-
eters. The other two hyperparameters are changed during training and a set of models is
trained (see Section 4). The number of epochs required for general convergence varies from
problem to problem. If the number of epochs is too low then the model will be underfitted
and the results cannot be trusted. If the number of epochs is too high then the model will
overfit the data which can lead to misclassifications of unseen data since the network mem-
orises the data structure. Finding the optimal number of epochs can avoid underfitting but a
further measure needs to be taken to avoid overfitting.

A further measure is to use some of the training data not in the training phase but rather as
a validation phase. This means that the network’s response to unseen data can be monitored
since the validation data will have a defined class that is known beforehand.

Likewise, tuning the learning rate is a problem-specific task. If the learning rate is too
high, it is possible that the system will always skip over minima and never converge to a good
solution whereas if it is too low, the system may never escape from a bad local minimum
and may converge to a bad solution.



Fast Solar Image Classification Page 7 of 23 80

Figure 1 The setup of our 13 layer CNN inspired by VGG networks (Simonyan and Zisserman, 2014)
where the arrows between each block indicate the flow of data in the feed-forward process. The blocks are
colour-coded to reflect their purpose. Orange, green, yellow and blue are all convolutional layers which have
64, 128, 256 and 512 trainable feature maps, respectively. The inside of one of the convolutional layers is
shown which is the same for all convolutional layers – the data undergoes a convolution followed by batch
normalisation followed by the activation via a ReLU function. The red circles correspond to the max pooling
layers. The grey block corresponds to the classifier at the end of the network. The example here is of a
prominence in Hα from Hinode/SOT being classified correctly.

Due to the aforementioned reasons, the process of training a machine learning algorithm
must be carefully considered. This can be difficult, with many tests needed to obtain the
desired result. This is discussed further in Section 4.

3. Our Model

The model we introduce is a 13 layer CNN (see Figure 1). The network is looking to model
the function that maps an image of the Sun in Hα to a vector of probabilities of the images
containing a specific feature. Therefore, the input of the network will be the pixel intensities
of the image and the output will be a vector of class probabilities with each element corre-
sponding to the probability of a feature. If the network learns the features correctly then the
highest probability (i.e. the maximum value element of this vector) will correspond to the
correct class for the image.

The layers shown as cuboids in Figure 1 between the input and the output are essentially
doing many, large matrix computations wherein the convolution of the weight matrix and
the input to a layer is found; then the batch normalisation is performed on the results of
these calculations and, finally, the activation (non-linearity) function is applied to the result
to determine the signal passed to the next layer. The convolution kernels in each of these
layers is composed of 3 × 3 pixels initialised by He initialisation described in Section 2.3.
The values of the convolution kernels are the learnable parameters in this model for these
layers i.e. the values of the kernels are updated during training by the optimiser such that the
network learns what abstract features being picked out by convolutions correspond to spe-
cific physical features. The number of feature maps in each of these layers increases towards
the output of the network as the model is detecting more and more complex features and a
larger number of convolutions to look at will help to distinguish between these features.

“Batch normalisation” (Ioffe and Szegedy, 2015) is applied to the output from the con-
volution operation. This is a technique used to increase the stability of our network and
normalises the output of the convolution calculation around a batch mean (β) and standard
deviation (γ ) via the equation

y = γ × x − E[x]√
σ(x) + ε

+ β, (4)



80 Page 8 of 23 J.A. Armstrong, L. Fletcher

where x is the output feature maps and y is the batch normalised feature maps, ε is a small
positive constant used to stop the denominator going to zero and σ is the sample variance of
the feature maps being normalised. This is beneficial as it reduces the dynamic range of the
data at the cost of two extra trainable parameters (β , γ ) and speeds up training sufficiently
(if the batch size is large enough). Equation 4 can then easily be manipulated during back-
propagation to return x such that the true feature maps can be recovered from the batch
normalised feature maps.

After batch normalisation, the data undergoes a non-linear transformation known as an
“activation function”. This is a function which shifts the output of the batch normalisation
onto a different distribution which determines the signal being passed onto the next layer
of the network. For this function, we use the rectified linear unit (ReLU; Nair and Hinton,
2010) function:

φ(x) = max(0, x). (5)

This is chosen due to the sparsity of the output increasing training speed and its ability to
avoid the vanishing gradient problem. The vanishing gradient problem is when the gradients
of the loss function during back-propagation becomes so small that they tend to zero and
so the optimiser gets stuck in the loss space. This is avoided when using ReLUs since the
gradients of these will never be small:

dφ

dx
= H(x), (6)

where H(x) is the Heaviside function. However, ReLUs can get stuck if the batch nor-
malised data is all negative but the network should learn that the batch normalisation param-
eters should not shift the data into a distribution where it is all negative.

Between the deep layers of the network, there are occasionally maxpooling layers (shown
by the red circles in Figure 1. This is used as a downsampling of the data to increase compu-
tational efficiency by reducing the number of parameters, and since this results in less spatial
information as regards the features this will reduce over-fitting and increase translational in-
variance due to the reduction of the pixel-location-specific data. This downsampling works
by parsing the image into segments of four pixels (2 × 2 grid) and taking the maximum of
those pixels. This means that one pixel in a downsampled image is representative of the four
pixel block it came from. This is, in a sense, how the network learns more complex features –
as the resolution of the input is decreased, each pixel represents more information from the
original input and thus each operation is performed on a larger fraction of the original im-
age (e.g. four pixels rather than one) which will highlight more complex, larger features via
the convolution operation. Other types of pooling exist, such as average pooling (taking the
average of the group of pixels we are downsampling), but maxpooling is the prevailing due
to its benefits for reducing over-fitting since the same pixel out of the four may not be the
maximum after every weight update.

The grey cuboid at the end of the network in Figure 1 is the classifier of our network: after
the features within the images are identified by the convolutional layers, they are passed to
the classifier which decides what class to assign to the images. This can be described by a
mini-network shown in Figure 2.

The two key concepts of this mini-network are the fully-connected block and the dropout
regularisation. The fully-connected layer maps all of the inputs to all of the outputs via a
linear transformation which results in N × M parameters to be changed for a layer with N

input nodes and M output nodes. Dropout is a newer concept in machine learning (Srivastava
et al., 2014). This assigns a probability, p, to each input node in a layer such that for each



Fast Solar Image Classification Page 9 of 23 80

Figure 2 The classifier
mini-network. The 3D blocks
represent fully-connected layers
which map the output feature
maps from the last maxpooling
layer to the class labels with a
certain probability. The pink
boxes refer to rectified linear unit
(ReLU) activation followed by
dropout regularisation.

training epoch there is a probability that the network will ignore that node and connection
and thus train on an approximate model. Training on a set of approximate models and then
averaging them at validation time works well as a regularisation technique – i.e. helps reduce
over-fitting – whilst still preserving (and actually improving, in many cases) results as shown
in Srivastava et al. (2014). In our model, we set p = 0.5 (i.e. 50% chance of the node being
dropped). The third fully-connected layer (in gold in Figure 2) determines which class each
image should be assigned. Normally, we would have a final activation function here to do so
but the class labels are inferred in our model via our choice of loss function which implicitly
adds this final activation layer (see Section 3.1).

3.1. Training Our Model

The previous paragraphs have described the feed-forward part of our network i.e. the path
the images take through the network. We will now described the back-propagation that takes
place wherein automatic differentiation (Gunes Baydin and Pearlmutter, 2014) is carried out
on the loss function at each layer to update the weights of the network and learn the classifi-
cation function optimally. The loss function we choose to minimise is known as the “Cross
Entropy Loss” (CEL). This is based on the discrete version of the multinomial logistic re-
gression

L(x) = −
∑

i

p(xi) logq(xi), (7)

where x is the output vector of the network, p(xi) is the true class label of the image (i.e.
p = 1 for the true class label and p = 0 for the other labels) and q(xi) is the estimated
probability of the label of the image by our model, where we model the classes as being
distributed by a softmax distribution

q(xi) = exp(xi)∑
k exp(xk)

. (8)

This softmax function encompasses the last implicit activation (mentioned above) due to the
truncating nature of the exponential function (i.e. if the network thinks an image is a certain
class then q → 1). This loss function is smooth and differentiable and the goal is get q as
close to one as possible for every image. In Equation 8, xi is then the composite map of all of
the layers and activations which can be differentiated via the chain rule to make propagating
the weight updates between layers as trivial as matrix calculations.

Having described how the network operates, we will now describe how to train the net-
work. We train the network from Hα (λ = 6563 Å) Hinode/SOT data. We have 13175 images
in our dataset which have one of the five features in them which were classified by a human



80 Page 10 of 23 J.A. Armstrong, L. Fletcher

(these images are split evenly between the classes to avoid introducing observational bias
into the training data). This is split 90% to 10% between training and validation (11857 and
1318, precisely). We then train over 100 epochs performing the validation after each epoch
to find the highest classification percentage. We perform this for a set of constant learning
rates η = {10−3,5 × 10−4,10−4}. This gives us a good idea of which pair of parameters
gives the best convergence – this is a brute-force approach to hyperparameter optimisation
but worked well for our model. This is discussed more in Section 4.1. Per learning rate, our
model takes ≈ three hours to train and validate over the 100 epochs on an NVIDIA Titan
Xp. We train and validate with a batch size of 32 (due to GPU memory limitations). A higher
batch size leads to shorter training time whilst simultaneously improving the batch statistics
leading to a higher accuracy.

We train the network to learn the geometry of five solar features: filaments, Hα flare
ribbons, prominences, sunspots and the quiet Sun (absence of these other four features).
While filaments and prominences are the same physical feature (dense, cool plasma that runs
parallel to a magnetic neutral line and is suspended in the atmosphere by a coronal magnetic
field; Fletcher et al., 2011), just in different locations (prominences off-limb; filaments on-
disk), their geometries in the Hinode/SOT Hα images are vastly different leading to the split
in classification. This split can easily be consolidated when using the network by asking for
images with both filaments and prominences.

The Hα flare ribbons are intense brightenings in the solar atmosphere which are inter-
preted as the base of the coronal magnetic field structures to which flare energisation is
attributed. The images of sunspots either contain one of multiple sunspots such that our net-
work learns what a singular sunspot looks like but can still understand if there is a group.
This distinction may become more important and could branch off into two separate classes.
See Section 5 for more information.

4. Results

4.1. Validation on Unseen Hinode/SOT Data

After training, we test our network on a validation set of images that the network has never
seen before taken randomly from the training set. This validation set consists of 1318 Hin-
ode/SOT Hα images roughly evenly distributed between the classes. Validation takes 4.66
seconds on our NVIDIA Titan Xp and, equivalently, 895 seconds on an Intel Core i7-8700
3.20 GHz CPU (but could be parallelised over multiple cores to be faster).

The results of training and validating over the ranges of hyperparameters discussed in
Section 3.1 leads to us learning that our optimal hyperparameters are η = 5 × 10−4 and
number of epochs of training, n = 5. This gives a validation accuracy of 99.92% (1 out
of the 1318 images are misclassified; see Appendix A). As the classification percentage is
not 100%, we can conclude that our model has not encapsulated the entirety of the space
containing the function which maps the input of our network to the output i.e. our minimised
loss function is not the optimally minimised loss function, but has learned enough of this
space to generalise to unseen data. The near-perfection of this model is impressive and
not to be understated, as a perfect classifier for image data is difficult to come by due to
the possibility of distortions and artefacts leading to misclassification. A further, deeper
exploration of the hyperparameter space may lead to even better classification since we
have only chosen discrete steps in this space.



Fast Solar Image Classification Page 11 of 23 80

Table 1 The confusion matrix for our deep CNN. This is a representation of the network’s performance on
the validation set where each element in the confusion matrix is the number of images classified as containing
a feature compared to the true feature contained in that images.

Network classification

Filaments Flares Prominences Quiet Sunspots

True classification Filaments 175 1 0 0 0

Flares 0 270 0 0 0

Prominences 0 0 304 0 0

Quiet 0 0 0 242 0

Sunspots 0 0 0 0 326

Classification percentage on a validation set is, however, not statistically robust enough
to determine whether or not our classifier has actually learned what we wanted it to. This
can be a result of having an uneven split in the validation set between the classes or having a
strongly biased classification task. To deal with this, we calculate the “confusion matrix” for
our classifier. This is a matrix whose elements correspond to what class an image actually
belongs to compared to what class the network classified it in. This is shown in Table 1.
This tells us about different kinds of errors our network makes. The predictions our network
made can now be split into four categories for each of the features:

i) True positives: the number of images containing the feature we are interested in that are
correctly identified as containing that feature. That is, for a feature i that is of interest to
us:

tpi = cii , (9)

where cij is an element of the confusion matrix.
ii) False positives: the number of images not containing the feature we are interested in that

are identified as containing that feature

fpi =
nrows∑
i=1

cki − tpi . (10)

iii) False negatives: the number of images containing the feature i that are misclassified as
not containing the feature.

fni =
ncols∑
l=1

cil − tpi . (11)

iv) True negatives: the number of images not containing feature i that are correctly classi-
fied as not containing feature i

tni =
nrows∑
k=1

ncols∑
l=1

ckl − tpi − fpi − fni . (12)

From these measures we can define two statistics that can probe how well our classifier
works. The first is known as “precision” and this tells us how many images that our model



80 Page 12 of 23 J.A. Armstrong, L. Fletcher

classified as having feature i truly contain feature i

ρi = tpi

tpi + fpi

. (13)

The second is known as “recall”. This tells us about the percentage of images containing
feature i that were correctly identified as containing feature i. This can be thought of as the
ability of the model to find all of the images of interest to us

ri = tpi

tpi + fni

. (14)

Ideally we want precision and recall to both be equal to one for all classes. The precision
for flare ribbons deviates from one as the misclassified image is misclassified as a flare rib-
bon. This corresponds to the image not containing a flare ribbon but the network thinking
it does. The precision for all other classes is one meaning that the network does not think
any images not containing these features actually contain these features. The recall for fil-
aments is the only recall different from one as it is an image containing a filament that is
misclassified. This means that the network thinks this image containing a filament actually
contains another feature (in this case a flare ribbon). The recall being equal to unity for all
other classes means that the network never classifies any of those images as having a feature
different from the feature they contain. Overall, the misinterpretation of our network is not
detrimental to its performance. We are confident that our network has learned the geometry
of these features due to the tiny margin of error it has.

Figure 3 shows examples of our network classifying images. These are images from
SOT in Hα which the network has not seen during training. This provides a test to ensure
our network is not “memorising” the training data i.e. adjusting its weights to classify only
the training set correctly.3

The left column of Figure 3 shows an image with clear flare ribbons that are classified
correctly by the network. However, there is also a sunspot in this image which the network
picks up on in the probability distribution (left column, bottom). There is a non-negligible
probability that the important feature in this image is a sunspot. This means that we can use
our network for classification of multiple large-scale features in a single image. However, a
more precise way to do multi-label classification would be more beneficial and is discussed
in Section 5. The other images are classified correctly in Figure 3 showing that our model
has learned the geometry of these features.

4.2. Testing on Other Instruments’ Imaging Data

Having trained the network on Hinode/SOT Hα data, we performed adversarial tests on the
network. These are tests in which the input to the network is designed to be confusing to the
network. We focus on adversarial examples where the answer is obvious to the user but not
necessarily to the network. That is, we perform tests on the network for sunspots and promi-
nences in different wavelengths given that they look perceptually similar to the features
in Hα. To do this, we use data from UV wavelengths for sunspots and EUV wavelengths
for prominences from the SDO/AIA instrument (Title et al., 2006). This gives an idea of
whether or not we can generalise our network to other wavelengths without retraining.

3We have also tested our network on images in other visible wavelengths, an example of which can be found
at http://github.com/rhero12/Slic/blob/master/testing_example.ipynb.

http://github.com/rhero12/Slic/blob/master/testing_example.ipynb


Fast Solar Image Classification Page 13 of 23 80

F
ig

ur
e

3
V

al
id

at
io

n
on

un
se

en
im

ag
es

fr
om

H
in

od
e/

SO
T

im
ag

ed
in

H
α

.
T

hi
s

sh
ow

s
ou

r
ne

tw
or

k
co

rr
ec

tly
id

en
tif

yi
ng

im
ag

es
w

ith
fla

re
ri

bb
on

s
(l

ef
t

co
lu

m
n)

,
pr

om
in

en
ce

s
(m

id
dl

e
co

lu
m

ns
)

an
d

su
ns

po
ts

(r
ig

ht
co

lu
m

ns
)

in
im

ag
es

it
ha

s
ne

ve
r

se
en

be
fo

re
.



80 Page 14 of 23 J.A. Armstrong, L. Fletcher

Figure 4 The three images analysed here are of the same sunspot (AR11638) imaged in SDO/AIA 1600 Å a
few minutes apart. These are shown to highlight the confusion of the network when dealing with UV sunspots
as sometimes the sunspot is classified correctly while other times it is not. The sunspots in UV are always
either classified as sunspots, flare ribbons or prominences. We hypothesise this to be due to the elongated,
bright plage in the sunspot images we test on. We found this to be true also for AR12665 and AR12674.

4.2.1. Sunspots in UV

We use three different sunspot datasets observed in both 1600 and 1700 Å (the AIA UV
channels): AR11638 from 2013/01/01, AR12665 from 2017/07/10 and AR12674 from
2017/09/06. Each dataset used in our examples is over a one hour time range (12:00:00 –
13:00:00 UTC).

The UV sunspot data was not classified well by our network. Despite the sunspots in
each active region not evolving much over the observed time range, the network sometimes
classifies these sunspots correctly whilst sometimes incorrectly classifying them as either
flare ribbons or prominences. An example of this for AR11638 imaged in 1600 Å is shown
in Figure 4. We hypothesise two possible reasons for this:

i) There are small-scale UV brightenings around sunspots. This can be attributed to plage
(dispersed brightenings in an active region). While these brightenings occur in the op-
tical and the ultraviolet; they are more noticeable in the UV due to the background
UV quiet Sun being dimmer than in the optical. This implies that the contrast between
plage and quiet Sun in UV wavelengths will be higher which can impact the network’s
classification ability by convincing it that the brightenings are the important feature.



Fast Solar Image Classification Page 15 of 23 80

Figure 5 Comparison of the sunspot from AR11108 images in SDO/AIA 1600 Å (left column) and Hin-
ode/SOT Hα at full resolution and degraded to AIA resolution (middle and right columns, respectively). This
illustrates that the resolution does not play a significant role in skewing the classification of our network as
both the full resolution and low resolution SOT images are classified correctly whilst the AIA image is not.

Furthermore, the plage can often look like elongated bright regions and this elongation
may be further proof to the network that this image should be classified as something
other than a sunspot.

ii) The lack of spatial resolution in the AIA images. In Hα, SOT has a spatial resolution of
0.33′′ (Tsuneta et al., 2008) whereas for the AIA UV channels the spatial resolution is
1.2′′ (Title et al., 2006). This disparity could be another cause (or composite cause) of
the misclassification of the UV sunspot observations. Due to the nature of convolutional
feature extraction, the extracted features from two images of the same object but with
different resolutions can be vastly different. This would affect the feature maps being
passed through our CNN and thus the end classification result.

We test the first hypothesis using these three datasets and the results are illustrated in
Figure 4 (and in Figures 8 and 9). Due to the incorrect classifications being either flare
ribbons or prominences for these active regions we believe that the brightness and elongation
of the plage region is responsible for this. As can be seen in Figure 3, in Hα both flare ribbons
are bright, elongated structures on a darker background which is what leads us to believe the
first hypothesis is responsible for incorrect classification.

To test for the second hypothesis, we must look for sunspot observations that are co-
temporal with observations from SOT in Hα. The results of this test are shown in Figure 5.
The dataset we chose was from a single-sunspot active region AR11108 from 2010/09/25.



80 Page 16 of 23 J.A. Armstrong, L. Fletcher

Figure 6 Examples of incorrect classification of prominences observed in SDO/AIA 304 Å. The left and
middle columns are quite confidently classified as flare ribbons which we hypothesise to be due to the back-
ground coronal HeII emission visible in these images but does not have an analogue in the Hα training set.
The right column shows the network thinking that the image is nearly as likely to contain a prominence as a
flare ribbon. We assume that the network identifies the bright patch in the middle as a flare ribbon but also
picks up the prominence above it. This shows the network’s capability of giving a good idea if there are
multiple features in a single image without being explicitly taught to do so.

The observations used from AIA were taken from 08:05:00 – 09:20:00 UTC. An example is
shown in the left column of Figure 5 where the sunspot was misclassified as a flare ribbon.
The observations used from SOT were taken synoptically with AIA in Hα. These Hα im-
ages are downsampled by ≈3× to AIA resolution. The full resolution and low resolution
images are then passed to the network. Both sets of images are classified perfectly by the
network as shown by the middle and right columns of Figure 5. This result invalidates the
second hypothesis and leads us to the conclusion that resolution is not a determining factor
in misclassifications. Thus, we conclude that the plage is the feature confusing our network
from understanding sunspots in UV.

4.2.2. Prominences in EUV

We use two different datasets for three different prominences. We use SDO/AIA 304 Å ob-
servations to look at prominences which correspond to He II emission at ≈ 50,000 K. These
datasets were taken from 2012/08/31 12:00:00 – 13:00:00 UTC and 2013/01/01 10:00:00 –
11:00:00 UTC. The 2012/08/31 dataset has the prominence located off the eastern limb of
the Sun and is shown in the right column, top row of Figure 6. The 2013/01/01 dataset has



Fast Solar Image Classification Page 17 of 23 80

two prominences: one located off the eastern limb north-east from disk centre and another
located off the eastern limb south-east from disk centre. These are shown in the left and
middle columns, top row of Figure 6.

As shown in the bottom row of Figure 6, none of our prominences are predicted correctly.
We hypothesise this to be due to the noisy coronal background emission at the heights of
the prominence that we observe. We see that in the images in Figure 6, there is emission
in the region of the prominence that is not directly the prominence. In contrast, the Hα

images from Hinode/SOT do not have emission except in the prominence at the heights of
the prominence (as can be seen in the second and third rows of Figure 3).

All of the images in Figure 6 are misclassified as flare ribbons. For the two prominences
from 2013/01/01, we hypothesise this to be caused by the background He II emission as this
causes the prominence to appear bright against an emitting background which is similar to
the flare ribbon images used for training in Hα. The prominence from 2012/08/31 has com-
parable probabilities of the image containing a flare ribbon or a prominence. In the image of
this prominence, we assume from the flare ribbon classification that our model chooses the
bright point in the middle of the image as the most important feature. Interestingly, though,
our network picks up the geometry of the prominence as a different feature and is almost
equally confident that this image contains a prominence. We also follow the same argument
as in Section 4.2.1: that the difference in resolution does not impact our classification ability.
Therefore, we reach the conclusion that only the coronal emission effects the classification
ability of our network.

5. Discussion

We have shown that a deep convolutional neural network can learn the geometry of features
on the Sun. This works very well for the wavelength that the network is trained on but does
not always generalise to other wavelengths (which is to be expected due to some emission
mechanisms occurring in some wavelengths and not others). This leads to a discussion of
how the network can be improved through more detailed classification and multi-wavelength
training regimes that could produce a classifier that generalises better to unseen data. Also
increasing the depth of training can lead to more efficient uses of transfer learning from one
network to another.

Further improvements to the network will make it more versatile and precise. In the
versatility direction, we plan on devising a multi-label classification. This means that each
image will have more than one label e.g. n sunspots or single flare ribbon; we plan to anal-
yse this sequentially. One way to do this is by using multiple binary classifier CNNs on the
images and using the results from the binary networks to determine what features are in an
image, e.g. one network to detect sunspots, one to detect flare ribbons and so on (Read et al.,
2011). Another is using an ensemble method where there is a set of multiclass classifiers
that each assign one label to the image. These predictions are then combined with each class
getting a certain percentage of a vote from each classifier and the labels with a percentage
above a certain threshold are used as the multi-label for the image (Rokach, Schclar, and
Itach, 2013). We plan on doing this using a recursive neural network (RNN). An RNN is a
network that is specialised at processing sequential data. RNNs do this by using the previ-
ous layer’s output as the dependency for the current layer’s input – there is some function
that connects the output of the previous layer to the input of the current layer in a specified
sequence (a “recurrence relation”). Following Bui et al. (2016), we would utilise a convo-



80 Page 18 of 23 J.A. Armstrong, L. Fletcher

lutional RNN (C-RNN) which takes the feature maps from the last convolutional layer in
our original network (after activation) as an input and outputs a compact representation of
each feature over many convolutions. This allows the C-RNN to learn a general form for
our features (i.e. over many convolutional filters). For multi-label classification, the C-RNN
architecture network will generate N RNNs to describe each image by N labels. For exam-
ple, if we take an image that contains at least one sunspot and we want to know if it has a
single sunspot or multiple sunspots then we will use two RNN blocks – one to predict that
the image contains a sunspot and the second to predict how many sunspots are in the image.
This has seen great success in other image classification cases (Bui et al., 2016; Wang et al.,
2016) and could work well for solar images.

There are many changes we can implement that may improve precision. We could re-
place the dropout layers with max-dropout or stochastic dropout proposed in Park and
Kwak (2017) which has improved performance on standard datasets. Another possibility
is to change the convolution blocks to residual blocks (He et al., 2015a) wherein the net-
work learns the residual of a function (the difference between the function and the input)
rather than the function itself. This has been shown to improve speed, performance and how
deep a network can be before suffering from the vanishing gradient problem – when the
calculated gradients are close to zero, causing the optimiser to get stuck in the parameter
space which renders any further training useless. This is solved in residual networks via
the introduction of skip connections which carry the input to the end of a residual block.
This allows the input to travel deeper in the network without being diminished by the lay-
ers.

Another interesting property of our network is that it is based on a series of very success-
ful deep CNNs known as VGG networks which were made to learn the ImageNet dataset
(Simonyan and Zisserman, 2014; Deng et al., 2009). We found that these deep architectures
are necessary for solar image classification as shallower networks did not yield sufficient
results (even for a simple task such as image classification). The ImageNet dataset is a well-
known database of millions of images that has been classified into thousands of classes. This
has been an incredibly successful approach and is useful in transfer learning. The pre-trained
VGG networks have proven to be extremely useful for transfer learning for real-world im-
ages (Kupyn et al., 2017; Johnson, Alahi, and Fei-Fei, 2016). We would like to propose a
solar ImageNet (SIN). SIN would be a huge dataset containing features imaged in different
wavelengths from different instruments. We would then train a classifier to learn what these
features look like in different solar contexts. The classification network we present here can
be used as a building block for SIN and acts like a VGG network trained on a subset of
ImageNet.

This would make a transfer learning approach to solar machine learning extremely plau-
sible and could lead to increased accuracies in deep learning tasks in solar physics com-
pared to the same networks initialised without transfer learning. For example, this kind
of network would be useful in data pipelines for creating catalogues of data and pick-
ing up on observations that were targeted at a specific feature but picked up something
else too. Furthermore, the network we have presented can be used in conjunction with
already-existing data pipelines where the data may not have a specific target specified in
the meta information. Due to its speed and accuracy, this model will be useful for anyone
having to sift through terabytes of data. Lastly, networks of this design could be utilised
in automating telescope pointing. With more detailed training (described above), a suf-
ficient network could parse synoptic observations of the observer’s target and calculate
where the target will be when the observations will be occurring. The code is available



Fast Solar Image Classification Page 19 of 23 80

Figure 7 The single
misclassified case from our
validation set. The network
identifies the image as containing
flare ribbons likely due to the
brightenings at the top of the
image. The image was truly
classified by eye as containing a
filament.

online under the MIT license4 at https://github.com/rhero12/Slic. The release of the code
at https://github.com/rhero12/Slic/releases/tags/1.1.1/ contains the pre-trained model and
scripts on how to use the code for image classification and transfer learning. The release
also includes the prepared training and validation data explained in Sections 1, 3 and 4.

Acknowledgements J.A.A. acknowledges support from ‘ScotDIST’ doctoral training centre supported
by grant ST/R504750/1 from the UK’s Science and Technology Facilities Council (STFC). L.F. acknowl-
edges support from STFC grant ST/P000533/1. Hinode is a Japanese mission developed and launched by
ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is op-
erated by these agencies in co-operation with ESA and NSC (Norway). The AIA data are provided courtesy
of NASA/SDO and the AIA science team. J.A.A. would like to thank C.M.J. Osborne and P.J.A. Simões for
helpful discussions. The authors would also like to thank the reviewer for helpful comments and corrections.

Disclosure of Potential Conflicts of Interest The authors declare that they have no conflicts of interest.

4More information available at https://opensource.org/licenses/MIT.

https://github.com/rhero12/Slic
https://github.com/rhero12/Slic/releases/tags/1.1.1/
https://opensource.org/licenses/MIT


80 Page 20 of 23 J.A. Armstrong, L. Fletcher

Figure 8 Classification of 1600 Å observations of AR12665 showing the same trifecta of different classifi-
cations for very similar images as in Figure 4.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Misclassification in Validation Set

Below we have include the image that was misclassified by our network in the validation
stage and its discrete probability distribution showing the likelihood for each class according
to our network. The network classifies the image as harbouring flare ribbons with filament
(what the image was actually classified as being a close second). We believe this to be
due to the brightenings in the top portion of the image (see Figure 7). However, the prob-
ability of filament is non-negligible in comparison and this aids our claim that, as is, our
network has the capabilities of detecting multiple features in one image (as discussed in
Section 4.1).



Fast Solar Image Classification Page 21 of 23 80

Figure 9 Classification of 1600 Å observations of AR12674 similar to Figures 4 and 8.

Appendix B: Classification of AR12665 and AR12674

We have included the classification of the other two active regions given in Section 4.2.1.
These are shown in Figures 8 and 9. The classifications of these active regions show the
same pattern as the one analysed in the main text as being misclassified as either a flare
ribbon or a prominence due to the elongated plage regions whilst sometimes being correctly
identified as a sunspot.

References

Alhassan, W., Taylor, A.R., Vaccari, M.: 2018, The FIRST classifier: compact and extended radio galaxy
classification using deep Convolutional Neural Networks. Mon. Not. Roy. Astron. Soc. 480, 2085. ADS.

Asensio Ramos, A., de laCruz Rodríguez, J., Pastor Yabar, A.: 2018, Real-time, multiframe, blind deconvo-
lution of solar images. Astron. Astrophys. 620, A73. ADS.

Asensio Ramos, A., Requerey, I.S., Vitas, N.: 2017, DeepVel: deep learning for the estimation of horizontal
velocities at the solar surface. Astron. Astrophys. 604, A11. ADS.

Bastian, T.S.: 2004, Low-frequency solar radiophysics with LOFAR and FASR. Planet. Space Sci. 52, 1381.
DOI. ADS.

Bui, H.M., Lech, M., Cheng, E., Neville, K., Burnett, I.S.: 2016, Using grayscale images for object recog-
nition with convolutional-recursive neural network. In: 2016 IEEE Sixth International Conference on
Communications and Electronics (ICCE), 321.

Cybenko, G.: 1989, Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2,
303.

http://adsabs.harvard.edu/abs/2018mnras.480.2085A
http://adsabs.harvard.edu/abs/2018A%26A...620A..73A
http://adsabs.harvard.edu/abs/2017A%26A...604A..11A
https://doi.org/10.1016/j.pss.2004.09.015
http://adsabs.harvard.edu/abs/2004P%26SS...52.1381B


80 Page 22 of 23 J.A. Armstrong, L. Fletcher

Dai, J.-M., Tong, J.: 2018, Galaxy Morphology Classification with Deep Convolutional Neural Networks.
arXiv e-prints, arXiv. ADS.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Li, F.F.: 2009, ImageNet: a large-scale hierarchical image
database. In: IEEE Conference on Computer Vision and Pattern Recognition, 248.

Díaz Baso, C.J., Asensio Ramos, A.: 2018, Enhancing SDO/HMI images using deep learning. Astron. Astro-
phys. 614, A5. ADS.

Elmore, D.F., Rimmele, T., Casini, R., Hegwer, S., Kuhn, J., Lin, H., McMullin, J.P., Reardon, K., Schmidt,
W., Tritschler, A., Wöger, F.: 2014, The Daniel K. Inouye Solar Telescope first light instruments and
critical science plan. In: Ground-based and Airborne Instrumentation for Astronomy V 9147, 914707.
DOI. ADS.

Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L.,
Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An
observational overview of solar flares. Space Sci. Rev. 159, 19. ADS.

Florios, K., Kontogiannis, I., Park, S.-H., Guerra, J.A., Benvenuto, F., Bloomfield, D.S., Georgoulis, M.K.:
2018, Forecasting solar flares using magnetogram-based predictors and machine learning. Solar Phys.
293, 28. ADS.

Gunes Baydin, A., Pearlmutter, B.A.: 2014, Automatic differentiation of algorithms for machine learning.
arXiv e-prints, arXiv. ADS.

Hao, Q., Chen, P.F., Fang, C.: 2018, Automated detection methods for solar activities and an application for
statistic analysis of solar filament. Proc. Int. Astron. Union 13(S340), 101.

He, K., Zhang, X., Ren, S., Sun, J.: 2015a, Deep residual learning for image recognition. arXiv e-prints, arXiv.
ADS.

He, K., Zhang, X., Ren, S., Sun, J.: 2015b, Delving deep into rectifiers: surpassing human-level performance
on ImageNet classification. arXiv e-prints, arXiv. ADS.

Hornik, K.: 1991, Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251.
Ioffe, S., Szegedy, C.: 2015, Batch normalization: accelerating Deep Network training by reducing internal

covariate shift. arXiv e-prints, arXiv. ADS.
Johnson, J., Alahi, A., Fei-Fei, L.: 2016, Perceptual losses for real-time style transfer and super-resolution.

arXiv e-prints, ADS.
Jones, K.L.: 1990, Constructive approximations for neural networks by sigmoidal functions. Proc. IEEE 87,

1586.
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: 2017, DeblurGAN: blind motion deblurring

using conditional adversarial networks. arXiv e-prints, arXiv. ADS.
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: 1998, Gradient-based learning applied to document recognition.

Proc. IEEE 86(11), 2278.
Lin, R.P.: 2000, The High Energy Solar Spectroscopic Imager (HESSI) mission. In: Ramaty, R.,

Mandzhavidze, N. (eds.) High Energy Sol. Phys. Workshop – Anticipating Hess!, Astronomical Soci-
ety of the Pacific Conference Series 206, 1. ADS.

Liu, C., Deng, N., Wang, J.T.L., Wang, H.: 2017, Predicting solar flares using SDO/HMI vector magnetic
data products and the random forest algorithm. Astrophys. J. 843, 104. ADS.

Liu, J., Ye, Y., Shen, C., Wang, Y., Erdélyi, R.: 2018, A new tool for CME arrival time prediction using
machine learning algorithms: CAT-PUMA. Astrophys. J. 855, 109. ADS.

Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L.: 2017, The expressive power of neural networks: a view from the
width. arXiv e-prints, arXiv. ADS.

Nair, V., Hinton, G.E.: 2010, Rectified linear units improve restricted Boltzmann machines. In: Proceeding
ICML’10 Proceedings of the 27th International Conference on International Conference on Machine
Learning, 807.

Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Watari, S., Ishii, M.: 2017, Solar flare prediction model with
three machine-learning algorithms using ultraviolet brightening and vector magnetograms. Astrophys.
J. 835, 156. ADS.

Osborne, C.M.J., Armstrong, J.A., Fletcher, L.: 2019, RADYNVERSION: learning to invert a solar flare
atmosphere with Invertible Neural Networks. Astrophys. J. 873, 14.

Panos, B., Kleint, L., Huwyler, C., Krucker, S., Melchior, M., Ullmann, D., Voloshynovskiy, S.: 2018, Iden-
tifying typical Mg II flare spectra using machine learning. Astrophys. J. 861, 62. ADS.

Park, S., Kwak, N.: 2017, Analysis on the dropout effect in convolutional neural networks. In: Lai, S.-H.,
Lepetit, V., Nishino, K., Sato, Y. (eds.) Computer Vision, ACCV 2016, Springer, Cham, 189. 978-3-319-
54184-6.

Piana, M., Massone, A.M., Benvenuto, F., Campi, C.: 2018, FLARECAST: an I4.0 technology for space
weather using satellite data. arXiv e-prints, arXiv. ADS.

Read, J., Pfahringer, B., Holmes, G., Frank, E.: 2011, Classifier chains for multi-label classification. Mach.
Learn. 85(3), 333. DOI.

http://arxiv.org/abs/arXiv:1807.10406
http://adsabs.harvard.edu/abs/2018arXiv180710406D
http://adsabs.harvard.edu/abs/2018A%26A...614A...5D
https://doi.org/10.1117/12.2057038
http://adsabs.harvard.edu/abs/2014SPIE.9147E..07E
http://adsabs.harvard.edu/abs/2011SSRv..159...19F
http://adsabs.harvard.edu/abs/2018SoPh..293...28F
http://arxiv.org/abs/arXiv:1404.7456
http://adsabs.harvard.edu/abs/2014arXiv1404.7456G
http://arxiv.org/abs/arXiv:1512.03385
http://adsabs.harvard.edu/abs/2015arXiv151203385H
http://arxiv.org/abs/arXiv:1502.01852
http://adsabs.harvard.edu/abs/2015arXiv150201852H
http://arxiv.org/abs/arXiv:1502.03167
http://adsabs.harvard.edu/abs/2015arXiv150203167I
http://adsabs.harvard.edu/abs/2016arXiv160308155J
http://arxiv.org/abs/arXiv:1711.07064
http://adsabs.harvard.edu/abs/2017arXiv171107064K
http://adsabs.harvard.edu/abs/2000ASPC..206....1L
http://adsabs.harvard.edu/abs/2017apj...843..104L
http://adsabs.harvard.edu/abs/2018apj...855..109L
http://arxiv.org/abs/arXiv:1709.02540
http://adsabs.harvard.edu/abs/2017arXiv170902540L
http://adsabs.harvard.edu/abs/2017apj...835..156N
http://adsabs.harvard.edu/abs/2018apj...861...62P
http://arxiv.org/abs/arXiv:1806.08560
http://adsabs.harvard.edu/abs/2018arXiv180608560P
https://doi.org/10.1007/s10994-011-5256-5


Fast Solar Image Classification Page 23 of 23 80

Rokach, L., Schclar, A., Itach, E.: 2013, Ensemble methods for multi-label classification. arXiv e-prints,
arXiv. ADS.

Schwer, K., Lilly, R.B., Thompson, B.J., Brewer, D.A.: 2002, The SDO mission. In: AGU Fall Meeting
Abstracts, SH21C. ADS.

Simard, P.Y., Steinkraus, D., Platt, J.C.: 2003, Best practices for convolutional neural networks applied to vi-
sual document analysis. In: Proceedings of the Seventh International Conference on Document Analysis
and Recognition, Vol. 2, ICDAR ’03, IEEE Computer Society, Washington, 958. 0-7695-1960-1.

Simonyan, K., Zisserman, A.: 2014, Very deep convolutional networks for large-scale image recognition.
arXiv e-prints, arXiv. ADS.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: 2014, Dropout: a simple way to
prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929.

Sutskever, I., Martens, J., Dahl, G., Hinton, G.: 2013, On the importance of initialization and momentum in
deep learning. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International Conference
on Machine Learning, Proceedings of Machine Learning Research 28, PMLR, Atlanta, 1139.

Title, A.M., Hoeksema, J.T., Schrijver, C.J. (Aia Team): 2006, The atmospheric imaging assembly on the
Solar Dynamics Observatory. In: 36th COSPAR Scientific Assembly, COSPAR Meeting 36. ADS.

Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M.,
Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner,
G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D.,
Owens, J.K.: 2008, The Solar Optical Telescope for the Hinode mission: an overview. Solar Phys. 249,
167. ADS.

Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: 2016, CNN-RNN: a unified framework for multi-
label image classification. arXiv e-prints, arXiv. ADS.

http://arxiv.org/abs/arXiv:1307.1769
http://adsabs.harvard.edu/abs/2013arXiv1307.1769R
http://adsabs.harvard.edu/abs/2002AGUFMSH21C..01S
http://arxiv.org/abs/arXiv:1409.1556
http://adsabs.harvard.edu/abs/2014arXiv1409.1556S
http://adsabs.harvard.edu/abs/2006cosp...36.2600T
http://adsabs.harvard.edu/abs/2008SoPh..249..167T
http://arxiv.org/abs/arXiv:1604.04573
http://adsabs.harvard.edu/abs/2016arXiv160404573W

	Fast Solar Image Classiﬁcation Using Deep Learning and Its Importance for Automation in Solar Physics
	Abstract
	Introduction
	Convolutional Neural Networks
	Background
	Convolutional Neural Networks
	Training

	Our Model
	Training Our Model

	Results
	Validation on Unseen Hinode/SOT Data
	Testing on Other Instruments' Imaging Data
	Sunspots in UV
	Prominences in EUV


	Discussion
	Acknowledgements
	Disclosure of Potential Conﬂicts of Interest
	Appendix A: Misclassiﬁcation in Validation Set
	Appendix B: Classiﬁcation of AR12665 and AR12674
	References


